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1 Descriptive Statistics

Descriptive statistics are used to quantitatively describe the main characteris-
tics of the data. They provide meaningful summaries computed over di↵erent
observations or data records collected in a study. These summaries typically
form the basis of the initial data exploration as part of a more extensive sta-
tistical analysis. Such a quantitative analysis assumes that every variable (also
known as, attribute, feature, or column) in the data has a specific level of mea-
surement [15].

The measurement level of a variable, often called as variable type, can
either be scale or categorical. A scale variable represents the data measured
on an interval scale or ratio scale. Examples of scale variables include ‘Height’,
‘Weight’, ‘Salary’, and ‘Temperature’. Scale variables are also referred to as
quantitative or continuous variables. In contrast, a categorical variable has a
fixed limited number of distinct values or categories. Examples of categorical
variables include ‘Gender’, ‘Region’, ‘Hair color’, ‘Zipcode’, and ‘Level of Satis-
faction’. Categorical variables can further be classified into two types, nominal
and ordinal, depending on whether the categories in the variable can be or-
dered via an intrinsic ranking. For example, there is no meaningful ranking
among distinct values in ‘Hair color’ variable, while the categories in ‘Level of
Satisfaction’ can be ranked from highly dissatisfied to highly satisfied.

The input dataset for descriptive statistics is provided in the form of a ma-
trix, whose rows are the records (data points) and whose columns are the fea-
tures (i.e. variables). Some scripts allow this matrix to be vertically split into
two or three matrices. Descriptive statistics are computed over the specified
features (columns) in the matrix. Which statistics are computed depends on
the types of the features. It is important to keep in mind the following caveats
and restrictions:

1. Given a finite set of data records, i.e. a sample, we take their feature values
and compute their sample statistics. These statistics will vary from sample
to sample even if the underlying distribution of feature values remains the
same. Sample statistics are accurate for the given sample only. If the
goal is to estimate the distribution statistics that are parameters of the
(hypothesized) underlying distribution of the features, the corresponding
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sample statistics may sometimes be used as approximations, but their
accuracy will vary.

2. In particular, the accuracy of the estimated distribution statistics will be
low if the number of values in the sample is small. That is, for small
samples, the computed statistics may depend on the randomness of the
individual sample values more than on the underlying distribution of the
features.

3. The accuracy will also be low if the sample records cannot be assumed
mutually independent and identically distributed (i.i.d.), that is, sampled
at random from the same underlying distribution. In practice, feature
values in one record often depend on other features and other records,
including unknown ones.

4. Most of the computed statistics will have low estimation accuracy in the
presence of extreme values (outliers) or if the underlying distribution has
heavy tails, for example obeys a power law. However, a few of the com-
puted statistics, such as the median and Spearman’s rank correlation co-
e�cient, are robust to outliers.

5. Some sample statistics are reported with their sample standard errors in
an attempt to quantify their accuracy as distribution parameter estima-
tors. But these sample standard errors, in turn, only estimate the under-
lying distribution’s standard errors and will have low accuracy for small
or non-i.i.d. samples, outliers in samples, or heavy-tailed distributions.

6. We assume that the quantitative (scale) feature columns do not contain
missing values, infinite values, NaNs, or coded non-numeric values, un-
less otherwise specified. We assume that each categorical feature column
contains positive integers from 1 to the number of categories; for ordinal
features, the natural order on the integers should coincide with the order
on the categories.

1.1 Univariate Statistics

Description

Univariate statistics are the simplest form of descriptive statistics in data
analysis. They are used to quantitatively describe the main characteristics of
each feature in the data. For a given dataset matrix, script Univar-Stats.dml
computes certain univariate statistics for each feature column in the matrix.
The feature type governs the exact set of statistics computed for that feature.
For example, the statistic mean can only be computed on a quantitative (scale)
feature like ‘Height’ and ‘Temperature’. It does not make sense to compute the
mean of a categorical attribute like ‘Hair Color’.

Usage

-f Univar-Stats.dml -nvargs X=path/file TYPES=path/file
STATS=path/file
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Row Name of Statistic
Applies to:

Scale Categ.
1 Minimum +
2 Maximum +
3 Range +
4 Mean +
5 Variance +
6 Standard deviation +
7 Standard error of mean +
8 Coe�cient of variation +
9 Skewness +

10 Kurtosis +
11 Standard error of skewness +
12 Standard error of kurtosis +
13 Median +
14 Inter quartile mean +
15 Number of categories +
16 Mode +
17 Number of modes +

Table 1: The output matrix of Univar-Stats.dml has one row per each univari-
ate statistic and one column per input feature. This table lists the meaning of
each row. Signs “+” show applicability to scale or/and to categorical features.

Arguments

X: Location (on HDFS) to read the data matrix X whose columns we want to
analyze as the features.

TYPES: Location (on HDFS) to read the single-row matrix whose ith column-cell
contains the type of the ith feature column X[, i] in the data matrix. Fea-
ture types must be encoded by integer numbers: 1 = scale, 2 = nominal,
3 = ordinal.

STATS: Location (on HDFS) where the output matrix of computed statistics
will be stored. The format of the output matrix is defined by Table 1.

Details

Given an input matrix X, this script computes the set of all relevant uni-
variate statistics for each feature column X[, i] in X. The list of statistics to
be computed depends on the type, or measurement level, of each column. The
TYPES command-line argument points to a vector containing the types of all
columns. The types must be provided as per the following convention: 1 = scale,
2 = nominal, 3 = ordinal.

Below we list all univariate statistics computed by script Univar-Stats.dml.
The statistics are collected by relevance into several groups, namely: central
tendency, dispersion, shape, and categorical measures. The first three groups
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Figure 1: The computation of quartiles, median, and interquartile mean from
the empirical distribution function of the 10-point sample {2.2, 3.2, 3.7, 4.4, 5.3,
5.7, 6.1, 6.4, 7.2, 7.8}. Each vertical step in the graph has height 1/n = 0.1. Val-
ues q
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denote the 1st, 2nd, and 3rd quartiles correspondingly;
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= 3.7 and v
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= 6.4 into the interquartile mean.

contain statistics computed for a quantitative (also known as: numerical, scale,
or continuous) feature; the last group contains the statistics for a categorical
(either nominal or ordinal) feature.

Let n be the number of data records (rows) with feature values. In what
follows we fix a column index idx and consider sample statistics of feature
column X[ , idx]. Let v = (v

1

, v
2

, . . . , v
n

) be the values of X[ , idx] in their
original unsorted order: v

i

= X[i, idx]. Let vs = (vs
1

, vs
2

, . . . , vs
n

) be the same
values in the sorted order, preserving duplicates: vs

1

 vs
2

 . . .  vs
n

.

Central tendency measures. Sample statistics that describe the location
of the quantitative (scale) feature distribution, represent it with a single value.

Mean (output row 4): The arithmetic average over a sample of a quantitative
feature. Computed as the ratio between the sum of values and the number
of values: (

P

n

i=1

v
i

)/n. Example: the mean of sample {2.2, 3.2, 3.7, 4.4,
5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals 5.2.

Note that the mean is significantly a↵ected by extreme values in the sample
and may be misleading as a central tendency measure if the feature varies
on exponential scale. For example, the mean of {0.01, 0.1, 1.0, 10.0, 100.0}
is 22.222, greater than all the sample values except the largest.

Median (output row 13): The “middle” value that separates the higher half of
the sample values (in a sorted order) from the lower half. To compute the
median, we sort the sample in the increasing order, preserving duplicates:
vs
1

 vs
2

 . . .  vs
n

. If n is odd, the median equals vs
i

where i = (n+1) / 2,
same as the 50th percentile of the sample. If n is even, there are two
“middle” values vs

n/2

and vs
n/2+ 1

, so we compute the median as the mean

of these two values. (For even n we compute the 50th percentile as vs
n/2

,
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not as the median.) Example: the median of sample {2.2, 3.2, 3.7, 4.4,
5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals (5.3+5.7) / 2 = 5.5, see Figure 1.1.

Unlike the mean, the median is not sensitive to extreme values in the sam-
ple, i.e. it is robust to outliers. It works better as a measure of central
tendency for heavy-tailed distributions and features that vary on expo-
nential scale. However, the median is sensitive to small sample size.

Interquartile mean (output row 14): For a sample of a quantitative feature, this
is the mean of the values greater than or equal to the 1st quartile and
less than or equal the 3rd quartile. In other words, it is a “truncated
mean” where the lowest 25% and the highest 25% of the sorted values
are omitted in its computation. The two “border values”, i.e. the 1st and
the 3rd quartiles themselves, contribute to this mean only partially. This
measure is occasionally used as the “robust” version of the mean that is
less sensitive to the extreme values.

To compute the measure, we sort the sample in the increasing order, pre-
serving duplicates: vs

1

 vs
2

 . . .  vs
n

. We set j = dn/4e for the 1st

quartile index and k = d3n/4e for the 3rd quartile index, then compute
the following weighted mean:
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In other words, all sample values between the 1st and the 3rd quartile enter
the sum with weights 2/n, times their number of duplicates, while the two
quartiles themselves enter the sum with reduced weights. The weights are
proportional to the vertical steps in the empirical distribution function of
the sample, see Figure 1.1 for an illustration. Example: the interquartile
mean of sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals the
sum 0.1(3.7+6.4) + 0.2(4.4+5.3+5.7+6.1), which equals 5.31.

Dispersion measures. Statistics that describe the amount of variation or
spread in a quantitative (scale) data feature.

Variance (output row 5): A measure of dispersion, or spread-out, of sample
values around their mean, expressed in units that are the square of those of
the feature itself. Computed as the sum of squared di↵erences between the
values in the sample and their mean, divided by one less than the number
of values:

P

n

i=1

(v
i

� v̄)2 / (n� 1) where v̄ = (
P

n

i=1

v
i

)/n. Example: the
variance of sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals 3.24.
Note that at least two values (n � 2) are required to avoid division by
zero. Sample variance is sensitive to outliers, even more than the mean.

Standard deviation (output row 6): A measure of dispersion around the mean,
the square root of variance. Computed by taking the square root of the
sample variance; see Variance above on computing the variance. Example:
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the standard deviation of sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4, 7.2,
7.8} equals 1.8. At least two values are required to avoid division by zero.
Note that standard deviation is sensitive to outliers.

Standard deviation is used in conjunction with the mean to determine an
interval containing a given percentage of the feature values, assuming the
normal distribution. In a large sample from a normal distribution, around
68% of the cases fall within one standard deviation and around 95% of
cases fall within two standard deviations of the mean. For example, if the
mean age is 45 with a standard deviation of 10, around 95% of the cases
would be between 25 and 65 in a normal distribution.

Coe�cient of variation (output row 8): The ratio of the standard deviation to
the mean, i.e. the relative standard deviation, of a quantitative feature
sample. Computed by dividing the sample standard deviation by the sam-
plemean, see above for their computation details. Example: the coe�cient
of variation for sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals
1.8 / 5.2 ⇡ 0.346.

This metric is used primarily with non-negative features such as financial
or population data. It is sensitive to outliers. Note: zero mean causes
division by zero, returning infinity or NaN. At least two values (records)
are required to compute the standard deviation.

Minimum (output row 1): The smallest value of a quantitative sample, com-
puted as min v = vs

1

. Example: the minimum of sample {2.2, 3.2, 3.7, 4.4,
5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals 2.2.

Maximum (output row 2): The largest value of a quantitative sample, computed
as max v = vs

n

. Example: the maximum of sample {2.2, 3.2, 3.7, 4.4, 5.3,
5.7, 6.1, 6.4, 7.2, 7.8} equals 7.8.

Range (output row 3): The di↵erence between the largest and the smallest value
of a quantitative sample, computed as max v�min v = vs

n

�vs
1

. It provides
information about the overall spread of the sample values. Example: the
range of sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4, 7.2, 7.8} equals
7.8� 2.2 = 5.6.

Standard error of the mean (output row 7): A measure of how much the value
of the sample mean may vary from sample to sample taken from the same
(hypothesized) distribution of the feature. It helps to roughly bound the
distribution mean, i.e. the limit of the sample mean as the sample size
tends to infinity. Under certain assumptions (e.g. normality and large
sample), the di↵erence between the distribution mean and the sample
mean is unlikely to exceed 2 standard errors.

The measure is computed by dividing the sample standard deviation by
the square root of the number of values n; see standard deviation for its
computation details. Ensure n� 2 to avoid division by 0. Example: for
sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4, 7.2, 7.8} with the mean of 5.2
the standard error of the mean equals 1.8 /

p
10 ⇡ 0.569.
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Note that the standard error itself is subject to sample randomness. Its
accuracy as an error estimator may be low if the sample size is small or
non-i.i.d., if there are outliers, or if the distribution has heavy tails.

Shape measures. Statistics that describe the shape and symmetry of the
quantitative (scale) feature distribution estimated from a sample of its values.

Skewness (output row 9): It measures how symmetrically the values of a feature
are spread out around the mean. A significant positive skewness implies
a longer (or fatter) right tail, i.e. feature values tend to lie farther away
from the mean on the right side. A significant negative skewness implies a
longer (or fatter) left tail. The normal distribution is symmetric and has a
skewness value of 0; however, its sample skewness is likely to be nonzero,
just close to zero. As a guideline, a skewness value more than twice its
standard error is taken to indicate a departure from symmetry.

Skewness is computed as the 3rd central moment divided by the cube
of the standard deviation. We estimate the 3rd central moment as the
sum of cubed di↵erences between the values in the feature column and
their sample mean, divided by the number of values:

P

n

i=1

(v
i

� v̄)3/n
where v̄ = (

P

n

i=1

v
i

)/n. The standard deviation is computed as described
above in standard deviation. To avoid division by 0, at least two di↵erent
sample values are required. Example: for sample {2.2, 3.2, 3.7, 4.4, 5.3,
5.7, 6.1, 6.4, 7.2, 7.8} with the mean of 5.2 and the standard deviation
of 1.8 skewness is estimated as �1.0728 / 1.83 ⇡ �0.184. Note: skewness
is sensitive to outliers.

Standard error in skewness (output row 11): A measure of how much the sam-
ple skewness may vary from sample to sample, assuming that the feature
is normally distributed, which makes its distribution skewness equal 0.
Given the number n of sample values, the standard error is computed as

s

6n (n� 1)

(n� 2)(n+ 1)(n+ 3)

This measure can tell us, for example:

• If the sample skewness lands within two standard errors from 0, its
positive or negative sign is non-significant, may just be accidental.

• If the sample skewness lands outside this interval, the feature is un-
likely to be normally distributed.

At least 3 values (n � 3) are required to avoid arithmetic failure. Note
that the standard error is inaccurate if the feature distribution is far from
normal or if the number of samples is small.

Kurtosis (output row 10): As a distribution parameter, kurtosis is a measure of
the extent to which feature values cluster around a central point. In other
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words, it quantifies “peakedness” of the distribution: how tall and sharp
the central peak is relative to a standard bell curve.

Positive kurtosis (leptokurtic distribution) indicates that, relative to a
normal distribution:

• observations cluster more about the center (peak-shaped),
• the tails are thinner at non-extreme values,
• the tails are thicker at extreme values.

Negative kurtosis (platykurtic distribution) indicates that, relative to a
normal distribution:

• observations cluster less about the center (box-shaped),
• the tails are thicker at non-extreme values,
• the tails are thinner at extreme values.

Kurtosis of a normal distribution is zero; however, the sample kurtosis
(computed here) is likely to deviate from zero.

Sample kurtosis is computed as the 4th central moment divided by the
4th power of the standard deviation, minus 3. We estimate the 4th central
moment as the sum of the 4th powers of di↵erences between the values
in the feature column and their sample mean, divided by the number of
values:

P

n

i=1

(v
i

� v̄)4/n where v̄ = (
P

n

i=1

v
i

)/n. The standard deviation
is computed as described above, see standard deviation.

Note that kurtosis is sensitive to outliers, and requires at least two di↵erent
sample values. Example: for sample {2.2, 3.2, 3.7, 4.4, 5.3, 5.7, 6.1, 6.4,
7.2, 7.8} with the mean of 5.2 and the standard deviation of 1.8, sample
kurtosis equals 16.6962 / 1.84 � 3 ⇡ �1.41.

Standard error in kurtosis (output row 12): A measure of how much the sample
kurtosis may vary from sample to sample, assuming that the feature is
normally distributed, which makes its distribution kurtosis equal 0. Given
the number n of sample values, the standard error is computed as

s

24n (n� 1)2

(n� 3)(n� 2)(n+ 3)(n+ 5)

This measure can tell us, for example:

• If the sample kurtosis lands within two standard errors from 0, its
positive or negative sign is non-significant, may just be accidental.

• If the sample kurtosis lands outside this interval, the feature is un-
likely to be normally distributed.

At least 4 values (n � 4) are required to avoid arithmetic failure. Note
that the standard error is inaccurate if the feature distribution is far from
normal or if the number of samples is small.
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Categorical measures. Statistics that describe the sample of a categorical
feature, either nominal or ordinal. We represent all categories by integers from 1
to the number of categories; we call these integers category IDs.

Number of categories (output row 15): The maximum category ID that occurs
in the sample. Note that some categories with IDs smaller than this
maximum ID may have no occurrences in the sample, without reducing
the number of categories. However, any categories with IDs larger than
the maximum ID with no occurrences in the sample will not be counted.
Example: in sample {1, 3, 3, 3, 3, 4, 4, 5, 7, 7, 7, 7, 8, 8, 8} the number
of categories is reported as 8. Category IDs 2 and 6, which have zero
occurrences, are still counted; but if there is a category with ID = 9 and
zero occurrences, it is not counted.

Mode (output row 16): The most frequently occurring category value. If several
values share the greatest frequency of occurrence, then each of them is a
mode; but here we report only the smallest of these modes. Example: in
sample {1, 3, 3, 3, 3, 4, 4, 5, 7, 7, 7, 7, 8, 8, 8} the modes are 3 and 7,
with 3 reported.

Computed by counting the number of occurrences for each category, then
taking the smallest category ID that has the maximum count. Note that
the sample modes may be di↵erent from the distribution modes, i.e. the
categories whose (hypothesized) underlying probability is the maximum
over all categories.

Number of modes (output row 17): The number of category values that each
have the largest frequency count in the sample. Example: in sample {1,
3, 3, 3, 3, 4, 4, 5, 7, 7, 7, 7, 8, 8, 8} there are two category IDs (3 and 7)
that occur the maximum count of 4 times; hence, we return 2.

Computed by counting the number of occurrences for each category, then
counting how many categories have the maximum count. Note that the
sample modes may be di↵erent from the distribution modes, i.e. the cate-
gories whose (hypothesized) underlying probability is the maximum over
all categories.

Returns

The output matrix containing all computed statistics is of size 17 rows and
as many columns as in the input matrix X. Each row corresponds to a particular
statistic, according to the convention specified in Table 1. The first 14 statistics
are applicable for scale columns, and the last 3 statistics are applicable for
categorical, i.e. nominal and ordinal, columns.

Examples

hadoop jar SystemML.jar -f Univar-Stats.dml -nvargs
X=/user/biadmin/X.mtx TYPES=/user/biadmin/types.mtx
STATS=/user/biadmin/stats.mtx

9



1.2 Bivariate Statistics

Description

Bivariate statistics are used to quantitatively describe the association be-
tween two features, such as test their statistical (in-)dependence or measure the
accuracy of one data feature predicting the other feature, in a sample. The
bivar-stats.dml script computes common bivariate statistics, such as Pear-
son’s correlation coe�cient and Pearson’s �2, in parallel for many pairs of data
features. For a given dataset matrix, script bivar-stats.dml computes cer-
tain bivariate statistics for the given feature (column) pairs in the matrix. The
feature types govern the exact set of statistics computed for that pair. For
example, Pearson’s correlation coe�cient can only be computed on two quanti-
tative (scale) features like ‘Height’ and ‘Temperature’. It does not make sense
to compute the linear correlation of two categorical attributes like ‘Hair Color’.

Usage

-f path/ bivar-stats.dml -nvargs X=path/file index1=path/file
index2=path/file types1=path/file types2=path/file OUTDIR=path

Arguments

X: Location (on HDFS) to read the data matrix X whose columns are the
features that we want to compare and correlate with bivariate statistics.

index1: Location (on HDFS) to read the single-row matrix that lists the column
indices of the first-argument features in pairwise statistics. Its ith entry
(i.e. ith column-cell) contains the index k of column X[, k] in the data
matrix whose bivariate statistics need to be computed.

index2: Location (on HDFS) to read the single-row matrix that lists the column
indices of the second-argument features in pairwise statistics. Its jth entry
(i.e. jth column-cell) contains the index l of column X[, l] in the data
matrix whose bivariate statistics need to be computed.

types1: Location (on HDFS) to read the single-row matrix that lists the types
of the first-argument features in pairwise statistics. Its ith entry (i.e. ith

column-cell) contains the type of column X[, k] in the data matrix, where
k is the ith entry in the index1 matrix. Feature types must be encoded
by integer numbers: 1 = scale, 2 = nominal, 3 = ordinal.

types2: Location (on HDFS) to read the single-row matrix that lists the types
of the second-argument features in pairwise statistics. Its jth entry (i.e.
jth column-cell) contains the type of column X[, l] in the data matrix,
where l is the jth entry in the index2 matrix. Feature types must be
encoded by integer numbers: 1 = scale, 2 = nominal, 3 = ordinal.

OUTDIR: Location path (on HDFS) where the output matrices with computed
bivariate statistics will be stored. The matrices’ file names and format are
defined in Table 2.
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Ouput File / Matrix Row# Name of Statistic

All Files 1 1-st feature column
” 2 2-nd feature column

bivar.scale.scale.stats 3 Pearson’s correlation coe�cient

bivar.nominal.nominal.stats 3 Pearson’s �2

” 4 Degrees of freedom
” 5 P -value of Pearson’s �2

” 6 Cramér’s V

bivar.nominal.scale.stats 3 Eta statistic
” 4 F statistic

bivar.ordinal.ordinal.stats 3 Spearman’s rank correlation coe�cient

Table 2: The output matrices of bivar-stats.dml have one row per one bi-
variate statistic and one column per one pair of input features. This table lists
the meaning of each matrix and each row.

Details

Script bivar-stats.dml takes an input matrix X whose columns represent
the features and whose rows represent the records of a data sample. Given
X, the script computes certain relevant bivariate statistics for specified pairs
of feature columns X[, i] and X[, j]. Command-line parameters index1 and
index2 specify the files with column pairs of interest to the user. Namely, the
file given by index1 contains the vector of the 1st-attribute column indices and
the file given by index2 has the vector of the 2nd-attribute column indices, with
“1st” and “2nd” referring to their places in bivariate statistics. Note that both
index1 and index2 files should contain a 1-row matrix of positive integers.

The bivariate statistics to be computed depend on the types, or measurement
levels, of the two columns. The types for each pair are provided in the files whose
locations are specified by types1 and types2 command-line parameters. These
files are also 1-row matrices, i.e. vectors, that list the 1st-attribute and the
2nd-attribute column types in the same order as their indices in the index1
and index2 files. The types must be provided as per the following convention:
1 = scale, 2 = nominal, 3 = ordinal.

