

1 Porting Apache:: Perl Modules from mod_perl 1.0
to 2.0

115 Feb 2014

1 Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

1.1 Description
This document describes the various options for porting a mod_perl 1.0 Apache module so that it runs on a
Apache 2.0 / mod_perl 2.0 server. It’s also helpful to those who start developing mod_perl 2.0 handlers.

Developers who need to port modules using XS code, should also read about porting Apache:: XS
modules.

There is also: Porting CPAN modules to mod_perl 2.0 Status.

1.2 Introduction
In the vast majority of cases, a perl Apache module that runs under mod_perl 1.0 will not run under
mod_perl 2.0 without at least some degree of modification.

Even a very simple module that does not in itself need any changes will at least need the mod_perl 2.0
Apache modules loaded, because in mod_perl 2.0 basic functionality, such as access to the request object
and returning an HTTP status, is not found where, or implemented how it used to be in mod_perl 1.0.

Most real-life modules will in fact need to deal with the following changes:

methods that have moved to a different (new) package

methods that must be called differently (due to changed prototypes)

methods that have ceased to exist (functionality provided in some other way)

Do not be alarmed! One way to deal with all of these issues is to load the Apache2::compat compati-
bility layer bundled with mod_perl 2.0. This magic spell will make almost any 1.0 module run under 2.0
without further changes. It is by no means the solution for every case, however, so please read carefully
the following discussion of this and other options.

There are three basic options for porting. Let’s take a quick look at each one and then discuss each in more
detail.

1. Run the module on 2.0 under Apache2::compat with no further changes

As we have said mod_perl 2.0 ships with a module, Apache2::compat , that provides a complete
drop-in compatibility layer for 1.0 modules. Apache2::compat does the following:

Loads all the mod_perl 2.0 Apache2:: modules

Adjusts method calls where the prototype has changed

Provides Perl implementation for methods that no longer exist in 2.0

15 Feb 20142

1.1 Description

The drawback to using Apache2::compat is the performance hit, which can be significant.

Authors of CPAN and other publicly distributed modules should not use Apache2::compat since
this forces its use in environments where the administrator may have chosen to optimize memory use
by making all code run natively under 2.0.

2. Modify the module to run only under 2.0

If you are not interested in providing backwards compatibility with mod_perl 1.0, or if you plan to
leave your 1.0 module in place and develop a new version compatible with 2.0, you will need to
make changes to your code. How significant or widespread the changes are depends largely of course
on your existing code.

Several sections of this document provide detailed information on how to rewrite your code for
mod_perl 2.0 Several tools are provided to help you, and it should be a relatively painless task and
one that you only have to do once.

3. Modify the module so that it runs under both 1.0 and 2.0

You need to do this if you want to keep the same version number for your module, or if you distribute
your module on CPAN and want to maintain and release just one codebase.

This is a relatively simple enhancement of option (2) above. The module tests to see which version of
mod_perl is in use and then executes the appropriate method call.

The following sections provide more detailed information and instructions for each of these three porting
strategies.

1.3 Using Apache2::porting
META: to be written. this is a new package which makes chunks of this doc simpler. for now see the
Apache2::porting manpage.

1.4 Using the Apache2::compat Layer
The Apache2::compat module tries to hide the changes in API prototypes between version 1.0 and 2.0
of mod_perl, and implements "virtual methods" for the methods and functions that actually no longer
exist.

Apache2::compat is extremely easy to use. Either add at the very beginning of startup.pl:

 use Apache2::compat;

or add to httpd.conf:

315 Feb 2014

1.3 Using Apache2::portingPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 PerlModule Apache2::compat

That’s all there is to it. Now you can run your 1.0 module unchanged.

Remember, however, that using Apache2::compat will make your module run slower. It can create a
larger memory footprint than you need and it implements functionality in pure Perl that is provided in
much faster XS in mod_perl 1.0 as well as in 2.0. This module was really designed to assist in the transi-
tion from 1.0 to 2.0. Generally you will be better off if you port your code to use the mod_perl 2.0 API.

It’s also especially important to repeat that CPAN module developers are requested not
to use this module in their code , since this takes the control over performance away from
users.

1.5 Porting a Perl Module to Run under mod_perl 2.0
Note: API changes are listed in the mod_perl 1.0 backward compatibility document.

The following sections will guide you through the steps of porting your modules to mod_perl 2.0.

1.5.1 Using ModPerl::MethodLookup to Discover Which
mod_perl 2.0 Modules Need to Be Loaded

It would certainly be nice to have our mod_perl 1.0 code run on the mod_perl 2.0 server unmodified. So
first of all, try your luck and test the code.

It’s almost certain that your code won’t work when you try, however, because mod_perl 2.0 splits func-
tionality across many more modules than version 1.0 did, and you have to load these modules before the
methods that live in them can be used. So the first step is to figure out which these modules are and
use() them.

The ModPerl::MethodLookup module provided with mod_perl 2.0 allows you to find out which
module contains the functionality you are looking for. Simply provide it with the name of the mod_perl
1.0 method that has moved to a new module, and it will tell you what the module is.

For example, let’s say we have a mod_perl 1.0 code snippet:

 $r->content_type(’text/plain’);
 $r->print("Hello cruel world!");

If we run this, mod_perl 2.0 will complain that the method content_type() can’t be found. So we use
ModPerl::MethodLookup to figure out which module provides this method. We can just run this
from the command line:

 % perl -MModPerl::MethodLookup -e print_method content_type

15 Feb 20144

1.5 Porting a Perl Module to Run under mod_perl 2.0

This prints:

 to use method ’content_type’ add:
 use Apache2::RequestRec ();

We do what it says and add this use() statement to our code, restart our server (unless we’re using
Apache2::Reload), and mod_perl will no longer complain about this particular method.

Since you may need to use this technique quite often you may want to define an alias . Once
defined the last command line lookup can be accomplished with:

 % lookup content_type

ModPerl::MethodLookup also provides helper functions for finding which methods are
defined in a given module , or which methods can be invoked on a given
object .

1.5.1.1 Handling Methods Existing In More Than One Package

Some methods exists in several classes. For example this is the case with the print() method. We know
the drill:

 % lookup print

This prints:

 There is more than one class with method ’print’
 try one of:
 use Apache2::RequestIO ();
 use Apache2::Filter ();

So there is more than one package that has this method. Since we know that we call the print() method
with the $r object, it must be the Apache2::RequestIO module that we are after. Indeed, loading this
module solves the problem.

1.5.1.2 Using ModPerl::MethodLookup Programmatically

The issue of picking the right module, when more than one matches, can be resolved when using
ModPerl::MethodLookup programmatically -- lookup_method accepts an object as an optional
second argument, which is used if there is more than one module that contains the method in question.
ModPerl::MethodLookup knows that Apache2::RequestIO and and Apache2::Filter
expect an object of type Apache2::RequestRec and type Apache2::Filter respectively. So in a
program running under mod_perl we can call:

 ModPerl::MethodLookup::lookup_method(’print’, $r);

Now only one module will be matched.

515 Feb 2014

1.5.1 Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be LoadedPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

This functionality can be used in AUTOLOAD, for example, although most users will not have a need for
this robust of solution.

1.5.1.3 Pre-loading All mod_perl 2.0 Modules

Now if you use a wide range of methods and functions from the mod_perl 1.0 API, the process of finding
all the modules that need to be loaded can be quite frustrating. In this case you may find the function
preload_all_modules() to be the right tool for you. This function preloads all mod_perl 2.0
modules, implementing their API in XS.

While useful for testing and development, it is not recommended to use this function in production
systems. Before going into production you should remove the call to this function and load only the
modules that are used, in order to save memory.

CPAN module developers should not be tempted to call this function from their modules, because it
prevents the user of their module from optimizing her system’s memory usage.

1.5.2 Handling Missing and Modified mod_perl 1.0 Methods and
Functions

The mod_perl 2.0 API is modeled even more closely upon the Apache API than was mod_perl version 1.0.
Just as the Apache 2.0 API is substantially different from that of Apache 1.0, therefore, the mod_perl 2.0
API is quite different from that of mod_perl 1.0. Unfortunately, this means that certain method calls and
functions that were present in mod_perl version 1.0 are missing or modified in mod_perl 2.0.

If mod_perl 2.0 tells you that some method is missing and it can’t be found using ModPerl::Method-
Lookup, it’s most likely because the method doesn’t exist in the mod_perl 2.0 API. It’s also possible that
the method does still exist, but nevertheless it doesn’t work, since its usage has changed (e.g. its prototype
has changed, or it requires different arguments, etc.).

