Cocoon 3.0 ALPHA - Reference Documentation

Apache Cocoon 3.0 ALPHA

Reinhard P6tz (Indoga Software Design und Beratung GmbH)

Copyright © 2008

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

I 0 (o (8 Tox £ o o 1

1.1. Why C0oC00N 3 = MOUVELIONuvieiiiiieeiiiiiiiet e e e s st e e e e e s st e e e e e e e s s st eeeaae e s e ennnnees 1
1.2. Relationship tO PreVIOUS VEISIONSccoiiurerieiiiireeeaaitieeessasrereesssneeeessnneeesssnnneeesanneeeesnnnneeas 1
1.3 REQUITEMENES ...t iee ettt e st e e e e e s e et e e e e e e e e s s aab e b e e e eeeeessanntsteneeeaeeeseannneeees 1
2. PIPEIINES i — e e e e b e e e e et e e e e e e nnes 2
21 What isapipeling?coooiii i, 2
2.1.1. Lin@ar PIPEIINGESoeeeeiiiiiie ettt 2
2.1.2. PIpelineS by EXamMPIE ...cooieiiiiiiiiee e eas 2

2.2. Pipeline implemeNtalionsc..vuiiiiiie e e e e e e e e s s aa e e e e anrraes 4
2.3. EMDedding @PiPeEliNeoeiiiiiiie e 4
2.4, SAX COMPONENES ...eeeitiiiiieeeeeteeeii st e e e e et e eetat s e e e eeeeeetet s e eeeeeeeeasba it e eeeeaeeesssnseeeeeeeeesnsnnnnns 4
2.4.1. Available COMPONENLSccoiiiiiie ettt e e 4
2.4.2. Writing Custom COMPONENESccceeeiieeii e 4

2.5. SEAX COMPONENTSettieeieeeee ettt e e e e sttt e e e e e s e e bbb e e et e e e e e s s aab b b e e et e eeeesaabbbereeeaeeesaannnnees 5
2.5.1. Available COMPONENESoeoiiiiieeee e e e e e e e e e e e eeeeeeeas 5
2.5.2. Writing CUSLOM COMPONENLSuvveiiieeeeiiiiiiiiieeeee e e s s eeitrreeeeeee e e s s santraeeeeaeessennrrraeeeaeas 5
2.5.3. Using StAX and SAX componentsin the same pipelingcccocvveeiiiiece e 8
2.5.4, JAVA 1.5 SUPPOIT .oeeiiiiiie ettt e e et e e e e 9

P20 T U L SRR 9
G T 1 (= 1 01 10
3.1 What IS@SITEMBD? ...eeeiiiiiiiee ettt ettt ettt ettt ettt e et e e e s st et e e e anbb e e e e enbbe e e e e nnbneeeeans 10
3.2. SITEMEP EVAIUBLTIONTooiiiiiiie ettt e e e e e e e e e 10
3.3, EXPreSSiON [aNQUAGESuvrieeiieee e i ittt e e e s sttt e e e e e e s e st ae e e e e e e e s s et b aa e e e e e e e e e s annnnraaeeeaeas 10
3.4, SPIING INTEGIAIION ... ettt e et e e e et e e s st e e e e e e sb e e e e e annr e e e e annneeeeans 10
3.5. EMbedding @SItEMEDuvveiiiiiii e 10
4. WED BPPITCALIONS ...ooiiiiiee ettt e et e e et e e e e e st e e e e e bb e e e e e n b e e e e e n e e e e e anbeneeean 11
I WS T o= = T4 0L 11
4.2. Servlet-Service framework INEGIrationoocciiiiiiiiie e 11
4.3. Sitemapsin an HTTP ENVIFONEMENToeeiiiiiieeiiiiiie et e e e 11
Y £ = IS = L1 o PP 11
4.5. Connecting PiPeline FragmMENTScoiiuiiie et e e 11
4.6. RESTTUI WED SEIVICES ...viiiiieeiiiiie ettt e ettt e e s sttt e e e s st e e e e enaeeeesensneeeeans 11
4.6.1. Sitemap based RESTTUl WED SEIVICESvviiiiiiiiiie et 11
4.6.2. JAX-RS based controllers (JSR31L) ...cccovveviiiiiiiiiieeeeceeeeeeeeeeeeeee e e e e 11

4.7. Caching and conditional GET FEQUESEScc.oocuiiiiiiiieeeeieciiiiteeee e e e e e ee et e e e e e e e s e snnnrnaeeeaens 14
I AN 11 1< 1 o= 1 o o 14
e T I =] o SRR 14
4.10. Profiling SUPPOITeeeeiiiieee ittt ettt e e e e s e e e s abe e e e e e nb s e e e e anne e e e e annrneeeans 14
7 10 3 I \Y oo (U1 Y=Y oo 1 101U = 1 o o [P 14
4.10.2. USING COCOON ProOfiliNGceoiiiiiieiiiiiie ettt 14
4.10.3. Using Firebug with Cocoon-profilingcceeveviviviiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeee e 15
Y o Tl o) Lo = o] o o A PR 16
4.11.1. MOAUIE CONFIQUIBLIONeeeiiiiieee ettt e e e e e e e e e e e e aas 16
4.11.2. AVAILADIE PAS ..o e e 16

g 2 U1 (o - | SR 21
5. WICKEL INTEGIalioncooeeeee e 22
o300 R 1 1o [N o 1 o o RS PPESRR 22
5.2. Integrate Cocoon iNTO WICKELeiiiiieiiiiiie e e e e et e e e e e e e e an 22
5.2.1. Mount @ COCOON SITEIMADuvviiiiieie e e i s it e e e e e e e e e e e e e e s s s e e e e e e s s e snrrraeeeaeas 22
5.2.2. Mount 8 COCOON PIPEIINEuiiiieiiiiii e e e 23
5.2.3. CocoonSAXPipeline Wicket COMPONENEcovveeiiiiiiiiiiieiee e 24

5.3. Integrate WiCKEL iNtO COCOONcciiuuriieiiiiiiieeaiieie e et e e st e e e st e e e e s e e e s sbne e e e e nnnneeeean 24

Apache Cocoon 3.0 ALPHA

Cocoon 3.0 ALPHA - Reference Documentation

5.3.1. Wicket reader

Apache Cocoon 3.0 ALPHA

Chapter 1. Introduction

1.1. Why Cocoon 3 - Motivation

The main idea behind Cocoon is the concept of pipelines. Cocoon 1.x and 2.x applied this idea with afocus on
web applications. But sometimes pipelines would be useful although you don't develop a web application.
Those former Cocoon versions don't really help you in that case.

In contrast, Cocoon 3 follows a layered approach so that its basic module - the pipeline module - can be used
from within any Java environment without requiring you adding a huge stack of dependencies.

On top of this, Cocoon 3 has the goal to make the development of RESTful web services and web applications
asimpletask.

1.2. Relationship to previous versions

Cocoon 3 has been built completely from scratch and doesn't have any dependencies on Cocoon 2.x or 1.X.

1.3. Requirements

Cocoon 3 requires Java 5 or higher.

Apache Cocoon 3.0 ALPHA 1

Chapter 2. Pipelines

2.1. What is a pipeline?

A Cocoon 3 pipeline expects one or more component(s). These components get linked with each other in the
order they were added. Thereis no restriction on the content that flows through the pipeline.

A pipeline works based on two fundamental concepts:

e The first component of a pipeline is of type or g. apache. cocoon. pi pel i ne. conponent . Starter. The last
component isof type or g. apache. cocoon. pi pel i ne. conponent . Fi ni sher.

e In order to link components with each other, the first has to be a
or g. apache. cocoon. pi pel i ne. conponent . Producer , the |atter
or g. apache. cocoon. pi pel i ne. conponent . Consuner .

When the pipeline links the components, it merely checks whether the above mentioned interfaces are present.