The script orgainizes its results into (potentially) four output matrices, one
per each type combination. The types of bivariate statistics are defined using
the types of the columns that were used for their arguments, with “ordinal”
sometimes retrogressing to “nominal.” Table 2 describes what each column in
each output matrix contains. In particular, the script includes the following
statistics:

• For a pair of scale (quantitative) columns, Pearson’s correlation coe�cient;

• For a pair of nominal columns (with finite-sized, fixed, unordered do-
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mains), the Pearson’s �2 and its p-value;

• For a pair of one scale column and one nominal column, F statistic;

• For a pair of ordinal columns (ordered domains depicting ranks), Spear-
man’s rank correlation coe�cient.

Note that, as shown in Table 2, the output matrices contain the column indices
of the features involved in each statistic. Moreover, if the output matrix does
not contain a value in a certain cell then it should be interpreted as a 0 (sparse
matrix representation).

Below we list all bivariate statistics computed by script bivar-stats.dml.
The statistics are collected into several groups by the type of their input features.
We refer to the two input features as v

1

and v
2

unless specified otherwise; the
value pairs are (v

1,i

, v
2,i

) for i = 1, . . . , n, where n is the number of rows in X,
i.e. the sample size.

Scale-vs-scale statistics. Sample statistics that describe association be-
tween two quantitative (scale) features. A scale feature has numerical values,
with the natural ordering relation.

Pearson’s correlation coe�cient : A measure of linear dependence between two
numerical features:

r =
Cov(v

1

, v
2

)p
Var v

1

Var v
2

=

P

n

i=1

(v
1,i

� v̄
1

)(v
2,i

� v̄
2

)
q

P

n

i=1

(v
1,i

� v̄
1

)2 ·Pn

i=1

(v
2,i

� v̄
2

)2

Commonly denoted by r, correlation ranges between �1 and +1, reaching
±1 when all value pairs (v

1,i

, v
2,i

) lie on the same line. Correlation near 0
means that a line is not a good way to represent the dependence between
the two features; however, this does not imply independence. The sign
indicates direction of the linear association: r > 0 (r < 0) if one fea-
ture tends to linearly increase (decrease) when the other feature increases.
Nonlinear association, if present, may disobey this sign. Pearson’s corre-
lation coe�cient is symmetric: r(v

1

, v
2

) = r(v
2

, v
1

); it does not change if
we transform v

1

and v
2

to a+ bv
1

and c+dv
2

where a, b, c, d are constants
and b, d > 0.

Suppose that we use simple linear regression to represent one feature given
the other, say represent v

2,i

⇡ ↵+ �v
1,i

by selecting ↵ and � to minimize
the least-squares error

P

n

i=1

(v
2,i

�↵��v
1,i

)2. Then the best error equals

min
↵,�

n

X

i=1

�

v
2,i

� ↵� �v
1,i

�

2

= (1� r2)
n

X

i=1

�

v
2,i

� v̄
2

�

2

In other words, 1� r2 is the ratio of the residual sum of squares to the total
sum of squares. Hence, r2 is an accuracy measure of the linear regression.
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Nominal-vs-nominal statistics. Sample statistics that describe association
between two nominal categorical features. Both features’ value domains are
encoded with positive integers in arbitrary order: nominal features do not order
their value domains.

Pearson’s �2 : A measure of how much the frequencies of value pairs of two
categorical features deviate from statistical independence. Under inde-
pendence, the probability of every value pair must equal the product of
probabilities of each value in the pair: Prob[a, b] � Prob[a] Prob[b] = 0.
But we do not know these (hypothesized) probabilities; we only know the
sample frequency counts. Let n

a,b

be the frequency count of pair (a, b),
let n

a

and n
b

be the frequency counts of a alone and of b alone. Under
independence, di↵erence n

a,b

/n� (n
a

/n)(n
b

/n) is unlikely to be exactly 0
due to sample randomness, yet it is unlikely to be too far from 0. For
some pairs (a, b) it may deviate from 0 farther than for other pairs. Pear-
son’s �2 is an aggregate measure that combines squares of these di↵erences
across all value pairs:

�2 =
X

a, b

⇣n
a

n
b

n

⌘�1

⇣

n
a,b

� n
a

n
b

n

⌘

2

=
X

a, b

(O
a,b

� E
a,b

)2

E
a,b

where O
a,b

= n
a,b

are the observed frequencies and E
a,b

= (n
a

n
b

)/n
are the expected frequencies for all pairs (a, b). Under independence
(plus other standard assumptions) the sample �2 closely follows a well-
known distribution, making it a basis for statistical tests for independence,
see P -value of Pearson’s �2 for details. Note that Pearson’s �2 does not
measure the strength of dependence: even very weak dependence may re-
sult in a significant deviation from independence if the counts are large
enough. Use Cramér’s V instead to measure the strength of dependence.

Degrees of freedom : An integer parameter required for the interpretation
of Pearson’s �2 measure. Under independence (plus other standard as-
sumptions) the sample �2 statistic is approximately distributed as the
sum of d squares of independent normal random variables with mean 0
and variance 1, where d is this integer parameter. For a pair of categorical
features such that the 1st feature has k

1

categories and the 2nd feature has
k
2

categories, the number of degrees of freedom is d = (k
1

� 1)(k
2

� 1).

P -value of Pearson’s �2 : A measure of how likely we would observe the cur-
rent frequencies of value pairs of two categorical features assuming their
statistical independence. More precisely, it computes the probability that
the sum of d squares of independent normal random variables with mean 0
and variance 1 (called the �2 distribution with d degrees of freedom) gen-
erates a value at least as large as the current sample Pearson’s �2. The
d parameter is degrees of freedom, see above. Under independence (plus
other standard assumptions) the sample Pearson’s �2 closely follows the
�2 distribution and is unlikely to land very far into its tail. On the other
hand, if the two features are dependent, their sample Pearson’s �2 becomes
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arbitrarily large as n ! 1 and lands extremely far into the tail of the
�2 distribution given a large enough data sample. P -value of Pearson’s �2

returns the tail “weight” on the right-hand side of Pearson’s �2:

P = Prob
⇥

r � Pearson’s �2

�

� r ⇠ the �2 distribution
⇤

As any probability, P ranges between 0 and 1. If P  0.05, the depen-
dence between the two features may be considered statistically significant
(i.e. their independence is considered statistically ruled out). For highly
dependent features, it is not unusual to have P  10�20 or less, in which
case our script will simply return P = 0. Independent features should
have their P � 0.05 in about 95% cases.

Cramér’s V : A measure for the strength of association, i.e. of statistical depen-
dence, between two categorical features, conceptually similar to Pearson’s
correlation coe�cient. It divides the observed Pearson’s �2 by the max-
imum possible �2

max

given n and the number k
1

, k
2

of categories in each
feature, then takes the square root. Thus, Cramér’s V ranges from 0 to 1,
where 0 implies no association and 1 implies the maximum possible asso-
ciation (one-to-one correspondence) between the two features. See Pear-
son’s �2 for the computation of �2; its maximum = n ·min{k

1

� 1, k
2

� 1}
where the 1st feature has k

1

categories and the 2nd feature has k
2

cate-
gories [1], so

Cramér’s V =

s

Pearson’s �2

n ·min{k
1

� 1, k
2

� 1}

As opposed to P -value of Pearson’s �2, which goes to 0 (rapidly) as the
features’ dependence increases, Cramér’s V goes towards 1 (slowly) as the
dependence increases. Both Pearson’s �2 and P -value of Pearson’s �2 are
very sensitive to n, but in Cramér’s V this is mitigated by taking the ratio.

Nominal-vs-scale statistics. Sample statistics that describe association be-
tween a categorical feature (order ignored) and a quantitative (scale) feature.
The values of the categorical feature must be coded as positive integers.

Eta statistic : A measure for the strength of association (statistical dependence)
between a nominal feature and a scale feature, conceptually similar to
Pearson’s correlation coe�cient. Ranges from 0 to 1, approaching 0 when
there is no association and approaching 1 when there is a strong associa-
tion. The nominal feature, treated as the independent variable, is assumed
to have relatively few possible values, all with large frequency counts. The
scale feature is treated as the dependent variable. Denoting the nominal
feature by x and the scale feature by y, we have:

⌘2 = 1�
P

n

i=1

�

y
i

� ŷ[x
i

]
�

2

P

n

i=1

(y
i

� ȳ)2
, where ŷ[x] =

1

freq(x)

n

X

i=1

⇢

y
i

if x
i

= x
0 otherwise

14



and ȳ = (1/n)
P

n

i=1

y
i

is the mean. Value ŷ[x] is the average of y
i

among
all records where x

i

= x; it can also be viewed as the “predictor” of
y given x. Then

P

n

i=1

(y
i

� ŷ[x
i

])2 is the residual error sum-of-squares
and

P

n

i=1

(y
i

� ȳ)2 is the total sum-of-squares for y. Hence, ⌘2 measures
the accuracy of predicting y with x, just like the “R-squared” statistic
measures the accuracy of linear regression. Our output ⌘ is the square
root of ⌘2.

F statistic : A measure of how much the values of the scale feature, denoted
here by y, deviate from statistical independence on the nominal feature,
denoted by x. The same measure appears in the one-way analysis of vari-
ance (ANOVA). Like Pearson’s �2, F statistic is used to test the hypothesis
that y is independent from x, given the following assumptions:

• The scale feature y has approximately normal distribution whose
mean may depend only on x and variance is the same for all x;

• The nominal feature x has relatively small value domain with large
frequency counts, the x

i

-values are treated as fixed (non-random);
• All records are sampled independently of each other.

To compute F statistic, we first compute ŷ[x] as the average of y
i

among
all records where x

i

= x. These ŷ[x] can be viewed as “predictors” of y
given x; if y is independent on x, they should “predict” only the global
mean ȳ. Then we form two sums-of-squares:

• Residual sum-of-squares of the “predictor” accuracy: y
i

� ŷ[x
i

];
• Explained sum-of-squares of the “predictor” variability: ŷ[x

i

]� ȳ.

F statistic is the ratio of the explained sum-of-squares to the residual
sum-of-squares, each divided by their corresponding degrees of freedom:

F =

P

x

freq(x)
�

ŷ[x]� ȳ
�

2

�

(k� 1)
P

n

i=1

�

y
i

� ŷ[x
i

]
�

2

�

(n� k)
=

n� k

k� 1
· ⌘2

1� ⌘2

Here k is the domain size of the nominal feature x. The k “predictors”
lose 1 freedom due to their linear dependence with ȳ; similarly, the n y

i

-s
lose k freedoms due to the “predictors”.

The statistic can test if the independence hypothesis of y from x is rea-
sonable; more generally (with relaxed normality assumptions) it can test
the hypothesis that the mean of y among records with a given x is the
same for all x. Under this hypothesis F statistic has, or approximates, the
F (k� 1, n� k)-distribution. But if the mean of y given x depends on x,
F statistic becomes arbitrarily large as n ! 1 (with k fixed) and lands
extremely far into the tail of the F (k� 1, n� k)-distribution given a large
enough data sample.
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Ordinal-vs-ordinal statistics. Sample statistics that describe association
between two ordinal categorical features. Both features’ value domains are
encoded with positive integers, so that the natural order of the integers coincides
with the order in each value domain.

Spearman’s rank correlation coe�cient : A measure for the strength of associ-
ation (statistical dependence) between two ordinal features, conceptually
similar to Pearson’s correlation coe�cient. Specifically, it is Pearson’s cor-
relation coe�cient applied to the feature vectors in which all values are
replaced by their ranks, i.e. their positions if the vector is sorted. The
ranks of identical (duplicate) values are replaced with their average rank.
For example, in vector (15, 11, 26, 15, 8) the value “15” occurs twice with
ranks 3 and 4 per the sorted order (8

1

, 11
2

, 15
3

, 15
4

, 26
5

); so, both val-
ues are assigned their average rank of 3.5 = (3+4) / 2 and the vector is
replaced by (3.5, 2, 5, 3.5, 1).

Our implementation of Spearman’s rank correlation coe�cient is geared
towards features having small value domains and large counts for the
values. Given the two input vectors, we form a contingency table T
of pairwise frequency counts, as well as a vector of frequency counts
for each feature: f

1

and f
2

. Here in T
i,j

, f
1,i

, f
2,j

indices i and j re-
fer to the order-preserving integer encoding of the feature values. We
use prefix sums over f

1

and f
2

to compute the values’ average ranks:
r
1,i

=
P

i�1

j=1

f
1,j

+ (f
1,i

+1)/2, and analogously for r
2

. Finally, we com-
pute rank variances for r

1

, r
2

weighted by counts f
1

, f
2

and their covari-
ance weighted by T , before applying the standard formula for Pearson’s
correlation coe�cient:

⇢ =
Cov

T

(r
1

, r
2

)
p

Var
f1(r1)Varf2(r2)

=

P

i,j

T
i,j

(r
1,i

� r̄
1

)(r
2,j

� r̄
2

)
q

P

i

f
1,i

(r
1,i

� r̄
1

)2 ·P
j

f
2,j

(r
2,j

� r̄
2

)2

where r̄
1

=
P

i

r
1,i

f
1,i

/n, analogously for r̄
2

. The value of ⇢ lies between
�1 and +1, with sign indicating the prevalent direction of the association:
⇢ > 0 (⇢ < 0) means that one feature tends to increase (decrease) when the
other feature increases. The correlation becomes 1 when the two features
are monotonically related.

Returns

A collection of (potentially) 4 matrices. Each matrix contains bivariate
statistics that resulted from a di↵erent combination of feature types. There
is one matrix for scale-scale statistics (which includes Pearson’s correlation co-
e�cient), one for nominal-nominal statistics (includes Pearson’s �2), one for
nominal-scale statistics (includes F statistic) and one for ordinal-ordinal statis-
tics (includes Spearman’s rank correlation coe�cient). If any of these matrices
is not produced, then no pair of columns required the corresponding type com-
bination. See Table 2 for the matrix naming and format details.
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Month of the year October November December Oct –Dec
Customers, millions 0.6 1.4 1.4 0.6 3.0 1.0 5.0 3.0
Promotion (0 or 1) 0 1 0 1 0 1 0 1
Avg. sales per 1000 0.4 0.5 0.9 1.0 2.5 2.6 1.8 1.3

Table 3: Stratification example: the e↵ect of the promotion on average sales
becomes reversed and amplified (from +0.1 to �0.5) if we ignore the months.

Examples

hadoop jar SystemML.jar -f bivar-stats.dml -nvargs
X=/user/biadmin/X.mtx index1=/user/biadmin/S1.mtx
index2=/user/biadmin/S2.mtx types1=/user/biadmin/K1.mtx
types2=/user/biadmin/K2.mtx OUTDIR=/user/biadmin/stats.mtx

1.3 Stratified Bivariate Statistics

Description

The stratstats.dml script computes common bivariate statistics, such as
correlation, slope, and their p-value, in parallel for many pairs of input vari-
ables in the presence of a confounding categorical variable. The values of this
confounding variable group the records into strata (subpopulations), in which
all bivariate pairs are assumed free of confounding. The script uses the same
data model as in one-way analysis of covariance (ANCOVA), with strata repre-
senting population samples. It also outputs univariate stratified and bivariate
unstratified statistics.

To see how data stratification mitigates confounding, consider an (artificial)
example in Table 3. A highly seasonal retail item was marketed with and
without a promotion over the final 3 months of the year. In each month the
sale was more likely with the promotion than without it. But during the peak
holiday season, when shoppers came in greater numbers and bought the item
more often, the promotion was less frequently used. As a result, if the 4-th
quarter data is pooled together, the promotion’s e↵ect becomes reversed and
magnified. Stratifying by month restores the positive correlation.

The script computes its statistics in parallel over all possible pairs from two
specified sets of covariates. The 1-st covariate is a column in input matrix X
and the 2-nd covariate is a column in input matrix Y ; matrices X and Y may be
the same or di↵erent. The columns of interest are given by their index numbers
in special matrices. The stratum column, specified in its own matrix, is the
same for all covariate pairs.

Both covariates in each pair must be numerical, with the 2-nd covariate
normally distributed given the 1-st covariate (see Details). Missing covariate
values or strata are represented by “NaN”. Records with NaN’s are selectively
omitted wherever their NaN’s are material to the output statistic.
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Usage

-f path/ stratstats.dml -nvargs X=path/file Xcid=path/file Y=path/file
Ycid=path/file S=path/file Scid=int O=path/file fmt=format

Arguments

X: Location (on HDFS) to read matrix X whose columns we want to use as the
1-st covariate (i.e. as the feature variable)

Xcid: (default: " ") Location to read the single-row matrix that lists all index
numbers of the X-columns used as the 1-st covariate; the default value
means “use all X-columns”

Y: (default: " ") Location to read matrix Y whose columns we want to use as
the 2-nd covariate (i.e. as the response variable); the default value means
“use X in place of Y ”

Ycid: (default: " ") Location to read the single-row matrix that lists all index
numbers of the Y -columns used as the 2-nd covariate; the default value
means “use all Y -columns”

S: (default: " ") Location to read matrix S that has the stratum column. Note:
the stratum column must contain small positive integers; all fractional
values are rounded; stratum IDs of value 0 or NaN are treated as missing.
The default value for S means “use X in place of S”

Scid: (default: 1) The index number of the stratum column in S

O: Location to store the output matrix defined in Table 4

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

Suppose we have n records of format (i, x, y), where i 2 {1, . . . , k} is a
stratum number and (x, y) are two numerical covariates. We want to analyze
conditional linear relationship between y and x conditioned by i. Note that x,
but not y, may represent a categorical variable if we assign a numerical value
to each category, for example 0 and 1 for two categories.

We assume a linear regression model for y:

y
i,j

= ↵
i

+ �x
i,j

+ "
i,j

, where "
i,j

⇠ Normal(0,�2) (1)

Here i = 1 . . . k is a stratum number and j = 1 . . . n
i

is a record number in
stratum i; by n

i

we denote the number of records available in stratum i. The
noise term "

i,j

is assumed to have the same variance in all strata. When n
i

> 0,
we can estimate the means of x

i,j

and y
i,j

in stratum i as

x̄
i

=
⇣

X

ni

j=1

x
i,j

⌘

/n
i

; ȳ
i

=
⇣

X

ni

j=1

y
i,j

⌘

/n
i

If � is known, the best estimate for ↵
i

is ȳ
i

� �x̄
i

, which gives the prediction
error sum-of-squares of

X

k

i=1

X

ni

j=1

�

y
i,j

� �x
i,j

� (ȳ
i

� �x̄
i

)
�

2

= �2 V
x

� 2� V
x,y

+ V
y

(2)

18



Col.# Meaning Col.# Meaning

1
-s
t
co
va
ri
a
te

01 X-column number

2
-n
d
co
va
ri
a
te

11 Y -column number
02 presence count for x 12 presence count for y
03 global mean (x) 13 global mean (y)
04 global std. dev. (x) 14 global std. dev. (y)
05 stratified std. dev. (x) 15 stratified std. dev. (y)
06 R

2 for x ⇠ strata 16 R

2 for y ⇠ strata
07 adjusted R

2 for x ⇠ strata 17 adjusted R

2 for y ⇠ strata
08 p-value, x ⇠ strata 18 p-value, y ⇠ strata

09–10 reserved 19–20 reserved

y
⇠

x
,
N
O

st
ra
ta

21 presence count (x, y)

y
⇠

x
A
N
D

st
ra
ta

31 presence count (x, y, s)
22 regression slope 32 regression slope
23 regres. slope std. dev. 33 regres. slope std. dev.

24 correlation = ±
p
R

2 34 correlation = ±
p
R

2

25 residual std. dev. 35 residual std. dev.
26 R

2 in y due to x 36 R

2 in y due to x

27 adjusted R

2 in y due to x 37 adjusted R

2 in y due to x

28 p-value for “slope = 0” 38 p-value for “slope = 0”
29 reserved 39 # strata with � 2 count
30 reserved 40 reserved

Table 4: The stratstats.dml output matrix has one row per each distinct pair
of 1-st and 2-nd covariates, and 40 columns with the statistics described here.

where V
x

, V
y

, and V
x,y

are, correspondingly, the “stratified” sample estimates
of variance Var(x) and Var(y) and covariance Cov(x, y) computed as

V
x

=
X

k

i=1

X

ni

j=1

�

x
i,j

� x̄
i

�

2

; V
y

=
X

k

i=1

X

ni

j=1

�

y
i,j

� ȳ
i

�

2

;

V
x,y

=
X

k

i=1

X

ni

j=1

�

x
i,j

� x̄
i

��

y
i,j

� ȳ
i

�

They are stratified because we compute the sample (co-)variances in each stra-
tum i separately, then combine by summation. The stratified estimates for
Var(X) and Var(Y ) tend to be smaller than the non-stratified ones (with the
global mean instead of x̄

i

and ȳ
i

) since x̄
i

and ȳ
i

fit closer to x
i,j

and y
i,j

than the global means. The stratified variance estimates the uncertainty in x
i,j

and y
i,j

given their stratum i.
Minimizing over � the error sum-of-squares (2) gives us the regression slope

estimate �̂ = V
x,y

/V
x

, with (2) becoming the residual sum-of-squares (RSS):

RSS =
X

k

i=1

X

ni

j=1

�

y
i,j

� �̂x
i,j

� (ȳ
i

� �̂x̄
i

)
�

2

= V
y

�

1 � V 2

x,y

/(V
x

V
y

)
�

The quantity R̂2 = V 2

x,y

/(V
x

V
y

), called R-squared, estimates the fraction of
stratified variance in y

i,j

explained by covariate x
i,j

in the linear regression

model (1). We define stratified correlation as the square root of R̂2 taken with
the sign of V

x,y

. We also use RSS to estimate the residual standard deviation �
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in (1) that models the prediction error of y
i,j

given x
i,j

and the stratum:

�̂ =
V
x,y

V
x

; R̂ =
V
x,y

p

V
x

V
y

; R̂2 =
V 2

x,y

V
x

V
y

; �̂ =

r

RSS

n� k � 1

⇣

n =
k

X

i=1

n
i

⌘

The t-test and the F -test for the null-hypothesis of “� = 0” are obtained
by considering the e↵ect of �̂ on the residual sum-of-squares, measured by the
decrease from V

y

to RSS. The F -statistic is the ratio of the “explained” sum-of-
squares to the residual sum-of-squares, divided by their corresponding degrees
of freedom. There are n� k degrees of freedom for V

y

, parameter � reduces that
to n� k� 1 for RSS, and their di↵erence V

y

�RSS has just 1 degree of freedom:

F =
(V

y

� RSS)/1

RSS/(n� k� 1)
=

R̂2 (n� k� 1)

1� R̂2

; t = R̂

s

n� k� 1

1� R̂2

.

The t-statistic is simply the square root of the F -statistic with the appropriate
choice of sign. If the null hypothesis and the linear model are both true, the
t-statistic has Student t-distribution with n� k� 1 degrees of freedom. We can
also compute it if we divide �̂ by its estimated standard deviation:

st.dev(�̂)
est

= �̂ /
p

V
x

=) t = R̂
p

V
y

/ �̂ = � / st.dev(�̂)
est

The standard deviation estimate for � is included in stratstats.dml output.

Returns

The output matrix format is defined in Table 4.

