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The paper is about

e About EXCITEMENT Open Platform

o a suite for Textual Entailment
o and, how UIMA helped us to build the platform.

e (Contents of this session

o Brief introduction to Textual Entailment, and the
EXCITEMENT open platform.

o UIMA adoption on EXCITEMENT platform.

o Some open issues.



Textual Entailment (TE)

e A relation between two text fragments.
e Definition
o A text (T) entails Hypothesis (H), if a typical human
reading of T would infer that H is most likely true.
e Example

o T:One of them is 1908 Tunguska event in Siberia,
known as the Tunguska meteorite fall.

o H1: A shooting star fell in Russia in 1908.

o H2: Tunguska fell to Siberia in 1908.

e Typical human reading of T would say;
o H1 is true, while H2 is not.



Textual Entailment (TE); relation on
Text (T) and Hypothesis (H)

e [E is a directed relation.

e An example (directed T -> H)

o T:John bought a Volkswagen Golf.
o H: Now, John has a car.
m ‘Textual Inference”.

e Similar to paraphrase?
o T: He got a letter of acceptance.
o H: The acceptance letter has been given to him.

o Paraphrase can be regarded as a case of
bidirectional entailment. (T->H & H->T)

e Recognizing Textual Entailment (RTE)

o A decision task on a (Text, Hypothesis) pair.
m FNTAIH MENT or NON-ENTAI MENT



Textual Entailment (TE), as Semantic
Processing Engine

e Potential of Textual Entailment (TE)
o Various NLP applications need semantic processing.

o But semantic processings are mostly done by

application-dependent manners.
m (vs. standardized syntactic processings)

o TE has the potential to offer a uniform, theory-
iIndependent semantic processing.

o Existing TE engines have been used to build proof-
of-concept systems

m Question answering, Machine Translation

evaluation, Information visualization, Automatic
summarization, etc.



Textual Entailment Engines

e Many different strategies
o Tested and developed along RTE workshops.

o The community produced several good open source
systems.

e Practical problem of Fragmentation
o No interoperability

m Modules and resources are often only designed

for a specific system and a specific paradigm.

o Build-from-scratch

When researchers want to build a new approach,
they often need to build from scratch.

Many of the components already exist, but not in
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Common platform for Textual
Entailment?

e EXCITEMENT open platform

o A suite of textual inference components.
o Goal

m Provide a playground of “pluggable” (reusable)
TE components for the community.

m Be the common development platform for TE

researchers.
e Like MOSES platform in Machine Translation.

o Challenges
m [E systems typically depends on various

linguistic analysis, as well as large knowledge
bases.
m Direct source of the problem of reusability.



The open platform is a part of
EXCITEMENT project

e EXCITEMENT - EU FP7 project

o Home page: http://excitement-project.eu/
o Academic and industrial partners.
e Academic side
o Bar llan university (Tel aviv, BIUTEE system)
o DFKI (Saarbrucken, TIE system)
o FBK (Trento, EDITS system)
o Heidelberg University
e Industrial side
o NICE (in Israel), OMQ (in Germany), ALMA (in Italy)

o Use the resulting TE engines of the platform for
customer interaction analysis.

e First version of the blatform is iust out.



http://excitement-project.eu/

EXCITEMENT Open Platform

e This paper deals UIMA-related architectural
aspects of EOP.

e The requirements of the platform
o 1) Reusing of existing software

m Easy integration of existing TE system,
components and resources.
o 2) Multilinguality
m Adding a new language should be easy.
o 3) Component Reusable

m Each component is self-contained and not tied to

a specific approach.
m Should be easily replaceable, and reusable.
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EXCITEMENT Open Platform (EOP)
Architecture

e UIMA adoption on EOP

o Partial, and Parallel

e Partial
o UIMA only adopted for the first part of EOP
o Two groups of common components in EOP
m LAP (Linguistic analysis pipeline) & CORE
m Only LAP part adopts UIMA
o LAP components are naturally mapped to UIMA.
m All component behaviors as “adding annotations”

o Many CORE components are not natural to be
treated as annotators.
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Core Components

They are defined as Java component

o Behaviors are defined by a set of Java Interfaces,
and with specific conventions.

o However, they still use CAS (JCas) as the main data
type that holds annotated data.

Resource “look-up” components

o Lexical Resources.

o Syntactic-level Resources.

