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Abstract— In this paper we present control strategies for 

implementing reconfigurable planar microassmbly using multiple 

stress-engineered MEMS microrobots (MicroStressBots).  A 

MicroStressBot is an electrostatic microrobot that consists of an 

untethered scratch drive actuator (USDA) that provides forward 

motion, and a steering-arm actuator that determines whether the 

robot moves in straight line or turns. The steering-arm is actuated 

through electrostatic pull-down to the substrate initiated by the 

applied global power delivery and control signal. Control of 

multiple MicroStressBots is achieved by varying the geometry of 

the steering-arm, and hence affecting its electrostatic pull-down 

and/or release voltages. Independent control of many 

MicroStressBots is achieved by fabricating the arms of the 

individual microrobots in such a way that the robots move 

differently from one another during portions of the global control 

signal. In this paper we analyze the scalability of control in an 

obstacle free configuration space. Based on robust control 

strategies, we derive the control signals that command some of the 

robots to make progress toward the goal, while the others stay in 

small orbits, for several classes of steering-arm geometries. We 

also present a comprehensive analysis and comparison between 

the numbers of required independent pull-down and release 

voltages, demonstrating significant improvement in terms of the 

efficiency as well as the size of the control signal presented in past 

work. Our analysis presents an important step for developing 

multi-microrobots control of MicroStressBots. 

Keywords: multi-microrobot systems control, MEMS, 

underactuated system. 

I. INTRODUCTION  

 

Microscale robotic systems have many applications in 

areas such as biomedicine [1], surveillance [2], or 

microassembly [3]. In [4, 5, 6] a globally controllable 240 μm 

× 60 μm × 10 μm mobile stress-engineered 

microelectromechanical systems (MEMS) microrobot 

(MicroStressBot) is presented. A MicroStressBot contains an 

untethered scratch drive actuator (USDA) [7] which provides 

forward propulsion, and a steering-arm actuator which controls 

when the robot moves in straight line or turns.    

All these envisioned microrobotic applications rely on the 

combined actions of large number microrobots. The high level 

of underactuation presents in such systems (all robots are 

controlled by a single global control signal), makes the 

simultaneous control of several microrobots significantly more 

challenging than control of single microrobot.  

Controlling a distributed system of many devices that differ 

in behavior falls under the concept of Ensemble Control (EC) 

[8, 9] and Global Control Selective Response (GCSR) [6]. In 

Ensemble Control (EC) the robots are modeled as 

nonholonomic unicycles with inhomogeneity in turning and 

linear velocity. By using state feedback control policy, globally 

asymptotically stable ensemble of unicycles controlled by 

uniform control inputs, is achieved. It has been shown in [9] that 

the ensemble of nonholonomic unicycles is asymptotically 

stable by using a suitable Lyapunov function. Although EC 

provides promising control policy to any number of robots in 

theory but in practice it is not successful for more than ten of 

robots due to the control error (system noise), which cancels the 

inhomogeneity effect. Also EC needs perfect state estimation 

and the controllers required at worst a matrix inversion and at 

best a summation over all robot states which is not practical for 

large number of robots. In [9], the control policy is based on the 

robots local coordinate and the trajectory of each robot is 

independent and disregards collision, which is impractical for 

any microrobotic system due to Stiction effects.  

However, in this paper, we present the theory and proof of 

a novel control voltage methods for multiple heterogeneous 

stress-engineered Microrobots (MicroStressBots) that provide 

highly underactuated, reconfigurable, time-efficient and multi-

shapes microassembly system.  Furthermore, this is the first 

technique relying on inhomogeneity that the control primitives 

can always be achieved with a constant number of control 

primitives and, unlike  the previous techniques, do not increase 

with size of the system, enabling the implementation of the 

control strategy presented in [6].  

The paper is structured as follows: in Sec. II, we introduce 

the stress-engineered Microrobot (MicroStressBot). The 

general approach to controlling multiple MicroStressBots is 

discussed in Sec. III. Sec. IV describes the theory, proof, and 

scalability analysis for String-Cluster System and ESATC 

systems. Concluding discussion regarding the scalability of 

these different systems is described in Sec. V.  
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II. STRESS-ENGINEERED MICROROBOT 

 

The stress-engineered MEMS microrobot, MicroStressBot 

for short, consists of an untethered scratch drive actuator 

(USDA) [7] that provides forward motion and a curved 

steering-arm actuator that determines whether the robot moves 

straight or turns. Fig. 1 shows the schematic of the 

MicroStressBot. The USDA is composed of a 120 μm × 60 μm 

backplate and a 1.5-μm-tall bushing. The steering-arm actuator 

consists of a 120 to 160 μm long cantilever beam with a circular 

pad and a 0.75 μm-deep dimple.  

 

 

 
 

Fig. 1: The schematic of the MicroStressBots.   

 

The MicroStressBots are fabricated using surface 

micromachining PolyMUMPS foundry process [10]. The 

initially planar steering arms is curved out-of-plane (upwards) 

using a stress engineering process [11]. This process adds a 

patterned layer of a stressor material (Chromium, Cr) with high 

compressive stress to provide an upward curvature. The 

thickness of the deposited material and the area covered by the 

stressor layer must be precisely defined, such that the steering 

arm is deflected at the preset actuation voltage. 

The microrobot operates on a grid of insulated interdigitated 

electrodes. When voltage is applied between sets of electrodes, 

the electrodes and the conductive chassis of the microrobot 

form a capacitive circuit, and an electric potential is induced on 

the microrobot. This potential causes the microrobot body to be 

bent to the substrate, and the scratch-drive converts this vertical 

motion into a forward step. This voltage (waveform) changes 

over time to provide power to the USDA and to control the state 

of the steering arm. This waveform is called the control 

waveform. The waveform is divided into two parts:  

a) Control cycle: containing control pulses, that sets the 

state of the steering-arm actuator, and b) power-delivery cycle: 

that provides power to the USDA. The power-delivery cycle 

consisting of stepping pulses, changing between a maximum 

(𝑉ℎ𝑖𝑔ℎ ) and a minimum (𝑉𝑙𝑜𝑤 ). In order for the USDA to 

actuate, 𝑉ℎ𝑖𝑔ℎ 
must be greater than the minimum voltage (𝑉𝑓𝑙𝑥 )  

at which the backplate of the USDA obtains enough curvature 

to produce   

b) a forward step, while 𝑉𝑙𝑜𝑤 must be less than the 

maximum voltage (𝑉𝑟𝑒𝑙) at which that curvature is sufficiently 

relieved to generate forward motion. 𝑉𝑓𝑙𝑥  and 𝑉𝑟𝑒𝑙  are described 

in more detail in [12, 13]. 

Similar to an electrostatic cantilever beam [14], the steering 

arm of each microrobot has two distinct voltage levels at which 

the arm suddenly changes states. This is the snap-down voltage 

at which the arm is pulled in contact with the substrate as the 

robot is turning and the release voltage at which the arm is 

released and the robot is commanded to move straight. We call 

these voltage levels the transition voltages of the steering arm. 

The transition voltages are determined by the steering-arm 

designs. The steering arm can be either raised to cause the robot 

to move in a straight line, or lowered to cause the robot to turn. 

We call the position of the steering-arm actuator the hysteresis 

state of the microrobot (arm raised, hysteresis state = 0; arm 

lowered, hysteresis state = 1). A system of 𝑛 MicroStressBots 

contains 2𝑛possible hysteresis states (all 2𝑛  combinations of n 

steering arms being raised or lowered).  

