
Cocoon 3.0 ALPHA - Reference Documentation

Apache Cocoon 3.0 ALPHA

Reinhard Pötz (Indoqa Software Design und Beratung GmbH)

Copyright © 2008

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

1. Introduction .. 1
1.1. Why Cocoon 3 - Motivation .. 1
1.2. Relationship to previous versions .. 1
1.3. Requirements ... 1

2. Pipelines .. 2
2.1. What is a pipeline? ... 2

2.1.1. Linear pipelines ... 2
2.1.2. Pipelines by example ... 2

2.2. Pipeline implementations .. 4
2.3. Embedding a pipeline ... 4
2.4. SAX components ... 4

2.4.1. Available components .. 4
2.4.2. Writing custom components ... 4

2.5. StAX components .. 5
2.5.1. Available components .. 5
2.5.2. Writing custom components ... 5
2.5.3. Using StAX and SAX components in the same pipeline ... 8
2.5.4. Java 1.5 support .. 9

2.6. Utilities ... 9
3. Sitemaps .. 10

3.1. What is a sitemap? ... 10
3.2. Sitemap evaluation? ... 10
3.3. Expression languages ... 10
3.4. Spring integration ... 10
3.5. Embedding a sitemap ... 10

4. Web applications .. 11
4.1. Usage scenarios ... 11
4.2. Servlet-Service framework integration ... 11
4.3. Sitemaps in an HTTP environement .. 11
4.4. System setup .. 11
4.5. Connecting pipeline fragments .. 11
4.6. RESTful web services .. 11

4.6.1. Sitemap based RESTful web services ... 11
4.6.2. JAX-RS based controllers (JSR311) ... 11

4.7. Caching and conditional GET requests .. 14
4.8. Authentication ... 14
4.9. Testing .. 14
4.10. Profiling support .. 14

4.10.1. Module configuration ... 14
4.10.2. Using Cocoon Profiling .. 14
4.10.3. Using Firebug with Cocoon-profiling .. 15

4.11. Monitoring support ... 16
4.11.1. Module configuration ... 16
4.11.2. Available parts .. 16

4.12. Tutorial .. 21
5. Wicket Integration .. 22

5.1. Introduction ... 22
5.2. Integrate Cocoon into Wicket .. 22

5.2.1. Mount a Cocoon sitemap ... 22
5.2.2. Mount a Cocoon pipeline ... 23
5.2.3. CocoonSAXPipeline Wicket component ... 24

5.3. Integrate Wicket into Cocoon .. 24

Apache Cocoon 3.0 ALPHA ii

5.3.1. Wicket reader .. 24

Cocoon 3.0 ALPHA - Reference Documentation

Apache Cocoon 3.0 ALPHA iii

Chapter 1. Introduction

1.1. Why Cocoon 3 - Motivation

The main idea behind Cocoon is the concept of pipelines. Cocoon 1.x and 2.x applied this idea with a focus on
web applications. But sometimes pipelines would be useful although you don't develop a web application.
Those former Cocoon versions don't really help you in that case.

In contrast, Cocoon 3 follows a layered approach so that its basic module - the pipeline module - can be used
from within any Java environment without requiring you adding a huge stack of dependencies.

On top of this, Cocoon 3 has the goal to make the development of RESTful web services and web applications
a simple task.

1.2. Relationship to previous versions

Cocoon 3 has been built completely from scratch and doesn't have any dependencies on Cocoon 2.x or 1.x.

1.3. Requirements

Cocoon 3 requires Java 5 or higher.

Apache Cocoon 3.0 ALPHA 1

Chapter 2. Pipelines

2.1. What is a pipeline?

A Cocoon 3 pipeline expects one or more component(s). These components get linked with each other in the
order they were added. There is no restriction on the content that flows through the pipeline.

A pipeline works based on two fundamental concepts:

• The first component of a pipeline is of type org.apache.cocoon.pipeline.component.Starter. The last
component is of type org.apache.cocoon.pipeline.component.Finisher.

• In order to link components with each other, the first has to be a
org.apache.cocoon.pipeline.component.Producer, the latter
org.apache.cocoon.pipeline.component.Consumer.

When the pipeline links the components, it merely checks whether the above mentioned interfaces are present.
So the pipeline does not know about the specific capabilities or the compatibility of the components. It is the
responsibility of the Producer to decide whether a specific Consumer can be linked to it or not (that is, whether
it can produce output in the desired format of the Consumer or not). It is also conceivable that a Producer is
capable of accepting different types of Consumer and adjust the output format

2.1.1. Linear pipelines

A Cocoon 3 pipeline always goes through the same sequence of components to produce its output. There is no
support for conditionals, loops, tees or alternative flows in the case of errors. The reason for this restriction is
simplicity and that non-linear pipelines are more difficult (or even impossible) to be cached. In practice this
means that a pipeline has to be contructed completely at build-time.

If non-linear XML pipes with runtime-support for conditionals, loops, tees and error-flows are a requirement
for you, see the XProc standard of the W3C. There are several available implementations for it.

2.1.2. Pipelines by example

But let's get more specific by giving an example: Cocoon has become famous for its SAX pipelines that consist
of exactly one SAX-based XML generator, zero, one or more SAX-based XML transformers and exactly one
SAX-based XML serializer. Of course, these specific SAX-based XML pipelines can be build by using general
Cocoon 3 pipelines: generators, transformers and serializers are pipeline components. A generator is a Starter

and a Producer, a transformer can't be neither a Starter, nor a Finisher but is always a Producer and a
Consumer and a serializer is a Consumer and a Finisher.

Here is some Java code that demonstrates how a pipeline can be utilized with SAX-based XML components:

Pipeline<SAXPipelineComponent> pipeline = new NonCachingPipeline<SAXPipelineComponent>();❶
pipeline.addComponent(new XMLGenerator("<x></x>")); ❷
pipeline.addComponent(new XSLTTransformer(this.getClass().getResource("/test1.xslt"))); ❸
pipeline.addComponent(new XSLTTransformer(this.getClass().getResource("/test2.xslt"))); ❹
pipeline.addComponent(new XMLSerializer()); ❺

pipeline.setup(System.out); ❻
pipeline.execute(); ❼

Apache Cocoon 3.0 ALPHA 2

http://en.wikipedia.org/wiki/XProc

❶ Create a NonCachingPipeline. It's the simplest available pipeline implementation. The
org.apache.cocoon.pipeline.Pipeline interface doesn't impose any restrictions on the content that
flows in it.

❷ Add a generator, that implements the org.apache.cocoon.pipeline.component.PipelineComponent

interface to the pipeline by using the pipeline's addComponent(pipelineComponent) interface.

The XMLGenerator expects a java.lang.String object and produces SAX events by using a SAX parser.
Hence it has to implement the org.apache.cocoon.sax.component.SAXProducer interface.

The SAXProducer interface extends the org.apache.cocoon.pipeline.component.Producer interface.
This means that it expects the next (or the same!) component to implement the
org.apache.cocoon.pipeline.component.Consumer interface. The check that the next pipeline
component is of type org.apache.cocoon.sax.component.SAXConsumer isn't done at interface level but
by the implementation (see the org.apache.cocoon.sax.component.AbstractXMLProducer for details
which the XMLGenerator is inherited from).

