

The ApacheCon 2000
March 8, 2000

Orlando, Florida

Tutorial :
Getting Started with mod_perl

(Part I of II)

By Stas Bekman
Internet and Intranet programmer

http://stason.org/stas/
<sbekman@iname.com>

122 Jan 2000

Tutorial: Getting Started with mod_perl (Part I of II)

22 Jan 20002

Stas Bekman

This document is originally written in POD, converted to HTML by pod2html utility and then to
PostScript by html2ps utility.

Copyright © 1998, 1999 Stas Bekman. All rights reserved.

(you will find a Table of Contents at the end)

322 Jan 2000

Tutorial: Getting Started with mod_perl (Part I of II)

1 Getting Started Fast

22 Jan 20004

Stas Bekman1 Getting Started Fast

1.1 mod_perl in Four Slides
Each tutorial will concentrate on different aspects of running a mod_perl server and mod_perl program-
ming. In case you don’t know how to get started with it, or you think it’s a diffi cult task, these slides will
take away any worries you might have had when you came to this tutorial.

In just four slides you will be able to install and configure a mod_perl server. And, of course, to write new
code and reuse the existing code under mod_perl.

The four slides (sections) are:

Installation

Configuration

The ‘‘mod_perl rules’’ Apache::Registry Scripts

The ‘‘mod_perl rules’’ Apache Perl Module

1.2 What is mod_perl?
But before we go any further, there is a chance that you don’t know what mod_perl is. So let’s make a
little introduction to mod_perl.

Everybody knows that Perl scripts running under mod_cgi have numerous shortcomings. There are many
of them, but code recompilation and Perl interpreter loading overhead at each request is the hardest one to
overcome.

Among various attempts to improve on mod_cgi’s shortcomings, mod_perl has proved to be one of the
better ones and has been widely adopted by CGI developers. According to the
http://perl.apache.org/netcraft/ about 412000 hosts use mod_perl. Doug MacEachern fathered the core
code of this Apache module and licensed it under the ‘‘Artis tic License’’ as Perl itself.

mod_perl does away with mod_cgi’s forking by reusing the existing child processes. In this new model,
the child process doesn’t exit anymore when it has processed a request. The Perl interpreter is loaded only
once, when the process is started. Since the interpreter is persistent throughout the process’ lifetime, all
code is loaded and compiled only once, the first time it is seen. This makes all subsequent requests run
much faster because everything is already loaded and compiled. Response processing is now reduced to
running your code. This improves response times by a factor of 10 to 100, depending on the code being
executed.

Doug didn’t stop here, he went and extended mod_cgi’s functionality by adding a complete Perl API to
the Apache core. This makes it possible to write a complete Apache module in Perl, a feat that used to
require coding in C. From then on mod_perl enabled the programmer to handle all phases of request
processing in Perl.

522 Jan 2000

1.1 mod_perl in Four Slidesmod_perl tutorial: Getting Started Fast

http://perl.apache.org/netcraft/

The new Perl API also allows complete server configuration in Perl. This has which made the lives of
many server administrators much easier, as they could now benefit from dynamically generating the
configuration, freed from hunting for bugs in huge configuration files full of similar directives for virtual
hosts and the like.

To provide backwards compatibility for plain CGI scripts that used to be run under mod_cgi, while still
benefit ing from a preloaded perl and modules, a few special handlers were written, each allowing a differ-
ent level of proximity to pure mod_perl functionality. Some take full advantage of mod_perl, while others
only a partial one.

mod_perl embeds a copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. This enables a set of mod_perl-specific configuration direc-
tives, all of which start with the string Perl*. Most, but not all, of these directives are used to specify
handlers for various phases of the request.

It might occur to you that sticking a large executable (Perl) into another large executable (Apache) makes
a very, very large program. mod_perl certainly makes httpd significantly bigger and you will need more
RAM on your production server to be able to run many mod_perl processes, but in reality the situation is
different. Since mod_perl processes requests much faster, the number of the processes needed to handle
the same request rate is much lower relative to the mod_cgi approach. Generally you need slightly more
memory available, and the speed improvements you will see are well worth every megabyte of memory
you can add.

Now let’s get back to the All-In-Four-Slides...

1.3 Installation
Did you know that it takes about 10 minutes to build and install a mod_perl enabled Apache server on a
computer with a pretty average processor and a decent amount of system memory? It goes like this:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Of course you must replace x.x.x with the actual version numbers of the mod_perl and Apache
releases that you use.

22 Jan 20006

Stas Bekman1.3 Installation

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
http://www.apache.org/dist/apache_x.x.x.tar.gz

The GNU tar utility knows how to uncompress a gzipped tar archive (use the z option).

All that’s left is to add a few configuration lines to a httpd.conf, an Apache configuration file, start the
server and enjoy mod_perl.

1.4 Configuration
Add the following to the configuration file httpd.conf:

 # for Apache::Registry mode
 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes every URI starting with /perl to be handled by the Apache mod_perl module. It
will use the handler from the Perl module Apache::Registry .

1.5 The "mod_perl rules" Apache::Registry Scripts
You can write plain perl/CGI scripts just as under mod_cgi:

 mod_perl_rules1.pl

 print "Content-type: text/plain\r\n\r\n";
 print "mod_perl rules!\n";

Of course you can write them in the Apache Perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

Save both files under the /home/httpd/perl directory, make them executable and readable by server, and
issue these requests using your favorite browser:

 http://localhost/perl/mod_perl_rules1.pl
 http://localhost/perl/mod_perl_rules2.pl

In both cases you will see on the following response:

722 Jan 2000

1.4 Configurationmod_perl tutorial: Getting Started Fast

http://localhost/perl/mod_perl_rules2.pl
http://localhost/perl/mod_perl_rules1.pl

 mod_perl rules!

1.6 The "mod_perl rules" Apache Perl Module
To create an Apache Perl module, all you have to do is to wrap the code into a handler subroutine and
return the status to the server.

 ModPerl/Rules.pm

 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "mod_perl rules!\n";
 return OK;
 }

Create a directory called ModPerl under one of the directories in @INC, and put Rules.pm into it. Then
add the following snippet to httpd.conf:

 PerlModule ModPerl::Rules
 <Location /mod_perl_rules>
 SetHandler perl-script
 PerlHandler ModPerl::Rules
 </Location>

Now you can issue a request to:

 http://localhost/perl/mod_perl_rules

and just as with our mod_perl_rules.pl scripts you will see:

 mod_perl rules!

as the response.

1.7 Is That All I Need To Know About mod_perl?
Definitely not!

These slides are intended to show you that you can install and start using a mod_perl server within 30
minutes of downloading the sources.

There is much more to mod_perl than this, you will need to plan your study around the projects you want
to implement. Fortunately, there are many resources and lots of help freely available to you.

At the end of each titorial you will find a chapter describing the available resources and pointers to them.

22 Jan 20008

Stas Bekman1.6 The "mod_perl rules" Apache Perl Module

http://localhost/perl/mod_perl_rules

;o)

922 Jan 2000

1.7 Is That All I Need To Know About mod_perl?mod_perl tutorial: Getting Started Fast

2 mod_perl Installation

22 Jan 200010

Stas Bekman2 mod_perl Installation

2.1 What we will learn in this chapter
mod_perl Installation scenario

The Gory Details

mod_perl Installation with CPAN.pm’s Interactive Shell

Installation Without Superuser Privileges

Miscellaneous issues

2.2 mod_perl Installation scenario
Did you know that it takes about 10 minutes to build and install mod_perl enabled Apache on a pretty
average processor and decent amount of system memory? It goes like that:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar zvxf apache_x.x.x.tar.gz
 % tar zvxf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Of course replace x.x.x with the real version numbers of mod_perl and Apache.

GNU tar utility knows to uncompress as well (with z flag).

What’s left is to add a few configuration lines to a httpd.conf , an Apache configuration file, start the
server and enjoy mod_perl.

If you have stumbled upon a problem at any of the above steps, don’t despair -- the next section will
explain in details each and every step.

2.3 The Gory Details
We saw that the basic mod_perl installation is quite simple and takes about 10 command that can be
copied and pasted from these pages. However, sometimes you need to make different optimizations by
passing only specific parameters (compared to EVERYTHING=1), bundling other components with
mod_perl and etc. You may want to build mod_perl as loadable object, that can be upgraded without
rebuilding the Apache itself.

1122 Jan 2000

2.1 What we will learn in this chaptermod_perl tutorial: mod_perl Installation

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
http://www.apache.org/dist/apache_x.x.x.tar.gz

To accomplish this you will want to understand various techniques for mod_perl configuration and build-
ing. You need to know what configuration parameters are available and when each of them should be
used.

We can clearly separate the installation process into the following stages: Sources Configuration, Build-
ing, Testing and Installation itself.

2.3.1 Sources Configuration (perl Makefile.PL ...)

Before building and installing mod_perl you have to configure it. You configure mod_perl as any other
Perl module:

 % perl Makefile.PL [parameters]

In this section we will go through most of the parameters mod_perl can accept and explain each one of
them.

2.3.1.1 Configuration parameters

perl Makefile .PL accepts various parameters. In this section we will learn what are they and when
should they be used.

APACHE_SRC

You will be asked the following question during the configuration stage:

 "Configure mod_perl with ../apache_xxx/src ?"

APACHE_SRC should be used to define the Apache’s source tree directory. For example:

 APACHE_SRC=../apache-x.x.x/src

Unless APACHE_SRC specified, Makefile.PL makes an intelligent guess by looking at the directories
at the same level as mod_perl sources and suggests a directory with the highest version of Apache
found there.

Answering ’y’ confirms either Makefile.PL’s guess about the location of the tree, or the directory you
have specified with APACHE_SRC.

If you use DO_HTTPD=1 or NO_HTTPD -- the first apache source tree found or the one you have
defined will be used for the rest of the build process.

DO_HTTPD, NO_HTTPD, PREP_HTTPD

Unless any of DO_HTTPD, NO_HTTPD or PREP_HTTPD used you will be prompted by the follow-
ing question:

22 Jan 200012

Stas Bekman2.3.1 Sources Configuration (perl Makefile.PL ...)

 "Shall I build httpd in ../apache-x.x.x/src for you?"

Answering ’y’ will make sure an httpd binary will be built in ../apache-x.x.x/src when running make.

To avoid this prompt when the answer is Yes use:

 DO_HTTPD=1

Note that if you set DO_HTTPD=1, but not used APACHE_SRC=../apache-x.x.x/src -- the
first apache source tree found will be used to configure and build against.

PREP_HTTPD=1 just means default ’n’ to the second prompt -- meaning, do not build httpd (make)
in the apache source tree. But it still will ask you about Apache’s source location even if you have
used the APACHE_SRC parameter. Providing the APACHE_SRC parameter will just save perl
Makefile .PL a need to make a guess.

To avoid the two prompts and avoid building httpd, use:

 NO_HTTPD=1

If you choose not to build the binary, you will have to do that manually. We will talk about it later. In
any case, you need to run make install in the mod_perl source tree, so the perl side of mod_perl
will be installed. Certainly, make test wouldn’t work until before you get the server built.

Callback Hooks

By default, all callback hooks except for Perl Handler are turned off. You may edit
src/modules/perl/Makefile, or enable when running perl Makefile .PL .

Possible parameters are:

 PERL_POST_READ_REQUEST
 PERL_TRANS
 PERL_INIT

 PERL_HEADER_PARSER
 PERL_AUTHEN
 PERL_AUTHZ
 PERL_ACCESS
 PERL_TYPE
 PERL_FIXUP
 PERL_LOG
 PERL_CLEANUP
 PERL_CHILD_INIT
 PERL_CHILD_EXIT
 PERL_DISPATCH

 PERL_STACKED_HANDLERS
 PERL_METHOD_HANDLERS
 PERL_SECTIONS
 PERL_SSI

1322 Jan 2000

2.3.1 Sources Configuration (perl Makefile.PL ...)mod_perl tutorial: mod_perl Installation

As with any parameters that are either defined or not, use foo=1 to enable them (e.g.
PERL_AUTHEN=1).

To enable all callback hooks use:

 ALL_HOOKS=1

EVERYTHING

To enable all possible hooks, set:

 EVERYTHING=1

APACHE_PREFIX

If you want to use a non-default Apache installation prefix, use APACHE_PREFIX parameter, e.g.:

 % perl Makefile.PL APACHE_PREFIX=/usr/local/ [...]

APACI_ARGS

When you use <USE_APACI=1> parameter, you can tell the perl Makefile .PL to pass any
arguments you want to the Apache’s ./config ure utility, e.g:

 % perl Makefile.PL USE_APACI=1 \
 APACI_ARGS=--sbindir=/usr/local/sbin/httpd_perl, \
 --sysconfdir=/usr/local/etc/httpd_perl, \
 --localstatedir=/usr/local/var/httpd_perl, \
 --runtimedir=/usr/local/var/httpd_perl/run, \
 --logfiledir=/usr/local/var/httpd_perl/logs, \
 --proxycachedir=/usr/local/var/httpd_perl/proxy

Notice that all APACI_ARGS (above) must be passed as one long line if you work with t?csh !!!
However it works correctly the way it shown above with (ba)?sh (by breaking the long lines with
’ \ ’). If you work with t?csh it does not work, since t?csh passes APACI_ARGS arguments to
./config ure by keeping the new lines untouched, but stripping the original ’ \ ’, which makes the
all the arguments but the first one, ignored by the configuration process.