So the pipeline does not know about the specific capabilities or the compatibility of the components. It is the

responsibility of the Producer to decide whether a specific Consuner can be linked to it or not (that is, whether

it can produce output in the desired format of the Consumer or not). It is also conceivable that a Producer is
capable of accepting different types of consurmer and adjust the output format

2.1.1. Linear pipelines

A Cocoon 3 pipeline always goes through the same sequence of components to produce its output. There is no
support for conditionals, loops, tees or aternative flows in the case of errors. The reason for this restriction is
simplicity and that non-linear pipelines are more difficult (or even impossible) to be cached. In practice this
means that a pipeline has to be contructed completely at build-time.

If non-linear XML pipes with runtime-support for conditionals, loops, tees and error-flows are a requirement
for you, see the XProc standard of the W3C. There are severa available implementations for it.

2.1.2. Pipelines by example

But let's get more specific by giving an example: Cocoon has become famous for its SAX pipelines that consist
of exactly one SAX-based XML generator, zero, one or more SAX-based XML transformers and exactly one
SAX-based XML serializer. Of course, these specific SAX-based XML pipelines can be build by using general
Cocoon 3 pipelines. generators, transformers and serializers are pipeline components. A generator isa Start er
and a Producer, a transformer can't be neither a Starter, nor a Fi ni sher but is adways a Producer and a
Consuner and aserializer isaConsuner and aFi ni sher.

Here is some Java code that demonstrates how a pipeline can be utilized with SAX-based XML components:

Pi pel i ne<SAXPi pel i neConponent > pi pel i ne = new NonCachi ngPi pel i ne<SAXPi pel i neConponent >(); O
pi pel i ne. addConponent (new XM_Gener at or (" <x></x>")); 0
pi pel i ne. addConponent (new XSLTTr ansformer(this.getC ass().get Resource("/testl.xslt"))); O
pi pel i ne. addConponent (new XSLTTransformer (this.getC ass().get Resource("/test2.xslt"))); O
pi pel i ne. addConponent (new XM.Seri al i zer()); 0
pi pel i ne. setup(System out); O
pi pel i ne. execute(); O

Apache Cocoon 3.0 ALPHA 2

http://en.wikipedia.org/wiki/XProc

Pipelines

Create a NonCachingPipeline. It's the simplest available pipeline implementation. The
or g. apache. cocoon. pi pel i ne. Pi pel i ne interface doesn't impose any restrictions on the content that
flowsinit.

Add a generator, that implements the org. apache. cocoon. pi pel i ne. conponent . Pi pel i neConponent
interface to the pipeline by using the pipeline's addConponent (pi pel i neConponent) interface.

The XM_Gener at or expectsaj ava. | ang. Stri ng object and produces SAX events by using a SAX parser.
Hence it hasto implement the or g. apache. cocoon. sax. conponent . SAXPr oducer interface.

The sAXProducer interface extends the or g. apache. cocoon. pi pel i ne. conponent . Producer interface.
This means that it expects the next (or the same!) component to implement the
or g. apache. cocoon. pi pel i ne. conponent . Consuner interface. The check that the next pipeline
component is of type or g. apache. cocoon. sax. conponent . SAXConsurer isn't done at interface level but
by the implementation (see the or g. apache. cocoon. sax. conponent . Abst r act XM_Pr oducer for details
which the XM_Gener at or isinherited from).

Since a generator is the first component of a pipeline, it also has to implement the st art er interface.
Add a transformer, that implements the or g. apache. cocoon. pi pel i ne. conponent . Pi pel i neConponent
interface, to the pipeline by using the pipeline's addCorponent (pi pel i neConponent) method.

This XSLTTransfornmer expects the java.net.URL of an XSLT stylesheet. It uses the rules of the
stylesheet to add, change or delete nodes of the XML SAX stream.

Since it implements the org. apache. cocoon. pi pel i ne. conponent . Consuner interface, it fulfills the
general contract that a Consuner is linked with a Producer. By implementing the
or g. apache. cocoon. sax. conponent . SAXConsurer interface, it fulfills the specific requirement of the
previous XM.Gener at or that expects a next pipeline component of that type.

This transformer also implements the or g. apache. cocoon. sax. conponent . SAXPr oducer interface. This
interface extends the or g. apache. cocoon. pi pel i ne. conponent . Producer interface which means that the
next component has to be a org. apache. cocoon. pi pel i ne. conponent . Consuner. Like the previous
XM_Gener at or , the XSLTTr ansf or mer inherits from the
or g. apache. cocoon. sax. conponent . Abst r act XMLPr oducer Which contains the check that the next
component is of type or g. apache. cocoon. sax. conponent . SAXConsuner .

Add another transformer to the pipeline. A pipeline can contain any number of components that
implement the Producer and Consuner interfaces at the same time. However, they mustn't be neither of
type St art er NOr Fi ni sher.

Add a seridizer, that implements the org. apache. cocoon. pi pel i ne. conponent . Pi pel i neConponent
interface to the pipeline by using the pipeline's addConponent (pi pel i neConponent) interface.

The XML serializer receives SAX events and serializesthem into anj ava. i 0. Qut put St ream

A seridizer component is the last component of a pipeline and hence it has to implement the
or g. apache. cocoon. pi pel i ne. Fi ni sher interface.

Since it receives SAX events, it implements the org. apache. cocoon. pi pel i ne. sax. SAXConsurmer
interface.

A pipeline hasto be initialized first by calling its set up(out put St r eamy method. This method expects the
output stream where the pipeline result should be streamed.

After the pipeline has been initialized, it can be executed by invoking its execut e() method. The first
pipeline component, a st art er, will be invoked which will trigger the next component and so on. Finaly
the last pipeline component, a Fi ni sher will be reached which is responsible for the serialization of the
pipeline content.

Once the pipeline has been started, it either succeeds or fails. There is no way to react on any (error)

Apache Cocoon 3.0 ALPHA 3

Pipelines

conditions.

Table2.1. SAX components and their interfaces

Component type Structural Content-specific
interfaces interfaces
SAX generator Starter, Producer, SAXProducer
PipelineComponent
SAX transformer Producer, SAXProducer,
Consumer, SAXConsumer

PipelineComponent

SAX seridizer Finisher, Consumer, SA X Consumer
PipelineComponent

2.2. Pipeline implementations

TBW: noncaching, caching, async-caching, expires caching, own implementations

2.3. Embedding a pipeline

TBW: Passing parameters to the pipeline and its components, finsih() method

2.4. SAX components

concept, writing custom SAX components, link to Javadocs

2.4.1. Available components

Link to Javadocs

2.4.2. Writing custom components

2.4.2.1. SAX generator

explain from a user's point of view, what she needs to do to implement one (available abstract classes)

2.4.2.2. SAX transformer
explain from a user's point of view, what she needs to do to implement one

buffering

2.4.2.3. SAX serializer

Apache Cocoon 3.0 ALPHA

Pipelines

explain from a user's point of view, what she needsto do to implement one

2.5. StAX components

StAX pipelines provide an aternative API for writing pipeline components. Altough they are not as fast as
SAX, they provide easier state handling as the component can control when to pull the next events. This allows
an implicit state rather than have to manage the state in the various content handler methods of SAX.

The most visible difference of StAX components in contrast to SAX is that the component itself has controls
the parsing of the input whereas in SAX the parser controls the pipeline by caling the component. Our
implementation of StAX pipelines uses just StAX interfaces for retrieving events - the writing interface is
proprietary in order to avoid multihreading or continuations. So it is really a hybrid process - the StAX
component is called to generate the next events, but it is also allowed to read as much data from the previous
pipeline component as it wants. But as the produced events are kept in-memory until a later component pulls

for them, the components should not emit large amounts of events during one invocation.

2.5.1. Available components

e St AXGener at or isa Starter and normally parses a XML from an InputStream.

* StAXSerializer isaFinisher and writes the StAX Events to an OutputStream.

* Abstract St AXTr ansf or ner isthe abstract base class for new transformers. It simplifies the task by providing

atemplate method for generating the new events.

* St AXd eani ngTr ansf or ner isan transformer, which cleans the document from whitespaces and comments.

* | ncl udeTransfor ner includes the contents of another document.