Since a generator is the first component of a pipeline, it also has to implement the Starter interface.
❸ Add a transformer, that implements the org.apache.cocoon.pipeline.component.PipelineComponent

interface, to the pipeline by using the pipeline's addComponent(pipelineComponent) method.

This XSLTTransformer expects the java.net.URL of an XSLT stylesheet. It uses the rules of the
stylesheet to add, change or delete nodes of the XML SAX stream.

Since it implements the org.apache.cocoon.pipeline.component.Consumer interface, it fulfills the
general contract that a Consumer is linked with a Producer. By implementing the
org.apache.cocoon.sax.component.SAXConsumer interface, it fulfills the specific requirement of the
previous XMLGenerator that expects a next pipeline component of that type.

This transformer also implements the org.apache.cocoon.sax.component.SAXProducer interface. This
interface extends the org.apache.cocoon.pipeline.component.Producer interface which means that the
next component has to be a org.apache.cocoon.pipeline.component.Consumer. Like the previous
XMLGenerator, the XSLTTransformer inherits from the
org.apache.cocoon.sax.component.AbstractXMLProducer which contains the check that the next
component is of type org.apache.cocoon.sax.component.SAXConsumer.

❹ Add another transformer to the pipeline. A pipeline can contain any number of components that
implement the Producer and Consumer interfaces at the same time. However, they mustn't be neither of
type Starter nor Finisher.

❺ Add a serializer, that implements the org.apache.cocoon.pipeline.component.PipelineComponent

interface to the pipeline by using the pipeline's addComponent(pipelineComponent) interface.

The XML serializer receives SAX events and serializes them into an java.io.OutputStream.

A serializer component is the last component of a pipeline and hence it has to implement the
org.apache.cocoon.pipeline.Finisher interface.

Since it receives SAX events, it implements the org.apache.cocoon.pipeline.sax.SAXConsumer

interface.
❻ A pipeline has to be initialized first by calling its setup(outputStream) method. This method expects the

output stream where the pipeline result should be streamed.
❼ After the pipeline has been initialized, it can be executed by invoking its execute() method. The first

pipeline component, a Starter, will be invoked which will trigger the next component and so on. Finally
the last pipeline component, a Finisher will be reached which is responsible for the serialization of the
pipeline content.

Once the pipeline has been started, it either succeeds or fails. There is no way to react on any (error)

Pipelines

Apache Cocoon 3.0 ALPHA 3

conditions.

Table 2.1. SAX components and their interfaces

Component type Structural
interfaces

Content-specific
interfaces

SAX generator Starter, Producer,
PipelineComponent

SAXProducer

SAX transformer Producer,
Consumer,

PipelineComponent

SAXProducer,
SAXConsumer

SAX serializer Finisher, Consumer,
PipelineComponent

SAXConsumer

2.2. Pipeline implementations

TBW: noncaching, caching, async-caching, expires caching, own implementations

2.3. Embedding a pipeline

TBW: Passing parameters to the pipeline and its components, finsih() method

2.4. SAX components

concept, writing custom SAX components, link to Javadocs

2.4.1. Available components

Link to Javadocs

2.4.2. Writing custom components

2.4.2.1. SAX generator

explain from a user's point of view, what she needs to do to implement one (available abstract classes)

2.4.2.2. SAX transformer

explain from a user's point of view, what she needs to do to implement one

buffering

2.4.2.3. SAX serializer

Pipelines

Apache Cocoon 3.0 ALPHA 4

explain from a user's point of view, what she needs to do to implement one

2.5. StAX components

StAX pipelines provide an alternative API for writing pipeline components. Altough they are not as fast as
SAX, they provide easier state handling as the component can control when to pull the next events. This allows
an implicit state rather than have to manage the state in the various content handler methods of SAX.

The most visible difference of StAX components in contrast to SAX is that the component itself has controls
the parsing of the input whereas in SAX the parser controls the pipeline by calling the component. Our
implementation of StAX pipelines uses just StAX interfaces for retrieving events - the writing interface is
proprietary in order to avoid multihreading or continuations. So it is really a hybrid process - the StAX
component is called to generate the next events, but it is also allowed to read as much data from the previous
pipeline component as it wants. But as the produced events are kept in-memory until a later component pulls
for them, the components should not emit large amounts of events during one invocation.

2.5.1. Available components

• StAXGenerator is a Starter and normally parses a XML from an InputStream.

• StAXSerializer is a Finisher and writes the StAX Events to an OutputStream.

• AbstractStAXTransformer is the abstract base class for new transformers. It simplifies the task by providing
a template method for generating the new events.

• StAXCleaningTransformer is an transformer, which cleans the document from whitespaces and comments.

• IncludeTransformer includes the contents of another document.

For further information refer to the javadoc

2.5.2. Writing custom components

2.5.2.1. StAX generator

The StAXGenerator is a Starter component and produces XMLEvents.

import java.io.InputStream;
import java.net.URL;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLEventReader;
import javax.xml.stream.XMLInputFactory;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.events.XMLEvent;

import org.apache.cocoon.pipeline.SetupException;
import org.apache.cocoon.pipeline.component.Starter;
public class MyStAXGenerator extends AbstractStAXProducer implements Starter { ❶

private XMLEventReader reader;

public MyStAXGenerator(InputStream inputStream) {
try {

this.reader = XMLInputFactory.newInstance().createXMLEventReader(inputStream); ❷
} catch (XMLStreamException e) {

Pipelines

Apache Cocoon 3.0 ALPHA 5

http://cocoon.apache.org/3.0/apidocs/org/apache/cocoon/stax/package-summary.html

throw new SetupException("Error during setup an XMLEventReader on the inputStream", e);
} catch (FactoryConfigurationError e) {

throw new SetupException("Error during setup the XMLInputFactory for creating an XMLEventReader", e);
}

}

public void execute() {
this.getConsumer().initiatePullProcessing(); ❸

}

public boolean hasNext() {
return this.reader.hasNext(); ❹

}

public XMLEvent nextEvent() throws XMLStreamException {
return this.reader.nextEvent(); ❺

}

public XMLEvent peek() throws XMLStreamException {
return this.reader.peek(); ❻

}

}

❶ In order to implement an own StAXGenerator the easiest approach is to inherit from
AbstractStAXProducer.

❷ The constructor creates a new XMLEventReader for reading from the inputstream.
❸ The pipeline is started using the execute method. As StAX is a pull based approach the last component

has to start pulling.
❹ This method should return true if the generator has a next Event.
❺ Returns the next event from the generator.
❻ Returns the next event from the generator, without moving actually to the next event.