In either of these cases, refer to the backwards compatibility document for an exhaustive list of API calls
that have been modified or removed.

1.5.2.1 Methods that No Longer Exist

Some methods that existed in mod_perl 1.0 simply do not exist anywhere in version 2.0 and you must
therefore call a different method o methods to get the functionality you want.

For example, suppose we have a mod_perl 1.0 code snippet:

 $r->log_reason("Couldn’t open the session file: $@");

If we try to run this under mod_perl 2.0 it will complain about the call to log_reason() . But when we
use ModPerl::MethodLookup to see which module to load in order to call that method, nothing is
found:

15 Feb 20146

1.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions

 % perl -MModPerl::MethodLookup -le \
 ’print((ModPerl::MethodLookup::lookup_method(shift))[0])’ \
 log_reason

This prints:

 don’t know anything about method ’log_reason’

Looks like we are calling a non-existent method! Our next step is to refer to the backwards compatibility
document, wherein we find that as we suspected, the method log_reason() no longer exists, and that
instead we should use the other standard logging functions provided by the Apache2::Log module.

1.5.2.2 Methods Whose Usage Has Been Modified

Some methods still exist, but their usage has been modified, and your code must call them in the new
fashion or it will generate an error. Most often the method call requires new or different arguments.

For example, say our mod_perl 1.0 code said:

 $parsed_uri = Apache2::URI->parse($r, $r->uri);

This code causes mod_perl 2.0 to complain first about not being able to load the method parse() via the
package Apache2::URI. We use the tools described above to discover that the package containing our
method has moved and change our code to load and use APR::URI :

 $parsed_uri = APR::URI->parse($r, $r->uri);

But we still get an error. It’s a little cryptic, but it gets the point across:

 p is not of type APR::Pool at /path/to/OurModule.pm line 9.

What this is telling us is that the method parse requires an APR::Pool object as its first argument. (Some
methods whose usage has changed emit more helpful error messages prefixed with "Usage: ...") So we
change our code to:

 $parsed_uri = APR::URI->parse($r->pool, $r->uri);

and all is well in the world again.

1.5.3 Requiring a specific mod_perl version.

To require a module to run only under 2.0, simply add:

 use mod_perl 2.0;

META: In fact, before 2.0 is released you really have to say:

 use mod_perl 1.99;

715 Feb 2014

1.5.3 Requiring a specific mod_perl version.Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

And you can even require a specific version (for example when a certain API has been added only starting
from that version). For example to require version 1.99_08, you can say:

 use mod_perl 1.9908;

1.5.4 Should the Module Name Be Changed?

If it is not possible to make your code run under both mod_perl versions (see below), you will have to
maintain two separate versions of your own code. While you can change the name of the module for the
new version, it’s best to try to preserve the name and use some workarounds.

META: need to discuss this more.

1.5.5 Using Apache2::compat As a Tutorial

Even if you have followed the recommendation and eschewed use of the Apache2::compat module,
you may find it useful to learn how the API has been changed and how to modify your own code. Simply
look at the Apache2::compat source code and see how the functionality should be implemented in
mod_perl 2.0.

For example, mod_perl 2.0 doesn’t provide the Apache->gensym method. As we can see if we look at
the Apache2/compat.pm source, the functionality is now available via the core Perl module Symbol
and its gensym() function. (Since mod_perl 2.0 works only with Perl versions 5.6 and higher, and
Symbol.pm is included in the core Perl distribution since version 5.6.0, there was no reason to keep
providing Apache->gensym .)

So if the original code looked like:

 my $fh = Apache->gensym;
 open $fh, $file or die "Can’t open $file: $!";

in order to port it mod_perl 2.0 we can write:

 my $fh = Symbol::gensym;
 open $fh, $file or die "Can’t open $file: $!";

Or we can even skip loading Symbol.pm , since under Perl version 5.6 and higher we can just do:

 open my $fh, $file or die "Can’t open $file: $!";

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Apache::MP3 is an elaborate application that uses a lot of mod_perl API. After porting it, I have real-
ized that if you go through the notes or even better try to do it by yourself, referring to the notes only when
in trouble, you will most likely be able to port any other mod_perl 1.0 module to run under mod_perl 2.0.
So here the log of what I have done while doing the porting.

15 Feb 20148

1.5.4 Should the Module Name Be Changed?

Please notice that this tutorial should be considered as-is and I’m not claiming that I have got everything
polished, so if you still find problems, that’s absolutely OK. What’s important is to try to learn from the
process, so you can attack other modules on your own.

I’ve started to work with Apache::MP3 version 3.03 which you can retrieve from Lincoln’s CPAN
directory: http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz Even though by
the time you’ll read this there will be newer versions available it’s important that you use the same version
as a starting point, since if you don’t, the notes below won’t make much sense.

1.5.6.1 Preparations

First of all, I scratched most of mine httpd.conf and startup.pl leaving the bare minimum to get mod_perl
started. This is needed to ensure that once I’ve completed the porting, the module will work correct on
other users systems. For example if my httpd.conf and startup.pl were loading some other modules, which
in turn may load modules that a to-be-ported module may rely on, the ported module may work for me,
but once released, it may not work for others. It’s the best to create a new httpd.conf when doing the
porting putting only the required bits of configuration into it.

1.5.6.1.1 httpd.conf

Next, I configure the Apache2::Reload module, so we don’t have to constantly restart the server after
we modify Apache::MP3 . In order to do that add to httpd.conf:

 PerlModule Apache2::Reload
 PerlInitHandler Apache2::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache2::*"
 PerlSetVar ReloadConstantRedefineWarnings Off

You can refer to the Apache2::Reload manpage for more information if you aren’t familiar with
this module. The part:

 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache::*"

tells Apache2::Reload to monitor only modules in the ModPerl:: and Apache:: namespaces. So
Apache::MP3 will be monitored. If your module is named Foo::Bar , make sure to include the right
pattern for the ReloadModules directive. Alternatively simply have:

 PerlSetVar ReloadAll On

which will monitor all modules in %INC, but will be a bit slower, as it’ll have to stat(3) many more
modules on each request.

Finally, Apache::MP3 uses constant subroutines. Because of that you will get lots of warnings every
time the module is modified, which I wanted to avoid. I can safely shut those warnings off, since I’m not
going to change those constants. Therefore I’ve used the setting

915 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz

 PerlSetVar ReloadConstantRedefineWarnings Off

If you do change those constants, refer to the section on ReloadConstantRedefineWarnings .

Next I configured Apache::MP3 . In my case I’ve followed the Apache::MP3 documentation, created
a directory mp3/ under the server document root and added the corresponding directives to httpd.conf.

Now my httpd.conf looked like this:

 #file:httpd.conf
 #---------------
 Listen 127.0.0.1:8002
 #... standard Apache configuration bits omitted ...

 LoadModule perl_module modules/mod_perl.so

 PerlSwitches -wT

 PerlRequire "/home/httpd/2.0/perl/startup.pl"

 PerlModule Apache2::Reload
 PerlInitHandler Apache2::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache::*"
 PerlSetVar ReloadConstantRedefineWarnings Off

 AddType audio/mpeg mp3 MP3
 AddType audio/playlist m3u M3U
 AddType audio/x-scpls pls PLS
 AddType application/x-ogg ogg OGG
 <Location /mp3>
 SetHandler perl-script
 PerlResponseHandler Apache::MP3
 PerlSetVar PlaylistImage playlist.gif
 PerlSetVar StreamBase http://localhost:8002
 PerlSetVar BaseDir /mp3
 </Location>

1.5.6.1.2 startup.pl

Since chances are that no mod_perl 1.0 module will work out of box without at least preloading some
modules, I’ve enabled the Apache2::compat module. Now my startup.pl looked like this:

 #file:startup.pl
 #---------------
 use lib qw(/home/httpd/2.0/perl);
 use Apache2::compat;

1.5.6.1.3 Apache/MP3.pm

Before I even started porting Apache::MP3 , I’ve added the warnings pragma to Apache/MP3.pm (which
wasn’t there because mod_perl 1.0 had to work with Perl versions prior to 5.6.0, which is when the
warnings pragma was added):

15 Feb 201410

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 #file:apache_mp3_prep.diff
 --- Apache/MP3.pm.orig 2003-06-03 18:44:21.000000000 +1000
 +++ Apache/MP3.pm 2003-06-03 18:44:47.000000000 +1000
 @@ -4,2 +4,5 @@
 use strict;
 +use warnings;
 +no warnings ’redefine’; # XXX: remove when done with porting
 +

From now on, I’m going to use unified diffs which you can apply using patch(1) . Though you may
have to refer to its manpage on your platform since the usage flags may vary. On linux I’d apply the above
patch as:

 % cd ~/perl/blead-ithread/lib/site_perl/5.9.0/
 % patch -p0 < apache_mp3_prep.diff

(note: I’ve produced the above patch and one more below with diff -u1 , to avoid the RCS Id tag geting
into this document. Normally I produce diffs with diff -u which uses the default context of 3.)

assuming that Apache/MP3.pm is located in the directory ~/perl/blead-ithread/lib/site_perl/5.9.0/.