2.3.1.2 Reusing Configuration Parameters

It’s quite hard to remember what parameters were used in mod_perl build, when you have to upgrade the
server. So it’s better to save them into a file. For example if you create a file at
~/.mod_perl_build_options, with contents:

 APACHE_SRC=../apache_x.x.x/src DO_HTTPD=1 USE_APACI=1 \
 EVERYTHING=1

You can build the server with the following command:

22 Jan 200014

Stas Bekman2.3.1 Sources Configuration (perl Makefile.PL ...)

 % perl Makefile.PL ‘cat ~/.mod_perl_build_options‘
 % make && make test && make install

But wait, mod_perl has a standard method to perform the above trick. If a file name
makepl_args.mod_perl is found in the same directory as the mod_perl build location with any of these
options, it will be read in by Makefile.PL.

 % ls -1 /usr/src
 apache_x.x.x/
 makepl_args.mod_perl
 mod_perl-x.xx/

 % cat makepl_args.mod_perl
 APACHE_SRC=../apache_x.x.x/src DO_HTTPD=1 USE_APACI=1 \
 EVERYTHING=1

 % cd mod_perl-x.xx
 % perl Makefile.PL
 % make && make test && make install

Now the parameters from makepl_args.mod_perl file will be used, as if they were directly typed in.

There is a sample makepl_args.mod_perl in the eg/ directory of mod_perl distribution package, in which
you might find a few options to enable experimental features to play with too!

But if you have found yourself with a compiled mod_perl and no traces of the specified parameters left,
usually you can still find them out, if the sources were not make clean ’d. You will find the Apache
specific parameters in apache_x.x.x/config.status and mod_perl’s at in
mod_perl_x.xx/apaci/mod_perl.config .

2.3.2 mod_perl Building (make)

After configuration completion you build the server, by calling:

 % make

which compiles the source files and creates an httpd binary or/and a separate library for each module,
which can be loaded at run time or inserted into the httpd binary sometime later when the make will be
called from Apache source directory.

Note: it’s important that you don’t put the mod_perl source tree, inside the Apache’s sources subdirectory
-- since Apache::src seems to not work then!

2.3.3 Built Server Testing (make test)

After building the server, it’s a good idea to throughly test it, by calling:

 % make test

1522 Jan 2000

2.3.2 mod_perl Building (make)mod_perl tutorial: mod_perl Installation

Fortunately mod_perl comes with a bunch of tests, which attempt to try to use all the features you asked
for at the configuration stage. If any of the test fails, the make test stage would fail.

Running make test will start a freshly built httpd on port 8529 running under the uid and gid of the
perl Makefile .PL process, the httpd will be terminated when the tests are finished.

Each file in the testing suite generally includes more than one test, but when you do the testing, the
program will solely report how many were passed and the total number of tests defined in the test file.
However if not all the tests in the file fail you want to know which ones did. To gain this information, you
should run the tests in a verbose mode. You can enable this mode by using TEST_VERBOSE parameter:

 % make test TEST_VERBOSE=1

To change the default port the testing happens on (8529 as of this writing), do:

 % perl Makefile.PL PORT=xxxx

To simply start the newly built httpd run:

 % make start_httpd

To shutdown this httpd run:

 % make kill_httpd

NOTE to Ben-SSL users: httpsd does not seem to handle /dev/null as the location of certain files, you’ll
have to change these by hand. Tests are run with SSLDis able directive.

2.3.3.1 Manual Testing

Tests are invoked by running the ./TEST script located at ./t directory. Use -v option for verbose tests.
You might run an individual test like this:

 % t/TEST -v modules/file.t

or all tests in a test sub-directory:

 % t/TEST modules

TEST script worries to start the server before the test is getting executed. If for some reason it fails, use
make start_httpd to start it explicitly .

2.3.4 Installation (make install)

After testing the server, the last step left is to install it. First install all the perl side files:

 % make install

22 Jan 200016

Stas Bekman2.3.4 Installation (make install)

The go to the Apache source tree and complete the Apache files installation (config files, httpd and other
utilities):

 % cd ../apache_x.x.x
 % make install

Now the installation should be considered completed. You may configure your server now and start using
it.

2.4 mod_perl Installation with CPAN.pm’s Inter active Shell
To install mod_perl and all the required packages is much easier with help of CPAN.pm module, which
provides you among other features a shell interface to a CPAN repository (CPAN = Comprehensive Perl
Archive Network, which is a repository of thousands Perl modules, scripts and documentation. See
http://cpan.org for more info)

First thing first is to download an Apache source code, unpack it into a directory the name of which you
will need very soon.

Now execute:

 % perl -MCPAN -eshell

If it’s a first time that you use it, it will ask you about 10 questions to configure the module. It’s quite easy
to accomplish this task, when following the very helpful hints coming along with the questions. When you
done, you will see a cpan prompt:

 cpan>

CPAN will download mod_perl for you, unpack it, will check prerequisites, detect the missing third party
modules if any, download and install them. All you need to install mod_perl is to type at the prompt:

 cpan> install mod_perl

You will see (I’ll use x.xx instead of real version numbers, since these change very frequently):

 Running make for DOUGM/mod_perl-x.xx.tar.gz
 Fetching with LWP:
 http://www.perl.com/CPAN-local/authors/id/DOUGM/mod_perl-x.xx.tar.gz

 CPAN.pm: Going to build DOUGM/mod_perl-x.xx.tar.gz

 Enter ‘q’ to stop search
 Please tell me where I can find your apache src
 [../apache-x.x.x/src]

It will search for a latest apache sources and suggest a directory. Here you need to type in the directory
you have unpacked the apache in unless it CPAN detected and suggested the right directory... The next
question is about the src directory which resides at the root level of the unpacked Apache distribution. In
most cases CPAN would ‘‘guess’’ the correct directory.

1722 Jan 2000

2.4 mod_perl Installation with CPAN.pm’s Interactive Shellmod_perl tutorial: mod_perl Installation

http://www.perl.com/CPAN-local/authors/id/DOUGM/mod_perl-x.xx.tar.gz
http://cpan.org/

 Please tell me where I can find your apache src
 [../apache-x.x.x/src]

Answer yes to all the following questions, unless you have a reason not to do that.

 Configure mod_perl with /usr/src/apache_x.x.x/src ? [y]
 Shall I build httpd in /usr/src/apache_x.x.x/src for you? [y]

Now it will build the apache with enabled mod_perl. The only thing left to do is to go to apache sources
root directory (when you quit CPAN shell or use using another terminal) and run:

 % make install

which will complete the installation by installing Apache headers and the binary at the appropriate direc-
tories.

The only caveat of described process is that you don’t have a control over a configuration process. Actu-
ally, it’s an easy to solve problem -- you can tell <CPAN.pm> to pass whatever parameters you want to
perl Makefile .PL . You do this with o conf makepl_arg command:

 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1’

You just enlist all the parameters like you were to pass to a familiar perl Makefile .PL . If you add
APACHE_SRC=/usr/src/apache_x.x.x/src and DO_HTTPD=1 parameters, you will be not
asked a single question. Of course use a correct path to the apache source distribution.

Now proceed with install mod_perl , like before. When the installation is completed, remember to
unset the makepl_arg variable, by executing:

 cpan> o conf makepl_arg ’’

In case you have the makepl_arg previously (before you altered it for a mod_perl installation) set to
some value, you will probably want to save it somewhere, and restore when you done with mod_perl
installation. To read the original value, use:

 cpan> o conf makepl_arg

You can install all the modules you might want to use with mod_perl. You install them all by typing a
singe command:

 cpan> install Bundle::Apache

It’ll install mod_perl if isn’t yet installed and many other packages like: ExtU tils ::Embed ,
MIME::Base64 , URI::URL , Digest::MD5 , Net::FTP , LWP, HTML::Tree Builder , CGI,
Devel::Symdump , Apache::DB , Tie::IxHash , Data::Dumper and etc.

A helpful hint: If you have a system with all the perl modules you use and you want to replicate them all
at some other place, and if you cannot just copy the whole /usr/lib/perl5 directory because of a
possible binary incompatibility of the other system, making your own bundle comes as a handy solution.
To accomplish that the command auto bundle can be used on the CPAN shell command line. This
command writes a bundle definition file for all modules that are installed for the currently running perl

22 Jan 200018

Stas Bekman2.4 mod_perl Installation with CPAN.pm’s Interactive Shell

interpreter.

With a clever bundle file you can then simply say

 cpan> install Bundle::my_bundle

then answer a few questions and then go out for a coffee.

2.5 Installation Without Superuser Priv ileges
As you have already learned, mod_perl enabled Apache consists of two main components: perl modules
and Apache itself. Let’s tackle each task at a time.

I’ll show a complete installation example using a stas as a username, and assume that /home/stas is a
home directory of that user.

2.5.1 Installing Perl Modules into a Directory of Choice

Since without a superuser permissions you aren’t allowed to install modules into a system directories like
/usr/lib/perl5, you need to find out how to install the modules under your home directory. The task is a
very one.

First you have to decide where the modules to be installed. The simplest approach is to simulate a relevant
to perl portion of the / file system, under your home directory. Actually we need only two directories:

 /home/stas/bin
 /home/stas/lib

But we don’t have to create them, since it’ll be done automatically when the first module will be installed.
99% of the files will go into the lib directory, occasionally when some module comes with perl scripts,
these will go into a bin directory, and the directory itself will be created if it wasn’t there before.

Let’s install a CGI.pm package, which among CGI.pm includes a few other CGI::* modules. As
usually, download the package from CPAN repository, unpack it and chdir to the created directory.

Now we do a standard perl Makefile .PL to prepare a Makefile, but this time we tell the Make-
Maker to use non-default perl installation directories.

 % perl Makefile.PL PREFIX=/home/stas

PREFIX=/home/stas is the only different part of the standard perl modules installation process. Note
that if you don’t like how MakeMaker choose to select the rest of the directories or if you are using an
older version of it, which requires an explicit declaration of all target directories you should do:

1922 Jan 2000

2.5 Installation Without Superuser Privilegesmod_perl tutorial: mod_perl Installation

 % perl Makefile.PL PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

The rest is as usual:

 % make
 % make test
 % make install

We see that make install installs all the files in my private repository. Note that all the missing direc-
tories are created automatically, so there is no need to create them in first place. Here is what it does (this
is a slightly truncated output):

 Installing /home/stas/lib/perl5/CGI/Cookie.pm
 Installing /home/stas/lib/perl5/CGI.pm
 Installing /home/stas/lib/perl5/man3/CGI.3
 Installing /home/stas/lib/perl5/man3/CGI::Cookie.3
 Writing /home/stas/lib/perl5/auto/CGI/.packlist
 Appending installation info to /home/stas/lib/perl5/perllocal.pod

If you have to use the explicit target parameters, instead of a single PREFIX parameter, you will find it
useful to create a file called for example ~/.perl_dirs (where ~ is /home/stas in our example) and to
populate it with:

 PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

From now on any time you want to install perl modules locally you simply execute:

 % perl Makefile.PL ‘cat ~/.perl_dirs‘
 % make
 % make test
 % make install

Using the last tip, you can easily maintain several Perl module repositories, for example one for produc-
tion perl and another for development. When the only difference is either you call:

 % perl Makefile.PL ‘cat ~/.perl_dirs.production‘

or

22 Jan 200020

Stas Bekman2.5.1 Installing Perl Modules into a Directory of Choice

 % perl Makefile.PL ‘cat ~/.perl_dirs.develop‘

2.5.2 Making Your Scripts Find the Locally Installed Modules

Perl modules are generally being dispatched into a five main directories. You find out these directories,
execute:

 % perl -V

and in the generated output, among other important information about your perl installation you will see at
the end:

 Characteristics of this binary (from libperl):
 Built under linux
 Compiled at Apr 6 1999 23:34:07
 @INC:
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

It shows us the content of the @INC perl special variable, which is being used by perl to look for its
modules, as an equivalent to a PATH environment variable in Unix shells which is being used to find the
binaries to be executed.

Of course this is the information of the 5.00503 version of perl installed on my x86 architecture PC
running Linux. That’s why you see i386-linux and 5.00503. If your system runs a different operating
system, processor or chipset architecture and version of perl, directories would have a different names.

I also have a perl-5.00561 installed under /usr/local/lib/ so when I do:

 % /usr/local/bin/perl5.00561 -V

I see:

 @INC:
 /usr/local/lib/perl5/5.00561/i586-linux
 /usr/local/lib/perl5/5.00561
 /usr/local/lib/site_perl/5.00561/i586-linux
 /usr/local/lib/site_perl

Notice, that it’s still linux but a newer perl version uses a version of my Pentium processor (thus the i586
and not i386 as it was before), which makes a use of compiler optimization for a Pentium processors,
when the binary perl extensions are being created.

i386-linux like directories are the ones, where all the platform specific files are supposed to go, such
as compiled C files glued to Perl with XS or SWIG.

2122 Jan 2000

2.5.2 Making Your Scripts Find the Locally Installed Modulesmod_perl tutorial: mod_perl Installation

The above discussion is important to us, because since we have installed the perl modules into a non-stan-
dard directories, somehow we have to make Perl know where to look for the four directories. There are
two ways to accomplish this task. You should either set the PERL5LIB environment variable or modify
the @INC variable in yours scripts.

Assuming that we use perl-5.00503, in our example the directories are:

 /home/sbekman/lib/perl5/5.00503/i386-linux
 /home/sbekman/lib/perl5/5.00503
 /home/sbekman/lib/perl5/site_perl/5.005/i386-linux
 /home/sbekman/lib/perl5/site_perl/5.005

As I’ve mentioned it before, you find out the exact directories by executing perl -V and replacing the
global’s perl installation’s base directory with your home directory.

