
Slide 1

Extending Tuscany

Apache Tuscany

Slide 2

Contents

� What can be extended?

� How to add an extension module?

� How to add an implementation type?

� How to add a binding type?

� How to add a interface type (TBD)

� How to add a data binding type?

Slide 3

What can be extended?

� The SCA assembly model can be extended with
support for new interface types, implementation
types. and binding types. Tuscany is architected for
extensibilities including:

� Implementation types

� Binding types

� Data binding types

� Interface types

Slide 4

Add an extension module

The Tuscany runtime allows extension
modules to be plugged in. Tuscany core
and extension modules can also define
extension points where extensions can
be added.

Slide 5

Life cycle of an extension
module

� During bootstrapping, the following sequence will happen:

� All the module activators will be discovered by the presence of a file named as
META-INF/services/org.apache.tuscany.spi.bootstrp.ModuleActivator.

� The activator class is instantiated using the no-arg constructor.

� ModuleActivator.getExtensionPoints() is invoked for all modules and the extension
points contributed by each module are added to the ExtensionRegistry.

� ModuleActivator.start(ExtensionRegistry) is invoked for all the modules. The
module can then get interested extension points and contribute extensions to
them. The contract bwteen the extension and extension point is private to the
extension point. The extension point can follow similar patterns such as Registry. If
it happens that one extension point has a
dependency on another extension point, they can linked at this phase.

� During shutting down, the stop() method is invoked for all

the modules to perform cleanups. A module can choose to

unregister the extension from theextension points.

Slide 6

Add an extension module
� Implement the org.apache.tuscany.core.ModuleActivator

interface. The implementation class must have a no-arg

constructor. The same instance will be used to invoke all

the methods during different phases of the module

activation.

� Create a plain text file named as META-

INF/services/org.apache.tuscany.core.ModuleActivator.

� List the implementation class name of the ModuleActivator

in the file. One line per class.

� Add the module jar to the classpath (or whatever

appropriate for the hosting environment).

Slide 7

The responsibilities of
implementation and
binding providers

The Tuscany runtime allows extension
modules to be plugged in. Tuscany core
and extension modules can also define
extension points where extensions can
be added.

Slide 8

Implementation Provider

� It’s contracted by the SPI:
org.apache.tuscany.sca.provider.ImplementationProvider

� It is responsible to create invokers for
components implemented by this type

� It can react to the lifecycle of the
components by the start()/stop()
callback methods

Slide 9

Reference Binding Provider

� It’s contracted by the SPI:
org.apache.tuscany.sca.provider.ReferenceBindingProvider

� It is responsible to create invokers for
outbound invocations over this binding
type. The invoker delegates the call to
its binding protocol/transport layer.

� It can react to the lifecycle of the
components by the start()/stop()
callback methods

Slide 10

Service Binding Provider

� It’s contracted by the SPI:
org.apache.tuscany.sca.provider.ServiceBindingProvider

� It is responsible to create binding protocol/transport

specific listeners for inbound invocations over this

binding type. The listener takes the message from

the protocol layer and then dispatch it to the

promoted component using the invocation chain.

� Usually, it will use the start() method to register the

listener and use the stop() method to unregister the

listener

Slide 11

The runtime wire and
invocation chain

RB

Service
Binding
Listener

Implementation
Invoker

Reference
Binding
Invoker

ImplSB

Binding
Protocol

•The reference binding provider contributes the reference binding
invoker
•The service binding provider contributes the service binding listener
•The implementation provider contributes the Implementation invoker

Slide 12

Add an implementation
type

SCA allows you to choose from any one
of a wide range of implementation
types, such as Java, Scripting, BPEL or
C++, where each type represents a
specific implementation technology.

Slide 13

Add a new implementation
type
1. Define the assembly model extension

2. Define interfaces/classes to represent the model

3. Implement the StAXArtifactProcessor SPI to

read/resolve/write the model

4. Implement the ImplementationProvider SPI to add

the invocation/lifecycle control logic

5. Implement the ModuleActivator SPI to hook the

StAXArtifactProcessor and ImplementationProvider

6. Contribute an extension module

Slide 14

Extend the assembly model
� The implementation type is referenced by an XML element
(implementation.crud) in the composite file

<component name=“CRUDComponent”>

<crud:implementation.crud directory=“/tmp”/ xmlns:crud=“http://crud”>

</component>

� The model extension follows the XML inheritance but NO XML schema is
required by the runtime