I’ve enabled the warnings pragma even though I did have warnings turned globally in httpd.conf with:

 PerlSwitches -wT

it’s possible that some badly written module has done:

 $^W = 0;

without localizing the change, affecting other code. Also notice that the taint mode was enabled from
httpd.conf, something that you shouldn’t forget to do.

I have also told the warnings pragma not to complain about redefined subs via:

 no warnings ’redefine’; # XXX: remove when done with porting

I will remove that code, once porting is completed.

At this point I was ready to start the porting process and I have started the server.

 % hup2

I’m using the following aliases to save typing:

 alias err2 "tail -f ~/httpd/prefork/logs/error_log"
 alias acc2 "tail -f ~/httpd/prefork/logs/access_log"
 alias stop2 "~/httpd/prefork/bin/apachectl stop"
 alias start2 "~/httpd/prefork/bin/apachectl start"
 alias restart2 "~/httpd/prefork/bin/apachectl restart"
 alias graceful2 "~/httpd/prefork/bin/apachectl graceful"
 alias hup2 "stop2; sleep 3; start2; err2"

1115 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

(I also have a similar set of aliases for mod_perl 1.0)

1.5.6.2 Porting with Apache2::compat

I have configured my server to listen on port 8002, so I issue a request http://localhost:8002/mp3/ in one
console:

 % lynx --dump http://localhost:8002/mp3/

keeping the error_log open in the other:

 % err2

which expands to:

 % tail -f ~/httpd/prefork/logs/error_log

When the request is issued, the error_log file tells me:

 [Thu Jun 05 15:29:45 2003] [error] [client 127.0.0.1]
 Usage: Apache2::RequestRec::new(classname, c, base_pool=NULL)
 at .../Apache/MP3.pm line 60.

Looking at the code:

 58: sub handler ($$) {
 59: my $class = shift;
 60: my $obj = $class->new(@_) or die "Can’t create object: $!";

The problem is that handler wasn’t invoked as method, but had $r passed to it (we can tell because
new() was invoked as Apache2::RequestRec::new() , whereas it should have been
Apache::MP3::new() . Why Apache::MP3 wasn’t passed as the first argument? I go to the mod_perl
1.0 backward compatibility document and find that method handlers are now marked using the method
subroutine attribute. So I modify the code:

 --- Apache/MP3.pm.0 2003-06-05 15:29:19.000000000 +1000
 +++ Apache/MP3.pm 2003-06-05 15:38:41.000000000 +1000
 @@ -55,7 +55,7 @@
 my $NO = ’^(no|false)$’; # regular expression
 my $YES = ’^(yes|true)$’; # regular expression

 -sub handler ($$) {
 +sub handler : method {
 my $class = shift;
 my $obj = $class->new(@_) or die "Can’t create object: $!";
 return $obj->run();

and issue the request again (no server restart needed).

This time we get a bunch of looping redirect responses, due to a bug in mod_dir which kicks in to handle
the existing dir and messing up with $r->path_info keeping it empty at all times. I thought I could
work around this by not having the same directory and location setting, e.g. by moving the location to be
/songs/ while keeping the physical directory with mp3 files as $DocumentRoot/mp3/, but Apache::MP3

15 Feb 201412

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

http://localhost:8002/mp3/

won’t let you do that. So a solution suggested by Justin Erenkrantz is to simply shortcut that piece of code
with:

 --- Apache/MP3.pm.1 2003-06-06 14:50:59.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 14:51:11.000000000 +1000
 @@ -253,7 +253,7 @@
 my $self = shift;
 my $dir = shift;

 - unless ($self->r->path_info){
 + unless ($self->r->path_info eq ’’){
 #Issue an external redirect if the dir isn’t tailed with a ’/’
 my $uri = $self->r->uri;
 my $query = $self->r->args;

which is equivalent to removing this code, until the bug is fixed (it was still there as of Apache 2.0.46).
But the module still works without this code, because if you issue a request to /mp3 (w/o trailing slash)
mod_dir, will do the redirect for you, replacing the code that we just removed. In any case this got me past
this problem.

Since I have turned on the warnings pragma now I was getting loads of uninitialized value warnings from
$r->dir_config() whose return value were used without checking whether they are defined or not.
But you’d get them with mod_perl 1.0 as well, so they are just an example of not-so clean code, not really
a relevant obstacle in my pursuit to port this module to mod_perl 2.0. Unfortunately they were cluttering
the log file so I had to fix them. I’ve defined several convenience functions:

 sub get_config {
 my $val = shift->r->dir_config(shift);
 return defined $val ? $val : ’’;
 }

 sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
 sub config_no { shift->get_config(shift) !~ /$NO/oi; }

and replaced them as you can see in this patch: code/apache_mp3_2.diff:

--- Apache/MP3.pm.2 2003-06-06 15:17:22.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 15:16:21.000000000 +1000
@@ -55,6 +55,14 @@
 my $NO = ’^(no|false)$’; # regular expression
 my $YES = ’^(yes|true)$’; # regular expression

+sub get_config {
+ my $val = shift->r->dir_config(shift);
+ return defined $val ? $val : ’’;
+}
+
+sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
+sub config_no { shift->get_config(shift) !~ /$NO/oi; }
+
 sub handler : method {
 my $class = shift;
 my $obj = $class->new(@_) or die "Can’t create object: $!";
@@ -70,7 +78,7 @@

1315 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 my @lang_tags;
 push @lang_tags,split /,\s+/,$r->header_in(’Accept-language’)
 if $r->header_in(’Accept-language’);
- push @lang_tags,$r->dir_config(’DefaultLanguage’) || ’en-US’;
+ push @lang_tags,$new->get_config(’DefaultLanguage’) || ’en-US’;

 $new->{’lh’} ||=
 Apache::MP3::L10N->get_handle(@lang_tags)
@@ -343,7 +351,7 @@
 my $file = $subr->filename;
 my $type = $subr->content_type;
 my $data = $self->fetch_info($file,$type);
- my $format = $self->r->dir_config(’DescriptionFormat’);
+ my $format = $self->get_config(’DescriptionFormat’);
 if ($format) {
 $r->print(’#EXTINF:’ , $data->{seconds} , ’,’);
 (my $description = $format) =~ s{%([atfglncrdmsqS%])}
@@ -1204,7 +1212,7 @@
 # get fields to display in list of MP3 files
 sub fields {
 my $self = shift;
- my @f = split /\W+/,$self->r->dir_config(’Fields’);
+ my @f = split /\W+/,$self->get_config(’Fields’);
 return map { lc $_ } @f if @f; # lower case
 return qw(title artist duration bitrate); # default
 }
@@ -1340,7 +1348,7 @@
 sub get_dir {
 my $self = shift;
 my ($config,$default) = @_;
- my $dir = $self->r->dir_config($config) || $default;
+ my $dir = $self->get_config($config) || $default;
 return $dir if $dir =~ m!^/!; # looks like a path
 return $dir if $dir =~ m!^\w+://!; # looks like a URL
 return $self->default_dir . ’/’ . $dir;
@@ -1348,22 +1356,22 @@

 # return true if downloads are allowed from this directory
 sub download_ok {
- shift->r->dir_config(’AllowDownload’) !~ /$NO/oi;
+ shift->config_no(’AllowDownload’);
 }

 # return true if streaming is allowed from this directory
 sub stream_ok {
- shift->r->dir_config(’AllowStream’) !~ /$NO/oi;
+ shift->config_no(’AllowStream’);
 }

 # return true if playing locally is allowed
 sub playlocal_ok {
- shift->r->dir_config(’AllowPlayLocally’) =~ /$YES/oi;
+ shift->config_yes(’AllowPlayLocally’);
 }