III. GCSR: A STRATEGY FOR MULTI-MICROROBOT CONTROL 

AND ASSEMBLY 

 

As mentioned in [6], GCSR is a strategy to control and 

maneuver robots to complete the microassembly. GCSR uses 

design-induced heterogeneity of MicroStressBots and resulting 

differences between their trajectories to maneuver the robots 

from an initial to a target goal configuration. As stated in [6], 

GCSR uses the control matrix to control the single robot 

sequentially while the other robots confined to the circular 

trajectories. A mapping between the control primitives 

(waveforms that program the hysteresis states of the system) 

and the motion of the individual robots is defined using a 

control matrix, where each entry contains the hysteresis state of 

one of the microrobot during the applied control primitive. The 

resulting sequence of control primitives is called the control 

sequence, usually denoted by S . Fig. 2 shows the trajectory of 

a microrobot D1 from initial (i) to target (ii) configuration 

(docking with a seed-shape (iii)), during the application of 

control sequence S={P0,P2,P1,P2,P1,P2,P1,P2,P1}. During this 

partial assembly robot D2 orbits without advancing to goal. This 

type of STRING (STRIcly Non-nested hysteresis Gap) GCSR 

is designed to be sequential (i.e. one robot at a time is 

maneuvered towards the goal) to increase the number of 

controllable microrobot and enable robust colision avoidance.  

The control matrix denoting the correspopndens between 

control primitives in a STRING microaseembly is called a 

STRING control matrix. It has been shown in [6] that 

microassembly can be implemented on a group of 

MicroStressBots if a STRING matrix can be generated for such 

system. 

IV. BEYOND STRING CONTROL: ENABELING GCSR THROUGH 

CONTROL VOLTAGE DIFFERENTIATION 

  

Successful implementation of GCSR control relies on a set of 

control primitives that couple the motion of the microrobots in 

100 µm  



a specific way (later called STRING control primitives).  For a 

given system of n microrobots, let 𝑉𝑑𝑖and 𝑉𝑢𝑖  denote the snap-

down and release voltages of microrobot i. We define the 

control voltage bandwidth (𝜉) of a MicroStressBot system as 

the number of independent electromechanically addressable 

transition voltage levels (pull-down and release voltages) of the 

global control signal. In general, a microrobotic system with 

fewer accessible hysteresis states has a lower control voltage 

bandwidth requirement. More specifically, the accessibility of 

the hysteresis states depends on the relation between the 

hysteresis gaps of the individual robots. Let 𝛿𝑣 be the maximum 

deviation of the transition voltage manifested during the 

microrobot operation. We define two transition voltages to be 

significantly independent if they are separated by at least 2𝛿𝑣. 

 

 
 
Fig. 2: Trajectories of MicroStressBots D1 and D2 during partial microassembly. 
Reproduced with permission from [6]. 

 

Several steering-arm design configurations (NHG, STRING, 

and SESat) have been proposed in [6] to achieve GCSR. The 

objective of all these designs is to reduce the control bandwidth 

size with respect to the number of robots, i.e. maximize the 

number of independently controllable microrobots for a given 

microrobotic system. Per [15],   Nested Hystersis Gaps (NHG) 

is the system of n steering arms, sorted according to 

ascending𝑉𝑑𝑖, when (𝑉𝑑𝑖+2𝛿𝑣<𝑉𝑑𝑗) and (𝑉𝑢𝑖  − 2𝛿𝑣>𝑉𝑢𝑗 ), for 

all 𝑖  < 𝑗 .  NHG systems can access all 2𝑛  hysteresis states. 

However each device requires two unique control voltage 

levels, and so the control voltage bandwidth requirement of this 

system is 𝜉𝑛 = 2𝑛 .  However, NHG is sufficient but not 

necessary to achieve GCSR.  Strictly non-nested hysteresis gaps 

(STRING) [6] is an 𝑛 - microrobotic system, primarily sorted 

according to ascending values of 𝑉𝑑 , and secondarily sorted 

according to ascending values of 𝑉𝑢, has non-nested hysteresis 

gaps if (𝑉𝑑𝑖 ≤ 𝑉𝑑𝑗) and (𝑉𝑢𝑖 ≤ 𝑉𝑢𝑗 ), for all 𝑖 < 𝑗. It has been 

shown in [6] that STRING system can access 𝑛 + 1  hysteresis 

states and the control bandwidth requirement for a STRING 

system is𝜉𝑛 = 𝑛 + 1 . Although STRING system cannot not 

access all the 2𝑛   states, as sequential mircoassembly algorithm 

makes the system controllable when implementing 

microassembly. STRING reduces the control bandwidth 

requirements from 𝜉𝑛 = 2𝑛  (NHG) to 𝜉𝑛 = 𝑛 + 1 . Further, 

sublinear reduction 𝜉𝑛  has been done under the SESat control 

strategy [6]. It has been shown in [6] that SESat needs 𝜉𝑛 =

 ⌈2√𝑛⌉ while it can access at least 𝑛 + 1hysteresis states which 

are essential for sequential microassembly algorithm.      

Although SESat could reduce the control bandwidth 

requirements to 𝑂 (2√𝑛), only 3 out of the 4 hysteresis states 

for the first two robots forming the seed-shape are accessible, 

making their independent control challenging. In this paper we 

present new set of control strategies (String-cluster System and 

Electromechanically SATurated Cluster system (ESATC) 

) that not only has the control voltage bandwidth 𝜉𝑛 = 𝑂(𝑛) and   

𝜉𝑛  = 𝑂 (2√𝑛) but also are capable of controlling two 

microrobots simultaneously.   

A. String-Cluster System 

In this section we introduce a control strategy that is capable 

to control two microrobots simultaneously at each iteration of 

assembly process. We start with the following definitions: 

Definition. I: Nested-Group-Microrbots (NGM) set:  

Set of all groups of two Microrobots that forms a Nested-

Hysteresis-Gaps (NHGs) structure is Nested-Group-Microrbots 

(NGM). 𝑀  is the set of all microrobots in the system. 𝑀 =
{ 𝐷1, 𝐷2, … , 𝐷𝑛  }; where 𝐷𝑖   is ith Micorobot in the system.  

  
𝑁𝐺𝑀 =

 {(𝐷𝑖 , 𝐷𝑗) |(𝐷𝑖 , 𝐷𝑗  ∈ 𝑀 ,    𝑉𝑑𝑗 > 𝑉𝑑𝑖 , 𝑉𝑢𝑖 > 𝑉𝑢𝑗)  𝑖, 𝑗 ∈ 𝑁 }     

 

where Vd and Vu are snap-down and release voltages. 

Definition. II:  Nested-Group-Microrbots Cluster (Cluster):  

Each member of NGM is called Cluster. 

   𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = (𝐷𝑖 , 𝐷𝑗) ∈ 𝑁𝐺𝑀;  𝑖, 𝑗 ∈ 𝑁   

 

In each Cluster, we define 𝑉𝑑𝑙 = 𝑀𝑖𝑛 (𝑉𝑑𝑖 , 𝑉𝑑𝑗 ) , 𝑉𝑑ℎ =

𝑀𝑎𝑥 (𝑉𝑑𝑖 , 𝑉𝑑𝑗 ), 𝑉𝑢𝑙 = 𝑀𝑖𝑛 (𝑉𝑢𝑖 , 𝑉𝑢𝑗 )  and 𝑉𝑢ℎ =

𝑀𝑎𝑥 (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) , respectively. Fig. 3. Shows the relation 

between the transition voltages in a Cluster, the snap-down and 

release voltages are shown as circles and rectangles, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                        
Fig.3. Cluster Structure 
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𝑆𝑡𝑟𝑖𝑛𝑔 − 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = {𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑁𝐺𝑀 | ∀𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘 , 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑚  (𝑘 < 𝑚), (𝑉𝑑ℎ,𝑘  ≤ 𝑉𝑑𝑙,𝑚;  𝑉𝑢ℎ,𝑘  ≤  𝑉𝑢𝑙,𝑚  
  
 );  𝑚, 𝑘 ∈ 𝑁 } 

 

Definition. III: STRIctly Non-nested hysteresis-Gaps 

(String)-Cluster (String-Cluster) system: 

This system consists of Clusters where each two microrobots 

in two different Clusters form a String system. This system is 

formed by Equation. 3. 