2.5.2.2. StAX transformer

Implementing a StAX Transformer should be the most common use case. The AbstractStAXTransformer

provides a foundation for new transformers. But in order to write new transformers even simpler, let's describe
another feature first:

2.5.2.2.1. Navigator

Navigators allow an easier navigation in the XML document. They also simplify transformers, as usually
transformers need only process some parts of the input document and the navigator helps to identify the
interesting parts. There are several implementations already included:

• FindStartElementNavigator finds the start tag with certain properties(name,attribute)

• FindEndElementNavigator finds the end tag with certain properties(name,attribute)

• FindCorrespondingStartEndElementPairNavigator finds both the start and the corresponding end tag.

• InSubtreeNavigator finds whole subtrees, by specifying the properties of the "root" element.

For further information refer to the navigator javadoc

2.5.2.2.1.1. Using navigators

Using a navigator is a rather simple task. The transformer peeks or gets the next event and calls
Navigator.fulfillsCriteria - if true is returned the transformer should be process that event somehow.

2.5.2.2.1.2. Implementing a navigator

Pipelines

Apache Cocoon 3.0 ALPHA 6

http://cocoon.apache.org/3.0/apidocs/org/apache/cocoon/stax/navigation/package-summary.html

Creating a new navigator is a rather simple task and just means implementing two methods:

import javax.xml.stream.events.XMLEvent;

public class MyNavigator implements Navigator {
public boolean fulfillsCriteria(XMLEvent event) { ❶

return false;
}

public boolean isActive() { ❷
return false;

}
}

❶ This method returns true if the event matches the criteria of the navigator.
❷ Returns the result of the last invocation of fulfillsCriteria.

2.5.2.2.2. Implementing a transformer

The next example should show you an transformer featuring navigators and implicit state handling through
function calls.

public class DaisyLinkRewriteTransformer extends AbstractStAXTransformer {
@Override
protected void produceEvents() throws XMLStreamException {

while (this.getParent().hasNext()) {
XMLEvent event = this.getParent().nextEvent();
if (this.anchorNavigator.fulfillsCriteria(event)) { ❶

ArrayList<XMLEvent> innerContent = new ArrayList<XMLEvent>();
LinkInfo linkInfo = this.collectLinkInfo(innerContent); ❷
if(linkInfo != null) {

linkInfo.setNavigationPath(this.getAttributeValue(event.asStartElement(), ❸
PUBLISHER_NS,"navigationPath"));

this.rewriteAttributesAndEmitEvent(event.asStartElement(),linkInfo); ❹

if(innerContent.size() != 0) {
this.addAllEventsToQueue(innerContent);

}
}
/* ... */

}
/* ... */

}
}

private LinkInfo collectLinkInfo(List<XMLEvent> events) throws XMLStreamException {
Navigator linkInfoNavigator = new InSubtreeNavigator(LINK_INFO_EL); ❺
Navigator linkInfoPartNavigator = new FindStartElementNavigator(LINK_PART_INFO_EL);
LinkInfo linkInfo = null;

while (this.getParent().hasNext()) {
XMLEvent event = this.getParent().peek(); ❻

if (linkInfoNavigator.fulfillsCriteria(event)) {
event = this.getParent().nextEvent();
if (linkInfoPartNavigator.fulfillsCriteria(event)) {

/* ... */
String fileName = this.getAttributeValue(event.asStartElement(),"fileName");
if (!"".equals(fileName)) {

linkInfo.setFileName(fileName);
}

} /* ... */
} else if (event.isCharacters()) {

events.add(this.getParent().nextEvent());
} else {

return linkInfo;
}

}
return linkInfo;

}

Pipelines

Apache Cocoon 3.0 ALPHA 7

private void rewriteAttributesAndEmitEvent(StartElement event, LinkInfo linkInfo) ;

}

❶ The transformer checks for anchors in the XML.
❷ If an anchor is found, it invokes a method which parses the link info if there is any. The additional array is

for returning any events, which were read but do not belong to the linkinfo.
❸ This method finally writes the start tag with the correct attributes taken from the parsed LinkInfo.
❹ The events, which were read but not parsed, are finally added to the output of the transformer.
❺ The parser for the linkInfo object uses itself also navigators ...
❻ ... and reads more events from the parent.

2.5.2.3. StAX serializer

The StAXSerializer pulls and serializes the StAX events from the pipeline.

public class NullSerializer extends AbstractStAXPipelineComponent
implements StAXConsumer, Finisher {

private StAXProducer parent; ❶

public void initiatePullProcessing() { ❷
try {

while (this.parent.hasNext()) {
XMLEvent event = this.parent.nextEvent(); ❸
/* serialize Event */

}
} catch (XMLStreamException e) {

throw new ProcessingException("Error during writing output elements.", e);
}

}

public void setParent(StAXProducer parent) { ❹
this.parent = parent;

}

public String getContentType() ; ❺
public void setOutputStream(OutputStream outputStream) ;

}

❶ The Finisher has to pull from the previous pipeline component..
❷ In case of StAX the last pipeline component has to start pulling for Events.
❸ The serializer pulls the next Event from the previous component and should as next step serialize it.
❹ During the pipeline construction the setParent is called to set the previous component of the pipeline.
❺ These two methods are defined in the Finisher and allow to set the OutputStream (if the Serializer needs

any) and to retrieve the content-type of the result..

2.5.3. Using StAX and SAX components in the same pipeline

The StAX pipeline offers interoperability to SAX components to a certain degree. However due their different
paradigms only two use cases are currently implemented: Wrapping a SAX component in a StAX pipeline and
a StAX-to-SAX pipeline, which starts with StAX components and finishes with SAX.

2.5.3.1. Wrapping a SAX component in a StAX pipeline

This allows to use existing SAX components in a StAX pipeline. Beware the overhead of the conversion of
StAX->SAX->StAX - so no performance gains from a SAX component can be expected.

Pipeline<StAXPipelineComponent> pipeStAX = new NonCachingPipeline<StAXPipelineComponent>(❶);
pipeStAX.addComponent(new StAXGenerator(input)); ❷

Pipelines

Apache Cocoon 3.0 ALPHA 8

pipeStAX.addComponent(new SAXForStAXPipelineWrapper(new CleaningTransformer())); ❸
pipeStAX.addComponent(new StAXSerializer());
pipeStAX.setup(System.out);
pipeStAX.execute();

❶ The pipeline uses a StAXGenerator - which produces StAX events.
❷ In order to embed a single SAX component in a StAX pipeline, the SAXForStAXPipelineWrapper is

needed. The constructor argument is the SAX component.
❸ Altough the CleaningTransformer would emit SAX calls - the wrapper converts them back to the

appropriate StAX events the StAXSerializer can write..

2.5.3.2. StAX-to-SAX pipeline

This converter allows to mix StAX and SAX components - but is limited to starting with StAX and then
switching to SAX.

Pipeline<PipelineComponent> pipeStAX = new NonCachingPipeline<StAXPipelineComponent>();
pipeStAX.addComponent(new StAXGenerator(input)); ❶
pipeStAX.addComponent(new StAXToSAXPipelineAdapter()); ❷
pipeStAX.addComponent(new CleaningTransformer()); ❸
pipeStAX.addComponent(new XMLSerializer()); ❹
pipeStAX.setup(System.out);
pipeStAX.execute();

❶ The pipeline starts with a StAXGenerator.
❷ The adapter converts the StAX events to SAX method calls.
❸ The CleaningTransformer is a SAX component.
❹ The XMLSerializer writes the SAX method calls to a file.