 # return true if we should check that the client can accomodate streaming
 sub check_stream_client {

15 Feb 201414

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

- shift->r->dir_config(’CheckStreamClient’) =~ /$YES/oi;
+ shift->config_yes(’CheckStreamClient’);
 }

 # return true if client can stream
@@ -1378,48 +1386,48 @@

 # whether to read info for each MP3 file (might take a long time)
 sub read_mp3_info {
- shift->r->dir_config(’ReadMP3Info’) !~ /$NO/oi;
+ shift->config_no(’ReadMP3Info’);
 }

 # whether to time out streams
 sub stream_timeout {
- shift->r->dir_config(’StreamTimeout’) || 0;
+ shift->get_config(’StreamTimeout’) || 0;
 }

 # how long an album list is considered so long we should put buttons
 # at the top as well as the bottom
-sub file_list_is_long { shift->r->dir_config(’LongList’) || 10 }
+sub file_list_is_long { shift->get_config(’LongList’) || 10 }

 sub home_label {
 my $self = shift;
- my $home = $self->r->dir_config(’HomeLabel’) ||
+ my $home = $self->get_config(’HomeLabel’) ||
 $self->x(’Home’);
 return lc($home) eq ’hostname’ ? $self->r->hostname : $home;
 }

 sub path_style { # style for the path to parent directories
- lc(shift->r->dir_config(’PathStyle’)) || ’staircase’;
+ lc(shift->get_config(’PathStyle’)) || ’staircase’;
 }

 # where is our cache directory (if any)
 sub cache_dir {
 my $self = shift;
- return unless my $dir = $self->r->dir_config(’CacheDir’);
+ return unless my $dir = $self->get_config(’CacheDir’);
 return $self->r->server_root_relative($dir);
 }

 # columns to display
-sub subdir_columns {shift->r->dir_config(’SubdirColumns’) || SUBDIRCOLUMNS }
-sub playlist_columns {shift->r->dir_config(’PlaylistColumns’) || PLAYLISTCOLUMNS }
+sub subdir_columns {shift->get_config(’SubdirColumns’) || SUBDIRCOLUMNS }
+sub playlist_columns {shift->get_config(’PlaylistColumns’) || PLAYLISTCOLUMNS }

 # various configuration variables
-sub default_dir { shift->r->dir_config(’BaseDir’) || BASE_DIR }
+sub default_dir { shift->get_config(’BaseDir’) || BASE_DIR }
 sub stylesheet { shift->get_dir(’Stylesheet’, STYLESHEET) }
 sub parent_icon { shift->get_dir(’ParentIcon’,PARENTICON) }
 sub cd_list_icon {

1515 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 my $self = shift;
 my $subdir = shift;
- my $image = $self->r->dir_config(’CoverImageSmall’) || COVERIMAGESMALL;
+ my $image = $self->get_config(’CoverImageSmall’) || COVERIMAGESMALL;
 my $directory_specific_icon = $self->r->filename."/$subdir/$image";
 return -e $directory_specific_icon
 ? join ("/",$self->r->uri,escape($subdir),$image)
@@ -1427,7 +1435,7 @@
 }
 sub playlist_icon {
 my $self = shift;
- my $image = $self->r->dir_config(’PlaylistImage’) || PLAYLISTIMAGE;
+ my $image = $self->get_config(’PlaylistImage’) || PLAYLISTIMAGE;
 my $directory_specific_icon = $self->r->filename."/$image";
 warn $directory_specific_icon;
 return -e $directory_specific_icon
@@ -1444,7 +1452,7 @@
 sub cd_icon {
 my $self = shift;
 my $dir = shift;
- my $coverimg = $self->r->dir_config(’CoverImage’) || COVERIMAGE;
+ my $coverimg = $self->get_config(’CoverImage’) || COVERIMAGE;
 if (-e "$dir/$coverimg") {
 $coverimg;
 } else {
@@ -1453,7 +1461,7 @@
 }
 sub missing_comment {
 my $self = shift;
- my $missing = $self->r->dir_config(’MissingComment’);
+ my $missing = $self->get_config(’MissingComment’);
 return if $missing eq ’off’;
 $missing = $self->lh->maketext(’unknown’) unless $missing;
 $missing;
@@ -1464,7 +1472,7 @@
 my $self = shift;
 my $data = shift;
 my $description;
- my $format = $self->r->dir_config(’DescriptionFormat’);
+ my $format = $self->get_config(’DescriptionFormat’);
 if ($format) {
 ($description = $format) =~ s{%([atfglncrdmsqS%])}
 {$1 eq ’%’ ? ’%’
@@ -1495,7 +1503,7 @@
 }
 }

- if ((my $basename = $r->dir_config(’StreamBase’)) && !$self->is_localnet()) {
+ if ((my $basename = $self->get_config(’StreamBase’)) && !$self->is_localnet()) {
 $basename =~ s!http://!http://$auth_info! if $auth_info;
 return $basename;
 }
@@ -1536,7 +1544,7 @@
 sub is_localnet {
 my $self = shift;
 return 1 if $self->is_local; # d’uh
- my @local = split /\s+/,$self->r->dir_config(’LocalNet’) or return;

15 Feb 201416

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

+ my @local = split /\s+/,$self->get_config(’LocalNet’) or return;

 my $remote_ip = $self->r->connection->remote_ip . ’.’;
 foreach (@local) {

, it was 194 lines long so I didn’t inline it here, but it was quick to create with a few regexes
search-n-replace manipulations in xemacs.

Now I have the browsing of the root /mp3/ directory and its sub-directories working. If I click on ’Fetch’
of a particular song it works too. However if I try to ’Stream’ a song, I get a 500 response with error_log
telling me:

 [Fri Jun 06 15:33:33 2003] [error] [client 127.0.0.1] Bad arg length
 for Socket::unpack_sockaddr_in, length is 31, should be 16 at
 .../5.9.0/i686-linux-thread-multi/Socket.pm line 370.

It would be certainly nice for Socket.pm to use Carp::carp() instead of warn() so we will know
where in the Apache::MP3 code this problem was triggered. However reading the Socket.pm manpage
reveals that sockaddr_in() in the list context is the same as calling an explicit unpack_sock-
addr_in() , and in the scalar context it’s calling pack_sockaddr_in() . So I have found sock-
addr_in was the only Socket.pm function used in Apache::MP3 and I have found this code in the
function is_local() :

 my $r = $self->r;
 my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);
 my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
 return $serveraddr eq $remoteaddr;

Since something is wrong with function calls $r->connection->local_addr and/or
$r->connection->remote_addr and I referred to the mod_perl 1.0 backward compatibility docu-
ment and found the relevant entry on these two functions. Indeed the API have changed. Instead of return-
ing a packed SOCKADDR_IN string, Apache now returns an APR::SockAddr object, which I can query
to get the bits of information I’m interested in. So I applied this patch:

 --- Apache/MP3.pm.3 2003-06-06 15:36:15.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 15:56:32.000000000 +1000
 @@ -1533,10 +1533,9 @@
 # allows the player to fast forward, pause, etc.
 sub is_local {
 my $self = shift;
 - my $r = $self->r;
 - my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);
 - my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
 - return $serveraddr eq $remoteaddr;
 + my $c = $self->r->connection;
 + require APR::SockAddr;
 + return $c->local_addr->ip_get eq $c->remote_addr->ip_get;
 }

 # Check if the requesting client is on the local network, as defined by

1715 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

And voila, the streaming option now works. I get a warning on ’Use of uninitialized value’ on line 1516
though, but again this is unrelated to the porting issues, just a flow logic problem, which wasn’t triggered
without the warnings mode turned on. I have fixed it with:

 --- Apache/MP3.pm.4 2003-06-06 15:57:15.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 16:04:48.000
 @@ -1492,7 +1492,7 @@
 my $suppress_auth = shift;
 my $r = $self->r;

 - my $auth_info;
 + my $auth_info = ’’;
 # the check for auth_name() prevents an anno
 # the apache server log when authentication
 if ($r->auth_name && !$suppress_auth) {
 @@ -1509,10 +1509,9 @@
 }

 my $vhost = $r->hostname;
 - unless ($vhost) {
 - $vhost = $r->server->server_hostname;
 - $vhost .= ’:’ . $r->get_server_port unless
 - }
 + $vhost = $r->server->server_hostname unless
 + $vhost .= ’:’ . $r->get_server_port unless $
 +
 return "http://${auth_info}${vhost}";
 }

This completes the first part of the porting. I have tried to use all the visible functions of the interface and
everything seemed to work and I haven’t got any warnings logged. Certainly I may have missed some
usage patterns which may be still problematic. But this is good enough for this tutorial.