It is convenient for us to define a lexicographic sorting 

of the robots, using two keys. In general, an M- Clusters 

microrobotic system, primarily sorted according to ascending 

values of  𝑉𝑑𝑙 , 𝑉𝑑ℎ     and secondarily sorted according to 

ascending values of 𝑉𝑢𝑙, 𝑉𝑢ℎ  has non-nested hysteresis gaps 

between each two microrbots belong to different Clusters.  

However, in the case when 𝑉𝑑𝑙,𝑗 − 𝑉𝑑𝑙,𝑖 < 2𝛿𝑣, 𝑉𝑑ℎ,𝑗− 𝑉𝑑ℎ,𝑖 < 

2𝛿𝑣 and 𝑉𝑢𝑙,𝑗 − 𝑉𝑢𝑙,𝑖< 2δv, 𝑉𝑢ℎ,𝑗 − 𝑉𝑢ℎ,𝑖 < 2𝛿𝑣  , the behavior 

of robots of Clusteri and Clusterj is indistinguishable, and 

four such microrobots in Clusteri  and Clusterj  cannot be 

controlled independently. We call such two Clusters a 

degenerate Cluster pair. Fig. 4 shows String-Cluster system.  

   

Lemma. 1: An M- String-Cluster system has exactly 

“n+3=2M+3” accessible hysteresis states, where M= no. 

Clusters, n = no. Microrobots and M=n/2.   

 Proof: By Induction: 

Base condition: An String-Cluster system with M=2 has 

seven accessible states.  

In each Cluster we have two microrobots sorted in an 

NHG system format. Each of the microrobots got 2 states: 

(0=arm up) and (1= arm down). Hence we have 22 = 4 states 

(00= arm up, arm up), (01= arm up, arm down), (10= arm 

down, arm up) and (11= arm down, arm down). Let M=2 

Clusters microrobtic system, C1 and C2, where each Cluster 

Ci consists of two microrobots {D1, D2}. Without loss of 

generality, 𝑉𝑑ℎ,1 ≤ 𝑉𝑑𝑙,2 and 𝑉𝑢ℎ,1 ≤ 𝑉𝑑𝑙,2. Fig. 5 shows the 

ranges for transition voltages of Cluster (C2), such that the 

M=2 Clusters microrobtic system becomes String-Cluster.   

Let 𝑉δ , … , 𝑉Ψ be significantly independent transition 

voltage levels, ordered such that 𝑉δ  <  𝑉γ < 𝑉β  < 𝑉α  < 𝑉ζ <  

𝑉θ <  𝑉λ  < 𝑉ε  < 𝑉φ <  𝑉Ω<  𝑉Ψ  with |𝑉Ω − 𝑉φ 
| =  2𝛿𝑣  and 

|𝑉ζ − 𝑉α| = 2𝛿𝑣  .  Let 𝑉𝑑𝑙,1 = 𝑉ε , 𝑉𝑑ℎ,1 = 𝑉φ and  𝑉𝑢𝑙,1 = 𝑉β  

,  𝑉𝑢ℎ,1 = 𝑉α. It follows that the snap-down voltage 𝑉𝑑𝑙,2 can 

have value 𝑉1  ∈  (𝑉φ  ,𝑉Ω], or voltage 𝑉2= Vφ and the snap-

down voltage 𝑉𝑑ℎ,2 can have value 𝑉3  ∈  (𝑉Ω ,𝑉Ψ], or voltage 

𝑉4   = 𝑉Ω  and |𝑉𝑑ℎ,2 − 𝑉𝑑𝑙,2 | ≥  2𝛿𝑣 . Similarly, the release 

voltage, 𝑉𝑢ℎ,2  can have the value 𝑉5  ∈  (𝑉ζ , 𝑉𝑟𝑒𝑙  − 2𝛿𝑣] or 

voltage 𝑉6= 𝑉ζ , and the release voltage 𝑉𝑢𝑙,3  can have the 

value 𝑉7  ∈ (𝑉α , 𝑉ζ] or voltage 𝑉8  = 𝑉αand |𝑉𝑢ℎ,2 − 𝑉𝑢𝑙,2 | ≥

 2𝛿𝑣. Consequently, for the M+1 Clusters microrobtic system 

to remain String-Cluster, one of the following combinations 

of the snap-down and release voltages for C2 must hold: (𝑉1, 

𝑉5, 𝑉3, 𝑉7), (𝑉1, 𝑉5, 𝑉3, 𝑉8), (𝑉1, 𝑉6, 𝑉3, 𝑉8), (𝑉2, 𝑉5, 𝑉3, 𝑉7), 

(𝑉2, 𝑉5, 𝑉3, 𝑉8), (𝑉2, 𝑉6, 𝑉3, 𝑉8), (𝑉2, 𝑉5, 𝑉4, 𝑉7), (𝑉2, 𝑉5, 𝑉4, 

𝑉8) and (𝑉2, 𝑉6, 𝑉4, 𝑉8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.   String-Cluster system 

 

 

 

 

 
Fig. 5. Illustration of the proof of Lemma. 1 

 

 

  

We examine each case separately:  

 

(𝑉1 , 𝑉5 , 𝑉3 , 𝑉7): because of 𝑉𝑑𝑙,2 , 𝑉𝑑ℎ,2are greater than 

the snap-down voltages of  C1, ( 𝑉𝑑𝑙,2> 𝑉𝑑𝑙,1, 𝑉𝑑𝑙,2> 𝑉𝑑ℎ,1), 

and ( 𝑉𝑑ℎ,2> 𝑉𝑑𝑙,1, 𝑉𝑑ℎ,2>  𝑉𝑑ℎ,1), we can only snap down the 

arms of D1 and D2 in C2 after we snap down the arms of C1. 

 Since𝑉𝑢𝑙,2, 𝑉𝑢ℎ,2 is greater than the release voltages of C1, ( 

𝑉𝑢𝑙,2   > 𝑉𝑢𝑙,1   , 𝑉𝑢𝑙,2  >𝑉𝑢ℎ,1 ), and (𝑉𝑢ℎ,2  > 𝑉𝑢𝑙,1 and 𝑉𝑢ℎ,2 

>𝑉𝑢ℎ,1), we can only release the arms of C1 after we have 

released the arms of D1 and D2 in C2. Because the (𝑉𝑑ℎ,2 > 

𝑉𝑑𝑙,2>𝑉𝑑ℎ,1,𝑉𝑑𝑙,1), we can snap down C1 and D1 of C2 while 

(3) 



D2 of C2 is released. Since the 𝑉𝑢ℎ,2 > 𝑉𝑢𝑙,2 >𝑉𝑢𝑙,1,𝑉𝑢ℎ,1), we 

can release D1 of C2 while D2 and all other clusters are 

snapped down. Consequently, we can change the states of C2 

to “01”, “10” or “11” when C1 are in state “11”. During all 

other states of the system the state of C2 must remain “00”. 

