Using UIMA to Structure
an Open Platform for
Textual Entailment

Tae-Gil Noh, Sebastian Pado
Dept. of Computational Linguistics
Heidelberg University

The paper is about

e About EXCITEMENT Open Platform

o a suite for Textual Entailment
o and, how UIMA helped us to build the platform.

e (Contents of this session

o Brief introduction to Textual Entailment, and the
EXCITEMENT open platform.

o UIMA adoption on EXCITEMENT platform.

o Some open issues.

Textual Entailment (TE)

e A relation between two text fragments.
e Definition
o A text (T) entails Hypothesis (H), if a typical human
reading of T would infer that H is most likely true.
e Example

o T:One of them is 1908 Tunguska event in Siberia,
known as the Tunguska meteorite fall.

o H1: A shooting star fell in Russia in 1908.

o H2: Tunguska fell to Siberia in 1908.

e Typical human reading of T would say;
o H1 is true, while H2 is not.

Textual Entailment (TE); relation on
Text (T) and Hypothesis (H)

e [E is a directed relation.

e An example (directed T -> H)

o T:John bought a Volkswagen Golf.
o H: Now, John has a car.
m ‘Textual Inference”.

e Similar to paraphrase?
o T: He got a letter of acceptance.
o H: The acceptance letter has been given to him.

o Paraphrase can be regarded as a case of
bidirectional entailment. (T->H & H->T)

e Recognizing Textual Entailment (RTE)

o A decision task on a (Text, Hypothesis) pair.
m FNTAIH MENT or NON-ENTAI MENT

Textual Entailment (TE), as Semantic
Processing Engine

e Potential of Textual Entailment (TE)
o Various NLP applications need semantic processing.

o But semantic processings are mostly done by

application-dependent manners.
m (vs. standardized syntactic processings)

o TE has the potential to offer a uniform, theory-
iIndependent semantic processing.

o Existing TE engines have been used to build proof-
of-concept systems

m Question answering, Machine Translation

evaluation, Information visualization, Automatic
summarization, etc.

Textual Entailment Engines

e Many different strategies
o Tested and developed along RTE workshops.

o The community produced several good open source
systems.

e Practical problem of Fragmentation
o No interoperability

m Modules and resources are often only designed

for a specific system and a specific paradigm.

o Build-from-scratch

When researchers want to build a new approach,
they often need to build from scratch.

Many of the components already exist, but not in

Vo) llf\f\klf\ 'FI\IFMI

Common platform for Textual
Entailment?

e EXCITEMENT open platform

o A suite of textual inference components.
o Goal

m Provide a playground of “pluggable” (reusable)
TE components for the community.

m Be the common development platform for TE

researchers.
e Like MOSES platform in Machine Translation.

o Challenges
m [E systems typically depends on various

linguistic analysis, as well as large knowledge
bases.
m Direct source of the problem of reusability.

The open platform is a part of
EXCITEMENT project

e EXCITEMENT - EU FP7 project

o Home page: http://excitement-project.eu/
o Academic and industrial partners.
e Academic side
o Bar llan university (Tel aviv, BIUTEE system)
o DFKI (Saarbrucken, TIE system)
o FBK (Trento, EDITS system)
o Heidelberg University
e Industrial side
o NICE (in Israel), OMQ (in Germany), ALMA (in Italy)

o Use the resulting TE engines of the platform for
customer interaction analysis.

e First version of the blatform is iust out.

http://excitement-project.eu/

EXCITEMENT Open Platform

e This paper deals UIMA-related architectural
aspects of EOP.

e The requirements of the platform
o 1) Reusing of existing software

m Easy integration of existing TE system,
components and resources.
o 2) Multilinguality
m Adding a new language should be easy.
o 3) Component Reusable

m Each component is self-contained and not tied to

a specific approach.
m Should be easily replaceable, and reusable.