Modifying @INC is quite easy. The best approach is to use lib module, by adding the following snippet
at the top of all your scripts that require the locally installed modules.

 use lib qw(/home/stas/lib/perl5/5.00503/
 /home/stas/lib/perl5/site_perl/5.005);

Another way is to explicitly write the code to alter @INC:

 BEGIN {
 unshift @INC,
 qw(/home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/site_perl/5.005
 /home/stas/lib/perl5/site_perl/5.005/i386-linux);
 }

Notice, that with lib module, we don’t have to enlist the corresponding architecture specific directories,
since it adds them automatically if they are exist (well, to be exact, when $dir/$arch name/auto
directory exists).

Also, notice that both approaches prepend the directories to be searched to @INC, which allows you to
install a more recent module into your local repository and perl will use it instead of the older one
installed in the main system repository.

Both approaches, modify the value of @INC at the compilation time, lib module uses the BEGIN block
as well, but internally.

Now, let’s assume the following scenario. I have installed LWP package in my local repository. Now I
want to install another module (e.g. mod_perl) and it has LWP listed in its prerequisites list. I know that
I’ve LWP installed, but when I run perl Makefile .PL for the module I’m about to install, I’m being
told that I don’t have LWP installed.

If we think for a moment, there is no way for Perl to know that we have some locally installed modules.
All it does, is searching the directories listed in @INC and since the latter contains only the default five
directories, no wander it cannot find locally installed LWP package. There is no script we could add the
@INC modification code, but there is a PERL5LIB variable that I’ve mentioned before, that solves this

22 Jan 200022

Stas Bekman2.5.2 Making Your Scripts Find the Locally Installed Modules

problem. If you are using a t?csh for interactive work, do:

 setenv PERL5LIB /home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005

It should be a single line with directories separated by colons (:) and no spaces. If you are a bash user,
do:

 export PERL5LIB=/home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005

Again make it a single line. Actually bash allows to have a multi-line settings with help of backslash (\).
So you can set it this way:

 export PERL5LIB=/home/stas/lib/perl5/5.00503:\
 /home/stas/lib/perl5/site_perl/5.005

As with use lib , perl automatically prepends the architecture specific directories to @INC if those
exist.

When you have done with this setting, verify the value of the newly configured @INC, by executing perl
-V as before. Now you should see the modified value of @INC:

 % perl -V

 Characteristics of this binary (from libperl):
 Built under linux
 Compiled at Apr 6 1999 23:34:07
 %ENV:
 PERL5LIB="/home/stas/lib/perl5/5.00503:/home/stas/lib/perl5/site_perl/5.005"
 @INC:
 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/site_perl/5.005/i386-linux
 /home/stas/lib/perl5/site_perl/5.005
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

The moment everything works as you want it to, add this setting into a .tcshrc or .bashrc file, according to
the interactive shell you use, so the next time you open a new shell, this setting would be already in place.

Note that if you have a PERL5LIB setting, you don’t need to alter the @INC value in your scripts, only if
you are executing them from the interactive shell or in any other way that sets the PERL5LIB variable.
For example, if someone else tries to execute your scripts but doesn’t have this setting in the shell she
attempts to execute the script from, Perl will fail to find your locally installed modules.

So the best approach is to have both: the PERL5LIB environment variable and the explicit @INC exten-
sion code at the beginning of the scripts as described before.

2322 Jan 2000

2.5.2 Making Your Scripts Find the Locally Installed Modulesmod_perl tutorial: mod_perl Installation

2.5.3 Making a Local Apache Installation

Just like with perl modules, when you don’t have permissions to install files into a system area, you have
to install them locally under your home directory. It’s almost the same as a plain installation, but you will
have to run the server listening to port number > 1024, since these are the ports only root processes can
listen to.

Another important issue you would have to solve is how to add an automatic startup and shutdown scripts
to the directories use by the rest of the system services. You will have to ask your system administrator to
assist you with this issue.

Now to install Apache locally, all you have to do is to tell a .config ure script in the Apache source
directory what target directories to be used. If following a convention that I use, which makes your home
directory looking like the / (base) directory, the invocation parameters would be:

 ./configure --prefix=/home/stas

Apache will use the prefix for the rest of its target directories instead of the default
/usr/local/apache . If you want to see what are they, before you proceed, add the --show-layout
option:

 ./configure --prefix=/home/stas --show-layout

You might want to put all the Apache files under /home/stas/apache following the Apache’s
defaults convention. To accomplish that do:

 ./configure --prefix=/home/stas/apache

If you want to modify some or all of the automatically created names of directories, when you omit their
explicit parameters, just set them to the desired values, e.g:

 ./configure --prefix=/home/stas/apache \
 --sbindir=/home/stas/apache/sbin
 --sysconfdir=/home/stas/apache/etc
 --localstatedir=/home/stas/apache/var \
 --runtimedir=/home/stas/apache/var/run \
 --logfiledir=/home/stas/apache/var/logs \
 --proxycachedir=/home/stas/apache/var/proxy

That’s all!

Also remember that you can start the script only under a user and group you belong to. Set the appropriate
User and Group directives in the httpd.conf to correct values.

2.5.4 Actual Local mod_perl Enabled Apache Installation

Now when we have learned how to install perl modules and Apache locally, let’s see how we use the
acquired knowledge to install mod_perl enabled Apache in our home directory. It’s almost as simple as
doing each one at separate, but a single nuance you should know about and I’ll mention it at the end of
this section.

22 Jan 200024

Stas Bekman2.5.3 Making a Local Apache Installation

So if you have unpacked Apache and mod_perl sources under the /home/stas/src directory and they
look like:

 % ls /home/stas/src
 /home/stas/src/apache_x.x.x
 /home/stas/src/mod_perl-x.xx

where x.xx are the version numbers as usual and you want the perl modules from the mod_perl package to
be installed under /home/stas/lib/perl5 and Apache files under /home/stas/apache , the
following commands will do that for you.

 % perl Makefile.PL \
 PREFIX=/home/stas \
 APACHE_PREFIX=/home/stas/apache \
 APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 \
 USE_APACI=1 \
 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

If you need something to be passed to .config ure script as we have seen in the previous section use
the APACI_ARGS parameter, e.g:

 APACI_ARGS=--sbindir=/home/stas/apache/sbin, \
 --sysconfdir=/home/stas/apache/etc, \
 --localstatedir=/home/stas/apache/var, \
 --runtimedir=/home/stas/apache/var/run, \
 --logfiledir=/home/stas/apache/var/logs, \
 --proxycachedir=/home/stas/apache/var/proxy

Note that the above multiline splitting will work only with bash shell, tcsh users have to list all the
parameters in a single line.

Basically the installation is complete. The only nuance is a @INC variable, that wouldn’t be correctly set if
you rely on the PERL5LIB environment variable, unless you set it explicitly in the startup file, which is
get required before any other module that resides in your local repository is being loaded. But a much
nicer approach is to use the lib pragma as we saw before, but in a little different way - we use it in the
startup file and it affects all the code that will be executed under mod_perl handlers. e.g:

 PerlRequire /home/stas/apache/perl/startup.pl

where startup.pl starts with:

 use lib qw(/home/stas/lib/perl5/5.00503/
 /home/stas/lib/perl5/site_perl/5.005);

Note that you can still use the hard-coded @INC modifications in the scripts themselves, but you should
know that @INC would be reset to its original value after the scripts would be compiled for the first time
and all the hard-coded settings of @INC would be forgot.

2522 Jan 2000

2.5.4 Actual Local mod_perl Enabled Apache Installationmod_perl tutorial: mod_perl Installation

That’s because scripts modify @INC in BEGIN blocks and mod_perl executes the BEGIN blocks only
when it does script compilation, that’s why when you execute the script for a second time, @INC would be
reset to its original value.

The only place you can alter this ‘‘orig inal’’ value is during the server configuration stage either in the
startup file or by setting:

 PerlSetEnv Perl5LIB /home/stas/lib/perl5/5.00503/:/home/stas/lib/perl5/site_perl/5.005

in the httpd.conf .

Now the rest of the mod_perl configuration and using is absolutely the same as if you were installing
mod_perl as a super user.

One more important thing to keep in mind is a system resources consuming. mod_perl is memory hungry
-- if you run a lot of mod_perl processes on a public, multiuser (not dedicated) machine -- most likely the
system administrator of this machine will ask you to use less resources and even to shut down your
mod_perl server and to find another home for it. You have a few solutions:

Reduce resources usage using the modules Apache::Size Limit , Apache::GTopLimit .

Ask your ISP whether they can setup a dedicated machine for you in their computer room, so you
will be able to install as much memory as you need and have the ISP to administer the system. But if
you get a dedicated machine chances are that you will want to have a root access if you are able to
manage the administering your self, keeping on the list of ISP’s responsibilities only the following
items: keeping a constant electricity supply, making sure that the network link is up, and protecting
the machine from possible physical break-ins (when someone breaks into a computer room either to
steal the information from your machine, or to damage it physically). Another good idea is to let the
ISP to install security patches if you have a trust in them or just incapable of doing that.

Look for another ISP with lots of resources or one that supports mod_perl. You can find a list of
these ISP at http://perl.apache.org .

2.6 Miscellaneous issues

2.6.1 Should I rebuild mod_perl if I have upgraded my perl?

Yes, you should. You have to rebuild mod_perl enabled server since it has a hard coded @INC which
points to the old perl and it is is probably linked to the an old libperl library. You can try to modify the
@INC in the startup script (if you keep the old perl version around), but it is better to build a fresh one to
save you a mess.

22 Jan 200026

Stas Bekman2.6 Miscellaneous issues

http://perl.apache.org/

2.6.2 Should I Build mod_perl with gcc or cc?

Since mod_perl includes C code, to make it binary compatible with Perl, on most systems the same
compiler should be used as the one Perl was built with. So if your Perl was built with gcc , it will pick the
same compiler when you do perl Makefile .PL To find out which compiler it was built with,
run perl -V at the command prompt.

Sometimes Perl’s configuration will choose one compiler, e.g. cc, but Apache’s configuration chooses a
different one, e.g. gcc. If you run into this problem, consult Perl’s and Apache’s INSTALL documents on
how to ensure both are built with the same compiler.

;o)

2722 Jan 2000

2.6.2 Should I Build mod_perl with gcc or cc?mod_perl tutorial: mod_perl Installation

3 mod_perl Configuration

22 Jan 200028

Stas Bekman3 mod_perl Configuration

3.1 What we will learn in this chapter
Apache Configuration

mod_perl Configuration

Start-up File

<Perl>...</Perl> Sections

Miscellaneous issues

3.2 Server Configuration
The next step after building and installing your new mod_perl enabled Apache server, is to configure the
server. The configuration process consists of two parts: Apache and mod_perl specific directives configu-
ration.

Prior to version 1.3.4, the default Apache install used three configuration files -- httpd.conf, srm.conf, and
access.conf. The 1.3.4 version began distributing the configuration directives in a single file -- httpd.conf.
The tutorial uses the httpd.conf in its examples.

So as you have already understood, the only file that you should edit is httpd.conf that by default is put
into a conf directory under the document root. The document root is the directory that you choose for
Apache installation or the default one, which is /usr/local/apache/ on many UNIX platforms.

3.3 Apache Configuration
To minimize the number of things that can go wrong, it can be a good idea to configure the Apache itself
first (like there is no mod_perl at all) and make sure that it works.

Apache distibution comes with an extensive configuration manual and in addition each section of the
configuration file includes helpful comments explaining how every directive should be configured and
what are the defaults values.

3.3.1 Configuration Directives

If you didn’t move Apache directories around, the installation program already has configured everything
for you. Just start the server and test it working. To start the server use the apachectl utility which
comes bundled with Apache distribution and resides in the same directory with httpd (the Apache server
itself). Go to this directory and execute:

 /usr/local/apache/bin/apachectl start

2922 Jan 2000

3.1 What we will learn in this chaptermod_perl tutorial: mod_perl Configuration

Now you can test the server, by trying to access it from http://localhost .

For a basic setup there are just a few things to configure. If you have moved directories you have to
update them in httpd.conf. There are many of them, listing just a few of them:

 ServerRoot "/usr/local/apache"
 DocumentRoot "/home/httpd/docs"

You should set a name of your machine as it’s known to the external world if it’s not a testing machine
and referring to it as local host isn’t good enough for you.

 ServerName www.example.com

If you want to run it on a different from port 80, edit the Port directive.

 Port 8080

You might want to change the user and group names the server will run under. Note that if started as root
user (which is generally the case), the parent process will continue to run as root, but children will run as
the user and group you have specified. For example:

 User nobody
 Group nobody

There are other directives that you might need to cinfigure as well, as mentioned earlier you will find them
all in httpd.conf.

After single valued directives come the Direc tory and Loca tion sections of configuration. That’s
the place where for each directory and location you supply its unique behaviour, that applies to every
request that happens to fall into its domain.

3.4 mod_perl Configuration
When you have tested that the Apache server works on your machine, it’s a time to step forward and
configure the mod_perl side. Part of the configuration directives are already familiar to you, however
mod_perl introduces a few new ones.

It can be a good idea to keep all the mod_perl stuff at the end of the file, after the native Apache configu-
rations.

3.4.1 Alias Configurations

First, you need to specify the locations on a file-system for the scripts to be found.

Add the following configuration directives:

22 Jan 200030

Stas Bekman3.4 mod_perl Configuration

http://localhost/

 # for plain cgi-bin:
 ScriptAlias /cgi-bin/ /usr/local/myproject/cgi/

 # for Apache::Registry mode
 Alias /perl/ /usr/local/myproject/cgi/

 # Apache::PerlRun mode
 Alias /cgi-perl/ /usr/local/myproject/cgi/

Alias provides a mapping of URL to file system object under mod_perl . Scrip tAl ias is being
used for mod_cgi .