Consequently, the number of accessible hysteresis states 

increase by exactly 3. 

 

(𝑉1,𝑉5, 𝑉3, 𝑉8): This case is similar to (𝑉1, 𝑉5, 𝑉3, 𝑉7), 

except that the arm of D1 of Cluster C1 is released at the same  

time as the arm of D2 of Cluster C2. As long as 𝑉𝑑ℎ,2 > 𝑉𝑑𝑙,1, 

we can snap down the arm of D2 of C2 only after all other 

clusters are in state “11”. As a consequence the number of 

accessible hysteresis states increase by exactly 3.  

 

(𝑉2, 𝑉5, 𝑉3, 𝑉7): The snap-down voltage D1 of C2 is equal 

to the snap-down voltage of D2 of C1, (𝑉𝑑𝑙,2=𝑉𝑑ℎ,1). In this 

case, the arm of D1 of C2 is snapped down at the same time as 

the arm of D2 of C1. Because the release voltage of  D1 of C2  

is greater than the release voltages of  C1, (𝑉𝑢ℎ,2  > 𝑉𝑢𝑙,1 , 

𝑉𝑢ℎ,2), we can only release the arm D2 of C1 after we release 

the arm D1 of C2. As in the (𝑉1, 𝑉5, 𝑉3, 𝑉7) case, the state of 

C2 must be “00” except when C1, is snapped down, then D1 of 

C2 can be either “00”, “01”, “10” or “11” by varying the 

release voltages.  Consequently, the number of accessible 

hysteresis states increases by exactly 3.     

 

(𝑉1, 𝑉6, 𝑉3, 𝑉8): This case is similar to (𝑉1, 𝑉5, 𝑉3, 𝑉8). 
(𝑉2, 𝑉6, 𝑉3, 𝑉8): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉8). 

(𝑉2, 𝑉5, 𝑉4, 𝑉7): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉7). 

(𝑉2, 𝑉5, 𝑉4, 𝑉8): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉8). 

(𝑉2, 𝑉6, 𝑉4, 𝑉8): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉8).  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6. Illustration of the proof of Lemma. 1 

 

Inductive step: adding a Cluster (changing the size of the 

system from M to M+1 Clusters) extends the number of 

accessible control states by exactly 3, provided that both M 

and M+1 Clusters microrobtic system remain String-Cluster.  

Let M Clusters microrobtic system, C1,…, CM, where each 

Cluster Ci consist of two microrobots { D1, D2},  be a String-

Cluster system sorted according to 𝑉𝑑𝑙,𝑖, 𝑉𝑑ℎ,𝑖and  𝑉𝑢𝑙,𝑖, 𝑉𝑢ℎ,𝑖. 

Without loss of generality, 𝑉𝑑ℎ,𝑀  ≤  𝑉𝑑𝑙,𝑀+1  and 𝑉𝑢ℎ,𝑀  ≤ 

𝑉𝑢𝑙,𝑀+1 . Fig. 6 shows the ranges for transition voltages of 

ClusterM+1 (CM+1), such that the new M+1 Clusters 

microrobtic system remain String-Cluster.    

Let 𝑉δ , … , 𝑉Ψ be significantly independent transition 

voltage levels, ordered such that 𝑉δ  <  𝑉γ < 𝑉β  < 𝑉α  < 𝑉ζ <  

𝑉θ <  𝑉λ  < 𝑉ε  < 𝑉φ <  𝑉Ω<  𝑉Ψ  with |𝑉Ω − 𝑉φ 
| =  2𝛿𝑣  and 

|𝑉ζ − 𝑉α| = 2𝛿𝑣  .    Let 𝑉𝑑𝑙,𝑀 = 𝑉ε  , 𝑉𝑑ℎ,𝑀 = 𝑉φ and  𝑉𝑢𝑙,𝑀 

=𝑉β ,  𝑉𝑢ℎ,𝑀  =𝑉α . It follows that the snap-down voltage 

𝑉𝑑𝑙,𝑀+1 can have value 𝑉1  ∈  (𝑉φ  ,𝑉Ω], or voltage 𝑉2  = 𝑉φ  and 

the snap-down voltage 𝑉𝑑ℎ,𝑀+1  can have value 𝑉3  ∈  (𝑉Ω  ,  

𝑉Ψ ], or voltage 𝑉4  = 𝑉Ω  and |𝑉𝑑ℎ,𝑀+1 − 𝑉𝑑𝑙,𝑀+1 | ≥  2𝛿𝑣 . 

Similarly, the release voltage, 𝑉𝑢ℎ,𝑀+1 can have the value 𝑉5 

∈  (𝑉ζ, 𝑉𝑟𝑒𝑙  − 2𝛿𝑣] or voltage 𝑉6= 𝑉ζ, and the release voltage 

𝑉𝑢𝑙,𝑀+1  can have the 𝑉7  ∈ (𝑉α , 𝑉ζ ]  or voltage 𝑉8  = 𝑉α  and 

|𝑉𝑢ℎ,𝑀+1 − 𝑉𝑢𝑙,𝑀+1 | ≥  2𝛿𝑣 . Consequently, for the M+1 

Clusters microrobtic system to remain String-Cluster, one of 

the following combinations of the snap-down and release 

voltages for CM+1 must hold: : (𝑉1, 𝑉5, 𝑉3, 𝑉7), (𝑉1, 𝑉5, 𝑉3, 

𝑉8), (𝑉1, 𝑉6, 𝑉3, 𝑉8), (𝑉2, 𝑉5, 𝑉3, 𝑉7), (𝑉2, 𝑉5, 𝑉3, 𝑉8), (𝑉2, 𝑉6, 

𝑉3, 𝑉8), (𝑉2, 𝑉5, 𝑉4, 𝑉7), (𝑉2, 𝑉5, 𝑉4, 𝑉8) and (𝑉2, 𝑉6, 𝑉4, 𝑉8).    

We examine each case separately:  

      

(𝑉1, 𝑉5, 𝑉3, 𝑉7): because of 𝑉𝑑𝑙,𝑀+1, 𝑉𝑑ℎ,𝑀+1 are greater 

than the snap-down voltages of  C1, … , CM , (𝑉𝑑𝑙,𝑀+1 > 𝑉𝑑𝑙,𝑖 , 

𝑉𝑑ℎ,𝑖)  and (𝑉𝑑ℎ,𝑀+1 > 𝑉𝑑𝑙,𝑖,  𝑉𝑑ℎ,𝑖),  i ∈ ZM  where ZM = {1,…, 

M}, we can only snap down the arm of D1 and D2 in CM+1 after 

we snap down the arms of all other clusters.      

Since 𝑉𝑢𝑙,𝑀+1, 𝑉𝑢ℎ,𝑀+1 is greater than the release voltages of 

C1, … , CM , (𝑉𝑢𝑙,𝑀+1  > 𝑉𝑢𝑙,𝑖 , 𝑉𝑢ℎ,𝑖 ) , and (𝑉𝑢ℎ,𝑀+1  > 𝑉𝑢𝑙,𝑖 , 

𝑉𝑢ℎ,𝑖 ),  i ∈ ZM where ZM = {1,…, M}, we can only release the 

arms of all C1, … , CM after we have released  the arm of D1 

and D2 in CM+1. Because the 𝑉𝑑ℎ,𝑀+1 > 𝑉𝑑𝑙,𝑀+1> 𝑉𝑑𝑙,𝑖, 𝑉𝑑ℎ,𝑖, i 
∈ ZM where ZM = {1,…, M}  , we can snap down all other 

clusters and D1 of CM+1 while D2 of CM+1 is released. Since 

the (𝑉𝑢ℎ,𝑀+1 > 𝑉𝑢𝑙,𝑀+1 > 𝑉𝑢𝑙,𝑖, 𝑉𝑢ℎ,𝑖), i ∈ ZM where ZM = {1,…, 

M}, we can release D1 of CM+1 while D2 and all other clusters 

are snapped down. Consequently, we can change the states of 

CM+1 to “01”, “10” or “11” when C1,…, CM  are in state “11”. 