Examples

hadoop jar SystemML.jar -f stratstats.dml -nvargs
X=/user/biadmin/X.mtx Xcid=/user/biadmin/Xcid.mtx
Y=/user/biadmin/Y.mtx Ycid=/user/biadmin/Ycid.mtx
S=/user/biadmin/S.mtx Scid=2 O=/user/biadmin/Out.mtx fmt=csv

hadoop jar SystemML.jar -f stratstats.dml -nvargs
X=/user/biadmin/Data.mtx Xcid=/user/biadmin/Xcid.mtx
Ycid=/user/biadmin/Ycid.mtx Scid=7 O=/user/biadmin/Out.mtx

2 Classification

2.1 Multinomial Logistic Regression

Description

Our logistic regression script performs both binomial and multinomial lo-
gistic regression. The script is given a dataset (X,Y ) where matrix X has
m columns and matrix Y has one column; both X and Y have n rows. The
rows of X and Y are viewed as a collection of records: (X,Y ) = (x

i

, y
i

)n
i=1

where x
i

is a numerical vector of explanatory (feature) variables and y
i

is a
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categorical response variable. Each row x
i

in X has size dimx
i

= m, while its
corresponding y

i

is an integer that represents the observed response value for
record i.

The goal of logistic regression is to learn a linear model over the feature vector
x
i

that can be used to predict how likely each categorical label is expected to
be observed as the actual y

i

. Note that logistic regression predicts more than
a label: it predicts the probability for every possible label. The binomial case
allows only two possible labels, the multinomial case has no such restriction.

Just as linear regression estimates the mean value µ
i

of a numerical response
variable, logistic regression does the same for category label probabilities. In
linear regression, the mean of y

i

is estimated as a linear combination of the
features: µ

i

= �
0

+ �
1

x
i,1

+ . . .+ �
m

x
i,m

= �
0

+ x
i

�
1:m

. In logistic regression,
the label probability has to lie between 0 and 1, so a link function is applied
to connect it to �

0

+ x
i

�
1:m

. If there are just two possible category labels, for
example 0 and 1, the logistic link looks as follows:

Prob[y
i

=1 | x
i

;�] =
e �0+xi�1:m

1 + e �0+xi�1:m
; Prob[y

i

=0 | x
i

;�] =
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Here category label 0 serves as the baseline, and function exp(�
0

+x
i

�
1:m

) shows
how likely we expect to see “y

i

= 1” in comparison to the baseline. Like in a
loaded coin, the predicted odds of seeing 1 versus 0 are exp(�

0

+ x
i

�
1:m

) to 1,
with each feature x

i,j

multiplying its own factor exp(�
j

x
i,j

) to the odds. Given
a large collection of pairs (x

i

, y
i

), i = 1 . . . n, logistic regression seeks to find
the �

j

’s that maximize the product of probabilities Prob[y
i

| x
i

;�] for actually
observed y

i

-labels (assuming no regularization).
Multinomial logistic regression [2] extends this link to k � 3 possible cat-

egories. Again we identify one category as the baseline, for example the k-th
category. Instead of a coin, here we have a loaded multisided die, one side
per category. Each non-baseline category l = 1 . . . k� 1 has its own vector
(�

0,l

,�
1,l

, . . . ,�
m,l

) of regression parameters with the intercept, making up a
matrix B of size (m+1) ⇥ (k� 1). The predicted odds of seeing non-baseline
category l versus the baseline k are exp
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+
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m
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to 1, and the
predicted probabilities are:
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The goal of the regression is to estimate the parameter matrix B from the pro-
vided dataset (X,Y ) = (x

i

, y
i

)n
i=1

by maximizing the product of Prob[y
i

| x
i

;B]
over the observed labels y

i

. Taking its logarithm, negating, and adding a regu-
larization term gives us a minimization objective:

f(B;X,Y ) = �
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log Prob[y
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;B] +
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m

X
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|2 ! min (5)
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The optional regularization term is added to mitigate overfitting and degeneracy
in the data; to reduce bias, the intercepts �

0,l

are not regularized. Once the �
j,l

’s
are accurately estimated, we can make predictions about the category label y
for a new feature vector x using Eqs. (3) and (4).

Usage

-f path/ MultiLogReg.dml -nvargs X=path/file Y=path/file B=path/file
Log=path/file icpt=int reg=double tol=double moi=int mii=int
fmt=format

Arguments

X: Location (on HDFS) to read the input matrix of feature vectors; each row
constitutes one feature vector.

Y: Location to read the input one-column matrix of category labels that corre-
spond to feature vectors in X. Note the following:
– Each non-baseline category label must be a positive integer.
– If all labels are positive, the largest represents the baseline category.
– If non-positive labels such as �1 or 0 are present, then they represent
the (same) baseline category and are converted to label max(Y)+ 1.

B: Location to store the matrix of estimated regression parameters (the �
j,l

’s),
with the intercept parameters �

0,l

at position B[m+1, l] if available. The
size of B is (m+1)⇥ (k� 1) with the intercepts or m⇥ (k� 1) without the
intercepts, one column per non-baseline category and one row per feature.

Log: (default: " ") Location to store iteration-specific variables for monitoring
and debugging purposes, see Table 5 for details.

icpt: (default: 0) Intercept and shifting/rescaling of the features in X:
0 = no intercept (hence no �

0

), no shifting/rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

reg: (default: 0.0) L2-regularization parameter (lambda)

tol: (default: 0.000001) Tolerance (epsilon) used in the convergence criterion

moi: (default: 100) Maximum number of outer (Fisher scoring) iterations

mii: (default: 0) Maximum number of inner (conjugate gradient) iterations,
or 0 if no maximum limit provided

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

We estimate the logistic regression parameters via L2-regularized negative
log-likelihood minimization (5). The optimization method used in the script
closely follows the trust region Newton method for logistic regression described
in [10]. For convenience, let us make some changes in notation:

• Convert the input vector of observed category labels into an indicator
matrix Y of size n⇥ k such that Y

i,l

= 1 if the i-th category label is l and
Y
i,l

= 0 otherwise;
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Name Meaning

LINEAR TERM MIN The minimum value of X %⇤%B, used to check for overflows
LINEAR TERM MAX The maximum value of X %⇤%B, used to check for overflows
NUM CG ITERS Number of inner (Conj. Gradient) iterations in this outer iteration
IS TRUST REACHED 1 = trust region boundary was reached, 0 = otherwise
POINT STEP NORM L2-norm of iteration step from old point (matrix B) to new point
OBJECTIVE The loss function we minimize (negative regularized log-likelihood)
OBJ DROP REAL Reduction in the objective during this iteration, actual value
OBJ DROP PRED Reduction in the objective predicted by a quadratic approximation
OBJ DROP RATIO Actual-to-predicted reduction ratio, used to update the trust region
IS POINT UPDATED 1 = new point accepted; 0 = new point rejected, old point restored
GRADIENT NORM L2-norm of the loss function gradient (omitted if point is rejected)
TRUST DELTA Updated trust region size, the “delta”

Table 5: The Log file for multinomial logistic regression contains the above
per-iteration variables in CSV format, each line containing triple (Name, Itera-
tion#, Value) with Iteration# being 0 for initial values.

• Append an extra column of all ones, i.e. (1, 1, . . . , 1)T , as the m+1-st
column to the feature matrix X to represent the intercept;

• Append an all-zero column as the k-th column to B, the matrix of regres-
sion parameters, to represent the baseline category;

• Convert the regularization constant � into matrix ⇤ of the same size as B,
placing 0’s into the m+1-st row to disable intercept regularization, and
placing �’s everywhere else.

Now the (n⇥ k)-matrix of predicted probabilities given by (3) and (4) and the
objective function f in (5) have the matrix form

P = exp(XB) /
�

exp(XB) 1
k⇥k

�

f = � P

Y · (XB) +
P

log
�

exp(XB) 1
k⇥1

�

+ (1/2)
P

⇤ ·B ·B
where operations · , /, exp, and log are applied cellwise, and

P

denotes the sum
of all cells in a matrix. The gradient of f with respect to B can be represented
as a matrix too:

rf = XT (P � Y ) + ⇤ ·B
The Hessian H of f is a tensor, but, fortunately, the conjugate gradient inner
loop of the trust region algorithm in [10] does not need to instantiate it. We
only need to multiply H by ordinary matrices of the same size as B and rf ,
and this can be done in matrix form:

HV = XT

�

Q � P · (Q 1
k⇥k

)
�

+ ⇤ · V, where Q = P · (XV )

At each Newton iteration (the outer iteration) the minimization algorithm ap-
proximates the di↵erence �f(S;B) = f(B+S;X,Y ) � f(B;X,Y ) attained in
the objective function after a step B 7! B+S by a second-degree formula

�f(S;B) ⇡ (1/2)
P

S · HS +
P

S ·rf
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This approximation is then minimized by trust-region conjugate gradient itera-
tions (the inner iterations) subject to the constraint kSk

2

 �. The trust region
size � is initialized as 0.5

p
m/max

i

kx
i

k
2

and updated as described in [10]. Users
can specify the maximum number of the outer and the inner iterations with in-
put parameters moi and mii, respectively. The iterative minimizer terminates
successfully if krfk

2

< " krf
B=0

k
2

, where " > 0 is a tolerance supplied by the
user via input parameter tol.

Returns

The estimated regression parameters (the �̂
j,l

) are populated into a matrix
and written to an HDFS file whose path/name was provided as the “B” input
argument. Only the non-baseline categories (1  l  k� 1) have their �̂

j,l

in the
output; to add the baseline category, just append a column of zeros. If icpt=0
in the input command line, no intercepts are used and B has size m ⇥ (k� 1);
otherwise B has size (m+1)⇥(k� 1) and the intercepts are in the m+1-st row.
If icpt=2, then initially the feature columns in X are shifted to mean = 0 and
rescaled to variance = 1. After the iterations converge, the �̂

j,l

’s are rescaled
and shifted to work with the original features.

Examples

hadoop jar SystemML.jar -f MultiLogReg.dml -nvargs
X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
B=/user/biadmin/B.mtx fmt=csv icpt=2 reg=1.0 tol=0.0001
moi=100 mii=10 Log=/user/biadmin/log.csv

References

• A. Agresti. Categorical Data Analysis. Wiley Series in Probability and
Statistics. Wiley-Interscience, second edition, 2002.

2.2 Support Vector Machines

2.2.1 Binary-class Support Vector Machines

Description
Support Vector Machines are used to model the relationship between a

categorical dependent variable y and one or more explanatory variables denoted
X. This implementation learns (and predicts with) a binary class support
vector machine (y with domain size 2).

Usage

-f path/l2-svm.dml -nvargs X=path/file Y=path/file icpt=int tol=double
reg=double maxiter=int model=path/file
Log=path/file fmt=csv |text

-f path/l2-svm-predict.dml -nvargs X=path/file Y=path/file icpt=int model=path/file
scores=path/file accuracy=path/file
confusion=path/file fmt=csv |text
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Arguments

• X: Location (on HDFS) to read the matrix of feature vectors; each row
constitutes one feature vector.

• Y: Location to read the one-column matrix of (categorical) labels that
correspond to feature vectors in X. Binary class labels can be expressed
in one of two choices: ±1 or 1/2. Note that, this argument is optional for
prediction.

• icpt (default: 0): If set to 1 then a constant bias column is added to X.

• tol (default: 0.001): Procedure terminates early if the reduction in objec-
tive function value is less than tolerance times the initial objective function
value.

• reg (default: 1): Regularization constant. See details to find out where
lambda appears in the objective function. If one were interested in drawing
an analogy with the C parameter in C-SVM, then C = 2/lambda. Usually,
cross validation is employed to determine the optimum value of lambda.

• maxiter (default: 100): The maximum number of iterations.

• model: Location (on HDFS) that contains the learnt weights.

• Log: Location (on HDFS) to collect various metrics (e.g., objective func-
tion value etc.) that depict progress across iterations while training.

• fmt (default: text): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• scores: Location (on HDFS) to store scores for a held-out test set. Note
that, this is an optional argument.

• accuracy: Location (on HDFS) to store the accuracy computed on a held-
out test set. Note that, this is an optional argument.

• confusion: Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that, this is an optional argument.

Details
Support vector machines learn a classification function by solving the fol-

lowing optimization problem (L
2

-SVM):

argmin
w

�

2
||w||2

2

+
X

i

⇠2
i

subject to: y
i

w>x
i

� 1� ⇠
i

8i
where x

i

is an example from the training set with its label given by y
i

, w is the
vector of parameters and � is the regularization constant specified by the user.
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To account for the missing bias term, one may augment the data with a
column of constants which is achieved by setting intercept argument to 1 (C-J
Hsieh et al, 2008).

This implementation optimizes the primal directly (Chapelle, 2007). It uses
nonlinear conjugate gradient descent to minimize the objective function coupled
with choosing step-sizes by performing one-dimensional Newton minimization
in the direction of the gradient.

Returns
The learnt weights produced by l2-svm.dml are populated into a single

column matrix and written to file on HDFS (see model in section Arguments).
The number of rows in this matrix is ncol(X) if intercept was set to 0 during
invocation and ncol(X) + 1 otherwise. The bias term, if used, is placed in
the last row. Depending on what arguments are provided during invocation,
l2-svm-predict.dml may compute one or more of scores, accuracy and confusion
matrix in the output format specified.

Examples

hadoop jar SystemML.jar -f l2-svm.dml -nvargs X=/user/biadmin/X.mtx
Y=/user/biadmin/y.mtx
icpt=0 tol=0.001 fmt=csv
reg=1.0 maxiter=100
model=/user/biadmin/weights.csv
Log=/user/biadmin/Log.csv

hadoop jar SystemML.jar -f l2-svm-predict.dml -nvargs X=/user/biadmin/X.mtx
Y=/user/biadmin/y.mtx
icpt=0 fmt=csv
model=/user/biadmin/weights.csv
scores=/user/biadmin/scores.csv
accuracy=/user/biadmin/accuracy.csv
confusion=/user/biadmin/confusion.csv

References

• W. T. Vetterling and B. P. Flannery. Conjugate Gradient Methods in
Multidimensions in Numerical Recipes in C - The Art in Scientific Com-
puting. W. H. Press and S. A. Teukolsky (eds.), Cambridge University
Press, 1992.

• J. Nocedal and S. J. Wright. Numerical Optimization, Springer-Verlag,
1999.

• C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi and S. Sundararajan. A
Dual Coordinate Descent Method for Large-scale Linear SVM. Interna-
tional Conference of Machine Learning (ICML), 2008.
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• Olivier Chapelle. Training a Support Vector Machine in the Primal.
Neural Computation, 2007.

2.2.2 Multi-class Support Vector Machines

Description
Support Vector Machines are used to model the relationship between a

categorical dependent variable y and one or more explanatory variables denoted
X. This implementation supports dependent variables that have domain size
greater or equal to 2 and hence is not restricted to binary class labels.

Usage

-f path/m-svm.dml -nvargs X=path/file Y=path/file icpt=int
tol=double reg=double maxiter=int model=path/file
Log=path/file fmt=csv |text

-f path/m-svm-predict.dml -nvargs X=path/file Y=path/file icpt=int model=path/file
scores=path/file accuracy=path/file
confusion=path/file fmt=csv |text

Arguments

• X: Location (on HDFS) containing the explanatory variables in a matrix.
Each row constitutes an example.

• Y: Location (on HDFS) containing a 1-column matrix specifying the cate-
gorical dependent variable (label). Labels are assumed to be contiguously
numbered from 1 . . . #classes. Note that, this argument is optional for
prediction.

• icpt (default: 0): If set to 1 then a constant bias column is added to X.

• tol (default: 0.001): Procedure terminates early if the reduction in objec-
tive function value is less than tolerance times the initial objective function
value.

• reg (default: 1): Regularization constant. See details to find out where
lambda appears in the objective function. If one were interested in drawing
an analogy with C-SVM, then C = 2/lambda. Usually, cross validation is
employed to determine the optimum value of lambda.

• maxiter (default: 100): The maximum number of iterations.

• model: Location (on HDFS) that contains the learnt weights.

• Log: Location (on HDFS) to collect various metrics (e.g., objective func-
tion value etc.) that depict progress across iterations while training.
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• fmt (default: text): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• scores: Location (on HDFS) to store scores for a held-out test set. Note
that, this is an optional argument.

• accuracy: Location (on HDFS) to store the accuracy computed on a held-
out test set. Note that, this is an optional argument.

• confusion: Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that, this is an optional argument.

Details
Support vector machines learn a classification function by solving the fol-

lowing optimization problem (L
2

-SVM):

argmin
w

�

2
||w||2

2

+
X

i

⇠2
i

subject to: y
i

w>x
i

� 1� ⇠
i

8i

where x
i

is an example from the training set with its label given by y
i

, w is the
vector of parameters and � is the regularization constant specified by the user.

To extend the above formulation (binary class SVM) to the multiclass set-
ting, one standard approache is to learn one binary class SVM per class that
separates data belonging to that class from the rest of the training data (one-
against-the-rest SVM, see C. Scholkopf, 1995).

To account for the missing bias term, one may augment the data with a
column of constants which is achieved by setting intercept argument to 1 (C-J
Hsieh et al, 2008).

This implementation optimizes the primal directly (Chapelle, 2007). It uses
nonlinear conjugate gradient descent to minimize the objective function coupled
with choosing step-sizes by performing one-dimensional Newton minimization
in the direction of the gradient.

Returns
The learnt weights produced by m-svm.dml are populated into a matrix that

has as many columns as there are classes in the training data, and written to
file provided on HDFS (see model in section Arguments). The number of rows
in this matrix is ncol(X) if intercept was set to 0 during invocation and ncol(X)
+ 1 otherwise. The bias terms, if used, are placed in the last row. Depending
on what arguments are provided during invocation, m-svm-predict.dml may
compute one or more of scores, accuracy and confusion matrix in the output
format specified.

Examples

hadoop jar SystemML.jar -f m-svm.dml -nvargs X=/user/biadmin/X.mtx
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Y=/user/biadmin/y.mtx
icpt=0 tol=0.001
reg=1.0 maxiter=100 fmt=csv
model=/user/biadmin/weights.csv
Log=/user/biadmin/Log.csv

hadoop jar SystemML.jar -f m-svm-predict.dml -nvargs X=/user/biadmin/X.mtx
Y=/user/biadmin/y.mtx
icpt=0 fmt=csv
model=/user/biadmin/weights.csv
scores=/user/biadmin/scores.csv
accuracy=/user/biadmin/accuracy.csv
confusion=/user/biadmin/confusion.csv

References

• W. T. Vetterling and B. P. Flannery. Conjugate Gradient Methods in
Multidimensions in Numerical Recipes in C - The Art in Scientific Com-
puting. W. H. Press and S. A. Teukolsky (eds.), Cambridge University
Press, 1992.

• J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag,
1999.

• C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi and S. Sundararajan. A
Dual Coordinate Descent Method for Large-scale Linear SVM. Interna-
tional Conference of Machine Learning (ICML), 2008.

• Olivier Chapelle. Training a Support Vector Machine in the Primal.
Neural Computation, 2007.

• B. Scholkopf, C. Burges and V. Vapnik. Extracting Support Data for a
Given Task. International Conference on Knowledge Discovery and Data
Mining (ICDM), 1995.

2.3 Naive Bayes

Description
Naive Bayes is very simple generative model used for classifying data. This

implementation learns a multinomial naive Bayes classifier which is applicable
when all features are counts of categorical values.

Usage

-f path/naive-bayes.dml -nvargs X=path/file Y=path/file laplace=double
prior=path/file conditionals=path/file
accuracy=path/file fmt=csv |text
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-f path/naive-bayes-predict.dml -nvargs X=path/file Y=path/file prior=path/file
conditionals=path/file fmt=csv |text
accuracy=path/file confusion=path/file
probabilities=path/file

Arguments

• X: Location (on HDFS) to read the matrix of feature vectors; each row
constitutes one feature vector.

• Y: Location (on HDFS) to read the one-column matrix of (categorical)
labels that correspond to feature vectors in X. Classes are assumed to
be contiguously labeled beginning from 1. Note that, this argument is
optional for prediction.

• laplace (default: 1): Laplace smoothing specified by the user to avoid
creation of 0 probabilities.

• prior: Location (on HDFS) that contains the class prior probabilites.

• conditionals: Location (on HDFS) that contains the class conditional fea-
ture distributions.

• fmt (default: text): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• probabilities: Location (on HDFS) to store class membership probabilities
for a held-out test set. Note that, this is an optional argument.

• accuracy: Location (on HDFS) to store the training accuracy during learn-
ing and testing accuracy from a held-out test set during prediction. Note
that, this is an optional argument for prediction.

• confusion: Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that, this is an optional argument.

Details
Naive Bayes is a very simple generative classification model. It posits that

given the class label, features can be generated independently of each other.
More precisely, the (multinomial) naive Bayes model uses the following equation
to estimate the joint probability of a feature vector x belonging to class y:

Prob(y, x) = ⇡
y

Y

i2x

✓n(i,x)
iy

where ⇡
y

denotes the prior probability of class y, i denotes a feature present in x
with n(i, x) denoting its count and ✓

iy

denotes the class conditional probability
of feature i in class y. The usual constraints hold on ⇡ and ✓:

⇡
y

� 0,
X

y2C
⇡
y

= 1

8y 2 C : ✓
iy

� 0,
X

i

✓
iy

= 1
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where C is the set of classes.
Given a fully labeled training dataset, it is possible to learn a naive Bayes

model using simple counting (group-by aggregates). To compute the class con-
ditional probabilities, it is usually advisable to avoid setting ✓

iy

to 0. One way
to achieve this is using additive smoothing or Laplace smoothing. Some authors
have argued that this should in fact be add-one smoothing. This implementa-
tion uses add-one smoothing by default but lets the user specify her/his own
constant, if required.

This implementation is sometimes referred to as multinomial naive Bayes.
Other flavours of naive Bayes are also popular.

Returns
The learnt model produced by naive-bayes.dml is stored in two separate

files. The first file stores the class prior (a single-column matrix). The
second file stores the class conditional probabilities organized into a matrix
with as many rows as there are class labels and as many columns as there
are features. Depending on what arguments are provided during invocation,
naive-bayes-predict.dml may compute one or more of probabilities, accuracy
and confusion matrix in the output format specified.

Examples

hadoop jar SystemML.jar -f naive-bayes.dml -nvargs
X=/user/biadmin/X.mtx
Y=/user/biadmin/y.mtx
laplace=1 fmt=csv
prior=/user/biadmin/prior.csv
conditionals=/user/biadmin/conditionals.csv
accuracy=/user/biadmin/accuracy.csv

hadoop jar SystemML.jar -f naive-bayes-predict.dml -nvargs
X=/user/biadmin/X.mtx
Y=/user/biadmin/y.mtx
prior=/user/biadmin/prior.csv
conditionals=/user/biadmin/conditionals.csv
fmt=csv
accuracy=/user/biadmin/accuracy.csv
probabilities=/user/biadmin/probabilities.csv
confusion=/user/biadmin/confusion.csv

References

• S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2009.

