

1 Non-web use for Apache/mod_perl: SMS app

115 Feb 2014

1 Non-web use for Apache/mod_perl: SMS appNon-web use for Apache/mod_perl: SMS app

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:
Date: Fri, 22 Mar 2002 14:01:28 +0100

 Preface

 This is a story about how about I’ve used a combination of perl,
 Apache and mod_perl to create a component-based service architecture
 that implements a platform for building SMS applications. By reusing
 capabilities offered by Apache/mod_perl I saved a lot of time
 developing the system. The strong OO features of perl that I used
 enabled me to build a very flexible system as well to cope with future
 requirements. We had the platform in place in about 6 weeks, starting
 with absolutely nothing: no hardware, no development environment, no
 technology choices made beforehand.

 Introduction

 The purpose of the system to be developed was to provide a server
 platform on top of which arbitrary SMS (Short Message Service)
 applications can be developed quickly. It should be built using a
 stable and scalable architecture with room for future enhancements
 such as integrated billing and reporting options.

 An SMS application can be characterized by subscribers sending
 text-based commands to the platform and have the platform dispatch to
 the right application instance. The application instance handles the
 command, executing whatever application-logic defined by that
 particular application, and usually generate one or more responses. It
 should also be possible that the platform initiates messages to
 subscribers as a result of a request sent by another subscriber as
 well as be able to generate messages based on timers

 There also was a requirement to have the framework publish
 application-specific data in XML to allow customers to display this
 data on other media channels such as a website.

 Connecting the platform to external entities for the transmission and
 reception of SMS messages such as SMSC’s (SMS Centers distribute SMS
 messages to and from mobile subscribers) and SMS Gateways (smart
 front-end to one or more SMSC’s unifying the method to reach
 subscribers from multiple telecom operators) should be flexible enough
 to be able to "plug-in" different protocols such as
 HTTP/SMTP/CIMD/SMPP as needed.

 Component architecture

 Early on in the project I decided to go for a distributed component
 architecture. Individual components should be deployable on multiple
 physical machines. This offers the required scalability and the
 ability to define a convenient security scheme by running components
 on segments of a network with differing outside visibility
 requirements.

 As I started modelling this "world", I ended up with the following

15 Feb 20142

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

 components:

 1. Application server

 Within this application server, multiple instances of multiple SMS
 application instances should be running. The actual application-logic
 is running within this component. This component provides two external
 services:

 - handleMessage(CommandRequest)

 This service takes an instance of a CommandRequest object and runs the
 command in the appropriate application instance.

 - handleTimer(Timer)

 This services handles expiry of a timer set by the application-logic
 of an SMS application.

 - getView

 This service allows a client to retrieve application-defined views in
 XML.

 2. Timer service

 A persistent service that maintains timers set by application
 instances within the game application server and invokes the

 handleTimer service of the game application services upon expiry of a
 timer.

 External service offered:

 - setTimer(Timer)

 3. Virtual SMS gateway (VSMSC)

 This component handles communication with the outside world (the
 external entities such as SMSC’s and SMS gateways). This component is
 split up in 2 subcomponents, one that handles input from mobile
 subscribers and one that handles output to mobile subscribers. Each
 subcomponent provides one service:

 - handleMessage(Message)

 The input component receives requests from the outside world using
 pluggable subcomponents that handle protocol details, the output
 component transmits requests to the outside world using pluggable
 subcomponents that handle protocol details.

 4. XML Views service

 This component offers an HTTP interface to retrieve

315 Feb 2014

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:Non-web use for Apache/mod_perl: SMS app

 application-specific views in XML. It uses customer-specific XSLT
 stylesheets to transform the XML data. This component is largely based
 on Matt Sergeant’s AxKit. AxKit allow the source of your "document" to
 be delivered by your own provider class by subclassing off of
 AxKit::Provider. My provider class talks to the application server’s
 getView service while AxKit performs its miracles with all kinds of
 transformation options.

 Components Figure 1 System components

 Apache/mod_perl as a component container

 When thinking about how to implement all this I was tempted to look
 into doing it with some J2EE-thingy. However, there was this
 time-constraint as well as a constraint on available programmer-hands:
 I had one freelance programmer for 20 days and I had to arrange the
 whole physical part (get the hardware, a co-location site etc.). Then
 it struck me that this application server really looked like a vanilla
 regular mod_perl web application: receive request from user, process,
 send back reply. No html though, but Message objects that could be
 serialized/deserialized from text strings. There were of course some
 differences: the reply is not sent back inline (i.e. upon reception of
 a request via SMS, you can’t "reply"; you have to create a new message
 and send that to the originator of the request) and there also was the
 timer service: I can’t make Apache/mod_perl do work without having it
 received a user-initiated request.