During all other states of the system the state of CM+1 must 

remain “00”. Consequently, the number of accessible 

hysteresis states increase by exactly 3. 

 

(𝑉1,𝑉5, 𝑉3, 𝑉8): This case is similar to (𝑉1, 𝑉5, 𝑉3, 𝑉7), 

except that the arm of D1 of Cluster CM is released at the same 

time as the arm of D2 of Cluster CM+1. As long as 𝑉𝑑ℎ,𝑀+1 > 

𝑉𝑑𝑙,𝑀 , we can snap down the arm of D2 of CM+1 only after all 



other clusters are in state “11”. As a consequence the number 

of accessible hysteresis states increase by exactly 3.    

 

(𝑉2 , 𝑉5 , 𝑉3 , 𝑉7): The snap-down voltage D1 of CM+1 is 

equal to the snap-down voltage of D2 of CM, 𝑉𝑑𝑙,𝑀+1=𝑉𝑑ℎ,𝑀. 

In this case, the arm of D1 of CM+1 is snapped down at the 

same time as the arm of D2 of CM. Because the release voltage 

of  D1 of CM+1 is greater than the release voltages of  C1, … , 
CM, 𝑉𝑢ℎ,𝑀+1 > 𝑉𝑢𝑙,𝑖, 𝑉𝑢ℎ,𝑖, i ∈ ZM where ZM = {1,…, M}, we can 

only release the arm D2 of CM after we release the arm D1 of 

CM+1. As in the (𝑉1, 𝑉5, 𝑉3, 𝑉7) case, the state of CM+1 must be 

“00” except when C1, … , CM are all snapped down, then of 

D1 of CM+1 can be either “00”, “01”, “10” or “11” by varying 

the release voltages.  Consequently, the number of accessible 

hysteresis states increases by exactly 3.          

   

(𝑉2, 𝑉5, 𝑉3, 𝑉8): This case is similar to (𝑉1, 𝑉5, 𝑉3, 𝑉7), 

except that The snap-down voltage D1 of CM+1 is equal to the 

snap-down voltage of D2 of CM, 𝑉𝑑𝑙,𝑀+1=𝑉𝑑ℎ,𝑀. In this case, 

the arm of D1 of CM+1 is snapped down at the same time as 

the arm of D2 of CM. Because the release voltage of  D1 of 

CM+1 is greater than the release voltages of  C1, … , CM, 

𝑉𝑢ℎ,𝑀+1 > 𝑉𝑢𝑙,𝑖, 𝑉𝑢ℎ,𝑖 ,   i ∈ ZM  where  ZM = {1,…, M}, we can 

only release the arm D2 of CM after we release the arm D1 of 

CM+1.  As in the (𝑉1, 𝑉5, 𝑉3, 𝑉7) case, the state of CM+1 must 

be “00” except when C1, … , CM are all snapped down, then 

CM+1 can be either “00”, “01”, “10” or “11” by varying the 

release voltages. Consequently, the number of accessible 

hysteresis states increase by exactly 3.     

     

(𝑉2, 𝑉6, 𝑉3, 𝑉8): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉8). 

(𝑉1, 𝑉6, 𝑉3, 𝑉8): This case is similar to (𝑉1, 𝑉5, 𝑉3, 𝑉8).  

(𝑉2, 𝑉5, 𝑉4, 𝑉7): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉7). 

(𝑉2, 𝑉5, 𝑉4, 𝑉8): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉8). 

(𝑉2, 𝑉6, 𝑉4, 𝑉8): This case is similar to (𝑉2, 𝑉5, 𝑉3, 𝑉8). 

 

We have shown that adding a Cluster to a String-Cluster, 

such that the resulting system remains a String-Cluster, 

increases the number of accessible hysteresis states by 

exactly 3.  Combined with the base case (n = 1, four hysteresis 

states), it follows by induction that every M- String-Cluster 

system has exactly “n+3=2M+3” accessible hysteresis 

states, where M= number of Clusters, n number of 

Microrobots and M=n/2.  

We now construct the control primitives and 

corresponding control matrix that can access the n + 3 

hysteresis states of an M- String-Cluster system. The 

ordering of the clusters is determined by the transition 

voltages of the steering arms. We construct the control 

primitive 𝑃𝑗(𝑆)  such that it assigns the state “11” to all 

clusters Ci for 𝑖 < 𝑗,  and “00” to all cluster Ci  for 𝑖 > 𝑗, and 

base on the value of (𝑆), it can assign the states  “01”, “10” 

or“11” to Cj. Pj is defined by a control cycle containing two 

control pulses, 𝑃𝑗(𝑆) = (𝑉𝑎,1, 𝑉𝑎,2) with a decision variable 

(𝑆).  Consider the String-Cluster system shown in Fig. 7, 

where  𝑉δ, … , 𝑉Ω represent significantly independent control 

voltage levels. (𝑆) selects the Hysteresis state of Cj:  

 

 

 Cj -Hysteresis-States = {

′00′   𝑤ℎ𝑒𝑛 𝑆 = 0
′01′   𝑤ℎ𝑒𝑛 𝑆 = 1
′10′   𝑤ℎ𝑒𝑛 𝑆 = 2
′11′    𝑤ℎ𝑒𝑛 𝑆 = 3

    

  

   

We define 𝑃𝑗(𝑆) as 

 

 

𝑃𝑗(𝑆) = 

{
 
 

 
 
(𝑉𝑑𝑙,𝑗 , 𝑉𝑢𝑙,𝑗

+ )      𝑖𝑓 𝑗 ∈  𝑍𝑀 , 𝑆 = 0 

(𝑉𝑑ℎ,𝑗, 𝑉𝑢𝑙,𝑗
+ )      𝑖𝑓 𝑗 ∈  𝑍𝑀 , 𝑆 = 1 

(𝑉𝑑𝑙,𝑗 , 𝑉𝑢ℎ,𝑗
+ )     𝑖𝑓 𝑗 ∈  𝑍𝑀 , 𝑆 = 2

(𝑉𝑑ℎ,𝑗 , 𝑉𝑢ℎ,𝑗
+ )     𝑖𝑓 𝑗 ∈  𝑍𝑀 , 𝑆 = 3

               

     

      

where 𝑉𝑢𝑙,𝑗
+  = 𝑉𝑢𝑙,𝑗 + 𝛿𝑣 and 𝑉𝑢ℎ,𝑗

+  = 𝑉𝑢ℎ,𝑗+ 𝛿𝑣.   

 

When  𝑆 = 0, the first control pulse (𝑉𝑎,1) snaps down 

the steering arms of all the Clusters Ci, i ∈ Zj-1, where Zj-1 = 

{1,…, j-1},  and D1 of cluster Cj. The second control pulse 

(𝑉𝑎,2) keeps all the Clusters Ci, i ∈ Zj-1 snapped down while 

all other clusters are released. 