For further information refer to the javadoc

2.5.2. Writing custom components

2.5.2.1. StAX generator

The St AXGener at or isasStarter component and produces XMLEvents.

i mport java.io.lnputStream
i mport java. net. URL;

i mport
i mport
i mport
i mport
i mport

j avax.
j avax.
j avax.
j avax.
j avax.

xm
xm
xm
xm
xm

. stream Fact or yConfi gurati onError;
. stream XM_Event Reader ;

. stream XM.I nput Fact ory;

.stream XM_St r eanExcepti on;

. stream event s. XM_Event ;

i mport org. apache. cocoon. pi pel i ne. Set upExcepti on;
i nport org.apache. cocoon. pi pel i ne. conponent . Starter;
public class M/St AXGener at or extends Abstract St AXProducer inplenents Starter {

private XM_Event Reader reader;

publ i c MySt AXGener at or (| nput Stream i nput Strean) {

try {
thi s. reader = XM.I nput Fact ory. new nstance() . creat eXM_Event Reader (i nput Strean);
} catch (XM.StreanException e) {

O

Apache Cocoon 3.0 ALPHA

http://cocoon.apache.org/3.0/apidocs/org/apache/cocoon/stax/package-summary.html

Pipelines

t hrow new Set upException("Error during setup an XM_.Event Reader on the inputStreani, e);
} catch (FactoryConfigurationError e) {

}
}

throw new Set upException("Error during setup the XM.I nputFactory for creating an XM_Event Reader",

public void execute() {
t hi s. get Consuner ().initiatePull Processing(); O

}

publ i c bool ean hasNext () {
return this.reader. hasNext (); O

}

public XM_Event next Event() throws XM.StreanException {
return this.reader.nextEvent(); O

}

public XM_Event peek() throws XM.StreanException {
return this.reader. peek(); O

}

O In order to implement an own StAXGenerator the easiest approach is to inherit from
Abst ract St AXPr oducer .

O Theconstructor creates a new XMLEventReader for reading from the inputstream.

O The pipelineis started using the execut e method. As StAX is a pull based approach the last component
hasto start pulling.

O Thismethod should return true if the generator has a next Event.

0 Returnsthe next event from the generator.

0 Returnsthe next event from the generator, without moving actually to the next event.

2.5.2.2. StAX transformer

Implementing a StAX Transformer should be the most common use case. The Abst ract St AXTr ansf or mer
provides a foundation for new transformers. But in order to write new transformers even simpler, let's describe
another feature first:

2.5.2.2.1. Navigator

Navigators allow an easier navigation in the XML document. They also simplify transformers, as usually
transformers need only process some parts of the input document and the navigator helps to identify the
interesting parts. There are several implementations already included:

* FindStartEl ement Navi gat or findsthe start tag with certain properties(name,attribute)
* Fi ndEndEl ement Navi gat or finds the end tag with certain properties(name,attribute)
* Fi ndCor r espondi ngSt ar t EndEl emrent Pai r Navi gat or finds both the start and the corresponding end tag.

e | nSubtreeNavi gat or finds whole subtrees, by specifying the properties of the "root" element.
For further information refer to the navigator javadoc

2.5.2.2.1.1. Using navigators

Using a navigator is a rather simple task. The transformer peeks or gets the next event and cals
Navi gator.ful fillsCriteria -if trueisreturned the transformer should be process that event somehow.

2.5.2.2.1.2. Implementing a navigator

Apache Cocoon 3.0 ALPHA 6

e);

http://cocoon.apache.org/3.0/apidocs/org/apache/cocoon/stax/navigation/package-summary.html

Pipelines

Creating a new navigator is arather smpletask and just means implementing two methods:

i mport javax.xm .stream events. XM_Event ;

public class M/Navigator inplenents Navigator {
public boolean fulfillsCriteria(XM.Event event) { O
return fal se;

}

public bool ean isActive() { ad
return fal se;

}

O Thismethod returnstrue if the event matches the criteria of the navigator.
0 Returnstheresult of the last invocation of fulfillsCriteria

2.5.2.2.2. Implementing a transformer

The next example should show you an transformer featuring navigators and implicit state handling through
function calls.

public class DaisyLi nkRewiteTransformer extends Abstract St AXTransformer {
@verride
protected void produceEvents() throws XM.StreanException {
whil e (this.getParent().hasNext()) {
XMLEvent event = this.getParent().nextEvent();

if (this.anchorNavigator.fulfillsCriteria(event)) { 0
ArraylLi st <XMLEvent > i nner Content = new ArrayLi st <XM_Event>();
Li nkInfo linklnfo = this.collectLinklnfo(innerContent); ad
if(linklnfo !'= null) {
I'i nkl nfo. set Navi gati onPat h(this.getAttributeVal ue(event.asStartEl ement(), O
PUBLI SHER NS, " navi gati onPat h"));
this.rewiteAttributesAndEm t Event (event. asStartEl ement (), |inklnfo); 0
i f(innerContent.size() !'=0) {
t hi s. addAl | Event sToQueue(i nner Content) ;
}
}
[* .0
}
[* ...
}
}
private Linklnfo collectlLinklnfo(Li st<XM_.Event> events) throws XM.StreanException {
Navi gat or |i nkl nfoNavi gator = new | nSubtreeNavi gator (LI NK_| NFO _EL) ; O
Navi gat or | i nkl nf oPart Navi gator = new Fi ndStart El enent Navi gat or (LI NK_PART_I NFO EL) ;
Linklnfo linklnfo = null;
while (this.getParent().hasNext()) {
XMLEvent event = this.getParent().peek(); O
if (linklnfoNavigator.fulfillsCriteria(event)) {
event = this.getParent().nextEvent();
if (linklnfoPartNavigator.fulfillsCriteria(event)) {
[* ...
String fileName = this.getAttributeVal ue(event.asStartEl ement(),"fileNanme");
if (!"".equal s(fileName)) {
I'i nkl nfo.setFileNane(fil eNane);
}
} /* L */
} else if (event.isCharacters()) {
events. add(thi s. get Parent (). nextEvent());
} else {
return |inklnfo;
}
}
return |inklnfo;
}

Apache Cocoon 3.0 ALPHA 7

Pipelines

private void rewiteAttributesAndEnm t Event (StartEl enent event, Linklnfo Iinklnfo) ;

|

The transformer checks for anchorsin the XML.

If an anchor isfound, it invokes a method which parsesthe link info if there is any. The additional array is
for returning any events, which were read but do not belong to the linkinfo.

O Thismethod finally writes the start tag with the correct attributes taken from the parsed LinkInfo.

O Theevents, which were read but not parsed, are finally added to the output of the transformer.

O Theparser for the linkinfo object usesitself also navigators ...

O ... and reads more events from the parent.

(|

2.5.2.3. StAX serializer

The st AxSeri al i zer pullsand serializes the StAX events from the pipeline.

public class Null Serializer extends Abstract St AXPi pel i neConponent
i mpl enents St AXConsuner, Finisher {

private StAXProducer parent; O
public void initiatePull Processing() { O
try {
while (this.parent.hasNext()) {
XM_Event event = this.parent.nextEvent(); a

/* serialize Event */

}
} catch (XM.StreanException e) {
t hrow new Processi ngException("Error during witing output elenments.", e);
}
}

public void setParent (St AXProducer parent) { O
this.parent = parent;
}

public String getContentType() ; 0
public void set Qut put St rean{ Qut put St ream out put Strean) ;

The Finisher hasto pull from the previous pipeline component..

In case of StAX the last pipeline component has to start pulling for Events.

The serializer pulls the next Event from the previous component and should as next step serialize it.
During the pipeline construction the setParent is called to set the previous component of the pipeline.
These two methods are defined in the Finisher and allow to set the OutputStream (if the Serializer needs
any) and to retrieve the content-type of the result..

I o I |

2.5.3. Using StAX and SAX components in the same pipeline

The StAX pipeline offers interoperability to SAX components to a certain degree. However due their different
paradigms only two use cases are currently implemented: Wrapping a SAX component in a StAX pipeline and
aStAX-to-SAX pipeline, which starts with StAX components and finishes with SAX.