Alias defines the start of the URL path to the script you are referencing. For example, using the above
configuration, fetching http://www.nowhere.com/perl/test.pl, will cause the server to look for the file
test.pl at /usr/local/myproject/cgi, and execute it as an Apache::Registry script if we define
Apache::Registry to be the handler of /perl location (see below).

The URL http://www.nowhere.com/perl/test.pl will be mapped to /usr/local/myproject/cgi/test.pl. This
means that you can have all your CGIs located at the same place in the file-system, and call the script in
any of three modes simply by changing the directory name component of the URL (cgi-bin|perl|cgi-perl) -
is not this neat? (That is the configuration you see above - all three Aliases point to the same directory
within your file system, but of course they can be different).

If your script does not seem to be working while running under mod_perl, you can easily call the script in
straight mod_cgi mode without making any script changes (in most cases), but rather by changing the
URL you invoke it by.

Scrip tAl ias is actually:

 Alias /foo/ /path/to/foo/
 SetHandler cgi-handler

where SetHandler cgi-handler invokes mod_cgi. The latter will be overwritten if you enable
Apache::Registry . In other words, Scrip tAl ias does not work for mod_perl, it only appears to
work when the additional configuration is in there. If the Apache::Registry configuration came
before the Scrip tAl ias , scripts would be run under mod_cgi. While handy, Scrip tAl ias is a
known kludge--it’s always better to use Alias and SetHandler .

Of course you can choose any other alias (will be used later in configuration). All three modes or part of
them can be used. But you should remember that it is undesirable to run scripts in plain mod_cgi from a
mod_perl-enabled server--the price is too high, it is better to run these on plain Apache server.

3.4.2 <Location> Configuration

As we know <Loca tion > section assigns a number of rules the server should follow when the request’s
URI matches the Location domain. It’s widely accepted to use /perl as a base URI of the perl scripts
running under mod_perl, like /cgi-bin for mod_cgi. Let’s explain the following very widely used <Loca -
tion > section:

3122 Jan 2000

3.4.2 <Location> Configurationmod_perl tutorial: mod_perl Configuration

 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes all requests’ URI starting with /perl to be handled by mod_perl Apache module
with handler from the Apache::Registry Perl module. Let’s go through the directives inside the
<Loca tion > section in the example:

 <Location /perl>

Remember the Alias from the above section? We use the same Alias here, if you use Loca tion that
does not have the same Alias , the server will fail to locate the script in the file system. You needed the
Alias setting only if the code that should be executed is located in the file. So Alias just provides the
URI to filepath translation rule.

Sometimes there is no script to be executed. Instead there is some module that its method is being
executed, similar to /perl-status, where the code is stored in Apache module. If this is the case, we don’t
need Alias settings for such a <Loca tion >.

 SetHandler perl-script

assigns mod_perl Apache module to handle the content generation phase.

 PerlHandler Apache::Registry

tells Apache to use Apache::Registry Perl module for the actual content generation.

 Options ExecCGI

Options directive accepts a few different parameters (options), the ExecCGI option tells the server that
the file is a program and should be executed, instead of just displayed like plain html file. If you omit this
option depending on clients configuration, the script will either be rendered as a plain text or trigger a
Save-As dialog.

 allow from all

This directive is in charge of access control based on domain. The above settings allows to run the script
for client from any domain.

 PerlSendHeader On

PerlSend Header On tells the server to send an HTTP header to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

PerlSend Header On setting invokes ap_send_http_header() after parsing your script headers.
It is only meant for CGI emulation, it’s always better to use CGI->header from CGI.pm module or
$r->send_http_header directly to send the HTTP header.

22 Jan 200032

Stas Bekman3.4.2 <Location> Configuration

 </Location>

closes the <Loca tion > section definition.

Note that sometimes you will have to preload the module before using it in the <Loca tion > section, in
case of Apache::Registry the configuration will look like this:

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

PerlMod ule is equal to Perl’s native use() function call.

You have nothing to do about /cgi-bin location (mod_cgi), since it has nothing to do with mod_perl.

Let’s see another very similar example with Apache::PerlRun .

 <Location /cgi-perl>
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

The only difference from the Apache::Registry configuration id the argument of the Perl Han-
dler directive, where Apache::Registry was replaced by Apache::PerlRun .

3.4.3 PerlModule and PerlRequire Directives

As we saw earlier the module should be loaded before allowed to be used, the PerlMod ule and Perl -
Require are the two mod_perl directives equivalent to the Perl’s use() and require() respectively.
Since they are equivalent, the same rules apply to their arguments. You pass Apache::DBI as an argu-
ment for PerlMod ule , and Apache/DBI.pm for Perl Require .

You may load modules from the config file at server startup via:

 PerlModule Apache::DBI CGI DBD::Mysql

Generally the modules are preloaded from the startup script, usually named startup.pl. This is a file with
plain perl code which is executed through the Perl Require directive. For example:

 PerlRequire /home/httpd/perl/lib/startup.pl

3322 Jan 2000

3.4.3 PerlModule and PerlRequire Directivesmod_perl tutorial: mod_perl Configuration

As with any file with Perl code that gets require()’d--it must return a true value. To ensure that
this happens don’t forget to add 1; at the end of file.

3.4.4 Perl*Handlers

As you know Apache specifies about 11 phases of the request loop, namely in that order:
Post-Read-Request, URI Translation, Header Parsing, Access Control, Authentication, Authorization,
MIME type checking, FixUp, Response (Content phase). Logging and finally Cleanup. These are the
stages of a request where the Apache API allows a module to step in and do something. There is a dedi-
cated PerlHandler for each of these stages. Namely:

 PerlChildInitHandler
 PerlPostReadRequestHandler
 PerlInitHandler
 PerlTransHandler
 PerlHeaderParserHandler
 PerlAccessHandler
 PerlAuthenHandler
 PerlAuthzHandler
 PerlTypeHandler
 PerlFixupHandler
 PerlHandler
 PerlLogHandler
 PerlCleanupHandler
 PerlChildExitHandler

The first 4 handlers cannot be used in the <Loca tion >, <Direc tory >, <Files > and .htac cess
file, the main reason is all the above require a known path to the file in order to bind a requested path with
one or more of the identifiers above. Starting from Perl Header Parser Handler (5th) URI is
allready being mapped to a physical pathname, thus can be used to match the <Loca tion >, <Direc -
tory > or <Files > configuration section, or to look at .htac cess file if exists at the specified direc-
tory in the translated path.

The Apache documentation (or even better -- the ‘‘Writing Apache Modules with Perl and C’’ book by
Doug MacEachern and Lincoln Stein) will tell you all about those stages and what your modules can do.
By default, these hooks are disabled at compile time, see the INSTALL document for information on
enabling these hooks.

Note that by default Perl API expects a subrotine called handler to handle the request in the registered
PerlHandler module. Thus if your module implements this subrotine, you can register the handler as
simple as writing:

 Perl*Handler Apache::SomeModule

replace Perl*Handler with a wanted name of the handler. mod_perl will preload the specified module for
you. But if you decide to give the handler code a different name, like my_handler , you must preload
the module and to write explicitly the chosen name.

22 Jan 200034

Stas Bekman3.4.4 Perl*Handlers

 PerlModule Apache::SomeModule
 Perl*Handler Apache::SomeModule::my_handler

Please note that the former approach will not preload the module at the startup, so either explicitly preload
it with PerlMod ule directive, add it to the startup file or use a nice shortcut the Perl*Handler
syntax suggests:

 Perl*Handler +Apache::SomeModule

Notice the leading + character. It’s equal to:

 PerlModule Apache::SomeModule
 Perl*Handler Apache::SomeModule

If a module wishes to know what handler is currently being run, it can find out with the current_callback
method. This method is most useful to PerlDispatchHandlers who wish to only take action for certain
phases.

 if($r->current_callback eq "PerlLogHandler") {
 $r->warn("Logging request");
 }

3.4.5 Stacked Handlers

With the mod_perl stacked handlers mechanism, it is possible for more than one Perl*Handler to be
defined and run during each stage of a request.

Perl*Handler directives can define any number of subroutines, e.g. (in config files)

 PerlTransHandler OneTrans TwoTrans RedTrans BlueTrans

With the method, Apache->push_handlers() , callbacks can be added to the stack by scripts at
runtime by mod_perl scripts.

Apache->push_handlers() takes the callback hook name as its first argument and a subroutine
name or reference as its second. e.g.:

 Apache->push_handlers("PerlLogHandler", \&first_one);

 $r->push_handlers("PerlLogHandler", sub {
 print STDERR "__ANON__ called\n";
 return 0;
 });

After each request, this stack is cleared out.

All handlers will be called unless a handler returns a status other than OK or DECLINED.

example uses:

3522 Jan 2000

3.4.5 Stacked Handlersmod_perl tutorial: mod_perl Configuration

CGI.pm maintains a global object for its plain function interface. Since the object is global, it does not go
out of scope, DESTROY is never called. CGI->new can call:

 Apache->push_handlers("PerlCleanupHandler", \&CGI::_reset_globals);

This function will be called during the final stage of a request, refreshing CGI.pm ’s globals before the
next request comes in.

Apache::DCEL ogin establishes a DCE login context which must exist for the lifetime of a request, so
the DCE::Login object is stored in a global variable. Without stacked handlers, users must set

 PerlCleanupHandler Apache::DCELogin::purge

in the configuration files to destroy the context. This is not ‘‘user-friendly’’. Now, Apache::DCEL o-
gin ::handler can call:

 Apache->push_handlers("PerlCleanupHandler", \&purge);

Persistent database connection modules such as Apache::DBI could push a Perl CleanupHan dler
handler that iterates over %Connected , refreshing connections or just checking that ones have not gone
stale. Remember, by the time we get to Perl CleanupHan dler , the client has what it wants and has
gone away, we can spend as much time as we want here without slowing down response time to the client
(but the process is unavailable for serving new request befor the operation is completed).

Perl Tran sHandlers may decide, based on URI or other condition, whether or not to handle a
request, e.g. Apache::Msql Proxy . Without stacked handlers, users must configure:

 PerlTransHandler Apache::MsqlProxy::translate
 PerlHandler Apache::MsqlProxy

Perl Handler is never actually invoked unless trans late () sees the request is a proxy request
($r->prox yreq), if it is a proxy request, trans late () sets $r->handler("perl-script") ,
only then will Perl Handler handle the request. Now, users do not have to specify Perl Handler
Apache::Msql Proxy , the trans late () function can set it with push_handlers() .

Includes, footers, headers, etc., piecing together a document, imagine (no need for SSI parsing!):

 PerlHandler My::Header Some::Body A::Footer

A little test:

 #My.pm
 package My;

22 Jan 200036

Stas Bekman3.4.5 Stacked Handlers

 sub header {
 my $r = shift;
 $r->content_type("text/plain");
 $r->send_http_header;
 $r->print("header text\n");
 }
 sub body { shift->print("body text\n") }
 sub footer { shift->print("footer text\n") }
 1;
 __END__

 #in config
 <Location /foo>
 SetHandler "perl-script"
 PerlHandler My::header My::body My::footer
 </Location>

Parsing the output of another PerlHandler? this is a little more tricky, but consider:

 <Location /foo>
 SetHandler "perl-script"
 PerlHandler OutputParser SomeApp
 </Location>

 <Location /bar>
 SetHandler "perl-script"
 PerlHandler OutputParser AnotherApp
 </Location>

Now, OutputParser goes first, but it untie()’s *STDOUT and re-tie()’s to its own package like so:

 package OutputParser;

 sub handler {
 my $r = shift;
 untie *STDOUT;
 tie *STDOUT => ’OutputParser’, $r;
 }

 sub TIEHANDLE {
 my($class, $r) = @_;
 bless { r => $r}, $class;
 }

 sub PRINT {
 my $self = shift;
 for (@_) {
 #do whatever you want to $_
 $self->{r}->print($_ . "[insert stuff]");
 }
 }

 1;
 __END__

3722 Jan 2000

3.4.5 Stacked Handlersmod_perl tutorial: mod_perl Configuration

To build in this feature, configure with:

 % perl Makefile.PL PERL_STACKED_HANDLERS=1 [PERL_FOO_HOOK=1,etc]

Another method Apache->can_stack_handlers will return TRUE if mod_perl was configured
with PERL_STACKED_HANDLERS=1, FALSE otherwise.

3.4.6 PerlFreshRestart

To reload Perl Require , PerlMod ule , other use() ’d modules and flush the
Apache::Registry cache on server restart, add:

 PerlFreshRestart On

Not all Perl modules can stand the reload, that’s why it’s better to avoid enabling this directive.

3.4.7 PerlSetVar, PerlSetEnv and PerlPassEnv
 PerlSetEnv key val
 PerlPassEnv key

Perl PassEnv passes, PerlSetEnv sets and passes the ENVironment variables to your scripts. you
can access them in your scripts through %ENV (e.g. $ENV{"key"}).

Regarding the setting of Perl PassEnv PERL5LIB in httpd.conf If you turn on taint checks (Perl -
Taint Mode On), $ENV{PERL5LIB} will be ignored (unset).