EXCITEMENT Platform
Architecture Overview

EXCITEMENT Platform
_Linguistic Analysis - Entailment Core(EC
Pipeline (LAP) (EC)
Raw Annotated
entailment Linguistic entailment Entailment Decision
Analysis Tools problems Algorithm (EDA)
problems

{

Dynamic and Static
Components
(Algorithms and Knowledge)

UIMA Components Java Components

>Decisions

EXCITEMENT Open Platform (EOP)
Architecture

e UIMA adoption on EOP

o Partial, and Parallel

e Partial
o UIMA only adopted for the first part of EOP
o Two groups of common components in EOP
m LAP (Linguistic analysis pipeline) & CORE
m Only LAP part adopts UIMA
o LAP components are naturally mapped to UIMA.
m All component behaviors as “adding annotations”

o Many CORE components are not natural to be
treated as annotators.

An example of Core component

behavior

bought

~— N

Google Motorola

A parse tree
(derived)

acquired

~— N

Google Motorola

A parse tree
(derived)

Derived parse

A
Lrecco

acquired

/e

Motorola
\

=N

Core Components

They are defined as Java component

o Behaviors are defined by a set of Java Interfaces,
and with specific conventions.

o However, they still use CAS (JCas) as the main data
type that holds annotated data.

Resource “look-up” components

o Lexical Resources.

o Syntactic-level Resources.

Scoring components (CAS in, score out)
o Feature Extracting components.

o (Semantic) Distance calculation components.
Entailment Decision components

o EDA (Entailment Decision Algorithm).

EXCITEMENT Platform
Architecture Overview

EXCITEMENT Platform
B LiﬂgUiStic AnaIYSiS - _Entailment Core(EC
Pipeline (LAP) (EC)
Raw AnnotatedJ
entailment Linguistic entailmen S| Entailment Decision
Analysis Tools problems Algorithm (EDA)
problems

CAS $

Dynamic and Static
Components
(Algorithms and Knowledge)

UIMA Components Java Components

>Decisions

UIMA Usage in EXCITEMENT: CAS

e CAS is the central data type that connects
LAP & CORE

o CAS is “Input” to Entailment Core, and “output”of
Linguistic Analysis Pipelines (LAPs).

o Things to consider for CAS that holds TE problems
m CAS holds a pair (t and h fragments), instead of

a document.
m Multiple text, or multiple hypothesis cases

m Some annotations connects parts of text and
hypothesis (e.g. alignment annotations)

e Two tasks on CAS adoption
o 1) A design for T-H pair representation in CAS.

P~ f)\ T\ TS AN N\ lﬂ+l\mf\ +I\ IFI'\V'\PI'\I\I\V'\"‘ +L\I‘\m

-CAS

— Entailment Metadata
language, channel, docld, collectionld, ...

- Entailment Pair

pairld, goldAnswer, Eext, hypothesis

|

— Text View
Subject of Analysis
[That was. ...
t R—S< :
\ - S
~Pos. ' ~Pos. "
POS \ ' R
Annotations|_PR | vV]
[I Y
Token rTokeny Tokenj
Annotations
I A N
DependencyDep— ~Gov
Annotations

\/

I‘dep.NSUBJ —I

- Hypothesis View

Subject of Analysis

A shootinlg star .

i R—J,

\ >

-Pos. -, ~Pos. . ~Pos. -
ART ADJ NN |”*°°

M A A
Token{ rTokenjy rToken

Y S
Dep

—Dep—l I—Gov—l

ﬁdep. -Z

AMOD

I— dep.DET

Type system adoption / extension

e Adopted DKPro type system

o Generic, well-designed type system with language
iIndependence in mind.

o Granted EOP to use existing AEs already wrapped
by DKPro.

e Then, we added some annotation types that
were missing in DKPro

o Semantic Role Labels, Alignment types, Predicate
Truth value annotations, etc.

e Defined some types for T-H pair

o Pairs, expression of entailment decision, TE
metadata, etc.