2.5.3.1. Wrapping a SAX component in a StAX pipeline

This alows to use existing SAX components in a StAX pipeline. Beware the overhead of the conversion of
StAX->SAX->StAX - so no performance gains from a SAX component can be expected.

Pi pel i ne<St AXPi pel i neConponent > pi peSt AX = new NonCachi ngPi pel i ne<St AXPi pel i neConponent >() ;
pi peSt AX. addConponent (new St AXGener at or (i nput)); ad

Apache Cocoon 3.0 ALPHA 8

Pipelines

pi peSt AX. addConponent (new SAXFor St AXPi pel i neW apper (new C eani ngTransformer())); O
pi peSt AX. addConponent (new St AXSeri al i zer());

pi peSt AX. set up(System out) ;

pi peSt AX. execut e();

|

The pipeline uses a st AXGener at or - Which produces StAX events.

O In order to embed a single SAX component in a SIAX pipeline, the SAXFor St AXPi pel i neW apper iS
needed. The constructor argument is the SAX component.

O Altough the d eani ngTransformer would emit SAX calls - the wrapper converts them back to the

appropriate StAX eventsthe st AxSeri al i zer can write..

2.5.3.2. StAX-to-SAX pipeline

This converter alows to mix StAX and SAX components - but is limited to starting with StAX and then
switching to SAX.

Pi pel i ne<Pi pel i neConponent > pi peSt AX = new NonCachi ngPi pel i ne<St AXPi pel i neConponent >();
pi peSt AX. addConponent (new St AXGener at or (i nput)) ;

pi peSt AX. addConponent (new St AXToSAXPi pel i neAdapter());

pi peSt AX. addConponent (new Cl eani ngTransforner());

pi peSt AX. addConponent (new XM.Seri al i zer());

pi peSt AX. set up(System out);

pi peSt AX. execute();

I I o |

The pipeline starts with a st AXGener at or .

The adapter converts the StAX eventsto SAX method calls.
The d eani ngTransf or mer isa SAX component.
ThexM.Seri al i zer writesthe SAX method callsto afile.

(I B R |

2.5.4. Java 1.5 support

In order to use StAX with Java 1.5 an additional dependency is needed in the project's pom xni .

<dependency>
<gr oup! d>or g. codehaus. woodst ox</ gr oupl d>
<artifactld>wstx-asl </artifactld>
<ver si on>3. 2. 7</ ver si on>

</ dependency>

Using woodstox is simpler, as the reference implementation depends on JAXP 1.4, which is not part of Java
15.

2.6. Utilities

TBW: XMLUTtils, TransformUtils

Apache Cocoon 3.0 ALPHA 9

Chapter 3. Sitemaps

3.1. What is a sitemap?

TBW

3.2. Sitemap evaluation?

TBW

3.3. Expression languages

TBW

3.4. Spring integration

TBW

3.5. Embedding a sitemap

TBW

Apache Cocoon 3.0 ALPHA

10

Chapter 4. Web applications

4.1. Usage scenarios

TBW

4.2. Servlet-Service framework integration

TBW: Composition, servlet: protocol, inheritance

4.3. Sitemaps in an HTTP environement

TBW: Status codes, Conditional GET requests, Mime-type handling

4.4. System setup

TBW: Logging, JNet, Configuration, Spring integration Deployment: Blocks as deployment units AND
Creating aweb archive (WAR), Devleopment with Eclispe and Maven

4.5. Connecting pipeline fragments

TBW

4.6. RESTful web services

4.6.1. Sitemap based RESTful web services

4.6.1.1. Introduction

TBW: REST controller, Rendering views using StringTemplate, Request-wide transactions (incl. Subrequests)

4.6.2. JAX-RS based controllers (JSR311)

4.6.2.1. Introduction

JAX-RS (JSR 311) is the Java standard for the development of RESTful web services. It provides a set of
annotations that, when being applied, define resources that are exposed by using Uniform Resource Identifiers
(URIs).

The wiki of the Jersey project that provides the Reference Implementation of JAX-RS contains a lot of useful
information about how to define REST resources.

Apache Cocoon 3.0 ALPHA 11

http://wikis.sun.com/display/Jersey/Main

Web applications

The main pieces of the JAX-RS/Cocoon-integration are

* the CocoonJAXRSSer vl et Servlet-Service, which is responsible for the JAX-RS integration into the Cocoon
Servlet-Service framework, and

» the URLResponseBui | der class, which allows calling resources provided by other Serviet-Services (usualy
Cocoon pipelines exposed by sitemaps).

4.6.2.2. Cocoon and JAX-RS by example

Adding support for JAX-RS services to your Cocoon application requires following three steps:

¢ Addthecocoon-rest module as adependency.
e Add the CocoonJAXRSSer vl et Servlet-Service

* Add at least one JAX-RS root resource

4.6.2.2.1. Cocoon-Rest dependency

Thefirst step isto add the cocoon- rest module to your Cocoon application:

<dependency>
<gr oupl d>or g. apache. cocoon. r est </ gr oupl d>
<artifactld>cocoon-rest</artifactld>

</ dependency>

4.6.2.2.2. JAX-RS resource

Then at least one JAX-RS resourceis required:

@at h("/sanpl e") ad
public class Sanpl eRest Resource { O

private Settings settings;

@ET
@rat h("/ paranet er - passi ng/ {id}")
publ i c Response anot her Servi ce(
@rat hParan("id") String id,
@uer yParan("req-parant') String reqgParam
@ontext Urilnfo urilnfo,
@ont ext Request request) {

| |

O

Map<String, Object> data = new HashMap<String, Object>();

dat a. put ("nanme", "Donald Duck");

data.put("id", id);

dat a. put ("regparant, reqParanj;

dat a. put ("runni ngibde", this.settings.getProperty("testProperty"));

return URLResponseBui | der. new nst ance("servl et:sanple:/controller/screen", data) O

Lbuild();
}
public void setSettings(Settings settings) {
this.settings = settings; (11)
}

O The @avax. ws. rs. Pat h annotation identifies the URI path that this resource class or class method will
serve reguests for. The path is relative to the mount point of the servlet-service that references this

Apache Cocoon 3.0 ALPHA 12

Web applications

|

resource.

A JAX-RS root resource.

The @ avax. ws. rs. GET annotations indicates that this method respondsto HTTP GET requests.

Again a @ath annotation, but this time a method level. In this example requests for
sanpl e/ par anet er - passi ng/ NNN Will be handled by the anot her Ser vi ce() method.

The @rat hPar amannoation binds the URI template value of i d to the method parameter i d.

The @uer yPar amannotation binds the request parameter r eq- par amto the method parameter r eqPar am
By annotating the URI I nfo method parameter with the @ontext annotations, a current instance of
URI | nf o is passed to the method.

By annotating the Request method parameter with the @ontext annotations, a current instance of
Request is passed to the method.

A map of string/ Ooj ect is collected.

The URLResponseBui | der sends the result of the passed URL as response. It alows passing a map of
Stri ng/ Ooj ect which are available in the called resource (usually a pipeline).

In this case the servlet: protocol is used. It allows accessing URLSs (that usually expose pipelines)
defined by other Servlet-Services.
A setter method to allow injecting the Set t i ng bean.

4.6.2.2.3. JAX-RS resource as Spring bean

This resource has to be configured as Spring bean:

O

<beans xm ns="http://ww. spri ngfranmework. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd" >

<bean i d="org. apache. cocoon. sanpl e. rest.resource. one" O
cl ass="org. apache. cocoon. sanpl e. j axrs. Sanpl eRest Resour ce" >
<property name="settings"
ref ="or g. apache. cocoon. confi guration. Settings" />
</ bean>

</ beans>

The sSanpleRestResource IS a usua Spring bean and in this example it gets the
or g. apache. cocoon. confi guration. Set ti ngs bean injected.