2.5.4. Java 1.5 support

In order to use StAX with Java 1.5 an additional dependency is needed in the project's pom.xml.

<dependency>
<groupId>org.codehaus.woodstox</groupId>
<artifactId>wstx-asl</artifactId>
<version>3.2.7</version>

</dependency>

Using woodstox is simpler, as the reference implementation depends on JAXP 1.4, which is not part of Java
1.5.

2.6. Utilities

TBW: XMLUtils, TransformUtils

Pipelines

Apache Cocoon 3.0 ALPHA 9

Chapter 3. Sitemaps

3.1. What is a sitemap?

TBW

3.2. Sitemap evaluation?

TBW

3.3. Expression languages

TBW

3.4. Spring integration

TBW

3.5. Embedding a sitemap

TBW

Apache Cocoon 3.0 ALPHA 10

Chapter 4. Web applications

4.1. Usage scenarios

TBW

4.2. Servlet-Service framework integration

TBW: Composition, servlet: protocol, inheritance

4.3. Sitemaps in an HTTP environement

TBW: Status codes, Conditional GET requests, Mime-type handling

4.4. System setup

TBW: Logging, JNet, Configuration, Spring integration Deployment: Blocks as deployment units AND
Creating a web archive (WAR), Devleopment with Eclispe and Maven

4.5. Connecting pipeline fragments

TBW

4.6. RESTful web services

4.6.1. Sitemap based RESTful web services

4.6.1.1. Introduction

TBW: REST controller, Rendering views using StringTemplate, Request-wide transactions (incl. Subrequests)

4.6.2. JAX-RS based controllers (JSR311)

4.6.2.1. Introduction

JAX-RS (JSR 311) is the Java standard for the development of RESTful web services. It provides a set of
annotations that, when being applied, define resources that are exposed by using Uniform Resource Identifiers
(URIs).

The wiki of the Jersey project that provides the Reference Implementation of JAX-RS contains a lot of useful
information about how to define REST resources.

Apache Cocoon 3.0 ALPHA 11

http://wikis.sun.com/display/Jersey/Main

The main pieces of the JAX-RS/Cocoon-integration are

• the CocoonJAXRSServlet Servlet-Service, which is responsible for the JAX-RS integration into the Cocoon
Servlet-Service framework, and

• the URLResponseBuilder class, which allows calling resources provided by other Servlet-Services (usually
Cocoon pipelines exposed by sitemaps).

4.6.2.2. Cocoon and JAX-RS by example

Adding support for JAX-RS services to your Cocoon application requires following three steps:

• Add the cocoon-rest module as a dependency.

• Add the CocoonJAXRSServlet Servlet-Service

• Add at least one JAX-RS root resource

4.6.2.2.1. Cocoon-Rest dependency

The first step is to add the cocoon-rest module to your Cocoon application:

<dependency>
<groupId>org.apache.cocoon.rest</groupId>
<artifactId>cocoon-rest</artifactId>

</dependency>

4.6.2.2.2. JAX-RS resource

Then at least one JAX-RS resource is required:

@Path("/sample") ❶
public class SampleRestResource { ❷

private Settings settings;

@GET ❸
@Path("/parameter-passing/{id}") ❹
public Response anotherService(

@PathParam("id") String id, ❺
@QueryParam("req-param") String reqParam, ❻
@Context UriInfo uriInfo, ❼
@Context Request request) { ❽

Map<String, Object> data = new HashMap<String, Object>(); ❾
data.put("name", "Donald Duck");
data.put("id", id);
data.put("reqparam", reqParam);
data.put("runningMode", this.settings.getProperty("testProperty"));

return URLResponseBuilder.newInstance("servlet:sample:/controller/screen", data) ❿
.build();

}

public void setSettings(Settings settings) {
this.settings = settings; (11)

}
}

❶ The @javax.ws.rs.Path annotation identifies the URI path that this resource class or class method will
serve requests for. The path is relative to the mount point of the servlet-service that references this

Web applications

Apache Cocoon 3.0 ALPHA 12

resource.
❷ A JAX-RS root resource.
❸ The @javax.ws.rs.GET annotations indicates that this method responds to HTTP GET requests.
❹ Again a @Path annotation, but this time at method level. In this example requests for

sample/parameter-passing/NNN will be handled by the anotherService() method.
❺ The @PathParam annoation binds the URI template value of id to the method parameter id.
❻ The @QueryParam annotation binds the request parameter req-param to the method parameter reqParam.
❼ By annotating the URIInfo method parameter with the @Context annotations, a current instance of

URIInfo is passed to the method.
❽ By annotating the Request method parameter with the @Context annotations, a current instance of

Request is passed to the method.
❾ A map of String/Object is collected.
❿ The URLResponseBuilder sends the result of the passed URL as response. It allows passing a map of

String/Object which are available in the called resource (usually a pipeline).

In this case the servlet: protocol is used. It allows accessing URLs (that usually expose pipelines)
defined by other Servlet-Services.

11 A setter method to allow injecting the Setting bean.

4.6.2.2.3. JAX-RS resource as Spring bean

This resource has to be configured as Spring bean:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="org.apache.cocoon.sample.rest.resource.one" ❶
class="org.apache.cocoon.sample.jaxrs.SampleRestResource">
<property name="settings"
ref="org.apache.cocoon.configuration.Settings" />

</bean>

</beans>

❶ The SampleRestResource is a usual Spring bean and in this example it gets the
org.apache.cocoon.configuration.Settings bean injected.

4.6.2.2.4. Servlet-Service integration

Finally the Spring bean has to be exposed by the CocoonJAXRSServlet:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:servlet="http://cocoon.apache.org/schema/servlet"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://cocoon.apache.org/schema/servlet
http://cocoon.apache.org/schema/servlet/cocoon-servlet-1.0.xsd>

<!-- A servlet-service that exposes JAX-RS REST endpoints. -->
<bean id="org.apache.cocoon.sample.rest.servlet" ❶
class="org.apache.cocoon.rest.jaxrs.container.CocoonJAXRSServlet">
<servlet:context mount-path="/jax-rs" ❷
context-path="blockcontext:/cocoon-sample/">
<servlet:connections> ❸

<entry key="sample" value-ref="org.apache.cocoon.sample.servlet" />
</servlet:connections>

</servlet:context>

<property name="restResourcesList"> ❹
<list>

<ref bean="org.apache.cocoon.sample.rest.resource.one" />

Web applications

Apache Cocoon 3.0 ALPHA 13

</list>
</property>

</bean>
</beans>

❶ The CocoonJAXRSServlet exposes REST resources.
❷ The mount path of this Servlet-Service is /jax-rs.
❸ Connections to other Servlet-Services.
❹ A list of JAX-RS resources, which also have to be Spring beans, is exposed.

Alternativly a <map> of resources can be injected by the restResourceMap property.