1.5.6.3 Getting Rid of the Apache2::compat Dependency

The final stage is going to get rid of Apache2::compat since this is a CPAN module, which must not
load Apache2::compat on its own. I’m going to make Apache::MP3 work with mod_perl 2.0 all by
itself.

The first step is to comment out the loading of Apache2::compat in startup.pl:

 #file:startup.pl
 #---------------
 use lib qw(/home/httpd/2.0/perl);
 #use Apache2::compat ();

1.5.6.4 Ensuring that Apache2::compat is not loaded

The second step is to make sure that Apache2::compat doesn’t get loaded indirectly, through some
other module. So I’ve added this line of code to Apache/MP3.pm:

15 Feb 201418

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 --- Apache/MP3.pm.5 2003-06-06 16:17:50.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 16:21:14.000000000 +1000
 @@ -3,2 +3,6 @@

 +BEGIN {
 + die "Apache2::compat is loaded loaded" if $INC{’Apache2/compat.pm’};
 +}
 +
 use strict;

and indeed, even though I’ve commented out the loading of Apache2::compat from startup.pl, this
module was still getting loaded. I knew that because the request to /mp3 were failing with the error
message:

 Apache2::compat is loaded loaded at ...

There are several ways to find the guilty party, you can grep(1) for it in the perl libraries, you can over-
ride CORE::GLOBAL::require() in startup.pl:

 BEGIN {
 use Carp;
 *CORE::GLOBAL::require = sub {
 Carp::cluck("Apache2::compat is loaded") if $_[0] =~ /compat/;
 CORE::require(@_);
 };
 }

or you can modify Apache2/compat.pm and make it print the calls trace when it gets compiled:

 --- Apache2/compat.pm.orig 2003-06-03 16:11:07.000000000 +1000
 +++ Apache2/compat.pm 2003-06-03 16:11:58.000000000 +1000
 @@ -1,5 +1,9 @@
 package Apache2::compat;

 +BEGIN {
 + use Carp;
 + Carp::cluck("Apache2::compat is loaded by");
 +}

I’ve used this last technique, since it’s the safest one to use. Remember that Apache2::compat can
also be loaded with:

 do "Apache2/compat.pm";

in which case, neither grep(1) ’ping for Apache2::compat , nor overriding require() will do the
job.

When I’ve restarted the server and tried to use Apache::MP3 (I wasn’t preloading it at the server startup
since I wanted the server to start normally and cope with problem when it’s running), the error_log had an
entry:

1915 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 Apache2::compat is loaded by at .../Apache2/compat.pm line 6
 Apache2::compat::BEGIN() called at .../Apache2/compat.pm line 8
 eval {...} called at .../Apache2/compat.pm line 8
 require Apache2/compat.pm called at .../5.9.0/CGI.pm line 169
 require CGI.pm called at .../site_perl/5.9.0/Apache/MP3.pm line 8
 Apache::MP3::BEGIN() called at .../Apache2/compat.pm line 8

(I’ve trimmed the whole paths of the libraries and the trace itself, to make it easier to understand.)

We could have used Carp::carp() which would have told us only the fact that Apache2::compat
was loaded by CGI.pm , but by using Carp::cluck() we’ve obtained the whole stack backtrace so we
also can learn which module has loaded CGI.pm .

Here I’ve learned that I had an old version of CGI.pm (2.89) which automatically loaded
Apache2::compat (which should be never done by CPAN modules). Once I’ve upgraded CGI.pm to
version 2.93 and restarted the server, Apache2::compat wasn’t getting loaded any longer.

1.5.6.5 Installing the ModPerl::MethodLookup Helper

Now that Apache2::compat is not loaded, I need to deal with two issues: modules that need to be
loaded and APIs that have changed.

For the second issue I’ll have to refer to the the mod_perl 1.0 backward compatibility document.

But the first issue can be easily worked out using ModPerl::MethodLookup . As explained in the
section Using ModPerl::MethodLookup Programmatically I’ve added the AUTOLOAD code to my
startup.pl so it’ll automatically lookup the packages that I need to load based on the request method and
the object type.

So now my startup.pl looked like:

 #file:startup.pl
 #---------------
 use lib qw(/home/httpd/2.0/perl);

 {
 package ModPerl::MethodLookupAuto;
 use ModPerl::MethodLookup;

 use Carp;
 sub handler {

 # look inside mod_perl:: Apache2:: APR:: ModPerl:: excluding DESTROY
 my $skip = ’^(?!DESTROY$’;
 *UNIVERSAL::AUTOLOAD = sub {
 my $method = $AUTOLOAD;
 return if $method =~ /DESTROY/;
 my ($hint, @modules) =
 ModPerl::MethodLookup::lookup_method($method, @_);
 $hint ||= "Can’t find method $AUTOLOAD";
 croak $hint;
 };

15 Feb 201420

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 return 0;
 }
 }
 1;

and I add to my httpd.conf:

 PerlChildInitHandler ModPerl::MethodLookupAuto

1.5.6.6 Adjusting the code to run under mod_perl 2

I restart the server and off I go to complete the second porting stage.

The first error that I’ve received was:

 [Fri Jun 06 16:28:32 2003] [error] failed to resolve handler ‘Apache::MP3’
 [Fri Jun 06 16:28:32 2003] [error] [client 127.0.0.1] Can’t locate
 object method "boot" via package "mod_perl" at .../Apache/Constants.pm
 line 8. Compilation failed in require at .../Apache/MP3.pm line 12.

I go to line 12 and find the following code:

 use Apache::Constants qw(:common REDIRECT HTTP_NO_CONTENT
 DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);

Notice that I did have mod_perl 1.0 installed, so the Apache::Constant module from mod_perl 1.0
couldn’t find the boot() method which doesn’t exist in mod_perl 2.0. If you don’t have mod_perl 1.0
installed the error would simply say, that it can’t find Apache/Constants.pm in @INC. In any case, we are
going to replace this code with mod_perl 2.0 equivalent:

 --- Apache/MP3.pm.6 2003-06-06 16:33:05.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 17:03:43.000000000 +1000
 @@ -9,7 +9,9 @@
 use warnings;
 no warnings ’redefine’; # XXX: remove when done with porting

 -use Apache::Constants qw(:common REDIRECT HTTP_NO_CONTENT DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);
 +use Apache2::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT
 + DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);
 +
 use Apache::MP3::L10N;
 use IO::File;
 use Socket ’sockaddr_in’;

and I also had to adjust the constants, since what used to be OK, now has to be Apache2::Const::OK ,
mainly because in mod_perl 2.0 there is an enormous amount of constants (coming from Apache and
APR) and most of them are grouped in Apache2:: or APR:: namespaces. The Apache2::Const
and APR::Const manpage provide more information on available constants.

This search and replace accomplished the job:

2115 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 % perl -pi -e ’s/return\s(OK|DECLINED|FORBIDDEN| \
 REDIRECT|HTTP_NO_CONTENT|DIR_MAGIC_TYPE| \
 HTTP_NOT_MODIFIED)/return Apache2::$1/xg’ Apache/MP3.pm

As you can see the regex explicitly lists all constants that were used in Apache::MP3 . Your situation
may vary. Here is the patch: code/apache_mp3_7.diff:

--- Apache/MP3.pm.7 2003-06-06 17:04:27.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:13:26.000000000 +1000
@@ -129,7 +129,7 @@
 my $self = shift;

 $self->r->send_http_header($self->html_content_type);
- return OK if $self->r->header_only;
+ return Apache::OK if $self->r->header_only;

 print start_html(
 -lang => $self->lh->language_tag,
@@ -246,20 +246,20 @@
 $self->send_playlist(\@matches);
 }

- return OK;
+ return Apache::OK;
 }

 # this is called to generate a playlist for selected files
 if (param(’Play Selected’)) {
- return HTTP_NO_CONTENT unless my @files = param(’file’);
+ return Apache::HTTP_NO_CONTENT unless my @files = param(’file’);
 my $uri = dirname($r->uri);
 $self->send_playlist([map { "$uri/$_" } @files]);
- return OK;
+ return Apache::OK;
 }

 # otherwise don’t know how to deal with this
 $self->r->log_reason(’Invalid parameters -- possible attempt to circumvent checks.’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 }