• A. McCallum and K. Nigam. A comparison of event models for naive bayes
text classification. AAAI-98 workshop on learning for text categorization,
1998.
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2.4 Decision Trees

Description

Decision tree (for classification) is a classifier that is considered more inter-
pretable than other statistical classifiers. This implementation is well-suited to
handle large-scale data and builds a (binary) decision tree in parallel.

Usage

-f path/ decision-tree.dml -nvargs X=path/file Y=path/file R=path/file
bins=integer depth=integer num leaf=integer num samples=integer
impurity=Gini|entropy M=path/file O=path/file S map=path/file
C map=path/file fmt=format

Usage: Prediction

-f path/ decision-tree-predict.dml -nvargs X=path/file Y=path/file
R=path/file M=path/file P=path/file A=path/file CM=path/file fmt=format

Arguments

X: Location (on HDFS) to read the matrix of feature vectors; each row consti-
tutes one feature vector. Note that categorical features in X need to be
both recoded and dummy coded.

Y: Location (on HDFS) to read the matrix of (categorical) labels that corre-
spond to feature vectors in X. Note that class labels are assumed to be
both recoded and dummy coded. This argument is optional for prediction.

R: (default: " ") Location (on HDFS) to read matrix R which for each feature in
X contains column-ids (first column), start indices (second column), and
end indices (third column). If R is not provided by default all features are
assumed to be continuous-valued.

bins: (default: 20) Number of thresholds to choose for each continuous-valued
feature (determined by equi-height binning).

depth: (default: 25) Maximum depth of the learned tree

num leaf: (default: 10) Parameter that controls pruning. The tree is not ex-
panded if a node receives less than num leaf training examples.

num samples: (default: 3000) Parameter that decides when to switch to in-
memory building of subtrees. If a node v receives less than num samples
training examples then this implementation switches to an in-memory
subtree building procedure to build the subtree under v in its entirety.

impurity: (default: "Gini") Impurity measure used at internal nodes of the
tree for selecting which features to split on. Possible value are entropy or
Gini.

M: Location (on HDFS) to write matrix M containing the learned decision tree
(see below for the schema)

O: (default: " ") Location (on HDFS) to store the training accuracy (%). Note
that this argument is optional.
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A: (default: " ") Location (on HDFS) to store the testing accuracy (%) from a
held-out test set during prediction. Note that this argument is optional.

P: Location (on HDFS) to store predictions for a held-out test set

CM: (default: " ") Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that this argument is optional.

S map: (default: " ") Location (on HDFS) to write the mappings from the
continuous-valued feature-ids to the global feature-ids in X (see below
for details). Note that this argument is optional.

C map: (default: " ") Location (on HDFS) to write the mappings from the cat-
egorical feature-ids to the global feature-ids in X (see below for details).
Note that this argument is optional.

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

Decision trees [6] are simple models of classification that, due to their struc-
ture, are easy to interpret. Given an example feature vector, each node in the
learned tree runs a simple test on it. Based on the result of the test, the example
is either diverted to the left subtree or to the right subtree. Once the example
reaches a leaf, then the label stored at the leaf is returned as the prediction for
the example.

Building a decision tree from a fully labeled training set entails choosing
appropriate splitting tests for each internal node in the tree and this is usually
performed in a top-down manner. The splitting test (denoted by s) requires first
choosing a feature j and depending on the type of j, either a threshold �, in case
j is continuous-valued, or a subset of values S ✓ Dom(j) where Dom(j) denotes
domain of j, in case it is categorical. For continuous-valued features the test is
thus of form x

j

< � and for categorical features it is of form x
j

2 S, where x
j

denotes the jth feature value of feature vector x. One way to determine which
test to include, is to compare impurities of the tree nodes induced by the test.
The node impurity measures the homogeneity of the labels at the node. This
implementation supports two commonly used impurity measures (denoted by

I): Entropy E =
P

C

i=1

�f
i

log f
i

, as well as Gini impurity G =
P

C

i=1

f
i

(1� f
i

),
where C denotes the number of unique labels and f

i

is the frequency of label i.
Once the impurity at the tree nodes has been obtained, the best split is chosen
from a set of possible splits that maximizes the information gain at the node,
i.e., argmax

s

IG(X, s), where IG(X, s) denotes the information gain when the
splitting test s partitions the feature matrix X. Assuming that s partitions X
that contains N feature vectors into X

left

and X
right

each including N
left

and
N

right

feature vectors, respectively, IG(X, s) is given by

IG(X, s) = I(X)� N
left

N
I(X

left

)� N
right

N
I(X

right

),

where I 2 {E ,G}. In the following we discuss the implementation details specific
to decision-tree.dml.

33



Input format. In general implementations of the decision tree algorithm
do not require categorical features to be dummy coded. For improved e�ciency
and reducing the training time, our implementation however assumes dummy
coded categorical features and dummy coded class labels.

Tree construction. Learning a decision tree on large-scale data has re-
ceived some attention in the literature. The current implementation includes
logic for choosing tests for multiple nodes that belong to the same level in the
decision tree in parallel (breadth-first expansion) and for building entire subtrees
under multiple nodes in parallel (depth-first subtree building). Empirically it
has been demonstrated that it is advantageous to perform breadth-first expan-
sion for the nodes belonging to the top levels of the tree and to perform depth-
first subtree building for nodes belonging to the lower levels of the tree [14]. The
parameter num samples controls when we switch to depth-first subtree building.
Any node in the decision tree that receives  num samples training examples,
the subtree under it is built in its entirety in one shot.

Stopping rule and pruning. The splitting of data at the internal nodes
stops when at least one the following criteria is satisfied:

• the depth of the internal node reaches the input parameter depth control-
ling the maximum depth of the learned tree, or

• no candidate split achieves information gain.

This implementation also allows for some automated pruning via the argument
num leaf. If a node receives  num leaf training examples, then a leaf is built
in its place.

Continuous-valued features. For a continuous-valued feature j the num-
ber of candidate thresholds � to choose from is of the order of the number of
examples present in the training set. Since for large-scale data this can result
in a large number of candidate thresholds, the user can limit this number via
the arguments bins which controls the number of candidate thresholds consid-
ered for each continuous-valued feature. For each continuous-valued feature, the
implementation computes an equi-height histogram to generate one candidate
threshold per equi-height bin.

Categorical features. In order to determine the best value subset to split
on in the case of categorical features, this implementation greedily includes
values from the feature’s domain until the information gain stops improving.
In particular, for a categorical feature j the |Dom(j)| feature values are sorted
by impurity and the resulting split candidates |Dom(j)|� 1 are examined; the
sequence of feature values which results in the maximum information gain is
then selected.

Description of the model. The learned decision tree is represented in a
matrix M that contains at least 6 rows. Each column in the matrix contains the
parameters relevant to a single node in the tree. Note that for building the tree
model, our implementation splits the feature matrix X into X

cont

containing
continuous-valued features and X

cat

containing categorical features. In the fol-
lowing, the continuous-valued (resp. categorical) feature-ids correspond to the
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indices of the features in X
cont

(resp. X
cat

). Moreover, we refer to an internal
node as a continuous-valued (categorical) node if the feature that this nodes
looks at is continuous-valued (categorical). Below is a description of what each
row in the matrix contains.

• Row 1: stores the node-ids. These ids correspond to the node-ids in a
complete binary tree.

• Row 2: for internal nodes stores the o↵sets (the number of columns) in M
to the left child, and otherwise 0.

• Row 3: stores the feature index of the feature (id of a continuous-valued
feature in X

cont

if the feature is continuous-valued or id of a categorical
feature in X

cat

if the feature is categorical) that this node looks at if the
node is an internal node, otherwise 0.

• Row 4: store the type of the feature that this node looks at if the node is
an internal node: 1 for continuous-valued and 2 for categorical features,
otherwise the label this leaf node is supposed to predict.

• Row 5: for the internal nodes contains 1 if the feature chosen for the
node is continuous-valued, or the size of the subset of values used for
splitting at the node stored in rows 6,7,. . . if the feature chosen for the
node is categorical. For the leaf nodes, Row 5 contains the number of
misclassified training examples reaching at this node.

• Row 6,7,. . .: for the internal nodes, row 6 stores the threshold to which
the example’s feature value is compared if the feature chosen for this
node is continuous-valued, otherwise if the feature chosen for this node is
categorical rows 6,7,. . . store the value subset chosen for the node. For
the leaf nodes, row 6 contains 1 if the node is impure and the number of
training examples at the node is greater than num leaf, otherwise 0.

As an example, Figure 2 shows a decision tree with 5 nodes and its matrix
representation.

Returns

The matrix corresponding to the learned model as well as the training ac-
curacy (if requested) is written to a file in the format specified. See details
where the structure of the model matrix is described. Recall that in our im-
plementation X is split into X

cont

and X
cat

. If requested, the mappings of
the continuous-valued feature-ids in X

cont

(stored at S map) and the categori-
cal feature-ids in X

cat

(stored at C map) to the global feature-ids in X will be
provided. Depending on what arguments are provided during invocation, the
decision-tree-predict.dml script may compute one or more of predictions,
accuracy and confusion matrix in the requested output format.

Examples

hadoop jar SystemML.jar -f decision-tree.dml -nvargs
X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
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(a)

Col 1 Col 2 Col 3 Col 4 Col 5
Row 1 1 2 3 6 7
Row 2 1 0 1 0 0
Row 3 3 5 0 0 0
Row 4 1 1 2 2 1
Row 5 1 0 2 0 0
Row 6 0.45 0 2 0 0
Row 7 3

(b)

Figure 2: (a) An example tree and its (b) matrix representation. x denotes an
example and x

j

is the value of the jth continuous-valued (resp. categorical)
feature in X

cont

(resp. X
cat

). In this example all leaf nodes are pure and no
training example is misclassified.

R=/user/biadmin/R.csv M=/user/biadmin/model.csv bins=20
depth=25 num leaf=10 num samples=3000 impurity=Gini fmt=csv

To compute predictions:
hadoop jar SystemML.jar -f decision-tree-predict.dml

-nvargs X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
R=/user/biadmin/R.csv M=/user/biadmin/model.csv
P=/user/biadmin/predictions.csv A=/user/biadmin/accuracy.csv
CM=/user/biadmin/confusion.csv fmt=csv

2.5 Random Forests

Description

Random forest is one of the most successful machine learning methods for
classification and regression. It is an ensemble learning method that creates a
model composed of a set of tree models. This implementation is well-suited to
handle large-scale data and builds a random forest model for classification in
parallel.

Usage

-f path/ random-forest.dml -nvargs X=path/file Y=path/file R=path/file
bins=integer depth=integer num leaf=integer num samples=integer
num trees=integer subsamp rate=double feature subset=double
impurity=Gini|entropy M=path/file C=path/file S map=path/file
C map=path/file fmt=format

Usage: Prediction

-f path/ random-forest-predict.dml -nvargs X=path/file Y=path/file
R=path/file M=path/file C=path/file P=path/file A=path/file OOB=path/file
CM=path/file fmt=format
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Arguments

X: Location (on HDFS) to read the matrix of feature vectors; each row consti-
tutes one feature vector. Note that categorical features in X need to be
both recoded and dummy coded.

Y: Location (on HDFS) to read the matrix of (categorical) labels that corre-
spond to feature vectors in X. Note that classes are assumed to be both
recoded and dummy coded. This argument is optional for prediction.

R: (default: " ") Location (on HDFS) to read matrix R which for each feature in
X contains column-ids (first column), start indices (second column), and
end indices (third column). If R is not provided by default all features are
assumed to be continuous-valued.

bins: (default: 20) Number of thresholds to choose for each continuous-valued
feature (determined by equi-height binning).

depth: (default: 25) Maximum depth of the learned trees in the random forest
model

num leaf: (default: 10) Parameter that controls pruning. The tree is not ex-
panded if a node receives less than num leaf training examples.

num samples: (default: 3000) Parameter that decides when to switch to in-
memory building of the subtrees in each tree of the random forest model.
If a node v receives less than num samples training examples then this
implementation switches to an in-memory subtree building procedure to
build the subtree under v in its entirety.

num trees: (default: 10) Number of trees to be learned in the random forest
model

subsamp rate: (default: 1.0) Parameter controlling the size of each tree in the
random forest model; samples are selected from a Poisson distribution
with parameter subsamp rate.

feature subset: (default: 0.5) Parameter that controls the number of feature
used as candidates for splitting at each tree node as a power of the number
of features in the data, i.e., assuming the training set has D features
Dfeature subset are used at each tree node.

impurity: (default: "Gini") Impurity measure used at internal nodes of the
trees in the random forest model for selecting which features to split on.
Possible value are entropy or Gini.

M: Location (on HDFS) to write matrix M containing the learned random forest
(see Section 2.4 and below for the schema)

C: (default: " ") Location (on HDFS) to store the number of counts (generated
according to a Poisson distribution with parameter subsamp rate) for
each feature vector. Note that this argument is optional. If Out-Of-Bag
(OOB) error estimate needs to be computed this parameter is passed as
input to random-forest-predict.dml.
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A: (default: " ") Location (on HDFS) to store the testing accuracy (%) from a
held-out test set during prediction. Note that this argument is optional.

OOB: (default: " ") Location (on HDFS) to store the Out-Of-Bag (OOB) error
estimate of the training set. Note that the matrix of sample counts (stored
at C) needs to be provided for computing OOB error estimate. Note that
this argument is optional.

P: Location (on HDFS) to store predictions for a held-out test set

CM: (default: " ") Location (on HDFS) to store the confusion matrix computed
using a held-out test set. Note that this argument is optional.

S map: (default: " ") Location (on HDFS) to write the mappings from the
continuous-valued feature-ids to the global feature-ids in X (see below
for details). Note that this argument is optional.

C map: (default: " ") Location (on HDFS) to write the mappings from the cat-
egorical feature-ids to the global feature-ids in X (see below for details).
Note that this argument is optional.

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

Random forests [5] are learning algorithms for ensembles of decision trees.
The main idea is to build a number of decision trees on bootstrapped train-
ing samples, i.e., by taking repeatedly samples from a (single) training set.
Moreover, instead of considering all the features when building the trees only
a random subset of the features—typically ⇡ pD, where D is the number of
features—is chosen each time a split test at a tree node is performed. This
procedure decorrelates the trees and makes it less prone to overfitting. To
build decision trees we utilize the techniques discussed in Section 2.4 proposed
in [14]; the implementation details are similar to those of the decision trees
script. Below we review some features of our implementation which di↵er from
decision-tree.dml.

Bootstrapped sampling. Each decision tree is fitted to a bootstrapped
training set sampled with replacement (WR). To improve e�ciency, we gen-
erate N sample counts according to a Poisson distribution with parameter
subsamp rate, where N denotes the total number of training points. These
sample counts approximate WR sampling when N is large enough and are gen-
erated upfront for each decision tree.

Bagging. Decision trees su↵er from high variance resulting in di↵erent
models whenever trained on a random subsets of the data points. Bagging is a
general-purpose method to reduce the variance of a statistical learning method
like decision trees. In the context of decision trees (for classification), for a
given test feature vector the prediction is computed by taking a majority vote:
the overall prediction is the most commonly occurring class among all the tree
predictions.

Out-Of-Bag error estimation. Note that each bagged tree in a random
forest model is trained on a subset (around 2

3

) of the observations (i.e., feature
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vectors). The remaining ( 1
3

of the) observations not used for training is called
the Out-Of-Bag (OOB) observations. This gives us a straightforward way to
estimate the test error: to predict the class label of each test observation i we
use the trees in which i was OOB. Our random-forest-predict.dml script
provides the OOB error estimate for a given training set if requested.

Description of the model. Similar to decision trees, the learned random
forest model is presented in a matrix M with at least 7 rows. The information
stored in the model is similar to that of decision trees with the di↵erence that
the tree-ids are stored in the second row and rows 2, 3, . . . from the decision tree
model are shifted by one. See Section 2.4 for a description of the model.

Returns

The matrix corresponding to the learned model is written to a file in the for-
mat specified. See Section 2.4 where the details about the structure of the model
matrix is described. Similar to decision-tree.dml, X is split into X

cont

and
X

cat

. If requested, the mappings of the continuous feature-ids in X
cont

(stored
at S map) as well as the categorical feature-ids in X

cat

(stored at C map) to the
global feature-ids in X will be provided. The random-forest-predict.dml
script may compute one or more of predictions, accuracy, confusion matrix, and
OOB error estimate in the requested output format depending on the input
arguments used.

Examples

hadoop jar SystemML.jar -f random-forest.dml -nvargs
X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
R=/user/biadmin/R.csv M=/user/biadmin/model.csv bins=20
depth=25 num leaf=10 num samples=3000 num trees=10
impurity=Gini fmt=csv

To compute predictions:
hadoop jar SystemML.jar -f random-forest-predict.dml

-nvargs X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
R=/user/biadmin/R.csv M=/user/biadmin/model.csv
P=/user/biadmin/predictions.csv A=/user/biadmin/accuracy.csv
CM=/user/biadmin/confusion.csv fmt=csv

3 Clustering

3.1 K-Means Clustering

Description

Given a collection of n records with a pairwise similarity measure, the goal
of clustering is to assign a category label to each record so that similar records
tend to get the same label. In contrast to multinomial logistic regression, clus-
tering is an unsupervised learning problem with neither category assignments
nor label interpretations given in advance. In k-means clustering, the records
x
1

, x
2

, . . . , x
n

are numerical feature vectors of dimx
i

= m with the squared
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Euclidean distance kx
i

� x
i

0k2
2

as the similarity measure. We want to partition
{x

1

, . . . , x
n

} into k clusters {S
1

, . . . , S
k

} so that the aggregated squared distance
from records to their cluster means is minimized:

WCSS =
n

X

i=1

�

�x
i

�mean(S
j

: x
i

2 S
j

)
�

�

2

2

! min (6)

The aggregated distance measure in (6) is called the within-cluster sum of
squares (WCSS). It can be viewed as a measure of residual variance that re-
mains in the data after the clustering assignment, conceptually similar to the
residual sum of squares (RSS) in linear regression. However, unlike for the RSS,
the minimization of (6) is an NP-hard problem [3].

Rather than searching for the global optimum in (6), a heuristic algorithm
called Lloyd’s algorithm is typically used. This iterative algorithm maintains
and updates a set of k centroids {c

1

, . . . , c
k

}, one centroid per cluster. It defines
each cluster S

j

as the set of all records closer to c
j

than to any other centroid.
Each iteration of the algorithm reduces the WCSS in two steps:

1. Assign each record to the closest centroid, making mean(S
j

) 6= c
j

;

2. Reset each centroid to its cluster’s mean: c
j

:= mean(S
j

).

After Step 1 the centroids are generally di↵erent from the cluster means, so we
can compute another “within-cluster sum of squares” based on the centroids:

WCSS C =
n

X

i=1

�

�x
i

� centroid(S
j

: x
i

2 S
j

)
�

�

2

2

(7)

This WCSS C after Step 1 is less than the means-based WCSS before Step 1
(or equal if convergence achieved), and in Step 2 the WCSS cannot exceed the
WCSS C for the same clustering; hence the WCSS reduction.

Exact convergence is reached when each record becomes closer to its cluster’s
mean than to any other cluster’s mean, so there are no more re-assignments and
the centroids coincide with the means. In practice, iterations may be stopped
when the reduction in WCSS (or in WCSS C) falls below a minimum thresh-
old, or upon reaching the maximum number of iterations. The initialization of
the centroids is also an important part of the algorithm. The smallest WCSS
obtained by the algorithm is not the global minimum and varies depending on
the initial centroids. We implement multiple parallel runs with di↵erent initial
centroids and report the best result.

Scoring Our scoring script evaluates the clustering output by comparing it
with a known category assignment. Since cluster labels have no prior corre-
spondence to the categories, we cannot count “correct” and “wrong” cluster
assignments. Instead, we quantify them in two ways:

1. Count how many same-category and di↵erent-category pairs of records
end up in the same cluster or in di↵erent clusters;

2. For each category, count the prevalence of its most common cluster; for
each cluster, count the prevalence of its most common category.
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The number of categories and the number of clusters (k) do not have to be equal.
A same-category pair of records clustered into the same cluster is viewed as a
“true positive,” a di↵erent-category pair clustered together is a “false positive,”
a same-category pair clustered apart is a “false negative” etc.

Usage: K-means Script

-f path/ Kmeans.dml -nvargs X=path/file C=path/file k=int runs=int
maxi=int tol=double samp=int isY=int Y=path/file fmt=format
verb=int

Usage: K-means Scoring/Prediction

-f path/ Kmeans-predict.dml -nvargs X=path/file C=path/file
spY=path/file prY=path/file fmt=format O=path/file

Arguments

X: Location to read matrix X with the input data records as rows

C: (default: "C.mtx") Location to store the output matrix with the best avail-
able cluster centroids as rows

k: Number of clusters (and centroids)

runs: (default: 10) Number of parallel runs, each run with di↵erent initial cen-
troids

maxi: (default: 1000) Maximum number of iterations per run

tol: (default: 0.000001) Tolerance (epsilon) for single-iteration WCSS C
change ratio

samp: (default: 50) Average number of records per centroid in data samples
used in the centroid initialization procedure

Y: (default: "Y.mtx") Location to store the one-column matrix Y with the best
available mapping of records to clusters (defined by the output centroids)

isY: (default: 0) 0 = do not write matrix Y , 1 = write Y

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

verb: (default: 0) 0 = do not print per-iteration statistics for each run, 1 =
print them (the “verbose” option)

Arguments — Scoring/Prediction

X: (default: " ") Location to read matrix X with the input data records as
rows, optional when prY input is provided

C: (default: " ") Location to read matrix C with cluster centroids as rows,
optional when prY input is provided; NOTE: if both X and C are provided,
prY is an output, not input

spY: (default: " ") Location to read a one-column matrix with the externally
specified “true” assignment of records (rows) to categories, optional for
prediction without scoring
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Name CID Meaning

TSS Total Sum of Squares (from the total mean)
WCSS M Within-Cluster Sum of Squares (means as centers)
WCSS M PC Within-Cluster Sum of Squares (means), in % of TSS
BCSS M Between-Cluster Sum of Squares (means as centers)
BCSS M PC Between-Cluster Sum of Squares (means), in % of TSS

WCSS C Within-Cluster Sum of Squares (centroids as centers)
WCSS C PC Within-Cluster Sum of Squares (centroids), % of TSS
BCSS C Between-Cluster Sum of Squares (centroids as centers)
BCSS C PC Between-Cluster Sum of Squares (centroids), % of TSS

TRUE SAME CT Same-category pairs predicted as Same-cluster, count
TRUE SAME PC Same-category pairs predicted as Same-cluster, %
TRUE DIFF CT Di↵-category pairs predicted as Di↵-cluster, count
TRUE DIFF PC Di↵-category pairs predicted as Di↵-cluster, %
FALSE SAME CT Di↵-category pairs predicted as Same-cluster, count
FALSE SAME PC Di↵-category pairs predicted as Same-cluster, %
FALSE DIFF CT Same-category pairs predicted as Di↵-cluster, count
FALSE DIFF PC Same-category pairs predicted as Di↵-cluster, %

SPEC TO PRED + For specified category, the best predicted cluster id
SPEC FULL CT + For specified category, its full count
SPEC MATCH CT + For specified category, best-cluster matching count
SPEC MATCH PC + For specified category, % of matching to full count
PRED TO SPEC + For predicted cluster, the best specified category id
PRED FULL CT + For predicted cluster, its full count
PRED MATCH CT + For predicted cluster, best-category matching count
PRED MATCH PC + For predicted cluster, % of matching to full count

Table 6: The O-file for Kmeans-predict provides the output statistics in CSV
format, one per line, in the following format: (NAME, [CID], VALUE). Note:
the 1st group statistics are given if X input is available; the 2nd group statistics
are given if X and C inputs are available; the 3rd and 4th group statistics are
given if spY input is available; only the 4th group statistics contain a nonempty
CID value; when present, CID contains either the specified category label or the
predicted cluster label.

prY: (default: " ") Location to read (or write, if X and C are present) a column-
vector with the predicted assignment of rows to clusters; NOTE: No prior
correspondence is assumed between the predicted cluster labels and the
externally specified categories

fmt: (default: "text") Matrix file output format for prY, such as text, mm, or
csv; see read/write functions in SystemML Language Reference for details

O: (default: " ") Location to write the output statistics defined in Table 6, by
default print them to the standard output

Details

Our clustering script proceeds in 3 stages: centroid initialization, parallel
k-means iterations, and the best-available output generation. Centroids are
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initialized at random from the input records (the rows of X), biased towards
being chosen far apart from each other. The initialization method is based on
the k-means++ heuristic from [4], with one important di↵erence: to reduce the
number of passes throughX, we take a small sample ofX and run the k-means++
heuristic over this sample. Here is, conceptually, our centroid initialization
algorithm for one clustering run:

1. Sample the rows of X uniformly at random, picking each row with prob-
ability p = ks/n where

• k is the number of centroids,
• n is the number of records, and
• s is the samp input parameter.