Wrapping of LAP: UIMA is
transparent to users

e LAP has its own interface methods

o Wraps UIMA runtime, or any AE running methods
o Each pipeline support those methods.

e \Why wrap UIMA with additional interface?

o Minimize users learning curve

m Top level user don’t need to know anything about
UIMA.
m Support TE specific capabilities.

o “Parallel’ adoption: project participants can
implement LAP without UIMA AE/AAE adoption.

o Cost of migration: “Translating” existing pipeline
outputs to CAS is easier than break/migrate every

N a Vel a'el aVWal aVWall o) ‘l‘ﬂ "'I'\ I\ E

LAP Interface

e All LAP pipelines support a set of common

functionalities (with Java API)
o generate an annotated T-H, from string T-H pair.

o process RTE input file, and generate a set of

CASes.
o annotate a given CAS.

e AE (Analysis Engine) based components

o We recommend AE implementation for project
members.

o There is a common implementation that gets list of

AEs, forms a pipeline, and automatically supports
those common functionalities.

In the long term, we hope to get
UIMA AE-based LAP components.

e Parallel adoption is an intermediate solution
o “CAS only” adoption.

o We hope this “parallel” adoption finally leads to all
project members to adopt UIMA AE.

e For pluggable LAP components

o New annotators are expected to have big impacts on
various TE systems.

m e.g. ‘Negation annotator”, “Predicate truth value
annotator”

o Without UIMA AE adoption, the user has to adopt
the whole pipeline, not only the new module.

Currently -

e EOP Version 1.0 released in September 1.
o LAP

o More than a dozen pipelines for 3 languages.
o English, German, and ltalian.

m supports various levels of annotations

m adoption of UIMA enables us to use existing AEs
with low costs.

e CORE

o Three systems have been migrated: TIE, EDITS,
BIUTEE.

o Working for English, German and Italian.
o Various knowledge resources for the three

Open Issue #1: CAS in non-UIMA
environment

e CAS is the object that holds all "annotated”
data in EXCITEMENT platform.

e \Widely used: even in some very complex
data types!

o Entailment Graph example

e CAS usage & Efficiency

o UIMA recommends that minimize number of CASes.
o Butitis very easy for the platform users to treat CAS

as “simply a data type that holds annotated data”.

And use it as ... just as a class.
o Lower Efficiency!

o Best practice needed, with better ways to store them

Entailment Graph Example

nvironment in the
in was not good.

The seating was not
fortable.

Food is not good.

The food was too

expensive. The food tasted bad.

he sandwich at the Coffee in board-bistro A little more legroom
i costed way too was horrible. ould be very nice.

Open Issue #2: Annotation style
“same parse tree in different style”

e Pluggable LAP

o The goal is to make LAP independent from CORE;

and LAP as replaceable. So if we get a new & better

analyzer (e.g. parser), we can use that.
m With a trivial re-training of core engine.

e However, some core components are
depending on LAP output

o Notably, parser and syntactic knowledge.

o Parsers have “styles”. knowledge components are
affected by parsing output style.

Example: syntactic rule & different
parse style

e Assume that we have one syntactic rule
o Xwas boughtby Y --entails— Y have X

e Different parse style example
o Match would fail!

bought bought
O by O
X was X was Y

STYLE A Y STYLEB

Open Issue #2: Annotation style and
dependency

e Dependency between parser - syntactic
knowledge.

o A parser change will reduce the performance of
knowledge resource, if they have different style.

e How bad is this?

o Currently under investigation.
o “Automatic parser style conversion” possible?

m Automatically learning of conversion rules from
two parsed corpora, etc.

o Transform might be easier (or cheaper) than “re-
generate” all knowledge resource.

o “Self-contained” syntactic knowledge seems to be

Conclusion

e UIMA adoption enabled the project to have a
good linguistic analysis pipeline.
o Multilingual, metadata-rich linguistic analysis
pipeline.
e Existing work of the community helped us to

build various pipelines with ease.
o DKPro type systems and its AEs.

e In the project, CAS is the standard data
representation for annotated data

o CAS can be passed and used successfully in non-
UIMA environment.

Thanks!

e EXCITEMENT open platform 1.0
o You can try it by visiting the following URL.

http://hitfbk.qgithub.io/Excitement-Open-Platform/
e NOTE: Still in a testing phase.

http://hltfbk.github.io/Excitement-Open-Platform/