 # this generates the top-level directory listing
@@ -273,7 +273,7 @@
 my $query = $self->r->args;
 $query = "?" . $query if defined $query;
 $self->r->header_out(Location => "$uri/$query");
- return REDIRECT;
+ return Apache::REDIRECT;
 }

 return $self->list_directory($dir);
@@ -289,9 +289,9 @@

 if ($is_audio && !$self->download_ok) {
 $self->r->log_reason(’File downloading is forbidden’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;

15 Feb 201422

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 } else {
- return DECLINED; # allow Apache to do its standard thing
+ return Apache::DECLINED; # allow Apache to do its standard thing
 }

 }
@@ -302,17 +302,17 @@
 my $self = shift;
 my $r = $self->r;

- return DECLINED unless -e $r->filename; # should be $r->finfo
+ return Apache::DECLINED unless -e $r->filename; # should be $r->finfo

 unless ($self->stream_ok) {
 $r->log_reason(’AllowStream forbidden’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 }

 if ($self->check_stream_client and !$self->is_stream_client) {
 my $useragent = $r->header_in(’User-Agent’);
 $r->log_reason("CheckStreamClient is true and $useragent is not a streaming client");
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 }

 return $self->send_stream($r->filename,$r->uri);
@@ -322,12 +322,12 @@
 sub send_playlist {
 my $self = shift;
 my ($urls,$shuffle) = @_;
- return HTTP_NO_CONTENT unless @$urls;
+ return Apache::HTTP_NO_CONTENT unless @$urls;
 my $r = $self->r;
 my $base = $self->stream_base;

 $r->send_http_header(’audio/mpegurl’);
- return OK if $r->header_only;
+ return Apache::OK if $r->header_only;

 # local user
 my $local = $self->playlocal_ok && $self->is_local;
@@ -377,7 +377,7 @@
 $r->print ("$base$_?$stream_parms$CRLF");
 }
 }
- return OK;
+ return Apache::OK;
 }

 sub stream_parms {
@@ -468,7 +468,7 @@
 my $self = shift;
 my $dir = shift;

- return DECLINED unless -d $dir;
+ return Apache::DECLINED unless -d $dir;

 my $last_modified = (stat(_))[9];

2315 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

@@ -478,15 +478,15 @@
 my ($time, $ver) = $check =~ /^([a-f0-9]+)-([0-9.]+)$/;

 if ($check eq ’*’ or (hex($time) == $last_modified and $ver == $VERSION)) {
- return HTTP_NOT_MODIFIED;
+ return Apache::HTTP_NOT_MODIFIED;
 }
 }

- return DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)
+ return Apache::DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)
 = $self->read_directory($dir);

 $self->r->send_http_header($self->html_content_type);
- return OK if $self->r->header_only;
+ return Apache::OK if $self->r->header_only;

 $self->page_top($dir);
 $self->directory_top($dir);
@@ -514,7 +514,7 @@
 print hr unless %$mp3s;
 print "\n\n";
 $self->directory_bottom($dir);
- return OK;
+ return Apache::OK;
 }

 # print the HTML at the top of the page
@@ -1268,8 +1268,8 @@

 my $mime = $r->content_type;
 my $info = $self->fetch_info($file,$mime);
- return DECLINED unless $info; # not a legit mp3 file?
- my $fh = $self->open_file($file) || return DECLINED;
+ return Apache::DECLINED unless $info; # not a legit mp3 file?
+ my $fh = $self->open_file($file) || return Apache::DECLINED;
 binmode($fh); # to prevent DOS text-mode foolishness

 my $size = -s $file;
@@ -1317,7 +1317,7 @@
 $r->print("Content-Length: $size$CRLF");
 $r->print("Content-Type: $mime$CRLF");
 $r->print("$CRLF");
- return OK if $r->header_only;
+ return Apache::OK if $r->header_only;

 if (my $timeout = $self->stream_timeout) {
 my $seconds = $info->{seconds};
@@ -1330,12 +1330,12 @@
 $bytes -= $b;
 $r->print($data);
 }
- return OK;
+ return Apache::OK;
 }

 # we get here for untimed transmits
 $r->send_fd($fh);

15 Feb 201424

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

- return OK;
+ return Apache::OK;
 }

 # called to open the MP3 file

.

I had to manually fix the DIR_MAGIC_TYPE constant which didn’t fit the regex pattern:

 --- Apache/MP3.pm.8 2003-06-06 17:24:33.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 17:26:29.000000000 +1000
 @@ -1055,7 +1055,7 @@

 my $mime = $self->r->lookup_file("$dir/$d")->content_type;

 - push(@directories,$d) if !$seen{$d}++ && $mime eq DIR_MAGIC_TYPE;
 + push(@directories,$d) if !$seen{$d}++ && $mime eq Apache2::Const::DIR_MAGIC_TYPE;

 # .m3u files should be configured as audio/playlist MIME types in your apache .conf file
 push(@playlists,$d) if $mime =~ m!^audio/(playlist|x-mpegurl|mpegurl|x-scpls)$!;

And I move on, the next error is:

 [Fri Jun 06 17:28:00 2003] [error] [client 127.0.0.1]
 Can’t locate object method "header_in" via package
 "Apache2::RequestRec" at .../Apache2/MP3.pm line 85.

The porting document quickly reveals me that header_in() and its brothers header_out() and
err_header_out() are R.I.P. and that I have to use the corresponding functions headers_in() ,
headers_out() and err_headers_out() which are available in mod_perl 1.0 API as well.

So I adjust the code to use the new API:

 % perl -pi -e ’s|header_in\((.*?)\)|headers_in->{$1}|g’ Apache/MP3.pm
 % perl -pi -e ’s|header_out\((.*?)\s*=>\s*(.*?)\);|headers_out->{$1} = $2;|g’ Apache/MP3.pm

which results in this patch: code/apache_mp3_9.diff:

--- Apache/MP3.pm.9 2003-06-06 17:27:45.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:55:14.000000000 +1000
@@ -82,8 +82,8 @@
 $new->{’r’} ||= $r if $r;

 my @lang_tags;
- push @lang_tags,split /,\s+/,$r->header_in(’Accept-language’)
- if $r->header_in(’Accept-language’);
+ push @lang_tags,split /,\s+/,$r->headers_in->{’Accept-language’}
+ if $r->headers_in->{’Accept-language’};
 push @lang_tags,$new->get_config(’DefaultLanguage’) || ’en-US’;

 $new->{’lh’} ||=
@@ -272,7 +272,7 @@
 my $uri = $self->r->uri;
 my $query = $self->r->args;
 $query = "?" . $query if defined $query;
- $self->r->header_out(Location => "$uri/$query");

2515 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

+ $self->r->headers_out->{Location} = "$uri/$query";
 return Apache::REDIRECT;
 }

@@ -310,7 +310,7 @@
 }

 if ($self->check_stream_client and !$self->is_stream_client) {
- my $useragent = $r->header_in(’User-Agent’);
+ my $useragent = $r->headers_in->{’User-Agent’};
 $r->log_reason("CheckStreamClient is true and $useragent is not a streaming client");
 return Apache::FORBIDDEN;
 }
@@ -472,9 +472,9 @@

 my $last_modified = (stat(_))[9];

- $self->r->header_out(’ETag’ => sprintf("%lx-%s", $last_modified, $VERSION));
+ $self->r->headers_out->{’ETag’} = sprintf("%lx-%s", $last_modified, $VERSION);

- if (my $check = $self->r->header_in("If-None-Match")) {
+ if (my $check = $self->r->headers_in->{"If-None-Match"}) {
 my ($time, $ver) = $check =~ /^([a-f0-9]+)-([0-9.]+)$/;

 if ($check eq ’*’ or (hex($time) == $last_modified and $ver == $VERSION)) {
@@ -1283,8 +1283,8 @@
 my $genre = $info->{genre} || $self->lh->maketext(’unknown’);

 my $range = 0;
- $r->header_in("Range")
- and $r->header_in("Range") =~ m/bytes=(\d+)/
+ $r->headers_in->{"Range"}
+ and $r->headers_in->{"Range"} =~ m/bytes=(\d+)/
 and $range = $1
 and seek($fh,$range,0);

@@ -1383,11 +1383,11 @@
 # return true if client can stream
 sub is_stream_client {
 my $r = shift->r;
- $r->header_in(’Icy-MetaData’) # winamp/xmms
- || $r->header_in(’Bandwidth’) # realplayer
- || $r->header_in(’Accept’) =~ m!\baudio/mpeg\b! # mpg123 and others
- || $r->header_in(’User-Agent’) =~ m!^NSPlayer/! # Microsoft media player
- || $r->header_in(’User-Agent’) =~ m!^xmms/!;
+ $r->headers_in->{’Icy-MetaData’} # winamp/xmms
+ || $r->headers_in->{’Bandwidth’} # realplayer
+ || $r->headers_in->{’Accept’} =~ m!\baudio/mpeg\b! # mpg123 and others
+ || $r->headers_in->{’User-Agent’} =~ m!^NSPlayer/! # Microsoft media player
+ || $r->headers_in->{’User-Agent’} =~ m!^xmms/!;
 }

 # whether to read info for each MP3 file (might take a long time)

.