If ks � n, the entire X is used in place of its sample.

2. Choose the first centroid uniformly at random from the sampled rows.

3. Choose each subsequent centroid from the sampled rows, at random, with
probability proportional to the squared Euclidean distance between the
row and the nearest already-chosen centroid.

The sampling of X and the selection of centroids are performed independently
and in parallel for each run of the k-means algorithm. When we sample the
rows of X, rather than tossing a random coin for each row, we compute the
number of rows to skip until the next sampled row as dlog(u)/ log(1�p)e where
u 2 (0, 1) is uniformly random. This time-saving trick works because

Prob[k � 1 < log
1�p

(u) < k] = p(1� p)k�1 = Prob[skip k � 1 rows]

However, it requires us to estimate the maximum sample size, which we set
near ks+ 10

p
ks to make it generous enough.

Once we selected the initial centroid sets, we start the k-means iterations
independently in parallel for all clustering runs. The number of clustering runs
is given as the runs input parameter. Each iteration of each clustering run
performs the following steps:

• Compute the centroid-dependent part of squared Euclidean distances from
all records (rows of X) to each of the k centroids using matrix product;

• Take the minimum of the above for each record;

• Update the current within-cluster sum of squares (WCSS) value, with
centroids substituted instead of the means for e�ciency;

• Check the convergence criterion: WCSS
old

�WCSS
new

< " ·WCSS
new

as well as the number of iterations limit;

• Find the closest centroid for each record, sharing equally any records with
multiple closest centroids;

• Compute the number of records closest to each centroid, checking for
“runaway” centroids with no records left (in which case the run fails);

• Compute the new centroids by averaging the records in their clusters.
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When a termination condition is satisfied, we store the centroids and the WCSS
value and exit this run. A run has to satisfy the WCSS convergence criterion
to be considered successful. Upon the termination of all runs, we select the
smallest WCSS value among the successful runs, and write out this run’s cen-
troids. If requested, we also compute the cluster assignment of all records in X,
using integers from 1 to k as the cluster labels. The scoring script can then be
used to compare the cluster assignment with an externally specified category
assignment.

Returns

We output the k centroids for the best available clustering, i. e. whose WCSS
is the smallest of all successful runs. The centroids are written as the rows of
the k⇥m-matrix into the output file whose path/name was provided as the “C”
input argument. If the input parameter “isY” was set to 1, we also output
the one-column matrix with the cluster assignment for all the records. This
assignment is written into the file whose path/name was provided as the “Y”
input argument. The best WCSS value, as well as some information about
the performance of the other runs, is printed during the script execution. The
scoring script Kmeans-predict prints all its results in a self-explanatory manner,
as defined in Table 6.

Examples

hadoop jar SystemML.jar -f Kmeans.dml -nvargs
X=/user/biadmin/X.mtx k=5 C=/user/biadmin/centroids.mtx
fmt=csv

hadoop jar SystemML.jar -f Kmeans.dml -nvargs
X=/user/biadmin/X.mtx k=5 runs=100 maxi=5000
tol=0.00000001 samp=20 C=/user/biadmin/centroids.mtx isY=1
Y=/user/biadmin/Yout.mtx verb=1

To predict Y given X and C:
hadoop jar SystemML.jar -f Kmeans-predict.dml -nvargs

X=/user/biadmin/X.mtx C=/user/biadmin/C.mtx
prY=/user/biadmin/PredY.mtx O=/user/biadmin/stats.csv

To compare “actual” labels spY with “predicted” labels given X and C:
hadoop jar SystemML.jar -f Kmeans-predict.dml -nvargs

X=/user/biadmin/X.mtx C=/user/biadmin/C.mtx
spY=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

To compare “actual” labels spY with given “predicted” labels prY:
hadoop jar SystemML.jar -f Kmeans-predict.dml -nvargs

spY=/user/biadmin/Y.mtx prY=/user/biadmin/PredY.mtx
O=/user/biadmin/stats.csv
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4 Regression

4.1 Linear Regression

Description

Linear Regression scripts are used to model the relationship between one
numerical response variable and one or more explanatory (feature) variables.
The scripts are given a dataset (X,Y ) = (x

i

, y
i

)n
i=1

where x
i

is a numerical
vector of feature variables and y

i

is a numerical response value for each training
data record. The feature vectors are provided as a matrix X of size n⇥m,
where n is the number of records and m is the number of features. The observed
response values are provided as a 1-column matrix Y , with a numerical value y

i

for each x
i

in the corresponding row of matrix X.
In linear regression, we predict the distribution of the response y

i

based on a
fixed linear combination of the features in x

i

. We assume that there exist con-
stant regression coe�cients �

0

,�
1

, . . . ,�
m

and a constant residual variance �2

such that

y
i

⇠ Normal(µ
i

,�2) where µ
i

= �
0

+ �
1

x
i,1

+ . . .+ �
m

x
i,m

(8)

Distribution y
i

⇠ Normal(µ
i

,�2) models the “unexplained” residual noise and
is assumed independent across di↵erent records.

The goal is to estimate the regression coe�cients and the residual variance.
Once they are accurately estimated, we can make predictions about y

i

given x
i

in new records. We can also use the �
j

’s to analyze the influence of individual
features on the response value, and assess the quality of this model by comparing
residual variance in the response, left after prediction, with its total variance.

There are two scripts in our library, both doing the same estimation, but
using di↵erent computational methods. Depending on the size and the sparsity
of the feature matrix X, one or the other script may be more e�cient. The
“direct solve” script LinearRegDS is more e�cient when the number of features
m is relatively small (m ⇠ 1000 or less) and matrixX is either tall or fairly dense
(has �m2 nonzeros); otherwise, the “conjugate gradient” script LinearRegCG
is more e�cient. If m > 50000, use only LinearRegCG.

Usage

-f path/ LinearRegDS.dml -nvargs X=path/file Y=path/file B=path/file
O=path/file icpt=int reg=double fmt=format

-f path/ LinearRegCG.dml -nvargs X=path/file Y=path/file B=path/file
O=path/file Log=path/file icpt=int reg=double tol=double maxi=int
fmt=format
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Name Meaning

AVG TOT Y Average of the response value Y

STDEV TOT Y Standard Deviation of the response value Y

AVG RES Y Average of the residual Y � pred(Y |X), i.e. residual bias
STDEV RES Y Standard Deviation of the residual Y � pred(Y |X)
DISPERSION GLM-style dispersion, i.e. residual sum of squares / #deg. fr.
PLAIN R2 Plain R

2 of residual with bias included vs. total average
ADJUSTED R2 Adjusted R

2 of residual with bias included vs. total average
PLAIN R2 NOBIAS Plain R

2 of residual with bias subtracted vs. total average
ADJUSTED R2 NOBIAS Adjusted R

2 of residual with bias subtracted vs. total average
PLAIN R2 VS 0 ⇤Plain R

2 of residual with bias included vs. zero constant
ADJUSTED R2 VS 0 ⇤Adjusted R

2 of residual with bias included vs. zero constant
⇤ The last two statistics are only printed if there is no intercept (icpt=0)

Table 7: Besides �, linear regression scripts compute a few summary statistics
listed above. The statistics are provided in CSV format, one comma-separated
name-value pair per each line.

Arguments

X: Location (on HDFS) to read the matrix of feature vectors, each row consti-
tutes one feature vector

Y: Location to read the 1-column matrix of response values

B: Location to store the estimated regression parameters (the �
j

’s), with the
intercept parameter �

0

at position B[m+1, 1] if available

O: (default: " ") Location to store the CSV-file of summary statistics defined
in Table 7, the default is to print it to the standard output

Log: (default: " ", LinearRegCG only) Location to store iteration-specific vari-
ables for monitoring and debugging purposes, see Table 8 for details.

icpt: (default: 0) Intercept presence and shifting/rescaling the features in X:
0 = no intercept (hence no �

0

), no shifting or rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

reg: (default: 0.000001) L2-regularization parameter � � 0; set to nonzero for
highly dependent, sparse, or numerous (m & n/10) features

tol: (default: 0.000001, LinearRegCG only) Tolerance " � 0 used in the con-
vergence criterion: we terminate conjugate gradient iterations when the
�-residual reduces in L2-norm by this factor

maxi: (default: 0, LinearRegCG only) Maximum number of conjugate gradient
iterations, or 0 if no maximum limit provided

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details
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Name Meaning

CG RESIDUAL NORM L2-norm of conjug. grad. residual, which is A %⇤% � � t(X) %⇤% y
where A = t(X) %⇤%X + diag(�), or a similar quantity

CG RESIDUAL RATIO Ratio of current L2-norm of conjug. grad. residual over the initial

Table 8: The Log file for LinearRegCG script contains the above per-iteration
variables in CSV format, each line containing triple (Name, Iteration#, Value)
with Iteration# being 0 for initial values.

To solve a linear regression problem over feature matrix X and response
vector Y , we can find coe�cients �

0

,�
1

, . . . ,�
m

and �2 that maximize the joint
likelihood of all y

i

for i = 1 . . . n, defined by the assumed statistical model (8).
Since the joint likelihood of the independent y

i

⇠ Normal(µ
i

,�2) is proportional
to the product of exp

�� (y
i

� µ
i

)2/(2�2)
�

, we can take the logarithm of this
product, then multiply by �2�2 < 0 to obtain a least squares problem:
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⌘

2

! min (9)

This may not be enough, however. The minimum may sometimes be attained
over infinitely many �-vectors, for example if X has an all-0 column, or has
linearly dependent columns, or has fewer rows than columns (n < m). Even
if (9) has a unique solution, other �-vectors may be just a little suboptimal1,
yet give significantly di↵erent predictions for new feature vectors. This results
in overfitting : prediction error for the training data (X and Y ) is much smaller
than for the test data (new records).

Overfitting and degeneracy in the data is commonly mitigated by adding a
regularization penalty term to the least squares function:

n
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i

� �
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�
m

X

j=1

�
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x
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2
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m

X

j=1

�2

j

! min (10)

The choice of � > 0, the regularization constant, typically involves cross-
validation where the dataset is repeatedly split into a training part (to estimate
the �

j

’s) and a test part (to evaluate prediction accuracy), with the goal of max-
imizing the test accuracy. In our scripts, � is provided as input parameter reg.

The solution to least squares problem (10), through taking the derivative
and setting it to 0, has the matrix linear equation form

A



�
1:m

�
0

�

=
⇥

X, 1
⇤

T

Y, where A =
⇥

X, 1
⇤

T

⇥

X, 1
⇤

+ diag(�, . . . ,�
| {z }

m

, 0) (11)

where [X, 1] is X with an extra column of 1s appended on the right, and the
diagonal matrix of �’s has a zero to keep the intercept �

0

unregularized. If the
intercept is disabled by setting icpt=0, the equation is simply XTX� = XTY .

1
Smaller likelihood di↵erence between two models suggests less statistical evidence to pick

one model over the other.
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We implemented two scripts for solving equation (11): one is a “direct solver”
that computes A and then solves A� = [X, 1]TY by calling an external pack-
age, the other performs linear conjugate gradient (CG) iterations without ever
materializing A. The CG algorithm closely follows Algorithm 5.2 in Chapter 5
of [13]. Each step in the CG algorithm computes a matrix-vector multiplication
q = Ap by first computing [X, 1] p and then [X, 1]T [X, 1] p. Usually the num-
ber of such multiplications, one per CG iteration, is much smaller than m. The
user can put a hard bound on it with input parameter maxi, or use the default
maximum of m+1 (or m if no intercept) by having maxi=0. The CG iterations
terminate when the L2-norm of vector r = A� � [X, 1]TY decreases from its
initial value (for � = 0) by the tolerance factor specified in input parameter tol.

The CG algorithm is more e�cient if computing [X, 1]T
�

[X, 1] p
�

is much
faster than materializing A, an (m+1)⇥(m+1) matrix. The Direct Solver (DS)
is more e�cient if X takes up a lot more memory than A (i.e. X has a lot more
nonzeros thanm2) and ifm2 is small enough for the external solver (m . 50000).
A more precise determination between CG and DS is subject to further research.

In addition to the �-vector, the scripts estimate the residual standard devi-
ation � and the R2, the ratio of “explained” variance to the total variance of
the response variable. These statistics only make sense if the number of degrees
of freedom n�m� 1 is positive and the regularization constant � is negligible
or zero. The formulas for � and R2 are:

R2
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= 1� RSS

TSS
, � =

r

RSS

n�m� 1
, R2

adj.

= 1� �2(n� 1)
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⌘
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Here µ̂
i

are the predicted means for y
i

based on the estimated regression coe�-
cients and the feature vectors. They may be biased when no intercept is present,
hence the RSS formula subtracts the bias.

Lastly, note that by choosing the input option icpt=2 the user can shift and
rescale the columns of X to have zero average and the variance of 1. This is
particularly important when using regularization over highly disbalanced fea-
tures, because regularization tends to penalize small-variance columns (which
need large �

j

’s) more than large-variance columns (with small �
j

’s). At the
end, the estimated regression coe�cients are shifted and rescaled to apply to
the original features.

Returns

The estimated regression coe�cients (the �̂
j

’s) are populated into a matrix
and written to an HDFS file whose path/name was provided as the “B” in-
put argument. What this matrix contains, and its size, depends on the input
argument icpt, which specifies the user’s intercept and rescaling choice:

icpt=0: No intercept, matrix B has size m⇥ 1, with B[j, 1] = �̂
j

for each j
from 1 to m = ncol(X).
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icpt=1: There is intercept, but no shifting/rescaling of X; matrix B has size
(m+1)⇥1, with B[j, 1] = �̂

j

for j from 1 to m, and B[m+1, 1] = �̂
0

, the
estimated intercept coe�cient.

icpt=2: There is intercept, and the features in X are shifted to mean = 0 and
rescaled to variance = 1; then there are two versions of the �̂

j

’s, one for
the original features and another for the shifted/rescaled features. Now
matrix B has size (m+1) ⇥ 2, with B[·, 1] for the original features and
B[·, 2] for the shifted/rescaled features, in the above format. Note that
B[·, 2] are iteratively estimated and B[·, 1] are obtained from B[·, 2] by
complementary shifting and rescaling.

The estimated summary statistics, including residual standard deviation � and
the R2, are printed out or sent into a file (if specified) in CSV format as defined
in Table 7. For conjugate gradient iterations, a log file with monitoring variables
can also be made available, see Table 8.

Examples

hadoop jar SystemML.jar -f LinearRegCG.dml -nvargs
X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
B=/user/biadmin/B.mtx fmt=csv O=/user/biadmin/stats.csv icpt=2
reg=1.0 tol=0.00000001 maxi=100 Log=/user/biadmin/log.csv

hadoop jar SystemML.jar -f LinearRegDS.dml -nvargs
X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
B=/user/biadmin/B.mtx fmt=csv O=/user/biadmin/stats.csv icpt=2
reg=1.0

4.2 Stepwise Linear Regression

Description

Our stepwise linear regression script selects a linear model based on the
Akaike information criterion (AIC): the model that gives rise to the lowest AIC
is computed.

Usage

-f path/ StepLinearRegDS.dml -nvargs X=path/file Y=path/file
B=path/file S=path/file O=path/file icpt=int thr=double fmt=format

Arguments

X: Location (on HDFS) to read the matrix of feature vectors, each row contains
one feature vector.

Y: Location (on HDFS) to read the 1-column matrix of response values

B: Location (on HDFS) to store the estimated regression parameters (the �
j

’s),
with the intercept parameter �

0

at position B[m+1, 1] if available

S: (default: " ") Location (on HDFS) to store the selected feature-ids in the
order as computed by the algorithm; by default the selected feature-ids
are forwarded to the standard output.
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O: (default: " ") Location (on HDFS) to store the CSV-file of summary statis-
tics defined in Table 7; by default the summary statistics are forwarded
to the standard output.

icpt: (default: 0) Intercept presence and shifting/rescaling the features in X:
0 = no intercept (hence no �

0

), no shifting or rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

thr: (default: 0.01) Threshold to stop the algorithm: if the decrease in the
value of the AIC falls below thr no further features are being checked and
the algorithm stops.

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

Stepwise linear regression iteratively selects predictive variables in an au-
tomated procedure. Currently, our implementation supports forward selection:
starting from an empty model (without any variable) the algorithm examines
the addition of each variable based on the AIC as a model comparison criterion.
The AIC is defined as

AIC = �2 logL+ 2edf, (12)

where L denotes the likelihood of the fitted model and edf is the equivalent
degrees of freedom, i.e., the number of estimated parameters. This procedure is
repeated until including no additional variable improves the model by a certain
threshold specified in the input parameter thr.

For fitting a model in each iteration we use the “direct solve” method as in
the script LinearRegDS.dml discussed in Section 4.1.

Returns

Similar to the outputs from LinearRegDS.dml the stepwise linear regres-
sion script computes the estimated regression coe�cients and stores them in
matrix B on HDFS. The format of matrix B is identical to the one pro-
duced by the scripts for linear regression (see Section 4.1). Additionally,
StepLinearRegDS.dml outputs the variable indices (stored in the 1-column ma-
trix S) in the order they have been selected by the algorithm, i.e., ith entry in
matrix S corresponds to the variable which improves the AIC the most in ith it-
eration. If the model with the lowest AIC includes no variables matrix S will be
empty (contains one 0). Moreover, the estimated summary statistics as defined
in Table 7 are printed out or stored in a file (if requested). In the case where
an empty model achieves the best AIC these statistics will not be produced.

Examples

hadoop jar SystemML.jar -f StepLinearRegDS.dml
-nvargs X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
B=/user/biadmin/B.mtx S=/user/biadmin/selected.csv
O=/user/biadmin/stats.csv icpt=2 thr=0.05 fmt=csv
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4.3 Generalized Linear Models (GLM)

Description

Generalized Linear Models [9, 11, 12] extend the methodology of linear and
logistic regression to a variety of distributions commonly assumed as noise e↵ects
in the response variable. As before, we are given a collection of records (x

1

, y
1

),
. . . , (x

n

, y
n

) where x
i

is a numerical vector of explanatory (feature) variables
of size dimx

i

= m, and y
i

is the response (dependent) variable observed for
this vector. GLMs assume that some linear combination of the features in x

i

determines the mean µ
i

of y
i

, while the observed y
i

is a random outcome of a
noise distribution Prob[y | µ

i

] 2 with that mean µ
i

:
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7! ⌘
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+
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j

x
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7! µ
i

7! y
i

⇠ Prob[y | µ
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]

In linear regression the response mean µ
i

equals some linear combination
over x

i

, denoted above by ⌘
i

. In logistic regression with y 2 {0, 1} (Bernoulli)
the mean of y is the same as Prob[y = 1] and equals 1/(1 + e�⌘i), the logistic
function of ⌘

i

. In GLM, µ
i

and ⌘
i

can be related via any given smooth monotone
function called the link function: ⌘

i

= g(µ
i

). The unknown linear combination
parameters �

j

are assumed to be the same for all records.
The goal of the regression is to estimate the parameters �

j

from the observed
data. Once the �

j

’s are accurately estimated, we can make predictions about y
for a new feature vector x. To do so, compute ⌘ from x and use the inverted
link function µ = g�1(⌘) to compute the mean µ of y; then use the distribution
Prob[y | µ] to make predictions about y. Both g(µ) and Prob[y | µ] are user-
provided. Our GLM script supports a standard set of distributions and link
functions, see below for details.

Usage

-f path/ GLM.dml -nvargs X=path/file Y=path/file B=path/file fmt=format
O=path/file Log=path/file dfam=int vpow=double link=int lpow=double
yneg=double icpt=int reg=double tol=double disp=double moi=int
mii=int

Arguments

X: Location (on HDFS) to read the matrix of feature vectors; each row consti-
tutes an example.

Y: Location to read the response matrix, which may have 1 or 2 columns

B: Location to store the estimated regression parameters (the �
j

’s), with the
intercept parameter �

0

at position B[m+1, 1] if available

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

O: (default: " ") Location to write certain summary statistics described in Ta-
ble 9, by default it is standard output.

2
Prob[y | µi] is given by a density function if y is continuous.
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Log: (default: " ") Location to store iteration-specific variables for monitoring
and debugging purposes, see Table 10 for details.

dfam: (default: 1) Distribution family code to specify Prob[y | µ], see Table 11:
1 = power distributions with Var(y) = µ↵; 2 = binomial or Bernoulli

vpow: (default: 0.0) When dfam=1, this provides the q in Var(y) = aµq, the
power dependence of the variance of y on its mean. In particular, use:
0.0 = Gaussian, 1.0 = Poisson, 2.0 = Gamma, 3.0 = inverse Gaussian

link: (default: 0) Link function code to determine the link function ⌘ = g(µ):
0 = canonical link (depends on the distribution family), see Table 11;
1 = power functions, 2 = logit, 3 = probit, 4 = cloglog, 5 = cauchit

lpow: (default: 1.0) When link=1, this provides the s in ⌘ = µs, the power link
function; lpow=0.0 gives the log link ⌘ = logµ. Common power links:
-2.0 = 1/µ2, -1.0 = reciprocal, 0.0 = log, 0.5 = sqrt, 1.0 = identity

yneg: (default: 0.0) When dfam=2 and the response matrix Y has 1 column,
this specifies the y-value used for Bernoulli “No” label. All other y-values
are treated as the “Yes” label. For example, yneg=-1.0 may be used when
y 2 {�1, 1}; either yneg=1.0 or yneg=2.0 may be used when y 2 {1, 2}.

icpt: (default: 0) Intercept and shifting/rescaling of the features in X:
0 = no intercept (hence no �

0

), no shifting/rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

reg: (default: 0.0) L2-regularization parameter (lambda)

tol: (default: 0.000001) Tolerance (epsilon) used in the convergence criterion:
we terminate the outer iterations when the deviance changes by less than
this factor; see below for details

disp: (default: 0.0) Dispersion parameter, or 0.0 to estimate it from data

moi: (default: 200) Maximum number of outer (Fisher scoring) iterations

mii: (default: 0) Maximum number of inner (conjugate gradient) iterations,
or 0 if no maximum limit provided

Details

In GLM, the noise distribution Prob[y | µ] of the response variable y given
its mean µ is restricted to have the exponential family form

Y ⇠ Prob[y | µ] = exp

✓

y✓ � b(✓)

a
+ c(y, a)

◆

, where µ = E(Y ) = b0(✓).