4.6.2.2.4. Servlet-Service integration

Finally the Spring bean has to be exposed by the CocoonJAXRSSer vl et :

<beans xm ns="http://ww. springframework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: servl et="http://cocoon. apache. org/ schema/ servl et"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://cocoon. apache. or g/ schena/ servl et
http://cocoon. apache. or g/ schema/ servl et/ cocoon-servl et-1.0. xsd>

<I-- A servlet-service that exposes JAX-RS REST endpoints. -->

<bean i d="org. apache. cocoon. sanpl e.rest.servlet" 0
cl ass="org. apache. cocoon. rest. j axrs. cont ai ner. CocoonJAXRSSer vl et " >
<servl et:context mount-path="/jax-rs" O
cont ext - pat h="bl ockcont ext : / cocoon- sanpl e/ " >
<servl et: connecti ons> a

<entry key="sanpl e" val ue-ref="org. apache. cocoon. sanpl e. servlet" />
</ servl et: connections>
</ servl et: cont ext >

<property nanme="rest Resour cesList"> 0
<list>
<ref bean="org. apache. cocoon. sanpl e. rest.resource. one" />

Apache Cocoon 3.0 ALPHA 13

Web applications

</list>
</ property>
</ bean>
</ beans>

The CocoonJAXRSSer vl et exposes REST resources.

The mount path of this Servlet-Serviceis/j ax-rs.

Connections to other Servlet-Services.

A list of JAX-RS resources, which also have to be Spring beans, is exposed.

I o |

Alternativly a<map> of resources can be injected by ther est Resour ceMap property.

4.7. Caching and conditional GET requests

TBW

4.8. Authentication

TBW

4.9. Testing

TBW: Integeration tests

4.10. Profiling support

A cocoon request goes through many components; while performing a Cocoon request, servlets, sitemaps and
pipeline components are being executed. It is also quite common that Cocoon requests are cascaded which
makes it sometimes difficult to understand what exactly was happening. Cocoon Profiling enables you to
profile any request to your website.

4.10.1. Module configuration

In order to use cocoon-profiling, you simply have to include the cocoon-profiling jar in your classpath.
Cocoon-profiling uses Spring AOP, so no further configuration is needed.

4.10.2. Using Cocoon Profiling

Cocoon-profiling provides several generators for xml and graphical output, which is used by the Firebug
plugin. However, you can directly access the data using

* yourdomai n. com control | er/profiling/{id} for the xml file (xml schema see profilingSchema. xsd in
cocoon-profiling)

* yourdomai n. com control | er/profiling/{id}.png forthe graphical representation (example see below)
where {id} istheid of the request. Thisid (X- Cocoon- Profi | i ng- I D) can be found in the header of the original
request.

Apache Cocoon 3.0 ALPHA 14

Web applications

Thisis an example for the graphical representation:

XMLSiternapSenvlet (request=isax-pipeline/simple) - 48.542ms
Sitemap 45 864ms
PipelinesMode 45.754ms
PipelineMode {type=caching) 3.839ms
CachingPipeline 0.007ms
MatchMNode (pattern=) 0.054ms
MatchMode (pattern=readijavascriptresource-explicit) 0.085ms
MatchMode (pattern=readijavascriptresource-implicitjs) 0.059ms
MatchMNode (pattern=readfjavascript-resource-implicit.akc) 0.049ms
PipelineMode {type=caching) 41.655ms
CachingPipeline 18.118ms
MatchMode (equals=sax-pipeline/simple) 20.711ms
GenerateMode (type=file) 4.241ms
FileGenerator 6.039ms
TransformMode (type=xslt) 8.335ms
HELTTransformer 9.3896ms
SerializeMode 7.629ms
XMLSerializer 1.248ms

4.10.2.1. How can | enable/disable cocoon-profiling on the fly?
Cocoon-profiling is enabled per default. If you just want to use it, you can skip this section.

If you want to start or stop profiling while the server is running, you can use the management bean provided by
cocoon-profiling. Cocoon-monitoring automatically exposes this MBean; just make sure that
cocoon-monitoring is in your classpath. Y ou can then connect to the server process using jconsole and call the
"start" and "stop" method of the org.apache.cocoon.profiling M Bean.

Keep in mind that cocoon-profiling uses Spring AOP to intercept method calls, which cannot be enabled or
disabled at runtime. Therefore, a disabled cocoon-profiling still affects the performance (at least a little bit).
Only removing cocoon-profiling from the classpath and restarting the server guarantees maximum
performance.

4.10.2.2. | need cocoon-profiling to profile my custom cocoon component, how can | do that?

Generally, you don't have to change anything. Cocoon-profiling uses Spring AOP to profile all cocoon
components and servlets as well as any subclass or cocoon interface implementation.

Advanced users might want to add their own Profiler class to cocoon-profiling if they have a specific
component with specific parameters or other bits of data they want cocoon-profiling to collect.

4.10.3. Using Firebug with Cocoon-profiling

Getting the Firebug Plugin able to work is realy easy. Youll need to instal Firebug 1.4X from
http://getfirebug. comirel eases/firebug/1.4X and then install the Firebug xpi from
cocoon-profiling-firebug (opening it with Firefox should suffice). The generate the xpi from the sources, simply
switch to the cocoon-profiling-firebug folder and type nvn i nstal | . This will automatically build a hew xpi.
After installing the plugins, you should have a little bug on the bottom right corner of your Firefox. Clicking
will open it, then you can navigate to the net-panel (you might want to be sure its activated) and there open up a
request (you might need to refresh). In the request, there should be a tab called "Cocoon 3 Profiling”, if you
click it, and the Profiling Service works, you should now see the generated profiling data.

The data itself is presented in two textboxes. The left one is the tree which resembles the .xml that the
profiling-component generates, the right one displays the elements, properties, return-values and the profiler of
a given (= selected) row in the left tree. You can navigate through the left tree, and based on which row you

Apache Cocoon 3.0 ALPHA 15

Web applications

currently have selected, the right textbox will display the names and values. To add some visua help, pictures
are being displayed, based on which kind of element is displayed.

The underlineis:

Table4.1. Icons
A [[E]
Argument Component Exception
1] N P
Invocation Node Profiler
[Pl [E
Property Return-value Servlet
Sitemap

Y ou a'so have two options which can change what you'll be able to see in the Firebug Plugin. These are located
on the net Tab Option Panel, which is a little triangle. The options are marked {c3p} and allow you to Show /
Hide the Sitemap and to change if the invocations element of the tree is closed or opened. These changes will
require areload, either by reloading your browser, or by clicking the "Reload"-Button in the Profiling Panel.

The other button on the panel will open a new tab in your Firefox in which a graphical outline will be shown
which lists your components and the execution time of each of these components. Be aware, though, that the
first profiling cycle will present you a kind of wrong picture (it takes a lot longer), because of the java-intern
class-loading and other administrative stuff. You'll need to reload the request, not the picture, to change this.

4.10.3.1. Customizing your Firebug Plugin

To customize your Firebug Plugin, go to the plugin folder in your Firefox, select the Profiling plugin, then
navigate to chr ore\ ski n\ cl assi c\ cocoon3profi | i ng. css. In this ¢ss, you can change the heigth and width of
the trees and of their columns. Simply navigate to the element you want to change, and change the value in
there.

4.11. Monitoring support

This module gives you the possibility of monitoring Cocoon 3 applications. It expose a simple API via Spri ng
JMX MBeans and it can be user viaj consol e or other JMx console.

4.11.1. Module configuration
All module configurations are defined in META- | NF/ cocoon/ spri ng/ cocoon-noni tori ng. xm . Each part of

module can be enabled or disabled by commenting (or removing) appropriate entry in configuration file, by
default al parts are enabled.

4.11.2. Available parts

Apache Cocoon 3.0 ALPHA 16

Web applications

4.11.2.1. Inspect logging settings and reconfigure them

4.11.2.1.1. Inspect all configured loggers

The operation get Logger s() returnsalist of all configured Log4j loggersin the application, it consists of pairs:
<cl ass or package name> (Category) => <l oggi ng | evel >

4.11.2.1.2. Permanent change of a logging level

For doing permanent changes of logging level for particular class or package use the operation
set Loggi nglLevel (String category, String newLogLevel). Where Category iS name of cl ass or package
with you want to change logging level and newLogLevel isone of logging level: OFF, | NFO, WARN, ERRCR, FATAL,
TRACE, DEBUG, ALL (this parameter isn't case sensitive, S0 you can also use lower case names).