The first control pulse (𝑉𝑎,1) snaps down the steering arms of 

all the Clusters Ci, i ∈ Zj where Zj = {1,…, j},  as well as any 

devices D1 of Ck , k > j with 𝑉𝑑𝑙,𝑘  = 𝑉𝑑ℎ,𝑗  and the second 

control pulse (𝑉𝑎,2) releases all the cluster Ck , k > j and the 

device D1 of Cj that were snapped down by the first control 

pulse when 𝑆 = 1, because in the case when 𝑉𝑑𝑙,𝑘 = 𝑉𝑑ℎ,𝑗, it 

must hold that 𝑉𝑢𝑙,𝑗 < 𝑉𝑢𝑙,𝑗
+  ≤𝑉𝑢𝑙,𝑘< 𝑉𝑢ℎ,𝑘.  

 

For 𝑆 = 2, the first control pulse (𝑉𝑎,1) snaps down the 

steering arms of all the Clusters Ci, i ∈ Zj-1, where Zj-1 = {1,…, 

j-1},  and D1 of cluster Cj. The second control pulse (𝑉𝑎,2) 

keeps all the Clusters Ci, i ∈ Zj-1 and D1 of cluster Cj snapped 

down while all other clusters are released.  

 

Similarly, The first control pulse (𝑉𝑎,1) snaps down the 

steering arms of all the Clusters Ci, i ∈ Zj, as well as any 

devices D1 of Ck , k > j with 𝑉𝑑𝑙,𝑘  = 𝑉𝑑ℎ,𝑗  and the second 

control pulse (𝑉𝑎,2) releases all the cluster Ck, k > j that were  

snapped down by the first control pulse when 𝑆 = 3, because 

in the case when 𝑉𝑑𝑙,𝑘= 𝑉𝑑ℎ,𝑗, it must hold that 𝑉𝑢𝑙,𝑗 < 𝑉𝑢𝑙,𝑗
+  ≤

𝑉𝑢𝑙,𝑘.  

The 𝑛 + 3 control primitives generated by 𝑃𝑗(𝑆) form a 

(𝑛 + 3) × (𝑛)  control matrix (𝐴) .  An example of such a 

control matrix for two clusters (Four Devices) is:  

 

 

 

 

(4) 

(5) 



𝐴 =

[
 
 
 
 
 
 
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1]

 
 
 
 
 
 

 

 

We refer to 𝐴 as the String-Cluster control matrix, the 

𝑛 + 3control primitives contained in M as the String-Cluster 

control primitives, and the 𝑛 + 3 hysteresis states accessible 

using these control primitives as the String-Cluster hysteresis 

states. Note that because adding three new control states to a 

String-Cluster system requires the addition of two 

independent voltage level (per Lemma. 1), the control 

bandwidth requirement for a String-Cluster system is 𝜉𝑛 =
𝑛 + 2.  

As it can be seen, String-Cluster system needs a control 

voltage bandwidth of order 𝑛 but as compared to [6] String 

(which could control one robot at a time), it can control and 

maneuver two robots simultaneously which results in time 

efficient and also reconfigurable system because the first two 

robots that create the assembly point need not to be in a 

specific configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 7.    Illustration of control cycle in String-Cluster System 

 

B. Electromechanically SATurated Cluster system 

(ESATC) 

 

 Lemma. 2: Any M- Cluster system with no degenerate pairs 

of clusters can be sorted such that all “n+3=2M+3” String-

Cluster hysteresis states are accessible, where M= number 

of Clusters, n = number of Microrobots and M=n/2.  

 

Proof: By Construction:  

 

Consider an M- Cluster system with(𝐾) independent snap-

down voltages, and (𝐿)  independent release voltages. 

Assuming no degenerate pairs of clusters, it follows that n = 

2M ≤ 𝐾𝐿, where M= no. Clusters, n = no. Microrobots and 

M=n/2. Consider a system, sorted primarily according to 

snap-down voltages 𝑉𝑑𝑙,𝑖 , 𝑉𝑑ℎ,𝑖  and secondarily sorted 

according to increasing release voltages 𝑉𝑢𝑙,𝑖 and 𝑉𝑢ℎ,𝑖. Fig. 8 

shows such a system when k = 4 and l = 4.  Note that sorting 

ensures a monotonic increase of 𝑉𝑢𝑙,𝑖  and 𝑉𝑢ℎ,𝑖  with 

increasing index i.  We call such a system 

Electromechanically SATurated Cluster system (ESATC). In 

this system 𝑛 = 2 (𝐾 − 1)( 
𝐿

2
) or 𝑛 = 2 (𝐿 − 1)( 

𝐾

2
).  

For such an order, there exists a formula𝑃𝑗(𝑆) , shown in 

equation (8), which generates all (𝑛 + 3)  String-Cluster 

control primitives. 𝑃𝑗(𝑆)  is defined by a control cycle 

containing six control pulses, 𝑃𝑗(𝑆)= (𝑉𝑎,1 , 𝑉𝑎,2 , 𝑉𝑎,3 , 𝑉𝑎,4 , 

𝑉𝑎,5 , 𝑉𝑎,6 ) with a decision variable 𝑆 . Unlike the previous 

techniques, the new control primitives do not increase with 

population size, enabling the implementation of the control 

presented in [6]. The control cycle for each control primitive 

defined by equation (8) contains a sequence exactly 6 control 

pulses. Again (𝑆)  selects the Hysteresis state of Cj in 

Equation. 7. We construct the control primitive 𝑃𝑗(𝑆)  in 

Equation. 8, Where 𝑉𝑚𝑎𝑥  =  𝑀𝐴𝑋{𝑉𝑑ℎ,𝑗}, 1≤ j ≤ n ; 𝑉𝑢𝑙,𝑗
+  = 

𝑉𝑢𝑙,𝑗  + 𝛿𝑣, 𝑉𝑢ℎ,𝑗
+  = 𝑉𝑢ℎ,𝑗+ 𝛿𝑣, 𝑉𝑢𝑙,𝑗

−  = 𝑉𝑢𝑙,𝑗  − 𝛿𝑣 and   𝑉𝑑𝑙,𝑗
−  = 

𝑉𝑑𝑙,𝑗 - 𝛿𝑣.    

 

𝑃𝑗(𝑆)  generates 𝑛 + 3 control primitives that form a 

String-Cluster matrix, by causing all clusters Ci (i< j) to be 

in the state “11”, and all cluster Ci (i > j) to be in the state 

“00”, while based on the value of (𝑆) it assigns the states 

“01”, “10” or“11” to Cj. Consider the base case, where all Cj, 

(j ∈ ZM) are in state “00”.  

   

Proof:   

We define Group (Gi), ( 𝑖 ∈  𝜇 = {1, … ,𝑀 𝐾 − 1⁄ } , Where 

𝑀  is the number of clusters and 𝑘   is the number of 

independent snap-down voltages) to be the set of all clusters 

Cj, (j ∈ ZM) with equal 𝑉𝑢𝑙,𝑗 and 𝑉𝑢ℎ,𝑗.   

    

 

𝐺𝑖 

= {
𝐶𝑙𝑢𝑠𝑡𝑒𝑟

∈ 𝑁𝐺𝑀 
|

  ∀𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑚  ∈  𝐺𝑖 ,

(𝑉𝑢𝑙,𝑗  = 𝑉𝑢𝑙,𝑘;  𝑉𝑢ℎ,𝑗  =   𝑉𝑢𝑙,𝑘  
  
 );  𝑚, 𝑘 ∈ 𝑍𝑀  

} 

 

 

We make the inductive argument:  

Base condition: Base case keeps all cluster Cj, (j ∈ ZM) in 

state“00”. 