4.7. Caching and conditional GET requests

TBW

4.8. Authentication

TBW

4.9. Testing

TBW: Integeration tests

4.10. Profiling support

A cocoon request goes through many components; while performing a Cocoon request, servlets, sitemaps and
pipeline components are being executed. It is also quite common that Cocoon requests are cascaded which
makes it sometimes difficult to understand what exactly was happening. Cocoon Profiling enables you to
profile any request to your website.

4.10.1. Module configuration

In order to use cocoon-profiling, you simply have to include the cocoon-profiling jar in your classpath.
Cocoon-profiling uses Spring AOP, so no further configuration is needed.

4.10.2. Using Cocoon Profiling

Cocoon-profiling provides several generators for xml and graphical output, which is used by the Firebug
plugin. However, you can directly access the data using

• yourdomain.com/controller/profiling/{id} for the xml file (xml schema see profilingSchema.xsd in
cocoon-profiling)

• yourdomain.com/controller/profiling/{id}.png for the graphical representation (example see below)

where {id} is the id of the request. This id (X-Cocoon-Profiling-ID) can be found in the header of the original
request.

Web applications

Apache Cocoon 3.0 ALPHA 14

This is an example for the graphical representation:

4.10.2.1. How can I enable/disable cocoon-profiling on the fly?

Cocoon-profiling is enabled per default. If you just want to use it, you can skip this section.

If you want to start or stop profiling while the server is running, you can use the management bean provided by
cocoon-profiling. Cocoon-monitoring automatically exposes this MBean; just make sure that
cocoon-monitoring is in your classpath. You can then connect to the server process using jconsole and call the
"start" and "stop" method of the org.apache.cocoon.profiling MBean.

Keep in mind that cocoon-profiling uses Spring AOP to intercept method calls, which cannot be enabled or
disabled at runtime. Therefore, a disabled cocoon-profiling still affects the performance (at least a little bit).
Only removing cocoon-profiling from the classpath and restarting the server guarantees maximum
performance.

4.10.2.2. I need cocoon-profiling to profile my custom cocoon component, how can I do that?

Generally, you don't have to change anything. Cocoon-profiling uses Spring AOP to profile all cocoon
components and servlets as well as any subclass or cocoon interface implementation.

Advanced users might want to add their own Profiler class to cocoon-profiling if they have a specific
component with specific parameters or other bits of data they want cocoon-profiling to collect.

4.10.3. Using Firebug with Cocoon-profiling

Getting the Firebug Plugin able to work is really easy. You'll need to install Firebug 1.4X from
http://getfirebug.com/releases/firebug/1.4X and then install the Firebug .xpi from
cocoon-profiling-firebug (opening it with Firefox should suffice). The generate the xpi from the sources, simply
switch to the cocoon-profiling-firebug folder and type mvn install. This will automatically build a new xpi.
After installing the plugins, you should have a little bug on the bottom right corner of your Firefox. Clicking
will open it, then you can navigate to the net-panel (you might want to be sure its activated) and there open up a
request (you might need to refresh). In the request, there should be a tab called "Cocoon 3 Profiling", if you
click it, and the Profiling Service works, you should now see the generated profiling data.

The data itself is presented in two textboxes. The left one is the tree which resembles the .xml that the
profiling-component generates, the right one displays the elements, properties, return-values and the profiler of
a given (= selected) row in the left tree. You can navigate through the left tree, and based on which row you

Web applications

Apache Cocoon 3.0 ALPHA 15

currently have selected, the right textbox will display the names and values. To add some visual help, pictures
are being displayed, based on which kind of element is displayed.

The underline is:

Table 4.1. Icons

Argument Component Exception

Invocation Node Profiler

Property Return-value Servlet

Sitemap

You also have two options which can change what you'll be able to see in the Firebug Plugin. These are located
on the net Tab Option Panel, which is a little triangle. The options are marked {c3p} and allow you to Show /
Hide the Sitemap and to change if the invocations element of the tree is closed or opened. These changes will
require a reload, either by reloading your browser, or by clicking the "Reload"-Button in the Profiling Panel.

The other button on the panel will open a new tab in your Firefox in which a graphical outline will be shown
which lists your components and the execution time of each of these components. Be aware, though, that the
first profiling cycle will present you a kind of wrong picture (it takes a lot longer), because of the java-intern
class-loading and other administrative stuff. You'll need to reload the request, not the picture, to change this.

4.10.3.1. Customizing your Firebug Plugin

To customize your Firebug Plugin, go to the plugin folder in your Firefox, select the Profiling plugin, then
navigate to chrome\skin\classic\cocoon3profiling.css. In this css, you can change the heigth and width of
the trees and of their columns. Simply navigate to the element you want to change, and change the value in
there.

4.11. Monitoring support

This module gives you the possibility of monitoring Cocoon 3 applications. It expose a simple API via Spring

JMX MBeans and it can be user via jconsole or other JMX console.

4.11.1. Module configuration

All module configurations are defined in META-INF/cocoon/spring/cocoon-monitoring.xml. Each part of
module can be enabled or disabled by commenting (or removing) appropriate entry in configuration file, by
default all parts are enabled.

4.11.2. Available parts

Web applications

Apache Cocoon 3.0 ALPHA 16

4.11.2.1. Inspect logging settings and reconfigure them

4.11.2.1.1. Inspect all configured loggers

The operation getLoggers() returns a list of all configured Log4j loggers in the application, it consists of pairs:
<class or package name> (category) => <logging level>

4.11.2.1.2. Permanent change of a logging level

For doing permanent changes of logging level for particular class or package use the operation
setLoggingLevel(String category, String newLogLevel). Where Category is name of class or package
with you want to change logging level and newLogLevel is one of logging level: OFF, INFO, WARN, ERROR, FATAL,
TRACE, DEBUG, ALL (this parameter isn't case sensitive, so you can also use lower case names).

4.11.2.1.3. Temporal change of a logging level

For doing temporal changes of logging level for particular class or package use the operation
setLoggingTempoporalLevel(String category, String temporalLogLevel, String timeOut). First two
parameters are same as in setLoggingLevel(), last one determinate how long this logging level should be used
(after that amount of time logging level would be set back to old level). timeOut parameter should match
regular expression: ^[0-9.]+[dhm]?$, for example if value of timeOut is set for 1,5h that means that new
logging level would be active for one and half hour.

4.11.2.1.4. Load a new configuration file

For loading a completely new configuration file use the operation loadNewConfigurationFile(String path).
This method is capable for both XML and properties configuration files. There is only one parameter path that
should contain absolute path to new configuration file located locally on the server. Before performning any
action that file is validated. First of all the file extension (there are only two appropriate extensions: *.xml and
*.properties) is checked. The next validation step is different for both files, for XML files its content is
validated against the Log4j DTD or schema then all output log files are checked that they exist and they are
writable. Properties configuration files are validated that they contain at least one appender and each output
file directory exists and is writable. These validations are done to prevent Log4j to get into an inconsistent state.

4.11.2.2. Inspect available Servlet-Services

Every single Servlet-Service makes his own node in JXM MBean tree. Such node contains below above
functions.