(13)
Changing the mean in such a distribution simply multiplies all Prob[y | µ]
by e y✓/a and rescales them so that they again integrate to 1. Parameter ✓
is called canonical, and the function ✓ = b0 �1(µ) that relates it to the mean is
called the canonical link ; constant a is called dispersion and rescales the variance
of y. Many common distributions can be put into this form, see Table 11. The
canonical parameter ✓ is often chosen to coincide with ⌘, the linear combination
of the regression features; other choices for ⌘ are possible too.
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Name Meaning

TERMINATION CODE A positive integer indicating success/failure as follows:
1 = Converged successfully; 2 = Maximum # of iterations reached;
3 = Input (X, Y) out of range; 4 = Distribution/link not supported

BETA MIN Smallest beta value (regression coe�cient), excluding the intercept
BETA MIN INDEX Column index for the smallest beta value
BETA MAX Largest beta value (regression coe�cient), excluding the intercept
BETA MAX INDEX Column index for the largest beta value
INTERCEPT Intercept value, or NaN if there is no intercept (if icpt=0)
DISPERSION Dispersion used to scale deviance, provided in disp input argument

or estimated (same as DISPERSION EST) if disp argument is  0
DISPERSION EST Dispersion estimated from the dataset
DEVIANCE UNSCALED Deviance from the saturated model, assuming dispersion = 1.0
DEVIANCE SCALED Deviance from the saturated model, scaled by DISPERSION value

Table 9: Besides �, GLM regression script computes a few summary statistics
listed above. They are provided in CSV format, one comma-separated name-
value pair per each line.

Rather than specifying the canonical link, GLM distributions are commonly
defined by their variance Var(y) as the function of the mean µ. It can be
shown from Eq. (13) that Var(y) = a b00(✓) = a b00(b0 �1(µ)). For example,
for the Bernoulli distribution Var(y) = µ(1 � µ), for the Poisson distribution
Var(y) = µ, and for the Gaussian distribution Var(y) = a · 1 = �2. It turns
out that for many common distributions Var(y) = aµq, a power function. We
support all distributions where Var(y) = aµq, as well as the Bernoulli and the
binomial distributions.

For distributions with Var(y) = aµq the canonical link is also a power func-
tion, namely ✓ = µ1�q/(1� q), except for the Poisson (q = 1) whose canonical
link is ✓ = logµ. We support all power link functions in the form ⌘ = µs,
dropping any constant factor, with ⌘ = log µ for s = 0. The binomial distri-
bution has its own family of link functions, which includes logit (the canonical
link), probit, cloglog, and cauchit (see Table 12); we support these only for the
binomial and Bernoulli distributions. Links and distributions are specified via
four input parameters: dfam, vpow, link, and lpow (see Table 11).

The observed response values are provided to the regression script as ma-
trix Y having 1 or 2 columns. If a power distribution family is selected (dfam=1),
matrix Y must have 1 column that provides y

i

for each x
i

in the corresponding
row of matrix X. When dfam=2 and Y has 1 column, we assume the Bernoulli
distribution for y

i

2 {y
neg

, y
pos

} with y
neg

from the input parameter yneg and
with y

pos

6= y
neg

. When dfam=2 and Y has 2 columns, we assume the binomial
distribution; for each row i in X, cells Y [i, 1] and Y [i, 2] provide the positive and
the negative binomial counts respectively. Internally we convert the 1-column
Bernoulli into the 2-column binomial with 0-versus-1 counts.

We estimate the regression parameters via L2-regularized negative log-
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Name Meaning

NUM CG ITERS Number of inner (Conj. Gradient) iterations in this outer iteration
IS TRUST REACHED 1 = trust region boundary was reached, 0 = otherwise
POINT STEP NORM L2-norm of iteration step from old point (�-vector) to new point
OBJECTIVE The loss function we minimize (negative partial log-likelihood)
OBJ DROP REAL Reduction in the objective during this iteration, actual value
OBJ DROP PRED Reduction in the objective predicted by a quadratic approximation
OBJ DROP RATIO Actual-to-predicted reduction ratio, used to update the trust region
GRADIENT NORM L2-norm of the loss function gradient (omitted if point is rejected)
LINEAR TERM MIN The minimum value of X %⇤% �, used to check for overflows
LINEAR TERM MAX The maximum value of X %⇤% �, used to check for overflows
IS POINT UPDATED 1 = new point accepted; 0 = new point rejected, old point restored
TRUST DELTA Updated trust region size, the “delta”

Table 10: The Log file for GLM regression contains the above per-iteration
variables in CSV format, each line containing triple (Name, Iteration#, Value)
with Iteration# being 0 for initial values.

likelihood minimization:

f(�;X,Y ) = �
X

n

i=1

�

y
i

✓
i

� b(✓
i

)
�

+ (�/2)
X

m

j=1

�2

j

! min

where ✓
i

and b(✓
i

) are from (13); note that a and c(y, a) are constant w.r.t. �
and can be ignored here. The canonical parameter ✓

i

depends on both � and x
i

:

✓
i

= b0 �1(µ
i

) = b0 �1

�

g�1(⌘
i

)
�

=
�

b0 �1 � g�1

�

⇣

�
0

+
X

m

j=1

�
j

x
i,j

⌘

The user-provided (via reg) regularization coe�cient � � 0 can be used to
mitigate overfitting and degeneracy in the data. Note that the intercept is
never regularized.

Our iterative minimizer for f(�;X,Y ) uses the Fisher scoring approximation
to the di↵erence �f(z;�) = f(� + z;X,Y ) � f(�;X,Y ), recomputed at each
iteration:

�f(z;�) ⇡ 1/2 · zTAz + GT z, where A = XTdiag(w)X + �I

and G = �XTu + ��, with n⇥ 1 vectors w and u given by

8 i = 1 . . . n : w
i

=
⇥

v(µ
i

) g0(µ
i

)2
⇤�1

, u
i

= (y
i

� µ
i

)
⇥

v(µ
i

) g0(µ
i

)
⇤�1

.

Here v(µ
i

) = Var(y
i

)/a, the variance of y
i

as the function of the mean, and
g0(µ

i

) = d⌘
i

/dµ
i

is the link function derivative. The Fisher scoring approxima-
tion is minimized by trust-region conjugate gradient iterations (called the inner
iterations, with the Fisher scoring iterations as the outer iterations), which
approximately solve the following problem:

1/2 · zTAz + GT z ! min subject to kzk
2

 �

The conjugate gradient algorithm closely follows Algorithm 7.2 on page 171
of [13]. The trust region size � is initialized as 0.5

p
m/max

i

kx
i

k
2

and updated
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INPUT PARAMETERS Distribution Link Cano-
dfam vpow link lpow family function nical?
1 0.0 1 -1.0 Gaussian inverse
1 0.0 1 0.0 Gaussian log
1 0.0 1 1.0 Gaussian identity Yes
1 1.0 1 0.0 Poisson log Yes
1 1.0 1 0.5 Poisson sq.root
1 1.0 1 1.0 Poisson identity
1 2.0 1 -1.0 Gamma inverse Yes
1 2.0 1 0.0 Gamma log
1 2.0 1 1.0 Gamma identity
1 3.0 1 -2.0 Inverse Gauss 1/µ2 Yes
1 3.0 1 -1.0 Inverse Gauss inverse
1 3.0 1 0.0 Inverse Gauss log
1 3.0 1 1.0 Inverse Gauss identity
2 * 1 0.0 Binomial log
2 * 1 0.5 Binomial sq.root
2 * 2 * Binomial logit Yes
2 * 3 * Binomial probit
2 * 4 * Binomial cloglog
2 * 5 * Binomial cauchit

Table 11: Common GLM distribution families and link functions. (Here “*”
stands for “any value.”)

as described in [13]. The user can specify the maximum number of the outer
and the inner iterations with input parameters moi and mii, respectively. The
Fisher scoring algorithm terminates successfully if 2|�f(z;�)| < (D

1

(�)+0.1)"
where " > 0 is a tolerance supplied by the user via tol, and D

1

(�) is the
unit-dispersion deviance estimated as

D
1

(�) = 2 · �Prob[Y | saturated
model

, a=1] � Prob[Y | X,�, a=1]
�

The deviance estimate is also produced as part of the output. Once the Fisher
scoring algorithm terminates, if requested by the user, we estimate the disper-
sion a from Eq. 13 using Pearson residuals

â =
1

n�m
·

n

X

i=1

(y
i

� µ
i

)2

v(µ
i

)
(14)

and use it to adjust our deviance estimate: D
â

(�) = D
1

(�)/â. If input argument
disp is 0.0 we estimate â, otherwise we use its value as a. Note that in (14)
m counts the intercept (m m+ 1) if it is present.

Returns

The estimated regression parameters (the �̂
j

’s) are populated into a ma-
trix and written to an HDFS file whose path/name was provided as the “B”
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Name Link function Name Link function

Logit ⌘ = 1/
�

1 + e�µ

�

Cloglog ⌘ = log
�� log(1� µ)

�

Probit µ =
1p
2⇡

Z

⌘

�1
e�

t2

2 dt Cauchit ⌘ = tan⇡(µ� 1/2)

Table 12: The supported non-power link functions for the Bernoulli and the
binomial distributions. (Here µ is the Bernoulli mean.)

input argument. What this matrix contains, and its size, depends on the input
argument icpt, which specifies the user’s intercept and rescaling choice:

icpt=0: No intercept, matrix B has size m⇥ 1, with B[j, 1] = �̂
j

for each j
from 1 to m = ncol(X).

icpt=1: There is intercept, but no shifting/rescaling of X; matrix B has size
(m+1)⇥1, with B[j, 1] = �̂

j

for j from 1 to m, and B[m+1, 1] = �̂
0

, the
estimated intercept coe�cient.

icpt=2: There is intercept, and the features in X are shifted to mean = 0 and
rescaled to variance = 1; then there are two versions of the �̂

j

’s, one for
the original features and another for the shifted/rescaled features. Now
matrix B has size (m+1) ⇥ 2, with B[·, 1] for the original features and
B[·, 2] for the shifted/rescaled features, in the above format. Note that
B[·, 2] are iteratively estimated and B[·, 1] are obtained from B[·, 2] by
complementary shifting and rescaling.

Our script also estimates the dispersion â (or takes it from the user’s input)
and the deviances D

1

(�̂) and D
â

(�̂), see Table 9 for details. A log file with
variables monitoring progress through the iterations can also be made available,
see Table 10.

Examples

hadoop jar SystemML.jar -f GLM.dml -nvargs X=/user/biadmin/X.mtx
Y=/user/biadmin/Y.mtx B=/user/biadmin/B.mtx fmt=csv
dfam=2 link=2 yneg=-1.0 icpt=2 reg=0.01 tol=0.00000001
disp=1.0 moi=100 mii=10 O=/user/biadmin/stats.csv
Log=/user/biadmin/log.csv

See Also

In case of binary classification problems, consider using L2-SVM or binary
logistic regression; for multiclass classification, use multiclass SVM or multino-
mial logistic regression. For the special cases of linear regression and logistic
regression, it may be more e�cient to use the corresponding specialized scripts
instead of GLM.

4.4 Stepwise Generalized Linear Regression

Description
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Our stepwise generalized linear regression script selects a model based on
the Akaike information criterion (AIC): the model that gives rise to the lowest
AIC is provided. Note that currently only the Bernoulli distribution family is
supported (see below for details).

Usage

-f path/ StepGLM.dml -nvargs X=path/file Y=path/file B=path/file
S=path/file O=path/file link=int yneg=double icpt=int tol=double
disp=double moi=int mii=int thr=double fmt=format

Arguments

X: Location (on HDFS) to read the matrix of feature vectors; each row is an
example.

Y: Location (on HDFS) to read the response matrix, which may have 1 or 2
columns

B: Location (on HDFS) to store the estimated regression parameters (the �
j

’s),
with the intercept parameter �

0

at position B[m+1, 1] if available

S: (default: " ") Location (on HDFS) to store the selected feature-ids in the
order as computed by the algorithm, by default it is standard output.

O: (default: " ") Location (on HDFS) to write certain summary statistics de-
scribed in Table 9, by default it is standard output.

link: (default: 2) Link function code to determine the link function ⌘ = g(µ),
see Table 11; currently the following link functions are supported:
1 = log, 2 = logit, 3 = probit, 4 = cloglog.

yneg: (default: 0.0) Response value for Bernoulli “No” label, usually 0.0 or -1.0

icpt: (default: 0) Intercept and shifting/rescaling of the features in X:
0 = no intercept (hence no �

0

), no shifting/rescaling of the features;
1 = add intercept, but do not shift/rescale the features in X;
2 = add intercept, shift/rescale the features in X to mean 0, variance 1

tol: (default: 0.000001) Tolerance (epsilon) used in the convergence criterion:
we terminate the outer iterations when the deviance changes by less than
this factor; see below for details.

disp: (default: 0.0) Dispersion parameter, or 0.0 to estimate it from data

moi: (default: 200) Maximum number of outer (Fisher scoring) iterations

mii: (default: 0) Maximum number of inner (conjugate gradient) iterations,
or 0 if no maximum limit provided

thr: (default: 0.01) Threshold to stop the algorithm: if the decrease in the
value of the AIC falls below thr no further features are being checked and
the algorithm stops.

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

57



Details

Similar to StepLinearRegDS.dml our stepwise GLM script builds a model by
iteratively selecting predictive variables using a forward selection strategy based
on the AIC (12). Note that currently only the Bernoulli distribution family
(fam=2 in Table 11) together with the following link functions are supported:
log, logit, probit, and cloglog (link 2 {1, 2, 3, 4} in Table 11).

Returns

Similar to the outputs from GLM.dml the stepwise GLM script computes the
estimated regression coe�cients and stores them in matrix B on HDFS; matrix
B follows the same format as the one produced by GLM.dml (see Section 4.3).
Additionally, StepGLM.dml outputs the variable indices (stored in the 1-column
matrix S) in the order they have been selected by the algorithm, i.e., ith entry in
matrix S stores the variable which improves the AIC the most in ith iteration.
If the model with the lowest AIC includes no variables matrix S will be empty.
Moreover, the estimated summary statistics as defined in Table 9 are printed
out or stored in a file on HDFS (if requested); these statistics will be provided
only if the selected model is nonempty, i.e., contains at least one variable.

Examples

hadoop jar SystemML.jar -f StepGLM.dml -nvargs
X=/user/biadmin/X.mtx Y=/user/biadmin/Y.mtx
B=/user/biadmin/B.mtx S=/user/biadmin/selected.csv
O=/user/biadmin/stats.csv link=2 yneg=-1.0 icpt=2 tol=0.000001
moi=100 mii=10 thr=0.05 fmt=csv

4.5 Regression Scoring and Prediction

Description

Script GLM-predict.dml is intended to cover all linear model based regres-
sions, including linear regression, binomial and multinomial logistic regression,
and GLM regressions (Poisson, gamma, binomial with probit link etc.). Hav-
ing just one scoring script for all these regressions simplifies maintenance and
enhancement while ensuring compatible interpretations for output statistics.

The script performs two functions, prediction and scoring. To perform pre-
diction, the script takes two matrix inputs: a collection of records X (without
the response attribute) and the estimated regression parameters B, also known
as �. To perform scoring, in addition to X and B, the script takes the matrix
of actual response values Y that are compared to the predictions made with X
and B. Of course there are other, non-matrix, input arguments that specify the
model and the output format, see below for the full list.

We assume that our test/scoring dataset is given by n⇥m-matrix X of
numerical feature vectors, where each row x

i

represents one feature vector of
one record; we have dimx

i

= m. Each record also includes the response vari-
able y

i

that may be numerical, single-label categorical, or multi-label categor-
ical. A single-label categorical y

i

is an integer category label, one label per
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record; a multi-label y
i

is a vector of integer counts, one count for each pos-
sible label, which represents multiple single-label events (observations) for the
same x

i

. Internally we convert single-label categoricals into multi-label categor-
icals by replacing each label l with an indicator vector (0, . . . , 0, 1

l

, 0, . . . , 0). In
prediction-only tasks the actual y

i

’s are not needed to the script, but they are
needed for scoring.

To perform prediction, the script matrix-multiplies X and B, adding the
intercept if available, then applies the inverse of the model’s link function. All
GLMs assume that the linear combination of the features in x

i

and the betas
in B determines the means µ

i

of the y
i

’s (in numerical or multi-label categorical
form) with dimµ

i

= dim y
i

. The observed y
i

is assumed to follow a specified
GLM family distribution Prob[y | µ

i

] with mean(s) µ
i

:

x
i

7! ⌘
i

= �
0

+
X

m

j=1

�
j

x
i,j

7! µ
i

7! y
i

⇠ Prob[y | µ
i

]

If y
i

is numerical, the predicted mean µ
i

is a real number. Then our script’s
output matrix M is the n⇥ 1-vector of these means µ

i

. Note that µ
i

predicts
the mean of y

i

, not the actual y
i

. For example, in Poisson distribution, the
mean is usually fractional, but the actual y

i

is always integer.
If y

i

is categorical, i.e. a vector of label counts for record i, then µ
i

is a
vector of non-negative real numbers, one number µ

i,l

per each label l. In this
case we divide the µ

i,l

by their sum
P

l

µ
i,l

to obtain predicted label proba-
bilities p

i,l

2 [0, 1]. The output matrix M is the n ⇥ (k+1)-matrix of these
probabilities, where n is the number of records and k+1 is the number of cat-
egories3. Note again that we do not predict the labels themselves, nor their
actual counts per record, but we predict the labels’ probabilities.

Going from predicted probabilities to predicted labels, in the single-label
categorical case, requires extra information such as the cost of false positive
versus false negative errors. For example, if there are 5 categories and we
accurately predicted their probabilities as (0.1, 0.3, 0.15, 0.2, 0.25), just picking
the highest-probability label would be wrong 70% of the time, whereas picking
the lowest-probability label might be right if, say, it represents a diagnosis of
cancer or another rare and serious outcome. Hence, we keep this step outside
the scope of GLM-predict.dml for now.

Usage

-f path/ GLM-predict.dml -nvargs X=path/file Y=path/file B=path/file
M=path/file O=path/file dfam=int vpow=double link=int lpow=double
disp=double fmt=format

Arguments

X: Location (on HDFS) to read the n⇥m-matrix X of feature vectors, each
row constitutes one feature vector (one record)

3
We use k+ 1 because there are k non-baseline categories and one baseline category, with

regression parameters B having k columns.
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Y: (default: " ") Location to read the response matrix Y needed for scoring
(but optional for prediction), with the following dimensions:
n⇥ 1: acceptable for all distributions (dfam=1 or 2 or 3)
n⇥ 2: for binomial (dfam=2) if given by (#pos, #neg) counts
n⇥ k+1: for multinomial (dfam=3) if given by category counts

M: (default: " ") Location to write, if requested, the matrix of predicted re-
sponse means (for dfam=1) or probabilities (for dfam=2 or 3):
n⇥ 1: for power-type distributions (dfam=1)
n⇥ 2: for binomial distribution (dfam=2), col# 2 is the “No” probability
n⇥ k+1: for multinomial logit (dfam=3), col# k+1 is for the baseline

B: Location to read matrix B of the betas, i.e. estimated GLM regression pa-
rameters, with the intercept at row# m+1 if available:
dim(B) = m⇥ k: do not add intercept
dim(B) = m+1⇥ k: add intercept as given by the last B-row
if k > 1, use only B[, 1] unless it is Multinomial Logit (dfam=3)

O: (default: " ") Location to store the CSV-file with goodness-of-fit statistics
defined in Table 13, the default is to print them to the standard output

dfam: (default: 1) GLM distribution family code to specify the type of distri-
bution Prob[y |µ] that we assume:
1 = power distributions with Var(y) = µ↵, see Table 11;
2 = binomial; 3 = multinomial logit

vpow: (default: 0.0) Power for variance defined as (mean)power (ignored if
dfam 6=1): when dfam=1, this provides the q in Var(y) = aµq, the power
dependence of the variance of y on its mean. In particular, use:
0.0 = Gaussian, 1.0 = Poisson, 2.0 = Gamma, 3.0 = inverse Gaussian

link: (default: 0) Link function code to determine the link function ⌘ = g(µ),
ignored for multinomial logit (dfam=3):
0 = canonical link (depends on the distribution family), see Table 11;
1 = power functions, 2 = logit, 3 = probit, 4 = cloglog, 5 = cauchit

lpow: (default: 1.0) Power for link function defined as (mean)power (ignored if
link 6=1): when link=1, this provides the s in ⌘ = µs, the power link
function; lpow=0.0 gives the log link ⌘ = logµ. Common power links:
-2.0 = 1/µ2, -1.0 = reciprocal, 0.0 = log, 0.5 = sqrt, 1.0 = identity

disp: (default: 1.0) Dispersion value, when available; must be positive

fmt: (default: "text") Matrix M file output format, such as text, mm, or csv;
see read/write functions in SystemML Language Reference for details.

Details

The output matrix M of predicted means (or probabilities) is computed by
matrix-multiplying X with the first column of B or with the whole B in the
multinomial case, adding the intercept if available (conceptually, appending an
extra column of ones to X); then applying the inverse of the model’s link func-
tion. The di↵erence between “means” and “probabilities” in the categorical
case becomes significant when there are � 2 observations per record (with the

60



Name CID Disp? Meaning

LOGLHOOD Z + Log-likelihood Z-score (in st. dev.’s from the mean)
LOGLHOOD Z PVAL + Log-likelihood Z-score p-value, two-sided
PEARSON X2 + Pearson residual X2-statistic
PEARSON X2 BY DF + Pearson X

2 divided by degrees of freedom
PEARSON X2 PVAL + Pearson X

2 p-value
DEVIANCE G2 + Deviance from the saturated model G2-statistic
DEVIANCE G2 BY DF + Deviance G

2 divided by degrees of freedom
DEVIANCE G2 PVAL + Deviance G

2 p-value
AVG TOT Y + Y -column average for an individual response value
STDEV TOT Y + Y -column st. dev. for an individual response value
AVG RES Y + Y -column residual average of Y � pred.mean(Y |X)
STDEV RES Y + Y -column residual st. dev. of Y � pred.mean(Y |X)
PRED STDEV RES + + Model-predicted Y -column residual st. deviation
PLAIN R2 + Plain R

2 of Y -column residual with bias included
ADJUSTED R2 + Adjusted R

2 of Y -column residual w. bias included
PLAIN R2 NOBIAS + Plain R

2 of Y -column residual, bias subtracted
ADJUSTED R2 NOBIAS + Adjusted R

2 of Y -column residual, bias subtracted

Table 13: The above goodness-of-fit statistics are provided in CSV format, one
per each line, with four columns: (Name, [CID], [Disp?], Value). The columns
are: “Name” is the string identifier for the statistic, see the table; “CID” is an
optional integer value that specifies the Y -column index for per-column statis-
tics (note that a bi-/multinomial one-column Y-input is converted into multi-
column); “Disp?” is an optional Boolean value (TRUE or FALSE) that tells us
whether or not scaling by the input dispersion parameter disp has been applied
to this statistic; “Value” is the value of the statistic.

multi-label records) or when the labels such as �1 and 1 are viewed and aver-
aged as numerical response values (with the single-label records). To avoid any
mix-up or information loss, we separately return the predicted probability of
each category label for each record.