15 Feb 201426

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

On the next error ModPerl::MethodLookup’s AUTOLOAD kicks in. Instead of complaining:

 [Fri Jun 06 18:35:53 2003] [error] [client 127.0.0.1]
 Can’t locate object method "FETCH" via package "APR::Table"
 at .../Apache/MP3.pm line 85.

I now get:

 [Fri Jun 06 18:36:35 2003] [error] [client 127.0.0.1]
 to use method ’FETCH’ add:
 use APR::Table ();
 at .../Apache/MP3.pm line 85

So I follow the suggestion and load APR::Table() :

 --- Apache/MP3.pm.10 2003-06-06 17:57:54.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 18:37:33.000000000 +1000
 @@ -9,6 +9,8 @@
 use warnings;
 no warnings ’redefine’; # XXX: remove when done with porting

 +use APR::Table ();
 +
 use Apache2::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT
 DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);

I continue issuing the request and adding the missing modules again and again till I get no more
complaints. During this process I’ve added the following modules:

 --- Apache/MP3.pm.11 2003-06-06 18:38:47.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 18:39:10.000000000 +1000
 @@ -9,6 +9,14 @@
 use warnings;
 no warnings ’redefine’; # XXX: remove when done with porting

 +use Apache2::Connection ();
 +use Apache2::SubRequest ();
 +use Apache2::Access ();
 +use Apache2::RequestIO ();
 +use Apache2::RequestUtil ();
 +use Apache2::RequestRec ();
 +use Apache2::ServerUtil ();
 +use Apache2::Log;
 use APR::Table ();

 use Apache2::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT

The AUTOLOAD code helped me to trace the modules that contain the existing APIs, however I still have
to deal with APIs that no longer exist. Rightfully the helper code says that it doesn’t know which module
defines the method: send_http_header() because it no longer exists in Apache 2.0 vocabulary:

 [Fri Jun 06 18:40:34 2003] [error] [client 127.0.0.1]
 Don’t know anything about method ’send_http_header’
 at .../Apache/MP3.pm line 498

2715 Feb 2014

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

So I go back to the porting document and find the relevant entry. In 2.0 lingo, we just need to set the
content_type() :

 --- Apache/MP3.pm.12 2003-06-06 18:43:42.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 18:51:23.000000000 +1000
 @@ -138,7 +138,7 @@
 sub help_screen {
 my $self = shift;

 - $self->r->send_http_header($self->html_content_type);
 + $self->r->content_type($self->html_content_type);
 return Apache2::Const::OK if $self->r->header_only;

 print start_html(
 @@ -336,7 +336,7 @@
 my $r = $self->r;
 my $base = $self->stream_base;

 - $r->send_http_header(’audio/mpegurl’);
 + $r->content_type(’audio/mpegurl’);
 return Apache2::Const::OK if $r->header_only;

 # local user
 @@ -495,7 +495,7 @@
 return Apache2::Const::DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)
 = $self->read_directory($dir);

 - $self->r->send_http_header($self->html_content_type);
 + $self->r->content_type($self->html_content_type);
 return Apache2::Const::OK if $self->r->header_only;

 $self->page_top($dir);

also I’ve noticed that there was this code:

 return Apache2::Const::OK if $self->r->header_only;

This technique is no longer needed in 2.0, since Apache 2.0 automatically discards the body if the request
is of type HEAD -- the handler should still deliver the whole body, which helps to calculate the
content-length if this is relevant to play nicer with proxies. So you may decide not to make a special case
for HEAD requests.

At this point I was able to browse the directories and play files via most options without relying on
Apache2::compat .

There were a few other APIs that I had to fix in the same way, while trying to use the application, looking
at the error_log referring to the porting document and applying the suggested fixes. I’ll make sure to send
all these fixes to Lincoln Stein, so the new versions will work correctly with mod_perl 2.0. I also had to
fix other Apache::MP3:: files, which come as a part of the Apache-MP3 distribution, pretty much
using the same techniques explained here. A few extra fixes of interest in Apache::MP3 were:

15 Feb 201428

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

send_fd()

As of this writing we don’t have this function in the core, because Apache 2.0 doesn’t have it (it’s in
Apache2::compat but implemented in a slow way). However we may provide one in the future.
Currently one can use the function sendfile() which requires a filename as an argument and not
the file descriptor. So I have fixed the code:

 - if($r->request($r->uri)->content_type eq ’audio/x-scpls’){
 - open(FILE,$r->filename) || return 404;
 - $r->send_fd(*FILE);
 - close(FILE);
 +
 + if($r->content_type eq ’audio/x-scpls’){
 + $r->sendfile($r->filename) || return Apache2::Const::NOT_FOUND;

log_reason

log_reason is now log_error :

 - $self->r->log_reason(’Invalid parameters -- possible attempt to circumvent checks.’);
 + $r->log_error(’Invalid parameters -- possible attempt to circumvent checks.’)
;

I have found the porting process to be quite interesting, especially since I have found several bugs in
Apache 2.0 and documented a few undocumented API changes. It was also fun, because I’ve got to listen
to mp3 files when I did things right, and was getting silence in my headphones and a visual irritation in the
form of error_log messages when I didn’t ;)

1.6 Porting a Module to Run under both mod_perl 2.0 and
mod_perl 1.0
Sometimes code needs to work with both mod_perl versions. For example this is the case with CPAN
module developers who wish to continue to maintain a single code base, rather than supplying two sepa-
rate implementations.

1.6.1 Making Code Conditional on Running mod_perl Version

In this case you can test for which version of mod_perl your code is running under and act appropriately.

To continue our example above, let’s say we want to support opening a filehandle in both mod_perl 2.0
and mod_perl 1.0. Our code can make use of the environment variable
$ENV{MOD_PERL_API_VERSION}

2915 Feb 2014

1.6 Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 use mod_perl;
 use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
 $ENV{MOD_PERL_API_VERSION} >= 2);
 # ...
 require Symbol if MP2;
 # ...

 my $fh = MP2 ? Symbol::gensym : Apache->gensym;
 open $fh, $file or die "Can’t open $file: $!";

Some modules, like CGI.pm may work under mod_perl and without it, and will want to use the mod_perl
1.0 API if that’s available, or mod_perl 2.0 API otherwise. So the following idiom could be used for this
purpose.

 use constant MP_GEN => $ENV{MOD_PERL}
 ? { (exists $ENV{MOD_PERL_API_VERSION} and
 $ENV{MOD_PERL_API_VERSION} >= 2) ? 2 : 1 }
 : 0;

It sets the constant MP_GEN to 0 if mod_perl is not available, to 1 if running under mod_perl 1.0 and 2 for
mod_perl 2.0.

Here’s another way to find out the mod_perl version. In the server configuration file you can use a special
configuration "define" symbol MODPERL2, which is magically enabled internally, as if the server had
been started with -DMODPERL2.

 # in httpd.conf
 <IfDefine MODPERL2>
 # 2.0 configuration
 </IfDefine>
 <IfDefine !MODPERL2>
 # else
 </IfDefine>

From within Perl code this can be tested with Apache2::exists_config_define() . For example,
we can use this method to decide whether or not to call $r->send_http_header() , which no longer
exists in mod_perl 2.0:

 sub handler {
 my $r = shift;
 $r->content_type(’text/html’);
 $r->send_http_header() unless Apache2::exists_config_define("MODPERL2");
 ...
 }

Relevant links to other places in the porting documents:

mod_perl 1.0 and 2.0 Constants Coexistence

15 Feb 201430

1.6.1 Making Code Conditional on Running mod_perl Version

1.6.2 Method Handlers

Method handlers in mod_perl are declared using the ’method’ attribute. However if you want to have the
same code base for mod_perl 1.0 and 2.0 applications, whose handler has to be a method, you will need to
do the following trick:

 sub handler_mp1 ($$) { ... }
 sub handler_mp2 : method { ... }
 *handler = MP2 ? \&handler_mp2 : \&handler_mp1;

Note that this requires at least Perl 5.6.0, the :method attribute is not supported by older Perl versions,
which will fail to compile such code.