4.11.2.2.1. Get path of Servlet-Services

Function getServletServiceMountPaths() returns Servlet-Service mount path.

4.11.2.2.2. Get all connections for Servlet-Service

Function getServletServiceConnections() returns an array of String contains all connections names for
given Servlet-Service. Every connection is represented by: <short name> => <full qualified bean name>

4.11.2.2.3. Get informations about Servlet-Service

Function getServletServiceInfo() returns information about Servlet-Service, such as author, version, and
copyright.

Web applications

Apache Cocoon 3.0 ALPHA 17

4.11.2.2.4. List Servlet-Service parameters

Function getServletServiceInitParameters() list all init parameters provided for that Servlet-Service.

4.11.2.3. Overview of cache entries

This module contains three smaller submodules:

CacheMonitor
CacheBurstActions
CacheEntrysMonitor

4.11.2.3.1. CacheMonitor

This submodule exposes all configured caches on with basic operations on every cache.

4.11.2.3.1.1. Clear cache

Operation clear() remove all cache entry's from this particular cache.

4.11.2.3.1.2. List all cache key

Operation listKey() returns list of all CacheKeys that are stored in this particular cache.

4.11.2.3.1.3. Removing cache entry

If you want remove single cache entry you should use operation removeKey(String), where parameter is
CacheKey name taken from listKey() result. This operation returns true if it was successes otherwise it return
false.

4.11.2.3.1.4. Checking size of cache

It is also possible to check size of particular cache using function size. It will return human readable size of
this cache.

4.11.2.3.2. CacheBurstActions

This module add set of operations that can be performed on all caches. You can find and remove all cache
entry's which meet certain requirements, specified in operation parameters.

4.11.2.3.2.1. Find all cache entry's that size is greater then specified value

Operation listAllGreatherThen(long) finds all cache entry's in all configured cache's that size (in bytes) is
greather then value passed as a parameter.

4.11.2.3.2.2. Find all cache entry's that size is smaller then specified value

Operation listAllSmalledThen(long) finds all cache entry's in all configured cache's that size (in bytes) is
smaller then value passed as a parameter.

4.11.2.3.2.3. Find all cache entry's that are older then specified date

Operation listAllOlderThen(String) finds all cache entry's in all configured cache's that are older then value
specified in a parameter. Parameter value must match regular expression: ^\d+[smhd]$ where each letter stands
for:

Web applications

Apache Cocoon 3.0 ALPHA 18

s - second
m - minutes
h - hours
d - days

4.11.2.3.2.4. Find all cache entry's that are younger then specified date

Operation listAllYoungerThen(String) finds all cache entry's in all configured cache's that are younger then
value specified in a parameter. For parameter description see listAllOlderThen(String).

4.11.2.3.2.5. More flexible cache entry's search

If you want to get more flexibility searching you can use list(long, long, String, String, Sting,

Sting). First two long parameters limits cache entry's size, their minimum and maximum size. Second two
String parameters limits cache entry minimum and maximum age (syntax is same as in
listAllOlderThen(Sting) and listAllYoungerThen(String) functions). Last two String parameters are
applicable only to ExpiresCacheKey instances and they limit result entry's on minimum and maximum
experience time of entry. Every result entry meets all limitations. For excluding one (or more) limitation you
must pas value -1 for long parameters and null or empty String for rest parameters.

4.11.2.3.2.6. Remove all cache entry's that size is greater then specified value

Operation clearAllGreatherThen(long) perform same search action as listAllGratherThen(long) but it
removes cache entry's that fulfilled requirements instead of listing them. It will return true if every cache entry
was successfully removed, after first failure of removing cache entry this operation will stop and return false.

4.11.2.3.2.7. Remove all cache entry's that size is smaller then specified value.

Operation clearAllSmallerThen(long) perform same search action as listAllSmallerThen(long) but it
removes cache entry's that fulfilled requirements instead of listing them. It will return true if every cache entry
was successfully removed, after first failure of removing cache entry this operation will stop and return false.

4.11.2.3.2.8. Remove all cache entry's that are older then specified value.

Operation clearAllOlderThen(String) perform same search action as listAllOlderThen(String) but it
remove cache etry's that fulfilled requirements instead of listing them, this operation also require same
parameter schema as in listAllOlderThen(String). It will return true if every cache entry was successfully
removed, after first failure of removing cache entry this operation will stop and return false.

4.11.2.3.2.9. Remove all cache entry's that are younger then specified value.

Operation clearAllYoungerThen(String) perform same search action as listAllYoungerThen(String) but it
remove cache etry's that fulfilled requirements instead of listing them, this operation also require same
parameter schema as in listAllYoungerThen(String). It will return true if every cache entry was
successfully removed, after first failure of removing cache entry this operation will stop and return false.

4.11.2.3.2.10. More flexible cache entry's removing

Operation clear(long, long, String, String, String, String) perform same search action and takes
same parameters as described above list(long, long, String, String, String) please see it if you are
looking for detailed description.

4.11.2.3.2.11. Extending BurstCacheAction module

You can add your own burst actions. It is very simple, just obtain instance of

Web applications

Apache Cocoon 3.0 ALPHA 19

org.apache.cocoon.monitoring.cache.CacheBurstActions from the container and you can perform any
action on cache entry's using performActionOnCaches(long, long, String, String, String, String,

CacheAction) method. Meaning of each parameter in this method is same as in list(long, long, String,

String, String, String) and clear(long, long, String, String, String, String) methods, but there
is one additional parameter, it is implementation of CacheAction interface. This interface has only one method
performAction(Cache, CacheKey) and it will be executed on every cache entry that match passed parameters.

4.11.2.3.3. CacheEntrysMonitor

This module enables overview of cache entry's that are connected with specified pipeline. This module will
only publish cache entry's for those pipeline's that had jmx-group-id parameter set for unique value/name. This
module also require additional refresh action, it can be performed by user or it can be executed in some period
of time eg every one minute. Behavior of refresh action can be configured by
CacheEntrysMonitorInitializer constructor parameter or on JMX.

4.11.2.3.3.1. Configuring refresh action

AutoRefresh action can be enabled and disabled during runtime. This action will register new MBeans that are
connected with new cache entry's and unregister old MBeans that was connected with expired or removed cache
entry's.

4.11.2.3.3.1.1. Enable AutoRefresh action

For enable AutoRefresh action call operation enableAutoRefresh(long) where long parameter is period time
(in millisecond) between each refresh. This operation will stop previously configured AutoRefresh action and
run new with new time period.

4.11.2.3.3.1.2. Disable AutoRefresh action

Operation disableAutoRefresh() will stops actual running AutoRefresh action.

4.11.2.3.3.1.3. Manually perform refresh action

Operation performRefreshAction() will immediately refre's published cache entry's.

4.11.2.3.3.2. Cache entry's operations

On each published cache entry you can perform that set of actions:

4.11.2.3.3.2.1. Obtain CacheKey for that entry

Operation getCacheKey() will return CacheKey connected with that entry.

4.11.2.3.3.2.2. Obtain cache value

Operation getCacheValue() will return value of this cache entry.