<element name="implementation.crud" type="sca:CRUDImplementation"

substitutionGroup="sca:implementation" />

<complexType name="CRUDImplementation">

<complexContent>

<extension base="sca:Implementation">

<attribute name="directory" type="string" use="optional" />

</extension>

</complexContent>

</complexType>

Slide 15

Define and process the
model

� The model can be simply written as java interfaces and

classes and it typically consists of 4 parts

� The CRUDImplementation interface which extends
org.apache.tuscany.sca.assembly.Implementation

� The CRUDImplementationFactory interface which
defines a createImplementation() method

� The default implementation of CRUDImplementation

� The default implementation of

CRUDImplementationFactory

� Provides an implementation of StAXArtifactProcessor to

read/write the model objects from/to XML

Slide 16

Provide the invocation logic

� The logical model can be associated with
ImplementationProvider interface to provide
invocation logic for the given component
implementation type

� CRUDImplementationProvider implements the

ImplementationProvider interface

� Methods on ImplementationProvider SPI

� createInterceptor(): Create an interceptor to invoke a
component with this implementation type

� createCallbackInterceptor(): Create a callback interceptor to
call back a component with this implementation type

Slide 17

Control the life cycle of
components
� The start()/stop() methods

� start(): A method to be invoked when a

component with this implementation type is

started. (We simply print a message for the

CRUD)

� stop(): A method to be invoked when a

component with this implementation type is

stopped. (We simply print a message for the

CRUD)

Slide 18

Plug in the implementation type

� The extension module containing the
CRUD implementation type can be
plugged into Tuscany as follows:
� Implement the ModuleActivator SPI and register the
implementation class in META-
INF/services/org.apache.tuscany.sca.core.ModuleActivat
or

� Interact with the ExtensionPointRegistry

� start(): Register the CRUDImplementationProcessor with
StAXArtifactProcessorExtensionPoint and Register the
CRUDImplementationProviderFactory with the
ProviderFactoryExtensionPoint

� stop(): Unregister the CRUDImplementationProcessor and the
CRUDImplementationProviderFactory

Slide 19

The big picture (class
diagram)

Slide 20

Add a binding type

References use bindings to describe the
access mechanism used to call a
service. Services use bindings to
describe the access mechanism that
clients have to use to call the service.

Slide 21

Add a new binding
1. Define the model extension for reference and service binding

2. Define interfaces/classes to represent the model for the binding

3. Implement the StAXArtifactProcessor to read/resolve/write the

models

4. Add the runtime logic by implementing the BindingProviderFactory,

ReferenceBindingProvider, ServiceBindingProvider SPIs

5. Implement the ModuleActivator interface to hook up the

StAXArtifactProcessor and BindingProviderFactory with respective

extension points

6. Contribute an extension module to Tuscany

Slide 22

Extend the assembly model -
binding

� The implementation type is referenced by an XML element
(binding.echo) in the composite file

<reference name="EchoReference" promote="EchoComponent/echoReference">

<interface.java interface="echo.Echo"/>

<binding.echo uri="http://tempuri.org" />

</reference>

� The model extension follows the XML inheritance but NO XML schema is
required by the runtime

<element name=“binding.echo" type="sca:EchoBinding"

substitutionGroup="sca:binding" />

<complexType name=“EchoBinding">

<complexContent>

<extension base="sca:Binding“/>

</complexContent>

</complexType>

Slide 23

Define and process the
model

� The model can be simply written as java interfaces and

classes and it typically consists of 4 parts

� The EchoBinding interface which extends
org.apache.tuscany.sca.assembly.Binding

� The EchoBindingFactory interface which defines a
createEchoBinding() method

� The default implementation of EchoBinding (EchoBindingImpl)

� The default implementation of EchoBindingFactory
(DefaultEchoBindingFactory)

� Provides an implementation of StAXArtifactProcessor to

read/write the model objects from/to XML

� EchoBindingProcessor

Slide 24

Provide the outbound invocation
logic
� The logical model can be associated with
ReferenceBindingProvider interface to provide
invocation logic for the given binding type

� EchoBindingProvider implements the ReferenceBindingProvider interface

� Methods on ReferenceBindingProvider SPI

� createInterceptor(): Create an interceptor to invoke a component with this
binding type

� createCallbackInterceptor(): Create a callback interceptor to call back a
component with this binding type

� getBindingInterfaceContract(): Get the interface contract imposed by the
binding protocol layer

� start(): Lifecycle callback method that can be used by the reference binding to
allocate resources or create connections

� stop(): Lifecycle callback method that can be used by the reference binding to
do some house keeping.