 The good thing was I’ve been doing Apache/mod_perl for some years now
 so I knew beforehand I could create a schedule acceptable from the
 business point of view that was also feasible based on experience with
 the technology.

 So, for each component except the timer service, I defined separate
 Apache/mod_perl instances, one for the application server, one for the
 SMS output component, one for the SMS input component and one for the
 XML Views component.

 Each instance defines a URL for each service that the component
 running in the instance provides.

 Component communication

 I took a shortcut here. I wanted to go for SOAP here as it seems a
 natural fit. It will allow me to move components to other languages
 (management and marketing still seems hung up on java) fairly easy. My
 personal experiences with SOAP on earlier projects weren’t too good
 and I just couldn’t fit playing with SOAP into my schedule. So I took
 my old friends LWP::UserAgent, HTTP::Request and Storable to handle
 this part (perl object instance -> Storable freeze -> HTTP post ->
 Storable thaw -> perl object instance).

15 Feb 20144

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

 The good thing is that this actually is a minor part of the whole
 system and I know I can put SOAP in easily when the need arises.

 "Breaking the chain"

 I did make one mistake in the beginning: all service calls were
 synchronous. The initial HTTP request would not return until after the
 whole chain of execution was done. With possibly long running actions
 in the server component, this was not good. I had to find a way to
 execute the actual code *after* closing the connection to the
 client. Luckily, Apache/mod_perl came to the rescue. It allows you to
 set a callback that executes after the HTTP responses are sent back to
 the client and after it closes the TCP/IP connection.

 Result

 We had the platform in place in about 6 weeks, starting with
 absolutely nothing: no hardware, no development environment, no
 technology choices made beforehand. Based on former experience, the
 decision to go with a LAMP architecture (Linux, Apache, MySQL, Perl)
 running on fairly cheap intel boxen was made quickly. MySQL was, and
 is, not on my wishlist, but the whole battle of moving Oracle in would
 have been both a time as well as a money killer, either of which we
 didn’t have a lot of at the time.

 Aside from having one production SMS application (a mobile SMS game),
 I’ve done a prototype SMS application on this platform to check if it
 really is easy to create new apps. It took me about 4 hours to
 implement a "SMS unix commandline" application: I can login to the
 application server using SMS, send Unix commands with my mobile phone
 and receive their output (make sure your command doesn’t generate more
 than 160 characters though). The application also maintains state such
 as the working directory I’m in at any given time.

 Performance is ’good enough’ with the platform running on 2 fairly
 cheap Intel boxen, it handles 40 to 60 incoming request per second. As
 I haven’t spent one second on optimization yet (anyone know the
 command to create an index in MySQL?), that number is fine for me. I
 did put 1 gigabyte in each machine though as the Apache child

 processes eat up quite some memory.

 Future enhancements and considerations
 SOAP

 I really want SOAP. It just seems to make sense to do so: it was
 invented for doing stuff like this and I like the concept of WSDL. It
 allows you to define the interface in an XML file so clients "know"
 what type of parameters the service needs as well as the return
 parameter types.

 SOAP will also allow new components that are not perl. SOAP is
 available in a lot of languages and integration of the various SOAP
 implementations is getting better every day (see here).

515 Feb 2014

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:Non-web use for Apache/mod_perl: SMS app

 Framework for service-based architecture

 I’d like to extract the code that handles the communication between
 the components in the current system and create a generic framework
 that allows one to easily create an Apache/mod_perl-based components
 container. The available services would be registered in httpd.conf
 and there shoud be a service-discovery mechanism. On the client side,
 I’m thinking about something that makes it easy to create client-side
 stubs. Stay tuned...

 Apache/mod_perl 2.0

 This looks very promising to create generic components containers. It
 is very easy to create non-HTTP based services with Apache 2.0 with
 mod_perl’s 2.0 support for writing protocol modules in perl. Also, the
 various multi-process models (most notably threading) available in
 Apache 2.0 should result in better performance or at least more
 choices as far as the process model is concerned.

 Lamp

 I’m still a little unsure about LAMP. Can we move to relatively cheap
 hardware and a free OS when we were used to (very) expensive HP, Sun
 or IBM hardware and get away with it? Personal experience and what
 I’ve read from others seems to indicate we can. Experience will tell,
 and if it breaks, moving the platform to either of the above three
 should be a no-brainer. We live in interesting times.

15 Feb 20146

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

Table of Contents:
............ 11 Non-web use for Apache/mod_perl: SMS app
......... 21.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

i15 Feb 2014

Table of Contents:Non-web use for Apache/mod_perl: SMS app

	1€€Non-web use for Apache/mod_perl: SMS app
	1.1€€Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