4.11.2.1.3. Temporal change of a logging level

For doing temporal changes of logging level for particular class or package use the operation
set Loggi ngTenpopor al Level (String category, String tenporal LogLevel, String tinmeQut). First two
parameters are same as in set Loggi ngLevel (), last one determinate how long this logging level should be used
(after that amount of time logging level would be set back to old level). ti mrecut parameter should match
regular expression: ~[0- 9.] +[dhnj ?$, for example if value of tinecut is set for 1, 5sh that means that new
logging level would be active for one and half hour.

4.11.2.1.4. Load a new configuration file

For loading a completely new configuration file use the operation | oadNewConf i gur ati onFil e(String path).
This method is capable for both XM and proper ti es configuration files. There is only one parameter pat h that
should contain absolute path to new configuration file located locally on the server. Before performning any
action that file is validated. First of all the file extension (there are only two appropriate extensions. *. xm and
* properties) is checked. The next validation step is different for both files, for xwm. files its content is
validated against the Log4j DTD or schema then al output log files are checked that they exist and they are
writable. Properties configuration files are validated that they contain at least one appender and each output
file directory exists and iswritable. These validations are done to prevent Log4j to get into an inconsistent state.

4.11.2.2. Inspect available Servlet-Services

Every single Servlet-Service makes his own node in JXM MBean tree. Such node contains below above
functions.

4.11.2.2.1. Get path of Servlet-Services
Function get Ser vl et Ser vi ceMount Pat hs() returns Servlet-Service mount path.
4.11.2.2.2. Get all connections for Servlet-Service

Function get Ser vl et Ser vi ceConnecti ons() returns an array of String contains al connections nhames for
given Servlet-Service. Every connection is represented by: <short name> =><full qualified bean nane>

4.11.2.2.3. Get informations about Servlet-Service

Function get Ser vl et Servi cel nfo() returns information about Servlet-Service, such as author, version, and
copyright.

Apache Cocoon 3.0 ALPHA 17

Web applications

4.11.2.2.4. List Servlet-Service parameters

Function get Ser vl et Ser vi cel ni t Par amet er s() list al init parameters provided for that Servlet-Service.

4.11.2.3. Overview of cache entries

This module contains three smaller submodules:

CacheMonitor
CacheBurstActions
CacheEntrysMonitor

4.11.2.3.1. CacheMonitor

This submodule exposes all configured caches on with basic operations on every cache.
4.11.2.3.1.1. Clear cache

Operation cl ear () remove al cache entry's from this particular cache.

4.11.2.3.1.2. List all cache key

Operation | i st Key() returnslist of al cachekeysthat are stored in this particular cache.
4.11.2.3.1.3. Removing cache entry

If you want remove single cache entry you should use operation renoveKey(String), where parameter is
Cachekey hame taken from | i st Key() result. This operation returnst r ue if it was successes otherwise it return
fal se.

4.11.2.3.1.4. Checking size of cache

It is also possible to check size of particular cache using function si ze. It will return human readable size of
this cache.

4.11.2.3.2. CacheBurstActions

This module add set of operations that can be performed on all caches. You can find and remove all cache
entry's which meet certain requirements, specified in operation parameters.

4.11.2.3.2.1. Find all cache entry's that size is greater then specified value

Operation | i st Al | Great her Then(| ong) finds all cache entry's in all configured cache's that size (in bytes) is
greather then value passed as a parameter.

4.11.2.3.2.2. Find all cache entry's that size is smaller then specified value

Operation | i st Al | Smal | edThen(1 ong) finds all cache entry's in all configured cache's that size (in bytes) is
smaller then value passed as a parameter.

4.11.2.3.2.3. Find all cache entry's that are older then specified date

Operation | i st Al I A der Then(St ring) findsal cache entry'sin all configured cache's that are older then value
specified in a parameter. Parameter value must match regular expression: 2\ d+[snhd] $ where each letter stands
for:

Apache Cocoon 3.0 ALPHA 18

Web applications

s - second
m - minutes
h - hours
d- days

4.11.2.3.2.4. Find all cache entry's that are younger then specified date

Operation | i st Al | Younger Then(String) finds al cache entry'sin al configured cache's that are younger then
value specified in a parameter. For parameter description seel i st Al | O der Then(String) .

4.11.2.3.2.5. More flexible cache entry's search

If you want to get more flexibility searching you can use Iist(long, long, String, String, Sting,
Sting). First two | ong parameters limits cache entry's size, their minimum and maximum size. Second two
String parameters limits cache entry minimum and maximum age (Syntax is same as in
listAll dderThen(Sting) and IistAll Younger Then(String) functions). Last two String parameters are
applicable only to ExpiresCacheKey instances and they limit result entry's on minimum and maximum
experience time of entry. Every result entry meets all limitations. For excluding one (or more) limitation you
must pas value -1 for | ong parametersand nul | or empty St ri ng for rest parameters.

4.11.2.3.2.6. Remove all cache entry's that size is greater then specified value

Operation cl ear Al | Gr eat her Then(1 ong) perform same search action as |i st Al | Grat her Then(1 ong) but it
removes cache entry's that fulfilled requirements instead of listing them. It will return t r ue if every cache entry
was successfully removed, after first failure of removing cache entry this operation will stop and return f al se.

4.11.2.3.2.7. Remove all cache entry's that size is smaller then specified value.

Operation cl ear Al | Smal | er Then(| ong) perform same search action as Ii st Al | Smal | er Then(l ong) but it
removes cache entry's that fulfilled requirements instead of listing them. It will return t r ue if every cache entry
was successfully removed, after first failure of removing cache entry this operation will stop and return f al se.

4.11.2.3.2.8. Remove all cache entry's that are older then specified value.

Operation cl ear Al | O der Then(String) perform same search action as 1i st Al | O der Then(String) but it
remove cache etry's that fulfilled requirements instead of listing them, this operation also require same
parameter schemaasin i st Al | A der Then(String). It will return true if every cache entry was successfully
removed, after first failure of removing cache entry this operation will stop and return f al se.

4.11.2.3.2.9. Remove all cache entry's that are younger then specified value.

Operation cl ear Al | Younger Then(String) perform same search action as|i st Al | Younger Then(String) but it
remove cache etry's that fulfilled requirements instead of listing them, this operation aso require same
parameter schema as in 1istAll Younger Then(String). It will return true if every cache entry was
successfully removed, after first failure of removing cache entry this operation will stop and return al se.

4.11.2.3.2.10. More flexible cache entry's removing

Operation cl ear (1 ong, long, String, String, String, String) perform same search action and takes
same parameters as described above list(l1ong, long, String, String, String) please seeit if you are
looking for detailed description.

4.11.2.3.2.11. Extending BurstCacheAction module

You can add your own burst actions. It is very simple, just obtain instance of

Apache Cocoon 3.0 ALPHA 19

Web applications

or g. apache. cocoon. nmoni t or i ng. cache. CacheBur st Acti ons from the container and you can perform any
action on cache entry's using per f or mActi onOnCaches(l ong, long, String, String, String, String,
CacheAct i on) method. Meaning of each parameter in this method is same asinlist(long, long, String,
String, String, String) andclear(long, long, String, String, String, String) methods, but there
is one additional parameter, it isimplementation of CacheAct i on interface. This interface has only one method
per f or mActi on(Cache, CacheKey) and it will be executed on every cache entry that match passed parameters.

4.11.2.3.3. CacheEntrysMonitor

This module enables overview of cache entry's that are connected with specified pipeline. This module will
only publish cache entry's for those pipeline's that had j mx- gr oup- i d parameter set for unique value/name. This
module also require additional refresh action, it can be performed by user or it can be executed in some period
of time ey every one minute. Behavior of refresh action can be configured by
CacheEntrysMoni torlnitializer constructor parameter or on JIMX.