Scoring components (CAS in, score out)
o Feature Extracting components.

o (Semantic) Distance calculation components.
Entailment Decision components

o EDA (Entailment Decision Algorithm).
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UIMA Usage in EXCITEMENT: CAS

e CAS is the central data type that connects
LAP & CORE

o CAS is “Input” to Entailment Core, and “output”of
Linguistic Analysis Pipelines (LAPs).

o Things to consider for CAS that holds TE problems
m CAS holds a pair (t and h fragments), instead of

a document.
m Multiple text, or multiple hypothesis cases

m Some annotations connects parts of text and
hypothesis (e.g. alignment annotations)

e Two tasks on CAS adoption
o 1) A design for T-H pair representation in CAS.
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Type system adoption / extension

e Adopted DKPro type system

o Generic, well-designed type system with language
iIndependence in mind.

o Granted EOP to use existing AEs already wrapped
by DKPro.

e Then, we added some annotation types that
were missing in DKPro

o Semantic Role Labels, Alignment types, Predicate
Truth value annotations, etc.

e Defined some types for T-H pair

o Pairs, expression of entailment decision, TE
metadata, etc.



Wrapping of LAP: UIMA is
transparent to users

e LAP has its own interface methods

o Wraps UIMA runtime, or any AE running methods
o Each pipeline support those methods.

e \Why wrap UIMA with additional interface?

o Minimize users learning curve

m Top level user don’t need to know anything about
UIMA.
m Support TE specific capabilities.

o “Parallel’ adoption: project participants can
implement LAP without UIMA AE/AAE adoption.

o Cost of migration: “Translating” existing pipeline
outputs to CAS is easier than break/migrate every
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LAP Interface

e All LAP pipelines support a set of common

functionalities (with Java API)
o generate an annotated T-H, from string T-H pair.

o process RTE input file, and generate a set of

CASes.
o annotate a given CAS.

e AE (Analysis Engine) based components

o We recommend AE implementation for project
members.

o There is a common implementation that gets list of

AEs, forms a pipeline, and automatically supports
those common functionalities.



In the long term, we hope to get
UIMA AE-based LAP components.

e Parallel adoption is an intermediate solution
o “CAS only” adoption.

o We hope this “parallel” adoption finally leads to all
project members to adopt UIMA AE.

e For pluggable LAP components

o New annotators are expected to have big impacts on
various TE systems.

m e.g. ‘Negation annotator”, “Predicate truth value
annotator”

o Without UIMA AE adoption, the user has to adopt
the whole pipeline, not only the new module.



Currently -

e EOP Version 1.0 released in September 1.
o LAP

o More than a dozen pipelines for 3 languages.
o English, German, and ltalian.

m supports various levels of annotations

m adoption of UIMA enables us to use existing AEs
with low costs.

e CORE

o Three systems have been migrated: TIE, EDITS,
BIUTEE.

o Working for English, German and Italian.
o Various knowledge resources for the three



Open Issue #1: CAS in non-UIMA
environment

e CAS is the object that holds all "annotated”
data in EXCITEMENT platform.

e \Widely used: even in some very complex
data types!

o Entailment Graph example

e CAS usage & Efficiency

o UIMA recommends that minimize number of CASes.
o Butitis very easy for the platform users to treat CAS

as “simply a data type that holds annotated data”.

And use it as ... just as a class.
o Lower Efficiency!

o Best practice needed, with better ways to store them



Entailment Graph Example
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Open Issue #2: Annotation style
“same parse tree in different style”

e Pluggable LAP

o The goal is to make LAP independent from CORE;

and LAP as replaceable. So if we get a new & better

analyzer (e.g. parser), we can use that.
m With a trivial re-training of core engine.

e However, some core components are
depending on LAP output

o Notably, parser and syntactic knowledge.

o Parsers have “styles”. knowledge components are
affected by parsing output style.



Example: syntactic rule & different
parse style

e Assume that we have one syntactic rule
o Xwas boughtby Y --entails— Y have X

e Different parse style example
o Match would fail!

bought bought
O by O
X was X was Y

STYLE A Y STYLEB



Open Issue #2: Annotation style and
dependency

e Dependency between parser - syntactic
knowledge.

o A parser change will reduce the performance of
knowledge resource, if they have different style.

e How bad is this?

o Currently under investigation.
o “Automatic parser style conversion” possible?

m Automatically learning of conversion rules from
two parsed corpora, etc.

o Transform might be easier (or cheaper) than “re-
generate” all knowledge resource.

o “Self-contained” syntactic knowledge seems to be



Conclusion

e UIMA adoption enabled the project to have a
good linguistic analysis pipeline.
o Multilingual, metadata-rich linguistic analysis
pipeline.
e Existing work of the community helped us to

build various pipelines with ease.
o DKPro type systems and its AEs.

e In the project, CAS is the standard data
representation for annotated data

o CAS can be passed and used successfully in non-
UIMA environment.



Thanks!

e EXCITEMENT open platform 1.0
o You can try it by visiting the following URL.

http://hitfbk.qgithub.io/Excitement-Open-Platform/
e NOTE: Still in a testing phase.



http://hltfbk.github.io/Excitement-Open-Platform/