PerlSet Var is very similar to PerlSetEnv , but you extract it with another method. In <Perl>
sections:

 push @{ $Location{"/"}->{PerlSetVar} }, [’FOO’ => BAR];

and in the code you read it with:

 my $r = Apache->request;
 print $r->dir_config(’FOO’);

3.4.8 PerlWarn and PerlTaintCheck

To enable the warnings and taint mode globally to all server children use:

 PerlWarn On
 PerlTaintCheck On

22 Jan 200038

Stas Bekman3.4.6 PerlFreshRestart

3.5 Start-up File
There is more to do at the server startup, than just preloading files. You might want to initialize RDMS
connections, tie read-only dbm files and etc. Startup file is an ideal place to put the code that should be
executed when the server starts. Once you prepared the code, load it before the rest of the mod_perl
configuration directives with:

 PerlRequire /home/httpd/perl/lib/startup.pl

I must stress that all the code that is run at the server initialization time is run with root priveleges if you
are executing it as a root user (you have to, unless you choose to run the server on an unpriveledged port,
above 1024). This means that anyone who has write access to a script or module that is loaded by
PerlMod ule or Perl Require , effectively has root access to the system. You might want to take a
look at the new and experimental Perl Opmask directive and PERL_OPMASK_DEFAULT compile time
option to try to disable some dangerous operators.

Since the startup file is a file written in plain perl, one can validate its syntax with:

 % perl -c /home/httpd/perl/lib/startup.pl

3.5.1 The Sample Start-up File

Let’s look at a real world startup file:

 startup.pl

 use strict;

 # extend @INC if needed
 use lib qw(/dir/foo /dir/bar);

 # make sure we are in a sane environment.
 $ENV{GATEWAY_INTERFACE} =~ /^CGI-Perl/
 or die "GATEWAY_INTERFACE not Perl!";

 # for things in the "/perl" URL
 use Apache::Registry;

 #load perl modules of your choice here
 #this code is interpreted *once* when the server starts
 use LWP::UserAgent ();
 use Apache::DBI ();
 use DBI ();

 # tell me more about warnings
 use Carp ();
 $SIG{__WARN__} = \&Carp::cluck;

 # Load CGI.pm and call its compile() method to precompile
 # (but not to import) its autoloaded methods.
 use CGI ();
 CGI->compile(’:all’);

3922 Jan 2000

3.5 Start-up Filemod_perl tutorial: mod_perl Configuration

 # init the connections for each child
 Apache::DBI->connect_on_init
 ("DBI:mysql:$Match::Config::c{db}{DB_NAME}::$Match::Config::c{db}{SERVER}",
 $Match::Config::c{db}{USER},
 $Match::Config::c{db}{USER_PASSWD},
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

Let’s go and explain the reasons of my decision to include this specific code in the startup file.

 use strict;

As with every script longer than five lines I have a habit to use this pragma, which saves me from a lot for
troubles in a long run. The startup file is not different from any other perl code that I write.

 use lib qw(/dir/foo /dir/bar);

The only chance to permanently modify the @INC before the server was started is with this command.
Later the running code can modify @INC just for a moment it requre()’s some file, and than its value
gets reset to the previous one.

 $ENV{GATEWAY_INTERFACE} =~ /^CGI-Perl/
 or die "GATEWAY_INTERFACE not Perl!";

A sanity check, if Apache wasn’t properly built, the above code will abort the server startup.

 use Apache::Registry;
 use LWP::UserAgent ();
 use Apache::DBI ();
 use DBI ();

Preload the modules that get used by our Perl code serving the requests. Unless you need the symbols
(variables and subroutines) exported by the modules you preload to do accomplish something within the
startup file, don’t import them, since it’s just a waste of startup time. Instead use empty list () to tell the
import() function not to import a thing.

 use Carp ();
 $SIG{__WARN__} = \&Carp::cluck;

This is a useful snippet to enable extended warnings logged in the error_log file. In addition to same basic
warning, a trace of calls would be added which makes the tracking of the potential problem a much easier
task, since you know who called whom. For example, with normal warnings you might see:

 Use of uninitialized value at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 110.

22 Jan 200040

Stas Bekman3.5.1 The Sample Start-up File

but you have no idea where it was called from. When we use the Carp as shown above we might see:

 Use of uninitialized value at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 110.
 Apache::DBI::connect(undef, ’mydb::localhost’, ’user’,
 ’passwd’, ’HASH(0x87a5108)’) called at
 /usr/lib/perl5/site_perl/5.005/i386-linux/DBI.pm line 382
 DBI::connect(’DBI’, ’DBI:mysql:mydb::localhost’, ’user’,
 ’passwd’, ’HASH(0x8375e4c)’) called at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 36
 Apache::DBI::__ANON__(’Apache=SCALAR(0x87a50c0)’) called at
 PerlChildInitHandler subroutine
 ‘Apache::DBI::__ANON__’ line 0
 eval {...} called at PerlChildInitHandler subroutine
 ‘Apache::DBI::__ANON__’ line 0

we clearly see that the warning was triggered by eval()’uating the Apache::DBI::__ANON__
which called DBI::connect with the arguments that we see as well, which in turn called
Apache::DBI::connect method. Now we know where to look for a problem.

 use CGI ();
 CGI->compile(’:all’);

Some modules get their subroutines created at the run time to improve the loading time. This helps when
the module includes many subroutines, but only a few are actually get used. CGI.pm falls into this cate-
gory. Since with mod_perl the module is loaded only once, it might be a good idea to precompile all or a
part of its methods.

CGI.pm ’s compile() method performs this task. Notice that this is a propietary function of this
module, other modules can implement this feature or not and use this other name for the subroutine. As
with all module we preloaded in the startup file, we don’t import symbols from them as they are all get
lost when they go out of the file’s scope.

Note that starting with $CGI::VERSION 2.46, the recommended method to precompile the code in
CGI.pm is:

 use CGI qw(-compile :all);

But the old method is still available for backward compatibility.

3.5.2 What Modules Should You Add to the Start-up File and Why

Every module loaded at the server startup will be shared among server children, saving a lot of RAM for
you. Usually I put most of the code I develop into modules and preload them.

You can even preload your CGI script with Apache::Registry Loader and preopen the DB connec-
tions with Apache::DBI .

4122 Jan 2000

3.5.2 What Modules Should You Add to the Start-up File and Whymod_perl tutorial: mod_perl Configuration

3.5.3 The Confusion with use() at the Server Start-up File

Some people wonder, why there is a need for a duplication of use() clause in startup file and in the
script itself. The confusion rises from misunderstanding of the use() function. use() consists of two
other functions, namely require() and import() , called within a BEGIN block.

So, if the module in question imports some symbols into your code’s namespace, you have to write the
use() statement once again in your code. The module will not be loaded once again, only the
import() call will be called. For example in the startup file you write:

 use CGI ();

since you probably don’t need any symbols to be exported there. But in your code you probably would
write:

 use CGI qw(:html);

Since the symbols that you might import into a startup’s script namespace will be visible by none of the
children, scripts that need a Foo ’s module exported tags have to pull it in like if you did not preload Foo
at the startup file. For example, just because you have use()’d Apache::Constants in the startup
file, does not mean you can have the following handler:

 package MyModule;
 sub {
 my $r = shift;
 ## Cool stuff goes here
 return OK;
 }
 1;

You would either need to add:

 use Apache::Constants qw(OK);

Or use a fully qualified notation:

 return Apache::Constants::OK;

If you want to use the function interface without exporting the symbols, use a fully qualified functions,
e.g. CGI::param . The same rule applies to variables, you can import variables and you can access them
by their full name. e g. $My::Module::bar . When you use the object oriented (methods) interface you
don’t need to export the method symbols as well.

In both later cases technically you aren’t required to return on use() statement in your code, if it was
already loaded at the startup. But you do have to write your code like id there is no code preloaded.
Because you or someone else will read your code at some point and will not understand how can you use
this or that method, without first loading the module containing it.

22 Jan 200042

Stas Bekman3.5.3 The Confusion with use() at the Server Start-up File

Read the Exporter and perlmod manpages for more information about import() .

3.5.4 The Confusion with Global Variables in Start-up File

Perl Require allows you to execute code that preloads modules and does more things. Imported or
defined variables are visible in the scope of the startup file. It is a wrong assumption that global variables
that were defined in the startup file, will be accessible by child processes.

You do have to define/import variables in your scripts and they will be visible inside a child process who
run this script. They will be not shared between siblings. Remember that every script is running in a
specially (uniquely) named package - so it cannot access variables from other packages unless it inherits
from them or use() ’s them.

3.6 <Perl>...</Perl> Sections
With <Perl >...</Perl > sections, it is possible to configure your server entirely in Perl.

3.6.1 Usage

<Perl > sections can contain *any* and as much Perl code as you wish. These sections are compiled into
a special package whose symbol table mod_perl can then walk and grind the names and values of Perl
variables/structures through the Apache core configuration gears. Most of the configurations directives
can be represented as scalars ($scalar) or lists (@list). A @List inside these sections is simply
converted into a space delimited string for you inside. Here is an example:

 httpd.conf

 <Perl>
 @PerlModule = qw(Mail::Send Devel::Peek);

 #run the server as whoever starts it
 $User = getpwuid($>) || $>;
 $Group = getgrgid($)) || $);

 $ServerAdmin = $User;

 </Perl>

Block sections such as <Loca tion >..</Loca tion > are represented in a %Location hash, e.g.:

 $Location{"/~dougm/"} = {
 AuthUserFile => ’/tmp/htpasswd’,
 AuthType => ’Basic’,
 AuthName => ’test’,
 DirectoryIndex => [qw(index.html index.htm)],
 Limit => {
 METHODS => ’GET POST’,
 require => ’user dougm’,
 },
 };

4322 Jan 2000

3.6 <Perl>...</Perl> Sectionsmod_perl tutorial: mod_perl Configuration

If an Apache directive can take two or three arguments you may push strings and the lowest number of
arguments will be shifted off the @List or use array reference to handle any number greater than the
minimum for that directive:

 push @Redirect, "/foo", " http://www.foo.com/" ;;

 push @Redirect, "/imdb", " http://www.imdb.com/" ;;

 push @Redirect, [qw(temp "/here" " http://www.there.com" ;)];

Other section counterparts include %Virtu al Host , %Direc tory and %Files .

To pass all environment variables to the children with a single configuration directive, rather than listing
each one via PassEnv or Perl PassEnv , a <Perl > section could read in a file and:

 push @PerlPassEnv, [$key => $val];

or

 Apache->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code your heart desires. See eg/httpd.conf.pl and eg/perl_sections.txt in mod_perl distribution for more
examples.

A tip for syntax checking outside of httpd:

 <Perl>
 # !perl

 #... code here ...

 __END__
 </Perl>

Now you may run:

 perl -cx httpd.conf

3.6.2 Enabling

To enable <Perl > sections you should build mod_perl with perl Makefile .PL
PERL_SECTIONS=1.

3.6.3 Verifying

You can watch how have you configured the <Perl > sections through the /perl-status location, by
choosing the Perl Sections from the menu.

22 Jan 200044

Stas Bekman3.6.2 Enabling

http://www.there.com"/
http://www.imdb.com/"
http://www.foo.com/"

You can dump the configuration by <Perl > sections configuration this way:

 <Perl>
 use Apache::PerlSections();
 ...
 # Configuration Perl code here
 ...
 print STDERR Apache::PerlSections->dump();
 </Perl>

Alternatively you can store it in a file:

 Apache::PerlSections->store("httpd_config.pl");

You can then require() that file in some other <Perl > section.

3.7 Miscellaneous issues

3.7.1 Validating the Configuration Syntax

apachectl configtest tests the configuration file without starting the server. You can safely
modify the configuration file on your production server, if you run this test before you restart the server.
Of course it is not 100% error prone, but it will reveal any syntax errors you might make while editing the
file.

’apachectl configtest ’ is the same as ’httpd -t ’ and it actually executes the code in startup.pl,
not just parses it. <Perl > configuration has always started Perl during the configuration read,
Perl{Require,Module} do so as well.

If you want your startup code to get a control over the -t (configtest) server launch, start the server
configuration test with:

 httpd -t -Dsyntax_check

and in your startup file, add (at the top):

 return if Apache->define(’syntax_check’);

if you want to prevent the code in the file from being executed.

3.7.2 Testing the mod_perl Server

Assuming that we have configured the /perl URI base to invoke scripts under Apache::Registry
handler, let’s create a simple CGI script and put a test script into /home/httpd/perl/ directory:

4522 Jan 2000

3.7 Miscellaneous issuesmod_perl tutorial: mod_perl Configuration

 test.pl

 #!/usr/bin/perl -w
 use strict;
 print "Content-type: text/html\r\n\r\n";
 print "It worked!!!\n";

Make it executable and readable by server, if your server is running as user nobody (hint: look for User
directive in httpd.conf file), do the following:

 % chown nobody /home/httpd/perl/test.pl
 % chmod u+rx /home/httpd/perl/test.pl

Test that the script is running from the command line, by executing it:

 % /home/httpd/perl/test.pl

You should see:

 Content-type: text/html

 It worked!!!

Now it is a time to test our mod_perl server, assuming that your config file includes Port 80 , go to your
favorite Netscape browser and fetch the following URL (after you have started the server):

 http://localhost/perl/test.pl

Make sure that you have a loop-back device configured, if not -- use the real server name for this test, for
example:

 http://www.example.com/perl/test.pl

You should see:

 It worked!!!

If something went wrong, go through the installation process again, and make sure you didn’t make a
mistake. If that doesn’t help, read the INSTALL pod document (perlpod INSTALL) in the mod_perl
distribution directory.