Inductive step: after applying of the first two control pulses 

(𝑉𝑚𝑎𝑥, 𝑉𝑢𝑙, 𝑗−), all Groups (G1, …, Gj-1 ) are in state “11” 

and all cluster Gi, (i > j-1) are in state “00”.  We will show 

that by applying the sequence of four primitive control 

voltages shown in Eq. (9), the system will be in one of the 

three states of String-Cluster system, where Cluster (Cj ) will 

be in state “01”, “10”or “11” based on the value of (S) while 

all clusters (C1, …, Cj-1) are in state “11” and all cluster Ci, (i  

(6) 

(7) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Example of an ESATC system with k = 4 and l = 4. 

 

 

> j) are in state “00”.  The 𝑉𝑢𝑙,𝑖 , 𝑉𝑢ℎ,𝑖and 𝑉𝑑𝑙,𝑖, 𝑉𝑑ℎ,𝑖, i ∈ ZM  

sorting implies that, for a cluster Ck , k > j, only six cases are 

possible with respect to its transition voltages: 

 

(a) 𝑉𝑑𝑙,𝑗< 𝑉𝑑ℎ,𝑗  < 𝑉𝑑𝑙,𝑘  < 𝑉𝑑ℎ,𝑘  and 𝑉𝑢𝑙,𝑗  =𝑉𝑢𝑙,𝑘  < 

𝑉𝑢ℎ,𝑗= 𝑉𝑑ℎ,𝑘 (e.g., j = 1 and k = 3 in Fig. 8)  

  

(b) 𝑉𝑑𝑙,𝑗< 𝑉𝑑ℎ,𝑗  < 𝑉𝑑𝑙,𝑘< 𝑉𝑑ℎ,𝑘  and 𝑉𝑢𝑙,𝑗< 𝑉𝑢ℎ,𝑗< 

𝑉𝑢𝑙,𝑘< 𝑉𝑢ℎ,𝑘 (e.g., j = 1 and k = 6 in Fig. 8)   

 

(c) 𝑉𝑑𝑙,𝑗< 𝑉𝑑ℎ,𝑗= 𝑉𝑑𝑙,𝑘  < 𝑉𝑑ℎ,𝑘  and 𝑉𝑢𝑙,𝑗  =𝑉𝑢𝑙,𝑘  < 

𝑉𝑢ℎ,𝑗= 𝑉𝑢ℎ,𝑘 (e.g., j = 2 and k = 3 in Fig. 8) 

 

(d) 𝑉𝑑𝑙,𝑗< 𝑉𝑑ℎ,𝑗= 𝑉𝑑𝑙,𝑘  < 𝑉𝑑ℎ,𝑘  and 𝑉𝑢𝑙,𝑗< 𝑉𝑢ℎ,𝑗  < 

𝑉𝑢𝑙,𝑘< 𝑉𝑢ℎ,𝑘 (e.g., j = 2 and k = 6 in Fig. 8)  

 

(e) 𝑉𝑑𝑙,𝑘  < 𝑉𝑑ℎ,𝑘  ≤ 𝑉𝑑𝑙,𝑗< 𝑉𝑑ℎ,𝑗  and 𝑉𝑢𝑙,𝑗< 𝑉𝑢ℎ,𝑗  < 

𝑉𝑢𝑙,𝑘 < 𝑉𝑢ℎ,𝑘 (e.g., j = 2 and k = 4 in Fig. 8) 

 

(f) 𝑉𝑑𝑙,𝑗= 𝑉𝑑𝑙,𝑘= < 𝑉𝑑ℎ,𝑗= 𝑉𝑑ℎ,𝑘  and 𝑉𝑢𝑙,𝑗< 𝑉𝑢ℎ,𝑗  < 

𝑉𝑢𝑙,𝑘< 𝑉𝑢ℎ,𝑘 (e.g., j = 1 and k = 4 in Fig. 8).  

 

 

 

Cj -Hysteresis-States = {

′00′   𝑤ℎ𝑒𝑛 𝑆 = 0
′01′   𝑤ℎ𝑒𝑛 𝑆 = 1
′10′   𝑤ℎ𝑒𝑛 𝑆 = 2
′11′   𝑤ℎ𝑒𝑛 𝑆 = 3

 

 

 

𝑃𝑗(𝑆)= 

{
 
 
 
 

 
 
 
 
(𝑉𝑚𝑎𝑥,   𝑉𝑢𝑙, 𝑗−,   𝑉𝑑𝑙, 𝑗,  𝑉𝑢𝑙, 𝑗+,  𝑉𝑑𝑙,  𝑗−,  𝑉𝑢ℎ,  𝑗+)  

𝑖𝑓 𝑗 ∈  𝑍𝑀 ,   𝑆 = 0    

(𝑉𝑚𝑎𝑥, 𝑉𝑢𝑙, 𝑗−, 𝑉𝑑ℎ, 𝑗,  𝑉𝑢𝑙, 𝑗+, 𝑉𝑑𝑙, 𝑗−, 𝑉𝑢ℎ, 𝑗+)    
 𝑖𝑓 𝑗 ∈  𝑍𝑀 ,     𝑆 = 1

(𝑉𝑚𝑎𝑥, 𝑉𝑢𝑙, 𝑗−, 𝑉𝑑𝑙, 𝑗, 𝑉𝑢ℎ, 𝑗+,  𝑉𝑢ℎ, 𝑗+, 𝑉𝑢ℎ, 𝑗+)   

 𝑖𝑓 𝑗 ∈  𝑍𝑀 ,      𝑆 = 2 

(𝑉𝑚𝑎𝑥, 𝑉𝑢𝑙, 𝑗−, 𝑉𝑑ℎ, 𝑗, 𝑉𝑢𝑙, 𝑗+, 𝑉𝑑𝑙, 𝑗+,  𝑉𝑢ℎ, 𝑗+)   
 𝑖𝑓 𝑗 ∈  𝑍𝑀 ,       𝑆 = 3

 

 

 

                                                                                                                    

 

 

set Cj to state “01” and Ck =”00” and will release D1 of 

all clusters Ci = (i ≤ j) with𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗.  Finally, 

𝑉𝑑𝑙, 𝑗+and 𝑉𝑢ℎ, 𝑗+will set Cj to state “11” again while 

keeping Ck in state if 𝑆 = 0 then 

𝑃𝑗(𝑆) =

(𝑉𝑚𝑎𝑥,   𝑉𝑢𝑙, 𝑗−,   𝑉𝑑𝑙, 𝑗,  𝑉𝑢𝑙, 𝑗+,  𝑉𝑑𝑙,  𝑗−,  𝑉𝑢ℎ,  𝑗+)  :  

  

Case (a), (b):  𝑉𝑑𝑙, 𝑗 sets cluster Cj to state “10”, while Ck, k 

> j is in state “00”. 𝑉𝑢𝑙, 𝑗+ will set Cj to state “00” and will 

release D1 of all clusters Ci (i ≤ j) with 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗. By 

applying the remaining control primitives𝑉𝑑𝑙, 𝑗−, 𝑉𝑢ℎ, 𝑗+, all 

D1 of all clusters Ci (i ≤ j) with 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗 will snapped 

down while keeping the state of Cj in “00”.      