4.11.2.3.3.2.3. Set cache value

Operation setCacheValue(String) will set new value of this cache entry.

4.11.2.3.3.2.4. Obtain size of entry

Operation getSize() will return human readable size of current entry.

Web applications

Apache Cocoon 3.0 ALPHA 20

4.12. Tutorial

TBW

Web applications

Apache Cocoon 3.0 ALPHA 21

Chapter 5. Wicket Integration

5.1. Introduction

Apache Wicket has become on of the most popular web frameworks of these days. Especially developers with a
strong Java background benefit from its Java-centric approach because all object-oriented features can be
applied. This results in highly reusable code.

On the other side Cocoon implementing the pipe/filter pattern has its merits in the field of generating resources
in different output formats.

The Cocoon-Wicket integration module bridges between those two web application frameworks in order to use
the strenghts of both. This integration supports the integration of Cocoon into Wicket as well as the integration
of Wicket into Cocoon.

Note: This is not an introduction into Apache Wicket. This documentation explains to the experienced Wicket
user what needs to be done to integrate Cocoon 3 into a Wicket application.

5.2. Integrate Cocoon into Wicket

The integration of Cocoon into Wicket is available in several ways:

• A Cocoon sitemap can be mounted as IRequestTargetUrlCodingStrategy

• A single Cocoon pipeline can be mounted as IRequestTargetUrlCodingStrategy (not implemented yet)

• A CocoonSAXPipeline Wicket component can be added to a WebPage

Whatever approach is chosen, the first step is adding cocoon-wicket and all its transitive dependencies to your
project's classpath:

<dependency>
<groupId>org.apache.cocoon.wicket</groupId>
<artifactId>cocoon-wicket</artifactId>
<version>3.0.0-alpha-2</version>

</dependency>

5.2.1. Mount a Cocoon sitemap

Mounting in the context of Wicket means a class implementing IRequestTargetUrlCodingStrategy is added
to a Wicket web application. This interface is implemented by CocoonSitemap:

import org.apache.cocoon.wicket.target.CocoonSitemap;
import org.apache.wicket.protocol.http.WebApplication;

public class SomeWebApplication extends WebApplication {

@Override
protected void init() {

...
this.mount(new CocoonSitemap("/sitemap", "/sitemap.xmap.xml")); ❶
...

}
}

Apache Cocoon 3.0 ALPHA 22

http://wicket.apache.org/docs/1.4/org/apache/wicket/request/target/coding/IRequestTargetUrlCodingStrategy.html
http://wicket.apache.org/docs/1.4/org/apache/wicket/request/target/coding/IRequestTargetUrlCodingStrategy.html
http://wicket.apache.org/docs/1.4/org/apache/wicket/markup/html/WebPage.html
http://wicket.apache.org/docs/1.4/org/apache/wicket/request/target/coding/IRequestTargetUrlCodingStrategy.html

❶ The first parameter is the mount path which is a part of the request URI that should be handled by
CocoonSitemap. The second parameter is the location of the sitemap relativ to the servlet context.

Additionally you have to make sure that all Spring bean definitions provided by the Cocoon modules are loaded
into the web application's Spring application context. Cocoon's own bean definitions are located in
META-INF/cocoon/spring/*.xml.

The simplest solution for this task is referring to the Cocoon Spring Configurator in your main Spring
application context, which is usually located in
[servlet-context-base-directory]/WEB-INF/applicationContext.xml. It will automatically load all bean
definitions located in META-INF/cocoon/spring/*.xml of all libraries on the classpath. The Cocoon Spring
Configurator documentation contains further details.

Note that the Spring Configurator is one of the transitive dependencies of cocoon-wicket.

That's it! Everything else is the same as using Cocoon 3 outside of Wicket except that the servlet:/ protocol
won't work in this environment.

5.2.2. Mount a Cocoon pipeline

NOTE: This hasn't been implemented yet!

Mounting a Cocoon pipeline follows the same idea as mounting a whole sitemap. However, it's only a single
pipeline that is added to Wicket's URI path and that this can be done without having to write any XML.

All that needs to be done is subclassing from org.apache.cocoon.wicket.AbstractCocoonPipeline and
implementing its addComponents method:

import com.mycompany.MyCocoonPipeline;
import org.apache.wicket.protocol.http.WebApplication;

public class SomeWebApplication extends WebApplication

@Override
protected void init() {

...
this.mount(new MyCocoonPipeline("/my-pipeline")); ❶
...

}
}

❶ The only parameter is the path where the pipeline should be be mounted by Wicket.

In MyCocoonPipeline all that needs to be done is subclassing from
org.apache.cocoon.wicket.AbstractCocoonPipeline and implementing its abstract method addComponents:

package com.mycompany;
import org.apache.cocoon.wicket.AbstractCocoonPipeline;
import org.apache.wicket.protocol.http.WebApplication;

public class MyCocoonPipeline extends
org.apache.cocoon.wicket.AbstractCocoonPipeline<SAXPipelineComponent>

@Override
protected void addComponents() { ❶

this.addComponent(new FileGenerator(this.getClass().getResource("test.xml")));
this.addComponent(new XSLTTransformer(this.getClass().getResource("test.xsl")));
this.addComponent(new XMLSerializer());

}
}

Wicket Integration

Apache Cocoon 3.0 ALPHA 23

http://cocoon.apache.org/subprojects/configuration/spring-configurator/index.html
http://cocoon.apache.org/subprojects/configuration/spring-configurator/index.html

❶ Add all pipeline components that are required.

5.2.3. CocoonSAXPipeline Wicket component

The third alternative of using Cocoon in Wicket is adding a Cocoon pipeline as WebComponent. This is as
simple as instantiating CocoonSAXPipeline and adding all generators and transformers that are required:

import org.apache.cocoon.pipeline.NonCachingPipeline;
import org.apache.cocoon.sax.SAXPipelineComponent;
import org.apache.cocoon.sax.component.StringGenerator;
import org.apache.cocoon.sax.component.XSLTTransformer;
import org.apache.cocoon.wicket.CocoonSAXPipeline;
import org.apache.wicket.markup.html.WebPage;

public class Homepage extends WebPage {

public Homepage() {
CocoonSAXPipeline pipeline = new CocoonSAXPipeline("cocoon-pipeline-component", ❶

new NonCachingPipeline<SAXPipelineComponent>());
pipeline.addComponent(new StringGenerator("hello, Cocoon!")); ❷
pipeline.addComponent(new XSLTTransformer(

this.getClass().getResource("transform.xslt")));
this.add(pipeline);

}
}

❶ Instantiate the component
❷ Adding SAX pipeline components

The pipeline's result is added to the HTML produced by this page. This is the reason why only generators and
transformers can be added to this component because the pipeline is always serialized as XHTML. An
XHTMLSerializer is added implicitly to each pipeline.

5.3. Integrate Wicket into Cocoon

Note: The integration of Wicket into Cocoon os mostly a proof of concept. It is experimental and has neither
been optimized nor tested yet.

The integration of Wicket into Cocoon means that the output of Wicket is added to the content stream of a
pipeline. The currently available solution is a reader but alternatively a generator or a transformer would offer
an even more alternatives.