3.7.3 Publishing Port Numbers Different from 80

It is advised not to publish the 8080 (or alike) port number in URLs, but rather using a proxying rewrite
rule in the thin (httpd_docs) server:

 RewriteRule .*/perl/(.*) http://my.url:8080/perl/ $1 [P]

One problem with publishing 8080 port numbers is that I was told that IE 4.x has a bug when re-posting
data to a non-port-80 url. It drops the port designator, and uses port 80 anyway.

22 Jan 200046

Stas Bekman3.7.3 Publishing Port Numbers Different from 80

http://my.url:8080/perl/
http://www.example.com/perl/test.pl
http://localhost/perl/test.pl

The other reason is that firewalls the users work from behind might have all ports closed, but 80.

3.7.4 Apache Restarts Twice On Start

When the server is restarted. the configuration and module initialization phases are called again (twice in
total) before children get forked. The restart is done in order to ensure that the future restart will workout
correctly, by making sure that all modules can survive a restart (SIGHUP). This is very important if you
restart a production server.

You can control what code to execute only on the start or only on restart by checking the value of
$Apache::Server::Start ing and $Apache::Server::ReStart ing respectively. The
former variable is true when the server is starting and the latter when it’s restarting.

;o)

4722 Jan 2000

3.7.4 Apache Restarts Twice On Startmod_perl tutorial: mod_perl Configuration

4 Choosing the Right Strategy

22 Jan 200048

Stas Bekman4 Choosing the Right Strategy

4.1 What we will learn in this chapter
Deployment of mod_perl in Overview, with the pros and cons.

Standalone mod_perl Enabled Apache Server

One Plain Apache and One mod_perl-enabled Apache Servers

One light non-Apache and One mod_perl enabled Apache Servers

Proxy servers (Squid, and Apache’s mod_proxy).

I will present a few ways of using standalone mod_perl, and some combinations of mod_perl and other
technologies. I’ll describe how these things work together, and offer my opinions on the pros and cons of
each, the relative degree of diffi culty in installing and maintaining them, and some hints on approaches
that should be used and things to avoid.

4.2 mod_perl Deployment Overview
There are several different ways to build, configure and deploy your mod_perl enabled server. Some of
them are:

1. Having one binary and one configuration file (one big binary for mod_perl).

2. Having two binaries and two configuration files (one big binary for mod_perl and one small binary
for static objects like images.)

3. Having one DSO-style binary and two configuration files, with mod_perl available as a loadable
object.

4. Any of the above plus a reverse proxy server in http accelerator mode.

If you are a newbie, I would recommend that you start with the first option and work on getting your feet
wet with apache and mod_perl. Later, you can decide whether to move to the second one which allows
better tuning at the expense of more complicated administration, or to the third option -- the more
state-of-the-art-yet-suspiciously-new DSO system, or to the fourth option which gives you even more
power.

1. The first option will kill your production site if you serve a lot of static data from large (4 to 15MB)
webserver processes. On the other hand, while testing you will have no other server interaction to
mask or add to your errors.

2. This option allows you to tune the two servers individually, for maximum performance.

However, you need to choose between running the two servers on multiple ports, multiple IPs, etc.,
and you have the burden of administering more than one server. You have to deal with proxying or
fancy site design to keep the two servers in synchronization.

4922 Jan 2000

4.1 What we will learn in this chaptermod_perl tutorial: Choosing the Right Strategy

3. With DSO, modules can be added and removed without recompiling the server, and their code is
even shared among multiple servers.

You can compile just once and yet have more than one binary, by using different configuration files
to load different sets of modules. The different Apache servers loaded in this way can run simultane-
ously to give a setup such as described in the second option above.

On the down side, you are playing at the bleeding edge.

You are dealing with a new solution that has weak documentation and is still subject to change. It is
still somewhat platform specific. Your mileage may vary.

The DSO module (mod_so) adds size and complexity to your binaries.

4. The fourth option (proxy in http accelerator mode), once correctly configured and tuned, improves
the performance of any of the above three options by caching and buffering page results.

4.3 Alter native architectures for running one and two
servers
The next part of this chapter discusses the pros and the cons of each of these presented configurations.

We will look at the following installations:

Standalone mod_perl Enabled Apache Server

One Plain Apache and One mod_perl-enabled Apache Servers

One light non-Apache and One mod_perl enabled Apache Servers

Adding a Proxy Server in http Accelerator Mode

4.3.1 Standalone mod_perl Enabled Apache Server

The first approach is to implement a straightforward mod_perl server. Just take your plain apache server
and add mod_perl, like you add any other apache module. You continue to run it at the port it was running
before. You probably want to try this before you proceed to more sophisticated and complex techniques.

The advantages:

Simplicity. You just follow the installation instructions, configure it, restart the server and you are
done.

No network changes. You do not have to worry about using additional ports as we will see later.

22 Jan 200050

Stas Bekman4.3 Alternative architectures for running one and two servers

Speed. You get a very fast server, you see an enormous speedup from the first moment you start to
use it.

The disadvantages:

The process size of a mod_perl-enabled Apache server is huge (maybe 4Mb at startup and growing to
10Mb and more, depending on how you use it) compared to the typical plain Apache. Of course if
memory sharing is in place, RAM requirements will be smaller.

You probably have a few tens of child processes. The additional memory requirements add up in
direct relation to the number of child processes. Your memory demands are growing by an order of
magnitude, but this is the price you pay for the additional performance boost of mod_perl. With
memory prices so cheap nowadays, the additional cost is low -- especially when you consider the
dramatic performance boost mod_perl gives to your services with every 100Mb of RAM you add.

While you will be happy to have these monster processes serving your scripts with monster speed,
you should be very worried about having them serve static objects such as images and html files.
Each static request served by a mod_perl-enabled server means another large process running,
competing for system resources such as memory and CPU cycles. The real overhead depends on
static objects request rate. Remember that if your mod_perl code produces HTML code which
includes images, each one will turn into another static object request. Having another plain webserver
to serve the static objects solves this unpleasant obstacle. Having a proxy server as a front end,
caching the static objects and freeing the mod_perl processes from this burden is another solution.
We will discuss both below.

Another drawback of this approach is that when serving output to a client with a slow connection, the
huge mod_perl-enabled server process (with all of its system resources) will be tied up until the
response is completely written to the client. While it might take a few milliseconds for your script to
complete the request, there is a chance it will be still busy for some number of seconds or even
minutes if the request is from a slow connection client. As in the previous drawback, a proxy solution
can solve this problem. More on proxies later.

Proxying dynamic content is not going to help much if all the clients are on a fast local net (for
example, if you are administering an Intranet.) On the contrary, it can decrease performance. Still,
remember that some of your Intranet users might work from home through slow modem links.

If you are new to mod_perl, this is probably the best way to get yourself started.

And of course, if your site is serving only mod_perl scripts (close to zero static objects, like images), this
might be the perfect choice for you!

4.3.2 One Plain Apache and One mod_perl-enabled Apache Servers

As I have mentioned before, when running scripts under mod_perl, you will notice that the httpd processes
consume a huge amount of virtual memory, from 5Mb to 15Mb and even more. That is the price you pay
for the enormous speed improvements under mod_perl. (Again -- shared memory keeps the real memory
that is being used much smaller :)

5122 Jan 2000

4.3.2 One Plain Apache and One mod_perl-enabled Apache Serversmod_perl tutorial: Choosing the Right Strategy

Using these large processes to serve static objects like images and html documents is overkill. A better
approach is to run two servers: a very light, plain apache server to serve static objects and a heavier
mod_perl-enabled apache server to serve requests for dynamic (generated) objects (aka CGI).

From here on, I will refer to these two servers as httpd_docs (vanilla apache) and httpd_perl (mod_perl
enabled apache).

The advantages:

The heavy mod_perl processes serve only dynamic requests, which allows the deployment of fewer
of these large servers.

MaxClients , MaxRequestsPer Child and related parameters can now be optimally tuned for
both httpd_docs and httpd_perl servers, something we could not do before. This allows us to
fine tune the memory usage and get a better server performance.

Now we can run many lightweight httpd_docs servers and just a few heavy httpd_perl
servers.

An impor tant note: When a user browses static pages and the base URL in the Location window points
to the static server, for example http://www.nowhere.com/index.html -- all relative URLs
(e.g.) are being served by the light plain apache server. But
this is not the case with dynamically generated pages. For example when the base URL in the Location
window points to the dynamic server -- (e.g.
http://www.nowhere.com:8080/perl/index.pl) all relative URLs in the dynamically gener-
ated HTML will be served by the heavy mod_perl processes. You must use fully qualified URLs and not
relative ones! http://www.nowhere.com/icons/arrow.gif is a full URL, while
/icons/arrow.gif is a relative one. Using <BASE HREF="http://www.nowhere.com/" > in
the generated HTML is another way to handle this problem. Also the httpd_perl server could rewrite
the requests back to httpd_docs (much slower) and you still need the attention of the heavy servers.
This is not an issue if you hide the internal port implementations, so the client sees only one server
running on port 80 .

The disadvantages:

An administration overhead.

The need for two different sets of configuration, log and other files. We need a special directory
layout to manage these. While some directories can be shared between the two servers (like the
include directory, containing the apache include files -- assuming that both are built from the
same source distribution), most of them should be separated and the configuration files updated
to reflect the changes.

The need for two sets of controlling scripts (startup/shutdown) and watchdogs.

If you are processing log files, now you probably will have to merge the two separate log files
into one before processing them.

22 Jan 200052

Stas Bekman4.3.2 One Plain Apache and One mod_perl-enabled Apache Servers

Just as in the one server approach, we still have the problem of a mod_perl process spending its
precious time serving slow clients, when the processing portion of the request was completed a long
time ago. Deploying a proxy solves this, and will be covered in the next section.

As with the single server approach, this is not a major disadvantage if you are on a fast network (i.e.
Intranet). It is likely that you do not want a buffering server in this case.

Before you go on with this solution you really want to look at the Adding a Proxy Server in http Accelera-
tor Mode section.

4.3.3 One light non-Apache and One mod_perl enabled Apache
Servers

If the only requirement from the light server is for it to serve static objects, then you can get away with
non-apache servers having an even smaller memory footprint. thttpd has been reported to be about 5
times faster then apache (especially under a heavy load), since it is very simple and uses almost no
memory (260k) and does not spawn child processes.

Meta: Hey, No personal experience here, only rumours. Please let me know if I have missed some
pros/cons here. Thanks!

The Advantages:

All the advantages of the 2 servers scenario.

More memory saving. Apache is about 4 times bigger then thttpd , if you spawn 30 children you use
about 30M of memory, while thttpd uses only 260k - 100 times less! You could use the 30M you’ve
saved to run a few more mod_perl servers.

The memory savings are significantly smaller if your OS supports memory sharing with Dynamically
Shared Objects (DSO) and you have configured apache to use it. If you do allow memory sharing, 30
light apache servers ought to use only about 3 to 4Mb, because most of it will be shared. There is no
memory sharing if apache modules are statically compiled into httpd.

Reported to be about 5 times faster then plain apache serving static objects.

The Disadvantages:

Lacks some of apache’s features, like access control, error redirection, customizable log file formats,
and so on.

4.4 Adding a Proxy Server in http Accelerator Mode
At the beginning there were 2 servers: one plain apache server, which was very light, and configured to
serve static objects, the other mod_perl enabled (very heavy) and configured to serve mod_perl scripts.
We named them httpd_docs and httpd_perl respectively.

5322 Jan 2000

4.4 Adding a Proxy Server in http Accelerator Modemod_perl tutorial: Choosing the Right Strategy

The two servers coexist at the same IP address by listening to different ports: httpd_docs listens to
port 80 (e.g. http://www.nowhere.com/images/test.gif) and httpd_perl listens to port 8080 (e.g.
http://www.nowhere.com:8080/perl/test.pl). Note that I did not write http://www.nowhere.com:80 for the
first example, since port 80 is the default port for the http service. Later on, I will be changing the configu-
ration of the httpd_docs server to make it listen to port 81.

Now I am going to convince you that you want to use a proxy server (in the http accelerator mode). The
advantages are:

Allow serving of static objects from the proxy’s cache (objects that previously were entirely served
by the httpd_docs server).

You get less I/O activity reading static objects from the disk (proxy serves the most ‘‘popular’’
objects from RAM - of course you benefit more if you allow the proxy server to consume more
RAM). Since you do not wait for the I/O to be completed you are able to serve static objects much
faster.

The proxy server acts as a sort of output buffer for the dynamic content. The mod_perl server sends
the entire response to the proxy and is then free to deal with other requests. The proxy server is
responsible for sending the response to the browser. So if the transfer is over a slow link, the
mod_perl server is not waiting around for the data to move.

Using numbers is always more convincing :) Let’s take a user connected to your site with 28.8 kbps
(bps == bits/sec) modem. It means that the speed of the user’s link is 28.8/8 = 3.6 kbytes/sec. I
assume an average generated HTML page to be of 10kb (kb == kilobytes) and an average script that
generates this output in 0.5 secs. How long will the server wait before the user gets the whole output
response? A simple calculation reveals pretty scary numbers - it will have to wait for another 6 secs
(20kb/3.6kb), when it could serve another 12 (6/0.5) dynamic requests in this time.

This very simple example shows us that we need only one twelfth the number of children running,
which means that we will need only one twelfth of the memory (not quite true because some parts of
the code are shared).

But you know that nowadays scripts often return pages which are blown up with javascript code and
similar, which can make them of 100kb size and the download time will be of the order of... (This
calculation is left to you as an exercise :)

Many users like to open many browser windows and do many things at once (download files and
browse graphically heavy sites). So the speed of 3.6kb/sec we were assuming before, may often be
5-10 times slower.