 

 if  𝑆 = 1 then  

𝑃𝑗 (𝑆) = 

 (𝑉𝑚𝑎𝑥, 𝑉𝑢𝑙, 𝑗−, 𝑉𝑑ℎ, 𝑗, 𝑉𝑢𝑙, 𝑗+, 𝑉𝑑𝑙, 𝑗−, 𝑉𝑢ℎ, 𝑗+):  
   

(8) 

(9) 



It is clear that in case (a) and (b): 𝑉𝑑ℎ, 𝑗 sets cluster Cj to state 

“11”, while Cksd, k > j is in state “00”.  Consequently, 𝑉𝑢𝑙, 𝑗+ 

will set Cj to state “01” and will release D1 of all clusters Ci 

(i ≤ j) with  𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗 . By applying the remaining 

control primitives 𝑉𝑑𝑙, 𝑗−, 𝑉𝑢ℎ, 𝑗+, all D1 of all clusters Ci (i 

≤ j) with 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗 will snapped down while keeping 

the state of Cj in “01”.    Case (c), (d):   𝑉𝑑ℎ, 𝑗 sets cluster Cj 

to state “11” and Ck,  k > j to “10”.  Consequently, 𝑉𝑢𝑙, 𝑗+  

 

 

Table 1: Comparison of the control voltage bandwith requirements, ξn , the number of control pulses of n-robot NHG, Reconfigurability and Multi-shape-
Assembly of STRING, SESat systems, String-Cluster and SESATC. 

 

 

 

 

 

 

 

 

 

 

 

 

will set Cj to state “01” and Ck =”00” and will release D1 of 

all clusters Ci (i ≤ j) with 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗. By applying the 

remaining control primitives𝑉𝑑𝑙, 𝑗−, 𝑉𝑢ℎ, 𝑗+ , all D1 of all 

clusters Ci (i ≤ j) with 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗 will snapped down 

while keeping the state of Cj in “01”.     Case (e), (f):   𝑉𝑑ℎ, 𝑗 
sets clusters Cj and Ck , k > j to state “11”.  Consequently, 

𝑉𝑢𝑙, 𝑗+ will set Cj to state “01” and Ck =”00” and will release 

D1 of all clusters Ci (i ≤ j) with 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗. By applying 

the remaining control primitives𝑉𝑑𝑙, 𝑗−, 𝑉𝑢ℎ, 𝑗+, all D1 of all 

clusters Ci (i ≤ j) 𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗 will snapped down while 

keeping the state of Cj in “01”.   

 

 if  𝑆 = 2  then  

𝑃𝑗 (𝑆) = 

(𝑉𝑚𝑎𝑥, 𝑉𝑢𝑙, 𝑗−, 𝑉𝑑𝑙, 𝑗, 𝑉𝑢ℎ, 𝑗+, 𝑉𝑢ℎ, 𝑗+, 𝑉𝑢ℎ, 𝑗+):   

 

Case (a), (b):  𝑉𝑑𝑙, 𝑗 sets cluster Cj to state “10”, while Ck, k 

> j is in state “00”. Consequently, 𝑉𝑢ℎ, 𝑗+ will keep Cj in 

state “01”. Case (c), (d): 𝑉𝑑𝑙, 𝑗 sets cluster Cj to state “10”, 

while Ck, k > j is in state “00”. Consequently, 𝑉𝑢ℎ, 𝑗+ will 

keep Cj in state “01”.  Case (e), (f): 𝑉𝑑𝑙, 𝑗 sets cluster Cj to 

state “10”, while Ck, k > j is in state “11”. Consequently, 

𝑉𝑢ℎ, 𝑗+ will keep Cj in state “01” and release cluster Ck.  

if  𝑆 = 3 then   

 

𝑃𝑗 (𝑆) = 

 (𝑉𝑚𝑎𝑥 , 𝑉𝑢𝑙, 𝑗−,   𝑉𝑑ℎ, 𝑗, 𝑉𝑢𝑙, 𝑗+, 𝑉𝑑𝑙, 𝑗+, 𝑉𝑢ℎ, 𝑗+):  

 

Case (a), (b): 𝑉𝑑ℎ, 𝑗 sets cluster Cj to state “11”, while Ck, k 

> j is in state “00”.   Consequently, 𝑉𝑢𝑙, 𝑗+ will set Cj to state 

“01” and will release D1 of all clusters Ci = (i ≤ j) 

with𝑉𝑢ℎ, 𝑖 =  𝑉𝑢ℎ, 𝑗. Finally, by applying 𝑉𝑑𝑙, 𝑗+, 𝑉𝑢ℎ, 𝑗+ , 

Cj will be in state “11” and all clusters Ci = (i ≤ j) will be 

snapped down.     

 

 

 

Case (c), (d): 𝑉𝑑ℎ, 𝑗 sets cluster Cj to state “11” and Ck,  k > 

j to “10”.  Consequently, 𝑉𝑢𝑙, 𝑗+ will “00”.   

Case (e), (f): 𝑉𝑑ℎ, 𝑗 sets cluster Cj to state “11” and Ck,  k > j 

to “11”.  By applying 𝑉𝑢𝑙, 𝑗+, 𝑉𝑑𝑙, 𝑗+, 𝑉𝑢ℎ, 𝑗+  Cj will be in 

“11” while Ck is released.     

 

 

 

Theorem : An algorithm that can plan the motion (i.e., finds 

the control sequence) for a String-Cluster system can be 

applied to plan the motion for any (ESATC) system of 

stress-engineered microrobots. 

 

Proof:  A consequence of Lemma 2; a string-cluster control 

matrix can be constructed for any M-(ESATC) microrobotic 

system.  

Theorem 1 allows us to further reduce the control 

bandwidth requirements𝜉𝑛 . The control voltage bandwidth 

requirement for a microrobot system with 𝐾  independent 

snap-down voltage levels and 𝐿 independent release voltage 

levels is 𝜉𝑛  = 𝐾+ 𝐿. In an Electromechanically SATurated 

Cluster system (ESATC), the number of non-degenerate 

microrobots, is 𝑛 = (𝐾 − 1)( 𝐿) or 𝑛 = (𝐾)( 𝐿 − 1). It follows 

that n is maximized when 𝐿  = 𝐾  = 𝜉𝑛 /2, and 𝑛 =  ⌈1 +

 √1 + 4𝑛 ⌉  ≈  ⌈1 + √4𝑛 ⌉ =  ⌈1 +  2√𝑛 ⌉ . We call such a 

system symmetric Electromechanically SATurated Cluster 

system (SESATC). Table. 1 compares the control voltage 

bandwidth requirements, the number of control pulses in the 

control cycle, Reconfigurability and Multi-shapes-Assembly 

of the five classes of microrobotic systems: a) NHG, b) 

STRING, c) SESat, d) String-Cluster and e) SESATC.    

 NHG STRING SESat String-Cluster SESATC 

ξn 2n n+1 ⌈2√𝑛⌉ n+2 ⌈1 +  2√𝑛 ⌉. 

No.  control pulses 1 2 O(n) 2 6 

Number of robots with 

ξn=20 

10 19 100 18 90 

Reconfigurable YES NO NO YES YES 

Multi-shapes-Assembly YES NO NO YES YES 



V. CONCLUSION 

 

In this paper, we presented a comprehensive analysis of the 

scalability of different methods for differentiating the 

behavior of MicroStressBots using electrostatic hysteresis. 

We have shown that by the two new control strategies not 

only we can have a highly underactuated system but also we 

will have robust controllable system which could complete 

any microassembly process started from any configuration. 

These control methods are sufficient to implement a 

reconfigurable system. These results lay the theoretical 

foundation for developing new methods to control of large 

number of MEMS microrobots.  
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