When the “actual” response values Y are available, the summary statistics
are computed and written out as described in Table 13. Below we discuss each
of these statistics in detail. Note that in the categorical case (binomial and
multinomial) Y is internally represented as the matrix of observation counts for
each label in each record, rather than just the label ID for each record. The
input Y may already be a matrix of counts, in which case it is used as-is. But if
Y is given as a vector of response labels, each response label is converted into an
indicator vector (0, . . . , 0, 1

l

, 0, . . . , 0) where l is the label ID for this record. All
negative (e.g. �1) or zero label IDs are converted to the 1+maximum label ID.
The largest label ID is viewed as the “baseline” as explained in the section on
Multinomial Logistic Regression. We assume that there are k � 1 non-baseline
categories and one (last) baseline category.

We also estimate residual variances for each response value, although we do
not output them, but use them only inside the summary statistics, scaled and
unscaled by the input dispersion parameter disp, as described below.
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LOGLHOOD Z and LOGLHOOD Z PVAL statistics measure how far the log-
likelihood of Y deviates from its expected value according to the model. The
script implements them only for the binomial and the multinomial distributions,
returning NaN for all other distributions. Pearson’s X2 and deviance G2 often
perform poorly with bi- and multinomial distributions due to low cell counts,
hence we need this extra goodness-of-fit measure. To compute these statistics,
we use:

• the n ⇥ (k+1)-matrix Y of multi-label response counts, in which y
i,j

is
the number of times label j was observed in record i;

• the model-estimated probability matrix P of the same dimensions that
satisfies

P

k+1

j=1

p
i,j

= 1 for all i = 1, . . . , n and where p
i,j

is the model
probability of observing label j in record i;

• the n⇥ 1-vector N where N
i

is the aggregated count of observations in
record i (all N

i

= 1 if each record has only one response label).

We start by computing the multinomial log-likelihood of Y given P and N , as
well as the expected log-likelihood given a random Y and the variance of this
log-likelihood if Y indeed follows the proposed distribution:

`(Y ) = log Prob[Y |P,N ] =
n

X

i=1

k+1

X

j=1

y
i,j

log p
i,j

E
Y

`(Y ) =
n

X

i=1

k+1

X

j=1

µ
i,j

log p
i,j

=
n

X

i=1

N
i

k+1

X

j=1

p
i,j

log p
i,j

Var
Y

`(Y ) =
n

X

i=1

N
i

0

@

k+1

X

j=1

p
i,j

�

log p
i,j

�

2 �
 

k+1

X

j=1

p
i,j

log p
i,j

!

2

1

A

Then we compute the Z-score as the di↵erence between the actual and the
expected log-likelihood `(Y ) divided by its expected standard deviation, and its
two-sided p-value in the Normal distribution assumption (`(Y ) should approach
normality due to the Central Limit Theorem):

Z =
`(Y )� E

Y

`(Y )
p

Var
Y

`(Y )
; p-value(Z) = Prob

h

�

�Normal(0, 1)
�

� > |Z|
i

A low p-value would indicate “underfitting” if Z ⌧ 0 or “overfitting” if Z � 0.
Here “overfitting” means that higher-probability labels occur more often than
their probabilities suggest.

We also apply the dispersion input (disp) to compute the “scaled” version
of the Z-score and its p-value. Since `(Y ) is a linear function of Y , multiplying
the GLM-predicted variance of Y by disp results in multiplying Var

Y

`(Y ) by
the same disp. This, in turn, translates into dividing the Z-score by the square
root of the dispersion:

Zdisp =
�

`(Y ) � E
Y

`(Y )
� �

p

disp ·Var
Y

`(Y ) = Z/
p

disp
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Finally, we recalculate the p-value with this new Z-score.

PEARSON X2, PEARSON X2 BY DF, and PEARSON X2 PVAL: Pearson’s residual
X2-statistic is a commonly used goodness-of-fit measure for linear models [11].
The idea is to measure how well the model-predicted means and variances match
the actual behavior of response values. For each record i, we estimate the mean
µ
i

and the variance v
i

(or disp · v
i

) and use them to normalize the residual:
r
i

= (y
i

�µ
i

)/
p
v
i

. These normalized residuals are then squared, aggregated by
summation, and tested against an appropriate �2 distribution. The computation
of X2 is slightly di↵erent for categorical data (bi- and multinomial) than it is
for numerical data, since y

i

has multiple correlated dimensions [11]:

X2 (numer.) =
n

X

i=1

(y
i

� µ
i

)2

v
i

; X2 (categ.) =
n

X

i=1

k+1

X

j=1

(y
i,j

�N
i

p
i,j

)2

N
i

p
i,j

The number of degrees of freedom #d.f. for the �2 distribution is n � m for
numerical data and (n � m)k for categorical data, where k = ncol(Y ) � 1.
Given the dispersion parameter disp, the X2 statistic is scaled by division:
X2

disp = X2/disp. If the dispersion is accurate, X2/disp should be close
to #d.f. In fact, X2/#d.f. over the training data is the dispersion estimator
used in our GLM.dml script, see (14). Here we provide X2/#d.f. and X2

disp/#d.f.
as PEARSON X2 BY DF to enable dispersion comparison between the training data
and the test data.

NOTE: For categorical data, both Pearson’s X2 and the deviance G2 are
unreliable (i.e. do not approach the �2 distribution) unless the predicted means
of multi-label counts µ

i,j

= N
i

p
i,j

are fairly large: all � 1 and 80% are at
least 5 [7]. They should not be used for “one label per record” categoricals.

DEVIANCE G2, DEVIANCE G2 BY DF, and DEVIANCE G2 PVAL: Deviance G2 is
the log of the likelihood ratio between the “saturated” model and the linear
model being tested for the given dataset, multiplied by two:

G2 = 2 log
Prob[Y | saturated model]

Prob[Y | tested linear model]
(15)

The “saturated” model sets the mean µsat

i

to equal y
i

for every record (for
categorical data, psat

i,j

= y
i,j

/N
i

), which represents the “perfect fit.” For records
with y

i,j

2 {0, N
i

} or otherwise at a boundary, by continuity we set 0 log 0 = 0.
The GLM likelihood functions defined in (13) become simplified in ratio (15)
due to canceling out the term c(y, a) since it is the same in both models.

The log of a likelihood ratio between two nested models, times two, is known
to approach a �2 distribution as n ! 1 if both models have fixed parameter
spaces. But this is not the case for the “saturated” model: it adds more pa-
rameters with each record. In practice, however, �2 distributions are used to
compute the p-value of G2 [11]. The number of degrees of freedom #d.f. and
the treatment of dispersion are the same as for Pearson’s X2, see above.

Column-wise statistics. The rest of the statistics are computed separately
for each column of Y . As explained above, Y has two or more columns in
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bi- and multinomial case, either at input or after conversion. Moreover, each
y
i,j

in record i with N
i

� 2 is counted as N
i

separate observations y
i,j,l

of
0 or 1 (where l = 1, . . . , N

i

) with y
i,j

ones and N
i

� y
i,j

zeros. For power
distributions, including linear regression, Y has only one column and all N

i

= 1,
so the statistics are computed for all Y with each record counted once. Below
we denote N =

P

n

i=1

N
i

� n. Here is the total average and the residual average
(residual bias) of y

i,j,l

for each Y -column:

AVG TOT Y
j

=
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N

n

X

i=1

y
i,j

; AVG RES Y
j

=
1

N

n

X

i=1

(y
i,j

� µ
i,j

)

Dividing by N (rather than n) gives the averages for y
i,j,l

(rather than y
i,j

).
The total variance, and the standard deviation, for individual observations y

i,j,l

is estimated from the total variance for response values y
i,j

using independence

assumption: Var y
i,j

= Var
P

Ni

l=1

y
i,j,l

=
P

Ni

l=1

Var y
i,j,l

. This allows us to esti-
mate the sum of squares for y

i,j,l

via the sum of squares for y
i,j

:
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Analogously, we estimate the standard deviation of the residual y
i,j,l

� µ
i,j,l

:
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Here m0 = m if m includes the intercept as a feature and m0 = m + 1 if it
does not. The estimated standard deviations can be compared to the model-
predicted residual standard deviation computed from the predicted means by
the GLM variance formula and scaled by the dispersion:

PRED STDEV RES
j

=
hdisp

N

n

X

i=1

v(µ
i,j

)
i

1/2

We also compute the R2 statistics for each column of Y , see Table 14 for details.
We compute two versions of R2: in one version the residual sum-of-squares
(RSS) includes any bias in the residual that might be present (due to the lack
of, or inaccuracy in, the intercept); in the other version of RSS the bias is
subtracted by “centering” the residual. In both cases we subtract the bias
in the total sum-of-squares (in the denominator), and m0 equals m with the
intercept or m+ 1 without the intercept.

Returns

The matrix of predicted means (if the response is numerical) or probabilities
(if the response is categorical), see “Description” subsection above for more
information. Given Y, we return some statistics in CSV format as described in
Table 13 and in the above text.
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2 where the residual sum-of-squares includes the bias contribution:
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Table 14: The R2 statistics we compute in GLM-predict.dml

Examples

Note that in the examples below the value for “disp” input argument is set
arbitrarily. The correct dispersion value should be computed from the training
data during model estimation, or omitted if unknown (which sets it to 1.0).

Linear regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs dfam=1

vpow=0.0 link=1 lpow=1.0 disp=5.67 X=/user/biadmin/X.mtx
B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv
Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Linear regression example, prediction only (no Y given):
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=1 vpow=0.0 link=1 lpow=1.0 X=/user/biadmin/X.mtx
B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv

Binomial logistic regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=2 link=2 disp=3.0004464 X=/user/biadmin/X.mtx
B=/user/biadmin/B.mtx M=/user/biadmin/Probabilities.mtx
fmt=csv Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Binomial probit regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=2 link=3 disp=3.0004464 X=/user/biadmin/X.mtx
B=/user/biadmin/B.mtx M=/user/biadmin/Probabilities.mtx
fmt=csv Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Multinomial logistic regression example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs

dfam=3 X=/user/biadmin/X.mtx B=/user/biadmin/B.mtx
M=/user/biadmin/Probabilities.mtx fmt=csv
Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv
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Poisson regression with the log link example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs dfam=1

vpow=1.0 link=1 lpow=0.0 disp=3.45 X=/user/biadmin/X.mtx
B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv
Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

Gamma regression with the inverse (reciprocal) link example:
hadoop jar SystemML.jar -f GLM-predict.dml -nvargs dfam=1

vpow=2.0 link=1 lpow=-1.0 disp=1.99118 X=/user/biadmin/X.mtx
B=/user/biadmin/B.mtx M=/user/biadmin/Means.mtx fmt=csv
Y=/user/biadmin/Y.mtx O=/user/biadmin/stats.csv

5 Matrix Factorization

5.1 Principle Component Analysis

Description
Principle Component Analysis (PCA) is a simple, non-parametric method

to transform the given data set with possibly correlated columns into a set
of linearly uncorrelated or orthogonal columns, called principle components.
The principle components are ordered in such a way that the first component
accounts for the largest possible variance, followed by remaining principle
components in the decreasing order of the amount of variance captured from
the data. PCA is often used as a dimensionality reduction technique, where the
original data is projected or rotated onto a low-dimensional space with basis
vectors defined by top-K (for a given value of K) principle components.

Usage

-f path/PCA.dml -nvargs INPUT=path/file K=int
CENTER=0/1 SCALE=0/1
PROJDATA=0/1 OFMT=csv/text
MODEL=path|file OUTPUT=path/file

Arguments

• INPUT: Location (on HDFS) to read the input matrix.

• K: Indicates dimension of the new vector space constructed from K princi-
ple components. It must be a value between 1 and the number of columns
in the input data.

• CENTER (default: 0): Indicates whether or not to center input data prior
to the computation of principle components.

• SCALE (default: 0): Indicates whether or not to scale input data prior to
the computation of principle components.
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• PROJDATA: Indicates whether or not the input data must be projected
on to new vector space defined over principle components.

• OFMT (default: csv): Specifies the output format. Choice of comma-
separated values (csv) or as a sparse-matrix (text).

• MODEL: Either the location (on HDFS) where the computed model is
stored; or the location of an existing model.

• OUTPUT: Location (on HDFS) to store the data rotated on to the new
vector space.

Details
Principle Component Analysis (PCA) is a non-parametric procedure for or-

thogonal linear transformation of the input data to a new coordinate system,
such that the greatest variance by some projection of the data comes to lie on
the first coordinate (called the first principal component), the second greatest
variance on the second coordinate, and so on. In other words, PCA first selects
a normalized direction in m-dimensional space (m is the number of columns
in the input data) along which the variance in input data is maximized – this
is referred to as the first principle component. It then repeatedly finds other
directions (principle components) in which the variance is maximized. At every
step, PCA restricts the search for only those directions that are perpendicu-
lar to all previously selected directions. By doing so, PCA aims to reduce the
redundancy among input variables. To understand the notion of redundancy,
consider an extreme scenario with a data set comprising of two variables, where
the first one denotes some quantity expressed in meters, and the other vari-
able represents the same quantity but in inches. Both these variables evidently
capture redundant information, and hence one of them can be removed. In a
general scenario, keeping solely the linear combination of input variables would
both express the data more concisely and reduce the number of variables. This
is why PCA is often used as a dimensionality reduction technique.

The specific method to compute such a new coordinate system is as follows
– compute a covariance matrix C that measures the strength of correlation
among all pairs of variables in the input data; factorize C according to eigen
decomposition to calculate its eigenvalues and eigenvectors; and finally, order
eigenvectors in the decreasing order of their corresponding eigenvalue. The
computed eigenvectors (also known as loadings) define the new coordinate
system and the square root of eigen values provide the amount of variance in
the input data explained by each coordinate or eigenvector.

Returns When MODEL is not provided, PCA procedure is applied on INPUT
data to generate MODEL as well as the rotated data OUTPUT (if PROJDATA
is set to 1) in the new coordinate system. The produced model consists of
basis vectors MODEL/dominant.eigen.vectors for the new coordinate system;
eigen values MODEL/dominant.eigen.values; and the standard deviation
MODEL/dominant.eigen.standard.deviations of principle components. When
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MODEL is provided, INPUT data is rotated according to the coordinate
system defined by MODEL/dominant.eigen.vectors. The resulting data is
stored at location OUTPUT.

Examples

hadoop jar SystemML.jar -f PCA.dml -nvargs
INPUT=/user/biuser/input.mtx K=10
CENTER=1 SCALE=1
OFMT=csv PROJDATA=1

# location to store model and rotated data
OUTPUT=/user/biuser/pca_output/

hadoop jar SystemML.jar -f PCA.dml -nvargs
INPUT=/user/biuser/test_input.mtx K=10
CENTER=1 SCALE=1
OFMT=csv PROJDATA=1

# location of an existing model
MODEL=/user/biuser/pca_output/

# location of rotated data
OUTPUT=/user/biuser/test_output.mtx

5.2 Matrix Completion via Alternating Minimizations

Description

Low-rank matrix completion is an e↵ective technique for statistical data
analysis widely used in the data mining and machine learning applications.
Matrix completion is a variant of low-rank matrix factorization with the goal
of recovering a partially observed and potentially noisy matrix from a subset
of its revealed entries. Perhaps the most popular applications in which matrix
completion has been successfully applied is in the context of collaborative
filtering in recommender systems. In this setting, the rows in the data matrix
correspond to users, the columns to items such as movies, and entries to
feedback provided by users for items. The goal is to predict missing entries
of the rating matrix. This implementation uses the alternating least-squares
(ALS) technique for solving large-scale matrix completion problems.

Usage

-f path/ ALS.dml -nvargs V=path/file L=path/file R=path/file rank=int
reg=L2|wL2 lambda=double fmt=format

Arguments

V: Location (on HDFS) to read the input (user-item) matrix V to be factorized

L: Location (on HDFS) to write the left (user) factor matrix L

R: Location (on HDFS) to write the right (item) factor matrix R
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rank: (default: 10) Rank of the factorization

reg (default: L2) Regularization:
L2 = L2 regularization;
wL2 = weighted L2 regularization;
if reg is not provided no regularization will be performed.

lambda: (default: 0.000001) Regularization parameter

maxi: (default: 50) Maximum number of iterations

check: (default: FALSE) Check for convergence after every iteration, i.e., updat-
ing L and R once

thr: (default: 0.0001) Assuming check=TRUE, the algorithm stops and conver-
gence is declared if the decrease in loss in any two consecutive iterations
falls below threshold thr; if check=FALSE parameter thr is ignored.

fmt: (default: "text") Matrix file output format, such as text, mm, or csv

Usage: ALS Prediction/Top-K Prediction

-f path/ ALS predict.dml -nvargs X=path/file Y=path/file L=path/file
R=path/file Vrows=int Vcols=int fmt=format

-f path/ ALS topk predict.dml -nvargs X=path/file Y=path/file
L=path/file R=path/file V=path/file K=int fmt=format

Arguments — Prediction/Top-K Prediction

V: Location (on HDFS) to read the user-item matrix V

X: Location (on HDFS) to read the input matrix X with following format:

• for ALS predict.dml: a 2-column matrix that contains the user-ids
(first column) and the item-ids (second column),

• for ALS topk predict.dml: a 1-column matrix that contains the user-
ids.

Y: Location (on HDFS) to write the output of prediction with the following
format:

• for ALS predict.dml: a 3-column matrix that contains the user-ids
(first column), the item-ids (second column) and the predicted ratings
(third column),

• for ALS topk predict.dml: a (K+1)-column matrix that contains the
user-ids in the first column and the top-K item-ids in the remaining
K columns will be stored at Y. Additionally, a matrix with the same
dimensions that contains the corresponding actual top-K ratings will
be stored at Y.ratings; see below for details.

L: Location (on HDFS) to read the left (user) factor matrix L

R: Location (on HDFS) to write the right (item) factor matrix R

Vrows: Number of rows of V (i.e., number of users)
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Table 15: Popular loss functions supported by our ALS implementation; N
i⇤

and N⇤j , respectively, denote the number of nonzero entries in row i and column
j of V .

Vcols Number of columns of V (i.e., number of items)

K: (default: 5) Number of top-K items for top-K prediction

fmt: (default: "text") Matrix file output format, such as text, mm, or csv

Details

Given an m⇥ n input matrix V and a rank parameter r ⌧ min (m,n), low-
rank matrix factorization seeks to find an m⇥r matrix L and an r⇥n matrix R
such that V ⇡ LR, i.e., we aim to approximate V by the low-rank matrix LR.
The quality of the approximation is determined by an application-dependent
loss function L. We aim at finding the loss-minimizing factor matrices, i.e.,

(L⇤, R⇤) = argmin
L,R

L(V, L,R). (16)

In the context of collaborative filtering in the recommender systems it is often
the case that the input matrix V contains several missing entries. Such entries
are coded with the 0 value and the loss function is computed only based on the
nonzero entries in V , i.e.,

L =
X

(i,j)2⌦

l(V
ij

, L
i⇤, R⇤j),

where L
i⇤ and R⇤j , respectively, denote the ith row of L and the jth column of

R, ⌦ = {!
1

, . . . ,!
N

} denotes the training set containing the observed (nonzero)
entries in V , and l is some local loss function.

ALS is an optimization technique that can be used to solve quadratic prob-
lems. For matrix completion, the algorithm repeatedly keeps one of the unknown
matrices (L or R) fixed and optimizes the other one. In particular, ALS alter-
nates between recomputing the rows of L in one step and the columns of R in the
subsequent step. Our implementation of the ALS algorithm supports the loss
functions summarized in Table 5.2 commonly used for matrix completion [16].

Note that the matrix completion problem as defined in (16) is a non-convex
problem for all loss functions from Table 5.2. However, when fixing one of
the matrices L or R, we get a least-squares problem with a globally optimal
solution. For example, for the case of L

Nzsl+wL2

we have the following closed
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form solutions
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n+1,⇤j) denotes the ith row of L
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(resp. jth column
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), � denotes the regularization parameter, I is the identity matrix of
appropriate dimensionality, V
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) refers to the corresponding columns of R
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), and N
1

(resp. N
2

) denotes a diagonal matrix that contains the number
of nonzero entries in row i (column j) of V .

Prediction. Based on the factor matrices computed by ALS we provide
two prediction scripts:

1. ALS predict.dml computes the predicted ratings for a given list of users
and items;

2. ALS topk predict.dml computes top-K item (where K is given as input)
with highest predicted ratings together with their corresponding ratings
for a given list of users.

Returns

We output the factor matrices L and R after the algorithm has converged.
The algorithm is declared as converged if one of the two criteria is meet: (1) the
decrease in the value of loss function falls below thr given as an input parameter
(if parameter check=TRUE), or (2) the maximum number of iterations (defined
as parameter maxi) is reached. Note that for a given user i prediction is possible
only if user i has rated at least one item, i.e., row i in matrix V has at least one
nonzero entry. In case, some users have not rated any items the corresponding
factor in L will be all 0s. Similarly if some items have not been rated at all the
corresponding factors in R will contain only 0s. Our prediction scripts output
the predicted ratings for a given list of users and items as well as the top-K
items with highest predicted ratings together with the predicted ratings for a
given list of users. Note that the predictions will only be provided for the users
who have rated at least one item, i.e., the corresponding rows contain at least
one nonzero entry.

Examples

hadoop jar SystemML.jar -f ALS.dml -nvargs V=/user/biadmin/V
L=/user/biadmin/L R=/user/biadmin/R rank=10 reg="wL2"
lambda=0.0001 maxi=50 check=TRUE thr=0.001 fmt=csv

To compute predicted ratings for a given list of users and items:
hadoop jar SystemML.jar -f ALS-predict.dml -nvargs

X=/user/biadmin/X Y=/user/biadmin/Y L=/user/biadmin/L
R=/user/biadmin/R Vrows=100000 Vcols=10000 fmt=csv

To compute top-K items with highest predicted ratings together with the pre-
dicted ratings for a given list of users:
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hadoop jar SystemML.jar -f ALS-top-predict.dml -nvargs
X=/user/biadmin/X Y=/user/biadmin/Y L=/user/biadmin/L
R=/user/biadmin/R V=/user/biadmin/V K=10 fmt=csv

6 Survival Analysis

6.1 Kaplan-Meier Survival Analysis

Description

Survival analysis examines the time needed for a particular event of interest
to occur. In medical research, for example, the prototypical such event is the
death of a patient but the methodology can be applied to other application
areas, e.g., completing a task by an individual in a psychological experiment or
the failure of electrical components in engineering. Kaplan-Meier or (product
limit) method is a simple non-parametric approach for estimating survival
probabilities from both censored and uncensored survival times.