4.11.2.3.3.1. Configuring refresh action

Aut oRef r esh action can be enabled and disabled during runtime. This action will register new MBeans that are
connected with new cache entry's and unregister old MBeans that was connected with expired or removed cache
entry's.

4.11.2.3.3.1.1. Enable Aut oRef r esh action

For enable Aut oRef r esh action call operation enabl eAut oRef r esh(1 ong) Where | ong parameter is period time
(in millisecond) between each refresh. This operation will stop previously configured Aut oRef r esh action and
run new with new time period.

4.11.2.3.3.1.2. Disable Aut oRef resh action

Operation di sabl eAut oRef r esh() Will stops actual running Aut oRef r esh action.
4.11.2.3.3.1.3. Manually perform refresh action

Operation per f or nRef reshAct i on() will immediately refre's published cache entry's.
4.11.2.3.3.2. Cache entry's operations

On each published cache entry you can perform that set of actions:
4.11.2.3.3.2.1. Obtain cachekey for that entry

Operation get CacheKey() Will return Cachekey connected with that entry.
4.11.2.3.3.2.2. Obtain cache value

Operation get CacheVal ue() will return value of this cache entry.
4.11.2.3.3.2.3. Set cache value

Operation set CacheVal ue(St ri ng) will set new value of this cache entry.
4.11.2.3.3.2.4. Obtain size of entry

Operation get Si ze() will return human readable size of current entry.

Apache Cocoon 3.0 ALPHA 20

Web applications

4.12. Tutorial

TBW

Apache Cocoon 3.0 ALPHA

21

Chapter 5. Wicket Integration

5.1. Introduction

Apache Wicket has become on of the most popular web frameworks of these days. Especially developerswith a
strong Java background benefit from its Java-centric approach because al object-oriented features can be
applied. Thisresultsin highly reusable code.

On the other side Cocoon implementing the pipe/filter pattern has its meritsin the field of generating resources
in different output formats.

The Cocoon-Wicket integration module bridges between those two web application frameworks in order to use
the strenghts of both. This integration supports the integration of Cocoon into Wicket as well as the integration
of Wicket into Cocoon.

Note: Thisis not an introduction into Apache Wicket. This documentation explains to the experienced Wicket
user what needs to be done to integrate Cocoon 3 into a Wicket application.

5.2. Integrate Cocoon into Wicket

The integration of Cocoon into Wicket is available in several ways:

¢ A Cocoon sitemap can be mounted as| Request Tar get Ur | Codi ngSt r at egy
¢ A single Cocoon pipeline can be mounted as| Request Tar get Ur | Codi ngSt r at egy (not implemented yet)
» A CocoonSAXPipeline Wicket component can be added to a webPage

Whatever approach is chosen, the first step is adding cocoon- wi cket and all its transitive dependencies to your
project's classpath:

<dependency>
<gr oupl d>or g. apache. cocoon. wi cket </ gr oupl d>
<artifact|d>cocoon-w cket</artifactl|d>
<versi on>3. 0. 0- al pha- 2</ ver si on>

</ dependency>

5.2.1. Mount a Cocoon sitemap

Mounting in the context of Wicket means a class implementing | Request Tar get Ur | Codi ngSt r at egy iS added
to aWicket web application. Thisinterface isimplemented by CocoonSi t emap:

i nport org. apache. cocoon. wi cket . t ar get. CocoonSi t emap
i nport org. apache. wi cket. protocol . http. WebAppl i cati on

public class SoneWebApplication extends WebApplication {

@verride
protected void init() {

t hi s. mount (new CocoonSitemap("/sitemap”, "/sitemap.xmap.xm")); O

Apache Cocoon 3.0 ALPHA 22

http://wicket.apache.org/docs/1.4/org/apache/wicket/request/target/coding/IRequestTargetUrlCodingStrategy.html
http://wicket.apache.org/docs/1.4/org/apache/wicket/request/target/coding/IRequestTargetUrlCodingStrategy.html
http://wicket.apache.org/docs/1.4/org/apache/wicket/markup/html/WebPage.html
http://wicket.apache.org/docs/1.4/org/apache/wicket/request/target/coding/IRequestTargetUrlCodingStrategy.html

Wicket Integration

O The first parameter is the mount path which is a part of the request URI that should be handled by
CocoonSi t emap. The second parameter is the location of the sitemap relativ to the servlet context.

Additionally you have to make sure that all Spring bean definitions provided by the Cocoon modules are |oaded
into the web application's Spring application context. Cocoon's own bean definitions are located in
META- | NF/ cocoon/ spring/*. xm .

The smplest solution for this task is referring to the Cocoon Spring Configurator in your main Spring
application context, which is usually located in
[servl et-cont ext - base-di rect ory] / WEB- | NF/ appl i cati onCont ext . xmi . It will automatically load al bean
definitions located in META- I NF/ cocoon/ spring/ *. xni Of al libraries on the classpath. The Cocoon Spring
Configurator documentation contains further details.

Note that the Spring Configurator is one of the transitive dependencies of cocoon- wi cket .

That's it! Everything else is the same as using Cocoon 3 outside of Wicket except that the servl et : / protocol
won't work in this environment.

5.2.2. Mount a Cocoon pipeline

NOTE: This hasn't been implemented yet!

Mounting a Cocoon pipeline follows the same idea as mounting a whole sitemap. However, it's only a single
pipeline that is added to Wicket's URI path and that this can be done without having to write any XML.

All that needs to be done is subclassing from or g. apache. cocoon. wi cket . Abst r act CocoonPi pel i ne and
implementing its addConponent s method:

i nport com nyconpany. MyCocoonPi pel i ne;
i nport org.apache. wi cket. protocol . http. WbAppl i cation;

public class SonmeWebApplication extends WebApplication

@verride
protected void init() {

th| s. mount (new MyCocoonPi pel i ne("/ ny- pi peline")); O

O Theonly parameter is the path where the pipeline should be be mounted by Wicket.

In My CocoonPi pel i ne al that needs to be done is subclassing from
or g. apache. cocoon. wi cket . Abst r act CocoonPi pel i ne and implementing its abstract method addCorponent s:

package com nyconpany;
i mport org. apache. cocoon. wi cket . Abstract CocoonPi pel i ne;
i nport org.apache. wi cket. protocol . http. WebAppl i cation;

public class MyCocoonPi pel i ne extends
or g. apache. cocoon. wi cket . Abstract CocoonPi pel i ne<SAXPi pel i neConponent >

@verride

protected void addConponents() { 0
t hi s. addConponent (new Fi | eGenerator(this.getd ass().getResource("test.xm")));
t hi s. addConponent (new XSLTTransformer (this.getd ass().get Resource("test.xsl")));
t hi s. addConmponent (new XM.Seri al i zer());

Apache Cocoon 3.0 ALPHA 23

http://cocoon.apache.org/subprojects/configuration/spring-configurator/index.html
http://cocoon.apache.org/subprojects/configuration/spring-configurator/index.html

Wicket Integration

O Addall pipeline components that are required.

5.2.3. CocoonSAXPipeline Wicket component

The third alternative of using Cocoon in Wicket is adding a Cocoon pipeline as WebConponent . This is as
simple as instantiating CocoonSAXPi pel i ne and adding all generators and transformers that are required:

i mport org. apache. cocoon. pi pel i ne. NonCachi ngPi pel i ne

i nport org. apache. cocoon. sax. SAXPi pel i neConponent ;

i nport org. apache. cocoon. sax. conponent . Stri ngGener at or ;
i nport org. apache. cocoon. sax. conponent . XSLTTr ansf or ner ;
i nport org. apache. cocoon. wi cket . CocoonSAXPi pel i ne

i mport org.apache. wi cket . mar kup. ht m . WebPage

public class Homepage extends WbPage {

publ i c Homepage() ({

CocoonSAXPi pel i ne pipeline = new CocoonSAXPi pel i ne("cocoon- pi pel i ne-conponent”, 0O
new NonCachi ngPi pel i ne<SAXPi pel i neConmponent >()) ;
pi pel i ne. addConmponent (new St ri ngGener at or (" hel | 0, Cocoon! </ b>")); O

pi pel i ne. addConponent (new XSLTTr ansf or mer (
this.getd ass().getResource("transformxslt")));
t hi s. add(pi pel i ne);

O Instantiate the component
0 Adding SAX pipeline components

The pipeline's result is added to the HTML produced by this page. This is the reason why only generators and
transformers can be added to this component because the pipeline is aways seridlized as XHTML. An
XHTML Serializer is added implicitly to each pipeline.