Here are two complete examples. The first example implements MyApache2::Method which has a
single method that works for both mod_perl generations:

The configuration:

 PerlModule MyApache2::Method
 <Location /method>
 SetHandler perl-script
 PerlHandler MyApache2::Method->handler
 </Location>

The code:

 #file:MyApache2/Method.pm
 package MyApache2::Method;

 # PerlModule MyApache2::Method
 # <Location /method>
 # SetHandler perl-script
 # PerlHandler MyApache2::Method->handler
 # </Location>

 use strict;
 use warnings;

 use mod_perl;
 use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
 $ENV{MOD_PERL_API_VERSION >= 2);

 BEGIN {
 if (MP2) {
 require Apache2::RequestRec;
 require Apache2::RequestIO;
 require Apache2::Const;
 Apache2::Const->import(-compile => ’OK’);
 }
 else {
 require Apache;
 require Apache::Constants;
 Apache::Constants->import(’OK’);
 }

3115 Feb 2014

1.6.2 Method HandlersPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 }

 sub handler_mp1 ($$) { &run }
 sub handler_mp2 : method { &run }
 *handler = MP2 ? \&handler_mp2 : \&handler_mp1;

 sub run {
 my ($class, $r) = @_;
 MP2 ? $r->content_type(’text/plain’)
 : $r->send_http_header(’text/plain’);
 print "$class was called\n";
 return MP2 ? Apache2::Const::OK : Apache::Constants::OK;

 }

Here are two complete examples. The second example implements MyApache2::Method2 , which is
very similar to MyApache2::Method , but uses separate methods for mod_perl 1.0 and 2.0 servers.

The configuration is the same:

 PerlModule MyApache2::Method2
 <Location /method2>
 SetHandler perl-script
 PerlHandler MyApache2::Method2->handler
 </Location>

The code:

 #file:MyApache2/Method2.pm
 package MyApache2::Method2;

 # PerlModule MyApache2::Method
 # <Location /method>
 # SetHandler perl-script
 # PerlHandler MyApache2::Method->handler
 # </Location>

 use strict;
 use warnings;

 use mod_perl;
 use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
 $ENV{MOD_PERL_API_VERSION >= 2);

 BEGIN {
 warn "running $ENV{MOD_PERL_API_VERSION}\n";
 if (MP2) {
 require Apache2::RequestRec;
 require Apache2::RequestIO;
 require Apache2::Const;
 Apache2::Const->import(-compile => ’OK’);
 }
 else {
 require Apache;
 require Apache::Constants;
 Apache::Constants->import(’OK’);

15 Feb 201432

1.6.2 Method Handlers

 }
 }

 sub handler_mp1 ($$) { &mp1 }
 sub handler_mp2 : method { &mp2 }

 *handler = MP2 ? \&handler_mp2 : \&handler_mp1;

 sub mp1 {
 my ($class, $r) = @_;
 $r->send_http_header(’text/plain’);
 $r->print("mp1: $class was called\n");

 return Apache::Constants::OK();
 }

 sub mp2 {
 my ($class, $r) = @_;
 $r->content_type(’text/plain’);
 $r->print("mp2: $class was called\n");
 return Apache2::Const::OK();
 }

Assuming that mod_perl 1.0 is listening on port 8001 and mod_perl 2.0 on 8002, we get the following
results:

 % lynx --source http://localhost:8001/method
 MyApache2::Method was called

 % lynx --source http://localhost:8001/method2
 mp1: MyApache2::Method2 was called

 % lynx --source http://localhost:8002/method
 MyApache2::Method was called

 % lynx --source http://localhost:8002/method2
 mp2: MyApache2::Method2 was called

1.7 The Conflict of mp1 vs mp2 vs mp22 vs ... vs mpNN
META: should something be said here?

1.7.1 Distributors

Distributors should mark the different generations of mod_perl core as conflicting, so only one version can
be installed using the binary package. Users requiring more than one installation should do a manual
install.

In order to have any of the 3rd party modperl modules installed users need to have the correct modperl
package installed. So there is no need to mark the 3rd party modules as conflicting, since their most impor-
tant prerequisite (the modperl-core) is already handling that.

3315 Feb 2014

1.7 The Conflict of mp1 vs mp2 vs mp22 vs ... vs mpNNPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

Of course packagers can decide to make the two generation packages as non-conflicting, by building all
mp2 core and 3rd party modules into Apache2/ subdir, in which case the two will always co-exist. But this
is not the most logical approach since 99% of users will want only one generation of mod_perl core and
3rd party modules.

1.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.9 Authors
Nick Tonkin <nick (at) tonkinresolutions.com>

Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201434

1.8 Maintainers

http://stason.org/
http://stason.org/

Table of Contents:
......... 11 Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
................... 21.1 Description
.................. 21.2 Introduction
.............. 31.3 Using Apache2::porting
............ 31.4 Using the Apache2::compat Layer
.......... 41.5 Porting a Perl Module to Run under mod_perl 2.0

1.5.1 Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to
................... 4Be Loaded
....... 51.5.1.1 Handling Methods Existing In More Than One Package
....... 51.5.1.2 Using ModPerl::MethodLookup Programmatically
........... 61.5.1.3 Pre-loading All mod_perl 2.0 Modules
..... 61.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions
............ 61.5.2.1 Methods that No Longer Exist
.......... 71.5.2.2 Methods Whose Usage Has Been Modified
........... 71.5.3 Requiring a specific mod_perl version.
........... 81.5.4 Should the Module Name Be Changed?
........... 81.5.5 Using Apache2::compat As a Tutorial
......... 81.5.6 How Apache::MP3 was Ported to mod_perl 2.0
................ 91.5.6.1 Preparations
................ 91.5.6.1.1 httpd.conf
................ 101.5.6.1.2 startup.pl
.............. 101.5.6.1.3 Apache/MP3.pm
........... 121.5.6.2 Porting with Apache2::compat
....... 181.5.6.3 Getting Rid of the Apache2::compat Dependency
........ 181.5.6.4 Ensuring that Apache2::compat is not loaded
....... 201.5.6.5 Installing the ModPerl::MethodLookup Helper
......... 211.5.6.6 Adjusting the code to run under mod_perl 2
...... 291.6 Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0
....... 291.6.1 Making Code Conditional on Running mod_perl Version
................ 311.6.2 Method Handlers
......... 331.7 The Conflict of mp1 vs mp2 vs mp22 vs ... vs mpNN
................. 331.7.1 Distributors
.................. 341.8 Maintainers
................... 341.9 Authors

i15 Feb 2014

Table of Contents:Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

	1€€Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
	1.1€€Description
	1.2€€Introduction
	1.3€€Using Apache2::porting
	1.4€€Using the Apache2::compat Layer
	1.5€€Porting a Perl Module to Run under mod_perl 2.0
	1.5.1€€Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be Loaded
	1.5.1.1€€Handling Methods Existing In More Than One Package
	1.5.1.2€€Using ModPerl::MethodLookup Programmatically
	1.5.1.3€€Pre-loading All mod_perl 2.0 Modules

	1.5.2€€Handling Missing and Modified mod_perl 1.0 Methods and Functions
	1.5.2.1€€Methods that No Longer Exist
	1.5.2.2€€Methods Whose Usage Has Been Modified

	1.5.3€€Requiring a specific mod_perl version.
	1.5.4€€Should the Module Name Be Changed?
	1.5.5€€Using Apache2::compat As a Tutorial
	1.5.6€€How Apache::MP3 was Ported to mod_perl 2.0
	1.5.6.1€€Preparations
	1.5.6.1.1€€httpd.conf
	1.5.6.1.2€€startup.pl
	1.5.6.1.3€€Apache/MP3.pm

	1.5.6.2€€Porting with Apache2::compat
	1.5.6.3€€Getting Rid of the Apache2::compat Dependency
	1.5.6.4€€Ensuring that Apache2::compat is not loaded
	1.5.6.5€€Installing the ModPerl::MethodLookup Helper
	1.5.6.6€€Adjusting the code to run under mod_perl 2

	1.6€€Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0
	1.6.1€€Making Code Conditional on Running mod_perl Version
	1.6.2€€Method Handlers

	1.7€€The Conflict of mp1 vs mp2 vs mp22 vs ... vs mpNN
	1.7.1€€Distributors

	1.8€€Maintainers
	1.9€€Authors