Usage

-f path/ KM.dml -nvargs X=path/file TE=path/file GI=path/file
SI=path/file O=path/file M=path/file T=path/file alpha=double
etype=greenwood|peto ctype=plain|log|log-log ttype=none|log-
rank|wilcoxon fmt=format

Arguments

X: Location (on HDFS) to read the input matrix of the survival data containing:

• timestamps,
• whether event occurred (1) or data is censored (0),
• a number of factors (i.e., categorical features) for grouping and/or
stratifying

TE: Location (on HDFS) to read the 1-column matrix TE that contains the
column indices of the input matrix X corresponding to timestamps (first
entry) and event information (second entry)

GI: Location (on HDFS) to read the 1-column matrix GI that contains the
column indices of the input matrix X corresponding to the factors (i.e.,
categorical features) to be used for grouping

SI: Location (on HDFS) to read the 1-column matrix SI that contains the
column indices of the input matrix X corresponding to the factors (i.e.,
categorical features) to be used for grouping

O: Location (on HDFS) to write the matrix containing the results of the Kaplan-
Meier analysis KM
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M: Location (on HDFS) to write Matrix M containing the following statistics:
total number of events, median and its confidence intervals; if survival
data for multiple groups and strata are provided each row of M contains
the above statistics per group and stratum.

T: If survival data from multiple groups is available and ttype=log-rank or
ttype=wilcoxon, location (on HDFS) to write the two matrices that con-
tains the result of the (stratified) test for comparing these groups; see
below for details.

alpha: (default: 0.05) Parameter to compute 100(1�↵)% confidence intervals
for the survivor function and its median

etype: (default: "greenwood") Parameter to specify the error type according
to ”greenwood” or ”peto”

ctype: (default: "log") Parameter to modify the confidence interval; ”plain”
keeps the lower and upper bound of the confidence interval unmodified,
”log” corresponds to logistic transformation and ”log-log” corresponds to
the complementary log-log transformation

ttype: (default: "none") If survival data for multiple groups is available spec-
ifies which test to perform for comparing survival data across multiple
groups: ”none”, ”log-rank” or ”wilcoxon” test

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Details

The Kaplan-Meier estimate is a non-parametric maximum likelihood esti-
mate (MLE) of the survival function S(t), i.e., the probability of survival from
the time origin to a given future time. As an illustration suppose that there
are n individuals with observed survival times t
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be censored, in the sense that the end-point of interest has not been observed
for those individuals, and there may be more than one individual with the same
survival time. Let S(t

j

) denote the probability of survival until time t
j

, d
j

be
the number of events at time t

j

, and n
j

denote the number of individual at
risk (i.e., those who die at time t

j

or later). Assuming that the events occur
independently, in Kaplan-Meier method the probability of surviving from t

j

to
t
j+1

is estimated from S(t
j

) and given by

Ŝ(t) =
k

Y

j=1

✓

n
j

� d
j

n
j

◆

,

for t
k

 t < t
k+1

, k = 1, 2, . . . r, Ŝ(t) = 1 for t < t
(1)

, and t
(r+1)

=1. Note that

the value of Ŝ(t) is constant between times of event and therefore the estimate is
a step function with jumps at observed event times. If there are no censored data
this estimator would simply reduce to the empirical survivor function defined
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as nj

n

. Thus, the Kaplan-Meier estimate can be seen as the generalization of
the empirical survivor function that handles censored observations.

The methodology used in our KM.dml script closely follows [8, Sec. 2]. For
completeness we briefly discuss the equations used in our implementation.

Standard error of the survivor function. The standard error of the
estimated survivor function (controlled by parameter etype) can be calculated
as

se{Ŝ(t)} ⇡ Ŝ(t)

⇢

k

X

j=1

d
j

n
j

(n
j

� d
j

)

�

2

,

for t
(k)

 t < t
(k+1)

. This equation is known as the Greenwood’s formula. An
alternative approach is to apply the Petos’s expression

se{Ŝ(t)} =
Ŝ(t)

q

1� Ŝ(t)
p
n
k

,

for t
(k)

 t < t
(k+1)

. Once the standard error of Ŝ has been found we compute
the following types of confidence intervals (controlled by parameter cctype):
The “plain” 100(1� ↵)% confidence interval for S(t) is computed using

Ŝ(t)± z
↵/2

se{Ŝ(t)},

where z
↵/2

is the upper ↵/2-point of the standard normal distribution. Alter-
natively, we can apply the “log” transformation using

Ŝ(t)exp[±z↵/2se{ ˆ

S(t)}/ ˆ

S(t)]

or the “log-log” transformation using

Ŝ(t)exp[±z↵/2se{log[� log

ˆ

S(t)]}].

Median, its standard error and confidence interval. Denote by t̂(50)
the estimated median of Ŝ, i.e., t̂(50) = min{t

i

| Ŝ(t
i

) < 0.5}, where t
i

is the
observed survival time for individual i. The standard error of t̂(50) is given by

se{t̂(50)} =
1

f̂{t̂(50)} se[Ŝ{t̂(50)}],

where f̂{t̂(50)} can be found from

f̂{t̂(50)} =
Ŝ{û(50)}� Ŝ{l̂(50)}

l̂(50)� û(50)
.

Above, û(50) is the largest survival time for which Ŝ exceeds 0.5+✏, i.e., û(50) =
max

�

t
(j)

| Ŝ(t
(j)

) � 0.5 + ✏
 

, and l̂(50) is the smallest survivor time for which

Ŝ is less than 0.5� ✏, i.e., l̂(50) = min
�

t
(j)

| Ŝ(t
(j)

)  0.5 + ✏
 

, for small ✏.
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Log-rank test and Wilcoxon test. Our implementation supports com-
parison of survival data from several groups using two non-parametric proce-
dures (controlled by parameter ttype): the log-rank test and the Wilcoxon test
(also known as the Breslow test). Assume that the survival times in g � 2
groups of survival data are to be compared. Consider the null hypothesis that
there is no di↵erence in the survival times of the individuals in di↵erent groups.
One way to examine the null hypothesis is to consider the di↵erence between
the observed number of deaths with the numbers expected under the null hy-
pothesis. In both tests we define the U -statistics (U

L

for the log-rank test and
U
W

for the Wilcoxon test) to compare the observed and the expected number
of deaths in 1, 2, . . . , g � 1 groups as follows:

U
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n
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◆

,

where d
kj

is the of number deaths at time t
(j)

in group k, n
kj

is the number
of individuals at risk at time t

(j)

in group k, and k = 1, 2, . . . , g � 1 to form
the vectors U

L

and U
W

with (g � 1) components. The covariance (variance)
between U

Lk

and U
Lk

0 (when k = k0) is computed as
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for k, k0 = 1, 2, . . . , g � 1, with

�
kk

0 =

(

1 if k = k0

0 otherwise.

These terms are combined in a variance-covariance matrix V
L

(referred to as
the V -statistic). Similarly, the variance-covariance matrix for the Wilcoxon test
V
W

is a matrix where the entry at position (k, k0) is given by

V
Wkk
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Under the null hypothesis of no group di↵erences, the test statistics
U>
L

V �1

L

U
L

for the log-rank test and U>
W

V �1

W

U
W

for the Wilcoxon test have
a Chi-squared distribution on (g � 1) degrees of freedom. Our KM.dml script
also provides a stratified version of the log-rank or Wilcoxon test if requested. In
this case, the values of the U - and V - statistics are computed for each stratum
and then combined over all strata.

Returns

Blow we list the results of the survival analysis computed by KM.dml. The
calculated statistics are stored in matrix KM with the following schema:
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• Column 1: timestamps

• Column 2: number of individuals at risk

• Column 3: number of events

• Column 4: Kaplan-Meier estimate of the survivor function Ŝ

• Column 5: standard error of Ŝ

• Column 6: lower bound of 100(1� ↵)% confidence interval for Ŝ

• Column 7: upper bound of 100(1� ↵)% confidence interval for Ŝ

Note that if survival data for multiple groups and/or strata is available, each
collection of 7 columns in KM stores the results per group and/or per stratum.
In this case KM has 7g+7s columns, where g � 1 and s � 1 denote the number
of groups and strata, respectively.

Additionally, KM.dml stores the following statistics in the 1-row matrix M
whose number of columns depends on the number of groups (g) and strata (s)
in the data. Below k denotes the number of factors used for grouping and l
denotes the number of factors used for stratifying.

• Columns 1 to k: unique combination of values in the k factors used for
grouping

• Columns k+1 to k+ l: unique combination of values in the l factors used
for stratifying

• Column k + l + 1: total number of records

• Column k + l + 2: total number of events

• Column k + l + 3: median of Ŝ

• Column k+ l+4: lower bound of 100(1�↵)% confidence interval for the
median of Ŝ

• Column k+ l+5: upper bound of 100(1�↵)% confidence interval for the
median of Ŝ.

If there is only 1 group and 1 stratum available M will be a 1-row matrix with
5 columns where

• Column 1: total number of records

• Column 2: total number of events

• Column 3: median of Ŝ

• Column 4: lower bound of 100(1�↵)% confidence interval for the median
of Ŝ
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• Column 5: upper bound of 100(1�↵)% confidence interval for the median
of Ŝ.

If a comparison of the survival data across multiple groups needs to be
performed, KM.dml computes two matrices T and T GROUPS OE that contain
a summary of the test. The 1-row matrix T stores the following statistics:

• Column 1: number of groups in the survival data

• Column 2: degree of freedom for Chi-squared distributed test statistic

• Column 3: value of test statistic

• Column 4: P -value.

Matrix T GROUPS OE contains the following statistics for each of g groups:

• Column 1: number of events

• Column 2: number of observed death times (O)

• Column 3: number of expected death times (E)

• Column 4: (O � E)2/E

• Column 5: (O � E)2/V .

Examples

hadoop jar SystemML.jar -f KM.dml -nvargs X=/user/biadmin/X.mtx
TE=/user/biadmin/TE GI=/user/biadmin/GI SI=/user/biadmin/SI
O=/user/biadmin/kaplan-meier.csv M=/user/biadmin/model.csv
alpha=0.01 etype=greenwood ctype=plain fmt=csv

hadoop jar SystemML.jar -f KM.dml -nvargs X=/user/biadmin/X.mtx
TE=/user/biadmin/TE GI=/user/biadmin/GI SI=/user/biadmin/SI
O=/user/biadmin/kaplan-meier.csv M=/user/biadmin/model.csv
T=/user/biadmin/test.csv alpha=0.01 etype=peto ctype=log
ttype=log-rank fmt=csv

6.2 Cox Proportional Hazard Regression Model

Description

The Cox (proportional hazard or PH) is a semi-parametric statistical
approach commonly used for analyzing survival data. Unlike non-parametric
approaches, e.g., the Kaplan-Meier estimates (Section 6.1), which can be used
to analyze single sample of survival data or to compare between groups of
survival times, the Cox PH models the dependency of the survival times on the
values of explanatory variables (i.e., covariates) recorded for each individual
at the time origin. Our focus is on covariates that do not change value over
time, i.e., time-independent covariates, and that may be categorical (ordinal or
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nominal) as well as continuous-valued.

Usage

-f path/ Cox.dml -nvargs X=path/file TE=path/file F=path/file R=path/file
M=path/file S=path/file T=path/file COV=path/file RT=path/file
XO=path/file MF=path/file alpha=double fmt=format

Arguments — Model Fitting/Prediction

X: Location (on HDFS) to read the input matrix of the survival data containing:

• timestamps,
• whether event occurred (1) or data is censored (0),
• feature vectors

Y: Location (on HDFS) to the read matrix used for prediction

TE: Location (on HDFS) to read the 1-column matrix TE that contains the
column indices of the input matrix X corresponding to timestamps (first
entry) and event information (second entry)

F: Location (on HDFS) to read the 1-column matrix F that contains the column
indices of the input matrix X corresponding to the features to be used for
fitting the Cox model

R: (default: " ") If factors (i.e., categorical features) are available in the input
matrix X, location (on HDFS) to read matrix R containing the start (first
column) and end (second column) indices of each factor inX; alternatively,
user can specify the indices of the baseline level of each factor which needs
to be removed from X. If R is not provided by default all variables are
considered to be continuous-valued.

M: Location (on HDFS) to store the results of Cox regression analysis including
regression coe�cients �

j

s, their standard errors, confidence intervals, and
P -values

S: (default: " ") Location (on HDFS) to store a summary of some statistics
of the fitted model including number of records, number of events, log-
likelihood, AIC, Rsquare (Cox & Snell), and maximum possible Rsquare

T: (default: " ") Location (on HDFS) to store the results of Likelihood ratio
test, Wald test, and Score (log-rank) test of the fitted model

COV: Location (on HDFS) to store the variance-covariance matrix of �
j

s; note
that parameter COV needs to provided as input to prediction.

RT: Location (on HDFS) to store matrix RT containing the order-preserving
recoded timestamps from X; note that parameter RT needs to provided as
input for prediction.

XO: Location (on HDFS) to store the input matrixX ordered by the timestamps;
note that parameter XO needs to provided as input for prediction.
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MF: Location (on HDFS) to store column indices of X excluding the baseline
factors if available; note that parameter MF needs to provided as input for
prediction.

P Location (on HDFS) to store matrix P containing the results of prediction

alpha (default: 0.05) Parameter to compute a 100(1�↵)% confidence interval
for �

j

s

tol (default: 0.000001) Tolerance (epsilon) used in the convergence criterion

moi: (default: 100) Maximum number of outer (Fisher scoring) iterations

mii: (default: 0) Maximum number of inner (conjugate gradient) iterations,
or 0 if no maximum limit provided

fmt: (default: "text") Matrix file output format, such as text, mm, or csv; see
read/write functions in SystemML Language Reference for details.

Usage: Cox Prediction

-f path/ Cox-predict.dml -nvargs X=path/file RT=path/file M=path/file
Y=path/file COV=path/file MF=path/file P=path/file fmt=format

Details

In Cox PH regression model the relationship between the hazard function—
i.e., the probability of event occurrence at a given time—and the covariates is
described as

h
i

(t) = h
0

(t) exp
n

p

X

j=1

�
j

x
ij

o

, (17)

where the hazard function for the ith individual (i 2 {1, 2, . . . , n}) depends on
a set of p covariates x

i

= (x
i1

, x
i2

, . . . , x
ip

), whose importance is measured by
the magnitude of the corresponding coe�cients � = (�

1

,�
2

, . . . ,�
p

). The term
h
0

(t) is the baseline hazard and is related to a hazard value if all covariates
equal 0. In the Cox PH model the hazard function for the individuals may vary
over time, however the baseline hazard is estimated non-parametrically and can
take any form. Note that re-writing (17) we have

log

⇢

h
i

(t)

h
0

(t)

�

=
p

X

j=1

�
j

x
ij

.

Thus, the Cox PH model is essentially a linear model for the logarithm of the
hazard ratio and the hazard of event for any individual is a constant multiple
of the hazard of any other. We follow similar notation and methodology as
in [8, Sec. 3]. For completeness we briefly discuss the equations used in our
implementation.

Factors in the model. Note that if some of the feature variables are
factors they need to dummy code as follows. Let ↵ be such a variable (i.e., a
factor) with a levels. We introduce a� 1 indicator (or dummy coded) variables
X

2

, X
3

. . . , X
a

with X
j

= 1 if ↵ = j and 0 otherwise, for j 2 {2, 3, . . . , a}. In
particular, one of a levels of ↵ will be considered as the baseline and is not
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included in the model. In our implementation, user can specify a baseline level
for each of the factor (as selecting the baseline level for each factor is arbitrary).
On the other hand, if for a given factor ↵ no baseline is specified by the user,
the most frequent level of ↵ will be considered as the baseline.

Fitting the model. We estimate the coe�cients of the Cox model via
negative log-likelihood method. In particular the Cox PH model is fitted by
using trust region Newton method with conjugate gradient [13]. Define the risk
set R(t

j

) at time t
j

to be the set of individuals who die at time t
i

or later.
The PH model assumes that survival times are distinct. In order to handle tied
observations we use the Breslow approximation of the likelihood function

L =
r

Y

j=1

exp(�>s
j

)
⇢

P

l2R(tj)
exp(�>x

l

)

�

dj
,

where d
j

is number individuals who die at time t
j

and s
j

denotes the element-
wise sum of the covariates for those individuals who die at time t

j

, j = 1, 2, . . . , r,

i.e., the hth element of s
j

is given by s
hj

=
P

dj

k=1

x
hjk

, where x
hjk

is the
value of hth variable (h 2 {1, 2, . . . , p}) for the kth of the d

j

individuals (k 2
{1, 2, . . . , d

j

}) who die at the jth death time (j 2 {1, 2, . . . , r}).
Standard error and confidence interval for coe�cients. Note that the

variance-covariance matrix of the estimated coe�cients �̂ can be approximated
by the inverse of the Hessian evaluated at �̂. The square root of the diagonal
elements of this matrix are the standard errors of estimated coe�cients. Once
the standard errors of the coe�cients se(�̂) is obtained we can compute a 100(1�
↵)% confidence interval using �̂± z

↵/2

se(�̂), where z
↵/2

is the upper ↵/2-point
of the standard normal distribution. In Cox.dml, we utilize the build-in function
inv() to compute the inverse of the Hessian. Note that this build-in function
can be used only if the Hessian fits in the main memory of a single machine.

Wald test, likelihood ratio test, and log-rank test. In order to test
the null hypothesis that all of the coe�cients �

j

s are 0, our implementation
provides three statistical test: Wald test, likelihood ratio test, the log-rank test
(also known as the score test). Let p be the number of coe�cients. The Wald

test is based on the test statistic �̂2/se(�̂)
2

, which is compared to percentage
points of the Chi-squared distribution to obtain the P -value. The likelihood
ratio test relies on the test statistic �2 log{L(0)/L(�̂)} (0 denotes a zero vector
of size p ) which has an approximate Chi-squared distribution with p degrees of
freedom under the null hypothesis that all �

j

s are 0. The Log-rank test is based
on the test statistic l = r>L(0)H�1(0)rL(0), where rL(0) is the gradient of
L and H(0) is the Hessian of L evaluated at 0. Under the null hypothesis that
� = 0, l has a Chi-squared distribution on p degrees of freedom.

Prediction. Once the parameters of the model are fitted, we compute the
following predictions together with their standard errors

• linear predictors,

• risk, and
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• estimated cumulative hazard.

Given feature vector X
i

for individual i, we obtain the above predictions at time
t as follows. The linear predictors (denoted as LP) as well as the risk (denoted
as R) are computed relative to a baseline whose feature values are the mean of
the values in the corresponding features. Let Xrel

i

= X
i

� µ, where µ is a row
vector that contains the mean values for each feature. We have LP = Xrel

i

�̂
and R = exp{Xrel

i

�̂}. The standard errors of the linear predictors se{LP}
are computed as the square root of (Xrel

i

)
>
V (�̂)Xrel

i

and the standard error

of the risk se{R} are given by the square root of (Xrel

i

�R)
>
V (�̂)(Xrel

i

�R),
where V (�̂) is the variance-covariance matrix of the coe�cients and � is the
element-wise multiplication.

We estimate the cumulative hazard function for individual i by

Ĥ
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)Ĥ
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where Ĥ
0

(t) is the Breslow estimate of the cumulative baseline hazard given by
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In the equation above, as before, d
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for t
(k)

 t  t
(k+1)

, k = 1, 2, . . . , r � 1.

Returns

Blow we list the results of fitting a Cox regression model stored in matrix M
with the following schema:

• Column 1: estimated regression coe�cients �̂

• Column 2: exp(�̂)

• Column 3: standard error of the estimated coe�cients se{�̂}
• Column 4: ratio of �̂ to se{�̂} denoted by Z

• Column 5: P -value of Z
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• Column 6: lower bound of 100(1� ↵)% confidence interval for �̂

• Column 7: upper bound of 100(1� ↵)% confidence interval for �̂.

Note that above Z is the Wald test statistic which is asymptotically standard
normal under the hypothesis that � = 0.

Moreover, Cox.dml outputs two log files S and T containing a summary
statistics of the fitted model as follows. File S stores the following information

• Line 1: total number of observations

• Line 2: total number of events

• Line 3: log-likelihood (of the fitted model)

• Line 4: AIC

• Line 5: Cox & Snell Rsquare

• Line 6: maximum possible Rsquare.

Above, the AIC is computed as in (12), the Cox & Snell Rsquare is equal to
1� exp{�l/n}, where l is the log-rank test statistic as discussed above and n is
total number of observations, and the maximum possible Rsquare computed as
1� exp{�2L(0)/n} , where L(0) denotes the initial likelihood.

File T contains the following information

• Line 1: Likelihood ratio test statistic, degree of freedom of the correspond-
ing Chi-squared distribution, P -value

• Line 2: Wald test statistic, degree of freedom of the corresponding Chi-
squared distribution, P -value

• Line 3: Score (log-rank) test statistic, degree of freedom of the correspond-
ing Chi-squared distribution, P -value.

Additionally, the following matrices will be stored. Note that these matrices
are required for prediction.

• Order-preserving recoded timestamps RT , i.e., contiguously numbered
from 1 . . . #timestamps

• Feature matrix ordered by the timestamps XO

• Variance-covariance matrix of the coe�cients COV

• Column indices of the feature matrix with baseline factors removed (if
available) MF .

Prediction Finally, the results of prediction is stored in Matrix P with the
following schema

• Column 1: linear predictors
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• Column 2: standard error of the linear predictors

• Column 3: risk

• Column 4: standard error of the risk

• Column 5: estimated cumulative hazard

• Column 6: standard error of the estimated cumulative hazard.

Examples

hadoop jar SystemML.jar -f Cox.dml -nvargs X=/user/biadmin/X.mtx
TE=/user/biadmin/TE F=/user/biadmin/F R=/user/biadmin/R
M=/user/biadmin/model.csv T=/user/biadmin/test.csv
COV=/user/biadmin/var-covar.csv XO=/user/biadmin/X-sorted.mtx
fmt=csv

hadoop jar SystemML.jar -f Cox.dml -nvargs
X=/user/biadmin/X.mtx TE=/user/biadmin/TE F=/user/biadmin/F
R=/user/biadmin/R M=/user/biadmin/model.csv
T=/user/biadmin/test.csv COV=/user/biadmin/var-covar.csv
RT=/user/biadmin/recoded-timestamps.csv
XO=/user/biadmin/X-sorted.csv MF=/user/biadmin/baseline.csv
alpha=0.01 tol=0.000001 moi=100 mii=20 fmt=csv

To compute predictions:
hadoop jar SystemML.jar -f Cox-predict.dml -nvargs

X=/user/biadmin/X-sorted.mtx RT=/user/biadmin/recoded-timestamps.csv
M=/user/biadmin/model.csv Y=/user/biadmin/Y.mtx
COV=/user/biadmin/var-covar.csv MF=/user/biadmin/baseline.csv
P=/user/biadmin/predictions.csv fmt=csv
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