5.3. Integrate Wicket into Cocoon

Note: The integration of Wicket into Cocoon os mostly a proof of concept. It is experimental and has neither
been optimized nor tested yet.

The integration of Wicket into Cocoon means that the output of Wicket is added to the content stream of a
pipeline. The currently available solution is a reader but alternatively a generator or a transformer would offer
an even more alternatives.

As pointed out for the Wicket-Cocoon integration, the first step in every case is adding cocoon- wi cket and all
its transitive dependencies to your project's classpath:

<dependency>
<gr oupl d>or g. apache. cocoon. wi cket </ gr oupl d>
<artifact|d>cocoon-w cket</artifactl|d>
<versi on>3. 0. 0- al pha- 2</ ver si on>

</ dependency>

5.3.1. Wicket reader

By using the Wicket reader a servlet request is referred to a Wicket web application. The current
implementation expects exactly one Wicket web application being available as Spring bean:

<beans>
<bean id="w cket Webapp"
cl ass="com nyconpany. MyW cket Webapp"/ >

Apache Cocoon 3.0 ALPHA 24

http://wicket.apache.org/docs/1.4/org/apache/wicket/markup/html/WebComponent.html

Wicket Integration

</ beans>

By adding the bean definition file as resource into META- | NF/ cocoon/ spri ng the Wicket web application bean
will be loaded automatically.

Then the Wicket reader has be to used in the sitemap:

<map: si t enap>
<map: pi pel i nes>
<map: pi pel i ne type="noncachi ng">
<map: mat ch w | dcard="ny-w cket - app/ **" >
<map:read type="wi cket" base-path="/ny-w cket-app" /> O
</ map: mat ch> O
</ map: pi pel i ne>
</ map: pi pel i nes>
</ map: si t emap>

0 Usea** wildcard to match all requests that start with ny- wi cket - app.
O The name of the reader is wi cket . It's aso required to define the base path so that Wicket can calclulate
realtive URLSs correctly.

Apache Cocoon 3.0 ALPHA 25

	Cocoon 3.0 ALPHA - Reference Documentation
	Table of Contents
	Chapter 1. Introduction
	1.1. Why Cocoon 3 - Motivation
	1.2. Relationship to previous versions
	1.3. Requirements

	Chapter 2. Pipelines
	2.1. What is a pipeline?
	2.1.1. Linear pipelines
	2.1.2. Pipelines by example

	2.2. Pipeline implementations
	2.3. Embedding a pipeline
	2.4. SAX components
	2.4.1. Available components
	2.4.2. Writing custom components
	2.4.2.1. SAX generator
	2.4.2.2. SAX transformer
	2.4.2.3. SAX serializer

	2.5. StAX components
	2.5.1. Available components
	2.5.2. Writing custom components
	2.5.2.1. StAX generator
	2.5.2.2. StAX transformer
	2.5.2.2.1. Navigator
	2.5.2.2.1.1. Using navigators
	2.5.2.2.1.2. Implementing a navigator

	2.5.2.2.2. Implementing a transformer

	2.5.2.3. StAX serializer

	2.5.3. Using StAX and SAX components in the same pipeline
	2.5.3.1. Wrapping a SAX component in a StAX pipeline
	2.5.3.2. StAX-to-SAX pipeline

	2.5.4. Java 1.5 support

	2.6. Utilities

	Chapter 3. Sitemaps
	3.1. What is a sitemap?
	3.2. Sitemap evaluation?
	3.3. Expression languages
	3.4. Spring integration
	3.5. Embedding a sitemap

	Chapter 4. Web applications
	4.1. Usage scenarios
	4.2. Servlet-Service framework integration
	4.3. Sitemaps in an HTTP environement
	4.4. System setup
	4.5. Connecting pipeline fragments
	4.6. RESTful web services
	4.6.1. Sitemap based RESTful web services
	4.6.1.1. Introduction

	4.6.2. JAX-RS based controllers (JSR311)
	4.6.2.1. Introduction
	4.6.2.2. Cocoon and JAX-RS by example
	4.6.2.2.1. Cocoon-Rest dependency
	4.6.2.2.2. JAX-RS resource
	4.6.2.2.3. JAX-RS resource as Spring bean
	4.6.2.2.4. Servlet-Service integration

	4.7. Caching and conditional GET requests
	4.8. Authentication
	4.9. Testing
	4.10. Profiling support
	4.10.1. Module configuration
	4.10.2. Using Cocoon Profiling
	4.10.2.1. How can I enable/disable cocoon-profiling on the fly?
	4.10.2.2. I need cocoon-profiling to profile my custom cocoon component, how can I do that?

	4.10.3. Using Firebug with Cocoon-profiling
	4.10.3.1. Customizing your Firebug Plugin

	4.11. Monitoring support
	4.11.1. Module configuration
	4.11.2. Available parts
	4.11.2.1. Inspect logging settings and reconfigure them
	4.11.2.1.1. Inspect all configured loggers
	4.11.2.1.2. Permanent change of a logging level
	4.11.2.1.3. Temporal change of a logging level
	4.11.2.1.4. Load a new configuration file

	4.11.2.2. Inspect available Servlet-Services
	4.11.2.2.1. Get path of Servlet-Services
	4.11.2.2.2. Get all connections for Servlet-Service
	4.11.2.2.3. Get informations about Servlet-Service
	4.11.2.2.4. List Servlet-Service parameters

	4.11.2.3. Overview of cache entries
	4.11.2.3.1. CacheMonitor
	4.11.2.3.1.1. Clear cache
	4.11.2.3.1.2. List all cache key
	4.11.2.3.1.3. Removing cache entry
	4.11.2.3.1.4. Checking size of cache

	4.11.2.3.2. CacheBurstActions
	4.11.2.3.2.1. Find all cache entry's that size is greater then specified value
	4.11.2.3.2.2. Find all cache entry's that size is smaller then specified value
	4.11.2.3.2.3. Find all cache entry's that are older then specified date
	4.11.2.3.2.4. Find all cache entry's that are younger then specified date
	4.11.2.3.2.5. More flexible cache entry's search
	4.11.2.3.2.6. Remove all cache entry's that size is greater then specified value
	4.11.2.3.2.7. Remove all cache entry's that size is smaller then specified value.
	4.11.2.3.2.8. Remove all cache entry's that are older then specified value.
	4.11.2.3.2.9. Remove all cache entry's that are younger then specified value.
	4.11.2.3.2.10. More flexible cache entry's removing
	4.11.2.3.2.11. Extending BurstCacheAction module

	4.11.2.3.3. CacheEntrysMonitor
	4.11.2.3.3.1. Configuring refresh action
	4.11.2.3.3.1.1. Enable AutoRefresh action
	4.11.2.3.3.1.2. Disable AutoRefresh action
	4.11.2.3.3.1.3. Manually perform refresh action

	4.11.2.3.3.2. Cache entry's operations
	4.11.2.3.3.2.1. Obtain CacheKey for that entry
	4.11.2.3.3.2.2. Obtain cache value
	4.11.2.3.3.2.3. Set cache value
	4.11.2.3.3.2.4. Obtain size of entry

	4.12. Tutorial

	Chapter 5. Wicket Integration
	5.1. Introduction
	5.2. Integrate Cocoon into Wicket
	5.2.1. Mount a Cocoon sitemap
	5.2.2. Mount a Cocoon pipeline
	5.2.3. CocoonSAXPipeline Wicket component

	5.3. Integrate Wicket into Cocoon
	5.3.1. Wicket reader