As pointed out for the Wicket-Cocoon integration, the first step in every case is adding cocoon-wicket and all
its transitive dependencies to your project's classpath:

<dependency>
<groupId>org.apache.cocoon.wicket</groupId>
<artifactId>cocoon-wicket</artifactId>
<version>3.0.0-alpha-2</version>

</dependency>

5.3.1. Wicket reader

By using the Wicket reader a servlet request is referred to a Wicket web application. The current
implementation expects exactly one Wicket web application being available as Spring bean:

<beans>
<bean id="wicketWebapp"
class="com.mycompany.MyWicketWebapp"/>

Wicket Integration

Apache Cocoon 3.0 ALPHA 24

http://wicket.apache.org/docs/1.4/org/apache/wicket/markup/html/WebComponent.html

</beans>

By adding the bean definition file as resource into META-INF/cocoon/spring the Wicket web application bean
will be loaded automatically.

Then the Wicket reader has be to used in the sitemap:

<map:sitemap>
<map:pipelines>
<map:pipeline type="noncaching">
<map:match wildcard="my-wicket-app/**">

<map:read type="wicket" base-path="/my-wicket-app" /> ❶
</map:match> ❷

</map:pipeline>
</map:pipelines>

</map:sitemap>

❶ Use a ** wildcard to match all requests that start with my-wicket-app.
❷ The name of the reader is wicket. It's also required to define the base path so that Wicket can calclulate

realtive URLs correctly.

Wicket Integration

Apache Cocoon 3.0 ALPHA 25

	Cocoon 3.0 ALPHA - Reference Documentation
	Table of Contents
	Chapter 1. Introduction
	1.1. Why Cocoon 3 - Motivation
	1.2. Relationship to previous versions
	1.3. Requirements

	Chapter 2. Pipelines
	2.1. What is a pipeline?
	2.1.1. Linear pipelines
	2.1.2. Pipelines by example

	2.2. Pipeline implementations
	2.3. Embedding a pipeline
	2.4. SAX components
	2.4.1. Available components
	2.4.2. Writing custom components
	2.4.2.1. SAX generator
	2.4.2.2. SAX transformer
	2.4.2.3. SAX serializer

	2.5. StAX components
	2.5.1. Available components
	2.5.2. Writing custom components
	2.5.2.1. StAX generator
	2.5.2.2. StAX transformer
	2.5.2.2.1. Navigator
	2.5.2.2.1.1. Using navigators
	2.5.2.2.1.2. Implementing a navigator

	2.5.2.2.2. Implementing a transformer

	2.5.2.3. StAX serializer

	2.5.3. Using StAX and SAX components in the same pipeline
	2.5.3.1. Wrapping a SAX component in a StAX pipeline
	2.5.3.2. StAX-to-SAX pipeline

	2.5.4. Java 1.5 support

	2.6. Utilities

	Chapter 3. Sitemaps
	3.1. What is a sitemap?
	3.2. Sitemap evaluation?
	3.3. Expression languages
	3.4. Spring integration
	3.5. Embedding a sitemap

	Chapter 4. Web applications
	4.1. Usage scenarios
	4.2. Servlet-Service framework integration
	4.3. Sitemaps in an HTTP environement
	4.4. System setup
	4.5. Connecting pipeline fragments
	4.6. RESTful web services
	4.6.1. Sitemap based RESTful web services
	4.6.1.1. Introduction

	4.6.2. JAX-RS based controllers (JSR311)
	4.6.2.1. Introduction
	4.6.2.2. Cocoon and JAX-RS by example
	4.6.2.2.1. Cocoon-Rest dependency
	4.6.2.2.2. JAX-RS resource
	4.6.2.2.3. JAX-RS resource as Spring bean
	4.6.2.2.4. Servlet-Service integration

	4.7. Caching and conditional GET requests
	4.8. Authentication
	4.9. Testing
	4.10. Profiling support
	4.10.1. Module configuration
	4.10.2. Using Cocoon Profiling
	4.10.2.1. How can I enable/disable cocoon-profiling on the fly?
	4.10.2.2. I need cocoon-profiling to profile my custom cocoon component, how can I do that?

	4.10.3. Using Firebug with Cocoon-profiling
	4.10.3.1. Customizing your Firebug Plugin

	4.11. Monitoring support
	4.11.1. Module configuration
	4.11.2. Available parts
	4.11.2.1. Inspect logging settings and reconfigure them
	4.11.2.1.1. Inspect all configured loggers
	4.11.2.1.2. Permanent change of a logging level
	4.11.2.1.3. Temporal change of a logging level
	4.11.2.1.4. Load a new configuration file

	4.11.2.2. Inspect available Servlet-Services
	4.11.2.2.1. Get path of Servlet-Services
	4.11.2.2.2. Get all connections for Servlet-Service
	4.11.2.2.3. Get informations about Servlet-Service
	4.11.2.2.4. List Servlet-Service parameters

	4.11.2.3. Overview of cache entries
	4.11.2.3.1. CacheMonitor
	4.11.2.3.1.1. Clear cache
	4.11.2.3.1.2. List all cache key
	4.11.2.3.1.3. Removing cache entry
	4.11.2.3.1.4. Checking size of cache

	4.11.2.3.2. CacheBurstActions
	4.11.2.3.2.1. Find all cache entry's that size is greater then specified value
	4.11.2.3.2.2. Find all cache entry's that size is smaller then specified value
	4.11.2.3.2.3. Find all cache entry's that are older then specified date
	4.11.2.3.2.4. Find all cache entry's that are younger then specified date
	4.11.2.3.2.5. More flexible cache entry's search
	4.11.2.3.2.6. Remove all cache entry's that size is greater then specified value
	4.11.2.3.2.7. Remove all cache entry's that size is smaller then specified value.
	4.11.2.3.2.8. Remove all cache entry's that are older then specified value.
	4.11.2.3.2.9. Remove all cache entry's that are younger then specified value.
	4.11.2.3.2.10. More flexible cache entry's removing
	4.11.2.3.2.11. Extending BurstCacheAction module

	4.11.2.3.3. CacheEntrysMonitor
	4.11.2.3.3.1. Configuring refresh action
	4.11.2.3.3.1.1. Enable AutoRefresh action
	4.11.2.3.3.1.2. Disable AutoRefresh action
	4.11.2.3.3.1.3. Manually perform refresh action

	4.11.2.3.3.2. Cache entry's operations
	4.11.2.3.3.2.1. Obtain CacheKey for that entry
	4.11.2.3.3.2.2. Obtain cache value
	4.11.2.3.3.2.3. Set cache value
	4.11.2.3.3.2.4. Obtain size of entry

	4.12. Tutorial

	Chapter 5. Wicket Integration
	5.1. Introduction
	5.2. Integrate Cocoon into Wicket
	5.2.1. Mount a Cocoon sitemap
	5.2.2. Mount a Cocoon pipeline
	5.2.3. CocoonSAXPipeline Wicket component

	5.3. Integrate Wicket into Cocoon
	5.3.1. Wicket reader