We are going to hide the details of the server’s implementation. Users will never see ports in the
URLs (more on that topic later). You can have a few boxes serving the requests, and only one serving
as a front end, which spreads the jobs between the servers in a way that you can control. You can
actually shut down a server, without the user even noticing, because the front end server will dispatch
the jobs to other servers. (This is called a Load Ballancing and it’s a pretty big issue, which will not
be discussed in this document.

22 Jan 200054

Stas Bekman4.4 Adding a Proxy Server in http Accelerator Mode

http://www.nowhere.com:80/
http://www.nowhere.com:8080/perl/test.pl
http://www.nowhere.com/images/test.gif

For security reasons, using any httpd accelerator (or a proxy in httpd accelerator mode) is essential
because you do not let your internal server get directly attacked by arbitrary packets from whomever.
The httpd accelerator and internal server communicate in expected HTTP requests. This allows for
only your public ‘‘bastion’’ accelerating www server to get hosed in a successful attack, while
leaving your internal data safe.

The disadvantages are:

Of course there are drawbacks. Luckily, these are not functionality drawbacks, but they are more
administration hassle. You have another daemon to worry about, and while proxies are generally
stable, you have to make sure to prepare proper startup and shutdown scripts, which are run at boot
and reboot as appropriate. Also, you might want to set up the crontab to run a watchdog script.

Proxy servers can be configured to be light or heavy, the admin must decide what gives the highest
performance for his application. A proxy server like squid is light in the concept of having only one
process serving all requests. But it can appear pretty heavy when it loads objects into memory for
faster service.

Have I succeeded in convincing you that you want a proxy server?

If you are on a local area network (LAN), then the big benefit of the proxy buffering the output and
feeding a slow client is gone. You are probably better off sticking with a straight mod_perl server in this
case.

4.5 Implementations of Proxy Servers
As of this writing, two proxy implementations are known to be widely used with mod_perl - squid proxy
server and mod_proxy which is a part of the apache server. Let’s compare them.

4.5.1 The Squid Server

The Advantages:

Caching of static objects. These are served much faster, assuming that your cache size is big enough
to keep the most frequently requested objects in the cache.

Buffering of dynamic content, by taking the burden of returning the content generated by mod_perl
servers to slow clients, thus freeing mod_perl servers from waiting for the slow clients to download
the data. Freed servers immediately switch to serve other requests, thus your number of required
servers goes down dramatically.

Non-linear URL space / server setup. You can use Squid to play some tricks with the URL space
and/or domain based virtual server support.

The Disadvantages:

5522 Jan 2000

4.5 Implementations of Proxy Serversmod_perl tutorial: Choosing the Right Strategy

Proxying dynamic content is not going to help much if all the clients are on a fast local net. Also, a
message on the squid mailing list implied that squid only buffers in 16k chunks so it would not allow
a mod_perl to complete immediately if the output is larger.

Speed. Squid is not very fast today when compared with the plain file based web servers available.
Only if you are using a lot of dynamic features such as mod_perl or similar is there a reason to use
Squid, and then only if the application and the server are designed with caching in mind.

Memory usage. Squid uses quite a bit of memory.

HTTP protocol level. Squid is pretty much a HTTP/1.0 server, which seriously limits the deploy-
ment of HTTP/1.1 features.

HTTP headers, dates and freshness. The squid server might give out stale pages, confusing down-
stream/client caches.(You update some documents on the site, but squid will still serve the old ones.)

Stability. Compared to plain web servers, Squid is not the most stable.

The pros and cons presented above lead to the idea that you might want to use squid for its dynamic
content buffering features, but only if your server serves mostly dynamic requests. So in this situation,
when performance is the goal, it is better to have a plain apache server serving static objects, and squid
proxying the mod_perl enabled server only.

4.5.2 Apache’s mod_proxy

I do not think the difference in speed between apache’s mod_proxy and squid is relevant for most sites,
since the real value of what they do is buffering for slow client connections. However, squid runs as a
single process and probably consumes fewer system resources.

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the site across different back
end servers, while mod_proxy knows how to fix up redirects containing the back-end server’s idea of the
location. With squid you can run a redirector process to proxy to more than one back end, but there is a
problem in fixing redirects in a way that keeps the client’s view of both server names and port numbers in
all cases.

The diffi cult case is where:

You have DNS aliases that map to the same IP address and

You want the redirect to port 80 and

The server is on a differ ent port and

You want to keep the specific name the browser has already sent, so that it does not change in
the client’s Location window.

22 Jan 200056

Stas Bekman4.5.2 Apache’s mod_proxy

The Advantages:

No additional server is needed. We keep the one plain plus one mod_perl enabled apache servers. All
you need is to enable mod_proxy in the httpd_docs server and add a few lines to
httpd.conf file.

The Prox yPass and Prox yPass Reverse directives allow you to hide the internal redirects, so
if http://nowhere.com/modperl/ is actually http://local host :81/modperl/ , it
will be absolutely transparent to the user. Prox yPass redirects the request to the mod_perl server,
and when it gets the response, Prox yPass Reverse rewrites the URL back to the original one, e.g:

 ProxyPass /modperl/ http://localhost:81/modperl/
 ProxyPassReverse /modperl/ http://localhost:81/modperl/

It does mod_perl output buffering like squid does.

It even does caching. You have to produce correct Content-Length , Last-Modi fied and
Expires http headers for it to work. If some of your dynamic content does not change frequently,
you can dramatically increase performance by caching it with Prox yPass .

Prox yPass happens before the authentication phase, so you do not have to worry about authenti-
cating twice.

Apache is able to accelerate secure HTTP requests completely, while also doing accelerated HTTP.
With squid you have to use an external redirection program for that.

The latest (apache 1.3.6 and later) Apache proxy accelerated mode is reported to be very stable.

The Disadvantages:

Users have reported that it might be a bit slow, but the latest version is fast enough.

;o)

5722 Jan 2000

4.5.2 Apache’s mod_proxymod_perl tutorial: Choosing the Right Strategy

http://localhost:81/modperl/
http://localhost:81/modperl/

5 Real World Scenarios Implementation

22 Jan 200058

Stas Bekman5 Real World Scenarios Implementation

5.1 What we will learn in this chapter
Standalone mod_perl Enabled Apache Server

One Plain and One mod_perl enabled Apache Servers

Running 2 webservers and squid in httpd accelerator mode

Running 1 webserver and squid in httpd accelerator mode

One Light and One Heavy Server where ALL htmls are Perl-Generated

Building and Using mod_proxy

5.2 Standalone mod_perl Enabled Apache Server
We saw the implementation in the Installation section at the beginning of Tutorial. A quick reminder of
what it takes to build a standalone server:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar zvxf apache_x.xx.tar.gz
 % tar zvxf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 PERL_MARK_WHERE=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

5.3 One Plain and One mod_perl enabled Apache Servers
Since we are going to run two apache servers we will need two different sets of configuration, log and
other files. We need a special directory layout. While some of the directories can be shared between the
two servers (assuming that both are built from the same source distribution), others should be separated.
From now on I will refer to these two servers as httpd_docs (vanilla Apache) and httpd_perl
(Apache/mod_perl).

For this illustration, we will use /usr/local as our root directory. The Apache installation directories
will be stored under this root (/usr/local/bin , /usr/local/etc and etc...)

First let’s prepare the sources. We will assume that all the sources go into /usr/src dir. It is better
when you use two separate copies of apache sources. Since you probably will want to tune each apache
version at separate and to do some modifications and recompilations as the time goes. Having two inde-
pendent source trees will prove helpful, unless you use DSO, which is covered later in this section.

5922 Jan 2000

5.1 What we will learn in this chaptermod_perl tutorial: Real World Scenarios Implementation

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
http://www.apache.org/dist/apache_x.x.x.tar.gz

Make two subdirectories:

 % mkdir /usr/src/httpd_docs
 % mkdir /usr/src/httpd_perl

Put the Apache sources into a /usr/src/httpd_docs directory:

 % cd /usr/src/httpd_docs
 % gzip -dc /tmp/apache_x.x.x.tar.gz | tar xvf -

If you have a gnu tar:

 % tar xvzf /tmp/apache_x.x.x.tar.gz

Replace /tmp directory with a path to a downloaded file and x.x.x with the version of the server you
have.

 % cd /usr/src/httpd_docs

 % ls -l
 drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x.x.x/

Now we will prepare the httpd_perl server sources:

 % cd /usr/src/httpd_perl
 % gzip -dc /tmp/apache_x.x.x.tar.gz | tar xvf -
 % gzip -dc /tmp/modperl-x.xx.tar.gz | tar xvf -

 % ls -l
 drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x.x.x/
 drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 modperl-x.xx/

Time to decide on the desired directory structure layout (where the apache files go):

 ROOT = /usr/local

The two servers can share the following directories (so we will not duplicate data):

 /usr/local/bin/
 /usr/local/lib
 /usr/local/include/
 /usr/local/man/
 /usr/local/share/

Impor tant: we assume that both servers are built from the same Apache source version.

Servers store their specific files either in httpd_docs or httpd_perl sub-directories:

 /usr/local/etc/httpd_docs/
 httpd_perl/

 /usr/local/sbin/httpd_docs/
 httpd_perl/

22 Jan 200060

Stas Bekman5.3 One Plain and One mod_perl enabled Apache Servers

 /usr/local/var/httpd_docs/logs/
 proxy/
 run/
 httpd_perl/logs/
 proxy/
 run/

After completion of the compilation and the installation of the both servers, you will need to configure
them. To make things clear before we proceed into details, you should configure the
/usr/local/etc/httpd_docs/httpd.conf as a plain apache and Port directive to be 80 for
example. And /usr/local/etc/httpd_perl/httpd.conf to configure for mod_perl server and
of course whose Port should be different from the one httpd_docs server listens to (e.g. 8080). The
port numbers issue will be discussed later.

The next step is to configure and compile the sources: Below are the procedures to compile both servers
taking into account the directory layout I have just suggested to use.

5.3.1 Configuration and Compilation of the Sources.

Let’s proceed with installation. I will use x.x.x instead of real version numbers so this document will
never become obsolete :).

5.3.1.1 Build ing the httpd_docs Server

Sources Configuration:

 % cd /usr/src/httpd_docs/apache_x.x.x
 % make clean
 % env CC=gcc \
 ./configure --prefix=/usr/local \
 --sbindir=/usr/local/sbin/httpd_docs \
 --sysconfdir=/usr/local/etc/httpd_docs \
 --localstatedir=/usr/local/var/httpd_docs \
 --runtimedir=/usr/local/var/httpd_docs/run \
 --logfiledir=/usr/local/var/httpd_docs/logs \
 --proxycachedir=/usr/local/var/httpd_docs/proxy

If you need some other modules, like mod_rewrite and mod_include (SSI), add them here as well:

 --enable-module=include --enable-module=rewrite

Note: gcc -- compiles httpd by 100K+ smaller then cc on AIX OS. Remove the line env CC=gcc
if you want to use the default compiler. If you want to use it and you are a (ba)?sh user you will not
need the env function, t?csh users will have to keep it in.

Note: add --layout to see the resulting directories’ layout without actually running the configura-
tion process.

6122 Jan 2000

5.3.1 Configuration and Compilation of the Sources.mod_perl tutorial: Real World Scenarios Implementation

Sources Compilation:

 % make
 % make install

Rename httpd to http_docs

 % mv /usr/local/sbin/httpd_docs/httpd \
 /usr/local/sbin/httpd_docs/httpd_docs

Now update an apachectl utility to point to the renamed httpd via your favorite text editor or by
using perl:

 % perl -p -i -e ’s|httpd_docs/httpd|httpd_docs/httpd_docs|’ \
 /usr/local/sbin/httpd_docs/apachectl

5.3.1.2 Build ing the httpd_perl (mod_perl enabled) Server

Before you start to configure the mod_perl sources, you should be aware that there are a few Perl modules
that have to be installed before building mod_perl. You will be alerted if any required modules are
missing when you run the perl Makefile .PL command line below. If you discover that some are
missing, pick them from your nearest CPAN repository (if you do not know what is it, make a visit to
http://www.perl.com/CPAN) or run the CPAN interactive shell via the command line perl -MCPAN
-e shell .

Make sure the sources are clean:

 % cd /usr/src/httpd_perl/apache_x.x.x
 % make clean
 % cd /usr/src/httpd_perl/mod_perl-x.xx
 % make clean

It is important to make clean since some of the versions are not binary compatible (e.g apache 1.3.3 vs
1.3.4) so any ‘‘third-party’’ C modules need to be re-compiled against the latest header files.

Here I did not find a way to compile with gcc (my perl was compiled with cc so we have to compile
with the same compiler!!!

 % cd /usr/src/httpd_perl/mod_perl-x.xx

 % /usr/local/bin/perl Makefile.PL \
 APACHE_PREFIX=/usr/local/ \
 APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 \
 USE_APACI=1 \
 PERL_MARK_WHERE=1 \
 PERL_STACKED_HANDLERS=1 \
 ALL_HOOKS=1 \
 APACI_ARGS=--sbindir=/usr/local/sbin/httpd_perl, \
 --sysconfdir=/usr/local/etc/httpd_perl, \

22 Jan 200062

Stas Bekman5.3.1 Configuration and Compilation of the Sources.

http://www.perl.com/CPAN

 --localstatedir=/usr/local/var/httpd_perl, \
 --runtimedir=/usr/local/var/httpd_perl/run, \
 --logfiledir=/usr/local/var/httpd_perl/logs, \
 --proxycachedir=/usr/local/var/httpd_perl/proxy

Notice that all APACI_ARGS (above) must be passed as one long line if you work with t?csh !!!
However it works correctly the way it shown above with (ba)?sh (by breaking the long lines with ’ \ ’).
If you work with t?csh it does not work, since t?csh passes APACI_ARGS arguments to ./config -
ure by keeping the new lines untouched, but stripping the original ’ \ ’, thus breaking the configuration
process.