Slide 25

Provide the inbound
invocation logic
� The logical model can be assoicated with

ServiceBindingProvider interface to provide invocation logic

for the given binding type

� EchoBindingProvider implements the

ServiceBindingProvider interface

� Methods on ServiceBindingProvider SPI

� start(): Start the binding-specific protocol listener to receive

incoming messages from the transport layer. The listener will
be responsible to dispatch the call to the promoted component.

� stop(): Stop the binding-specific protocol listener

� getBindingInterfaceContract(): Get the interface contract

imposed by the binding protocol layer

Slide 26

Plug the binding type into
Tuscany
� The extension module containing the ECHO
binding type can be plugged into Tuscany
as follows:

� Implement the ModuleActivator SPI and register the
implementation class in META-
INF/services/org.apache.tuscany.sca.core.ModuleActivator

� Interact with the ExtensionPointRegistry

� start(): Register the EchoBindingProcessor with
StAXArtifactProcessorExtensionPoint and
EchoBindingProviderFactory with ProviderFactoryExtensionPoint

� stop(): Unregister the

EchoBindingProcessor/EchoBindingProviderFactory

Slide 27

The big picture (class
diagram)

Slide 28

Add a data binding

Tuscany provides a data binding
framework to allow business data to be
represented in the preferred way chosen
by the components. New data bindings
and transformers can be contributed to
Tuscany to facilitate the data
transformations.

Slide 29

Add a new databinding

� The data binding is identified by a string id.
A data binding can also have aliases.

� Adding a databinding can be as simple as
just adding a transformer that references
the databinding id. For example, if a
transformer that transforms data from “db1”
to “db2” is added, then “db1” and “db2” is
active.

Slide 30

Add a new databinding

� If the databinding needs to deal with
advanced capabilities, such as:

� Introspect the data types to recognize data of
this binding

� Handle operation wrapping/unwrapping

� Handle copy of data

� Handle exception transformations

� Then, you need to implement the
o.a.t.s.databinding.DataBinding SPI

Slide 31

Add a new transformer

� A transformer is responsible to transform
data from one databinding to another one

� Adding a transformer to Tuscany will enrich
the transformation capabilities as it adds
more links to the transformation graph.

� Provide a transformer is simply to implement
the PullTransformer/PushTransformer
interface.

Slide 32

Sample Transformer Code
public class OMElement2XMLStreamReader extends BaseTransformer<OMElement, XMLStreamReader>
implements PullTransformer<OMElement, XMLStreamReader> {

public XMLStreamReader transform(OMElement source, TransformationContext context) {

return source.getXMLStreamReader();

}

public Class getSourceType() {

return OMElement.class;

}

public Class getTargetType() {

return XMLStreamReader.class;

}

public int getWeight() {

return 10;

}

}

Slide 33

Register the data
binding/transformer
� The databindings and transformers can be registered against the

DataBindingExtensionPoint and TransformerExtensionPoint in the

ModuleActivator.start() method.

public void start(ExtensionPointRegistry registry) {

DataBindingExtensionPoint dataBindings = registry.getExtensionPoint(DataBindingExtensionPoint.class);

dataBindings.addDataBinding(new AxiomDataBinding());

TransformerExtensionPoint transformers = registry.getExtensionPoint(TransformerExtensionPoint.class);

transformers.addTransformer(new Object2OMElement());

transformers.addTransformer(new OMElement2Object());

transformers.addTransformer(new OMElement2String());

transformers.addTransformer(new OMElement2XMLStreamReader());

transformers.addTransformer(new String2OMElement());

transformers.addTransformer(new XMLStreamReader2OMElement());

}

Slide 34

Plug the binding type into
Tuscany
� The extension module containing the data
binding type can be plugged into Tuscany
as follows:

� Implement the ModuleActivator SPI and register the
implementation class in META-
INF/services/org.apache.tuscany.sca.core.ModuleActivator

� Interact with the ExtensionPointRegistry

� start(): Register the databinding with
DataBindingExtensionPoint and transformers with
TransformerExtensionPoint

� stop(): Unregister the databinding from

DataBindingExtensionPoint and transformers from
TransformerExtensionPoint

Slide 35

The big picture (class
diagram)