As with httpd_docs you might need other modules like mod_rewrite , so add them here:

 --enable-module=rewrite

Note: PERL_STACKED_HANDLERS=1 is needed for Apache::DBI

Now, build, test and install the httpd_perl .

 % make && make test && make install

Note: apache puts a stripped version of httpd at /usr/local/sbin/httpd_perl/httpd . The
original version which includes debugging symbols (if you need to run a debugger on this executable) is
located at /usr/src/httpd_perl/apache_x.x.x/src/httpd .

Note: You may have noticed that we did not run make install in the apache’s source directory. When
USE_APACI is enabled, APACHE_PREFIX will specify the --prefix option for apache’s config -
ure utility, specifying the installation path for apache. When this option is used, mod_perl’s make
install will also make install on the apache side, installing the httpd binary, support tools, along
with the configuration, log and document trees.

If make test fails, look into t/logs and see what is in there.

While doing perl Makefile .PL ... mod_perl might complain by warning you about missing
libgdbm . Users reported that it is actually crucial, and you must have it in order to successfully complete
the mod_perl building process.

Now rename the httpd to httpd_perl :

 % mv /usr/local/sbin/httpd_perl/httpd \
 /usr/local/sbin/httpd_perl/httpd_perl

Update the apachectl utility to point to renamed httpd name:

 % perl -p -i -e ’s|httpd_perl/httpd|httpd_perl/httpd_perl|’ \
 /usr/local/sbin/httpd_perl/apachectl

6322 Jan 2000

5.3.1 Configuration and Compilation of the Sources.mod_perl tutorial: Real World Scenarios Implementation

5.3.2 Configuration of the servers

Now when we have completed the building process, the last stage before running the servers, is to config-
ure them.

5.3.2.1 Basic httpd_docs Server’s Configuration

Configuring of httpd_docs server is a very easy task. Open
/usr/local/etc/httpd_docs/httpd.conf into your favorite editor (starting from version 1.3.4
of Apache - there is only one file to edit). And configure it as you always do. Make sure you configure the
log files and other paths according to the directory layout we decided to use.

Start the server with:

 /usr/local/sbin/httpd_docs/apachectl start

5.3.2.2 Basic httpd_perl Server’s Configuration

Here we will make a basic configuration of the httpd_perl server. We edit the
/usr/local/etc/httpd_perl/httpd.conf file. As with httpd_docs server configuration,
make sure that Error Log and other file’s location directives are set to point to the right places, accord-
ing to the chosen directory layout.

The first thing to do is to set a Port directive - it should be different from 80 since we cannot bind 2
servers to use the same port number on the same machine. Here we will use 8080 . Some developers use
port 81 , but you can bind to it, only if you have root permissions. If you are running on multiuser
machine, there is a chance someone already uses that port, or will start using it in the future - which as you
understand might cause a collision. If you are the only user on your machine, basically you can pick any
not used port number. Port number choosing is a controversial topic, since many organizations use fire-
walls, which may block some of the ports, or enable only a known ones. From my experience the most
used port numbers are: 80 , 81 , 8000 and 8080 . Personally, I prefer the port 8080 . Of course with 2
server scenario you can hide the nonstandard port number from firewalls and users, by either using the
mod_proxy’s Prox yPass or proxy server like squid.

Now we proceed to mod_perl specific directives. A good idea will be to add them all at the end of the
httpd.conf , since you are going to fiddle a lot with them at the beginning.

First, you need to specify the location where all mod_perl scripts will be located.

Add the following configuration directive:

 # mod_perl scripts will be called from
 Alias /perl/ /usr/local/myproject/perl/

From now on, all requests starting with /perl will be executed under mod_perl and will be mapped to
the files in /usr/local/mypro ject /perl/ .

22 Jan 200064

Stas Bekman5.3.2 Configuration of the servers

Now we should configure the /perl location.

 PerlModule Apache::Registry

 <Location /perl>
 #AllowOverride None
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes all scripts that are called with a /perl path prefix to be executed under the
Apache::Registry module and as a CGI (so the ExecCGI , if you omit this option the script will be
printed to the user’s browser as a plain text or will possibly trigger a ’Save-As’ window).
Apache::Registry module lets you run almost unaltered CGI/perl scripts under mod_perl .
PerlMod ule directive is an equivalent of perl’s require() . We load the Apache::Registry
module before we use it in the Perl Handler in the Loca tion configuration.

PerlSend Header On tells the server to send an HTTP header to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

Now start the server with:

 /usr/local/sbin/httpd_perl/apachectl start

5.4 Running 2 webservers and squid in httpd accelerator
mode
While I have detailed the mod_perl server installation, you are on your own with installing the squid
server. I run linux, so I downloaded the rpm package, installed it, configured the
/etc/squid/squid.conf , fired off the server and was all set. Basically once you have the squid
installed, you just need to modify the default squid.conf the way I will explain below, then you are
ready to run it.

First, let’s understand what do we have in hands and what do we want from squid. We have an
httpd_docs and httpd_perl servers listening on ports 81 and 8080 accordingly (we have to move
the httpd_docs server to port 81, since port 80 will be taken over by squid). Both reside on the same
machine as squid. We want squid to listen on port 80, forward a single static object request to the port
httpd_docs server listens to, and dynamic request to httpd_perl’s port. Both servers return the data to the
proxy server (unless it is already cached in the squid), so user never sees the other ports and never knows
that there might be more then one server running. Proxy server makes all the magic behind it transparent
to user. Do not confuse it with mod_rewrite, where a server redirects the request somewhere according to
the rules and forgets about it. The described functionality is being known as httpd accel er ator
mode in proxy dialect.

6522 Jan 2000

5.4 Running 2 webservers and squid in httpd accelerator modemod_perl tutorial: Real World Scenarios Implementation

You should understand that squid can be used as a straight forward proxy server, generally used at compa-
nies and ISPs to cut down the incoming traffic by caching the most popular requests. However we want to
run it in the httpd accel er ator mode. Two directives: httpd_accel_host and
httpd_accel_port enable this mode. We will see more details in a few seconds. If you are currently
using the squid in the regular proxy mode, you can extend its functionality by running both modes concur-
rently. To accomplish this, you extend the existent squid configuration with httpd accel er ator
mode’s related directives or you just create one from scratch.

As stated before, squid listens now to the port 80, we have to move the httpd_docs server to listen for
example to the port 81 (your mileage may vary :). So you have to modify the httpd.conf in the httpd_docs
configuration directory and restart the httpd_docs server (But not before we get the squid running if you
are working on the production server). And as you remember httpd_perl listens to port 8080.

Let’s go through the changes we should make to the default configuration file. Since this file
(/etc/squid/squid.conf) is huge (about 60k+) and we would not use 95% of it, my suggestion is
to write a new one including only the modified directives.

We want to enable the redirect feature, to be able to serve requests, by more then one server (in our case
we have httpd_docs and httpd_perl) servers. So we specify httpd_accel_host as virtual. This
assumes that your server has multiple interfaces - Squid will bind to all of them.

 httpd_accel_host virtual

Then we define the default port - by default, if not redirected, httpd_docs will serve the pages. We assume
that most requests will be of the static nature. We have our httpd_docs listening on port 81.

 httpd_accel_port 81

And as described before, squid listens to port 80.

 http_port 80

We do not use icp (icp used for cache sharing between neighbor machines), which is more relevant in the
proxy mode.

 icp_port 0

hier ar chy _stoplist defines a list of words which, if found in a URL, causes the object to be
handled directly by this cache. In other words, use this to not query neighbor caches for certain objects.
Note that I have configured the /cgi-bin and /perl aliases for my dynamic documents, if you named
them in a different way, make sure to use the correct aliases here.

 hierarchy_stoplist /cgi-bin /perl

Now we tell squid not to cache dynamic pages.

 acl QUERY urlpath_regex /cgi-bin /perl
 no_cache deny QUERY

22 Jan 200066

Stas Bekman5.4 Running 2 webservers and squid in httpd accelerator mode

Please note that the last two directives are controversial ones. If you want your scripts to be more comply-
ing with the HTTP standards, the headers of your scripts should carry the Caching Direc tives
according to the HTTP specs. You will find a complete tutorial about this topic in Tuto rial on HTTP
Headers for mod_perl users by Andreas J. Koenig (at http://perl.apache.org). If you set the
headers correctly there is no need to tell squid accelerator to NOT try to cache something. The headers I
am talking about are Last-Modi fied and Expires . What are they good for? Squid would not bother
your mod_perl server a second time if a request is (a) cachable and (b) still in the cache. Many mod_perl
applications will produce identical results on identical requests at least if not much time goes by between
the requests. So your squid might have a hit ratio of 50%, which means that mod_perl servers will have as
twice as less work to do than before. This is only possible by setting the headers correctly.

Even if you insert user-ID and date in your page, caching can save resources when you set the expiration
time to 1 second. A user might double click where a single click would do, thus sending two requests in
parallel, squid could serve the second request.

But if you are lazy, or just have too many things to deal with, you can leave the above directives the way I
described. But keep in mind that one day you will want to reread this snippet and the Andreas’ tutorial and
squeeze even more power from your servers without investing money for additional memory and better
hardware.

While testing you might want to enable the debugging options and watch the log files in
/var/log/squid/ . But turn it off in your production server. I list it commented out. (28 == access
control routes).

 # debug_options ALL, 1, 28, 9

We need to provide a way for squid to dispatch the requests to the correct servers, static object requests
should be redirected to httpd_docs (unless they are already cached), while dynamic should go to the
httpd_perl server. The configuration below tells squid to fire off 10 redirect daemons at the specified path
of the redirect daemon and disables rewriting of any Host: headers in redirected requests (as suggested
by squid’s documentation). The redirection daemon script is enlisted below.

 redirect_program /usr/lib/squid/redirect.pl
 redirect_children 10
 redirect_rewrites_host_header off

Maximum allowed request size in kilobytes. This one is pretty obvious. If you are using POST to upload
files, then set this to the largest file’s size plus a few extra kbytes.

 request_size 1000 KB

Then we have access permissions, which I will not explain. But you might want to read the documentation
so to avoid any security flaws.

 acl all src 0.0.0.0/0.0.0.0
 acl manager proto cache_object
 acl localhost src 127.0.0.1/255.255.255.255
 acl myserver src 127.0.0.1/255.255.255.255
 acl SSL_ports port 443 563
 acl Safe_ports port 80 81 8080 81 443 563

6722 Jan 2000

5.4 Running 2 webservers and squid in httpd accelerator modemod_perl tutorial: Real World Scenarios Implementation

http://perl.apache.org/

 acl CONNECT method CONNECT

 http_access allow manager localhost
 http_access allow manager myserver
 http_access deny manager
 http_access deny !Safe_ports
 http_access deny CONNECT !SSL_ports
 # http_access allow all

Since squid should be run as non-root user, you need these if you are invoking the squid as root.

 cache_effective_user squid
 cache_effective_group squid

Now configure a memory size to be used for caching. A squid documentation warns that the actual size of
squid can grow three times larger than the value you are going to set.

 cache_mem 20 MB

Keep pools of allocated (but unused) memory available for future use. Read more about it in the squid
documents.

 memory_pools on

Now tight the runtime permissions of the cache manager CGI script (cachemgr.cgi ,that comes
bundled with squid) on your production server.

 cachemgr_passwd disable shutdown
 #cachemgr_passwd none all

Now the redirection daemon script (you should put it at the location you have specified by redi -
rect _program parameter in the config file above, and make it executable by webserver of course):

 #!/usr/local/bin/perl

 $|=1;

 while (<>) {
 # redirect to mod_perl server (httpd_perl)
 print($_), next if s|(:81)?/perl/|:8080/perl/|o;

 # send it unchanged to plain apache server (http_docs)
 print;
 }

In my scenario the proxy and the apache servers are running on the same machine, that’s why I just substi-
tute the port. In the presented squid configuration, requests that passed through squid are converted to
point to the localhost (which is 127.0.0.1). The above redirector can be more complex of course, but
you know the perl, right?

A few notes regarding redirector script:

22 Jan 200068

Stas Bekman5.4 Running 2 webservers and squid in httpd accelerator mode

You must disable buffering. $|=1; does the job. If you do not disable buffering, the STDOUT will be
flushed only when the buffer becomes full and its default size is about 4096 characters. So if you have an
average URL of 70 chars, only after 59 (4096/70) requests the buffer will be flushed, and the requests will
finally achieve the server in target. Your users will just wait till it will be filled up.

If you think that it is a very ineffective way to redirect, I’ll try to prove you the opposite. The redirector
runs as a daemon, it fires up N redirect daemons, so there is no problem with perl interpreter loading,
exactly like mod_perl -- perl is loaded all the time and the code was already compiled, so redirect is very
fast (not slower if redirector was written in C or alike). Squid keeps an open pipe to each redirect daemon,
thus there is even no overhead of the expensive system calls.

Now it is time to restart the server, at linux I do it with:

 /etc/rc.d/init.d/squid restart

Now the setup is complete ...

Almost... When you try the new setup, you will be surprised and upset to discover a port 81 showing up in
the URLs of the static objects (like htmls). Hey, we did not want the user to see the port 81 and use it
instead of 80, since then it will bypass the squid server and the hard work we went through was just a
waste of time?

The solution is to run both squid and httpd_docs at the same port. This can be accomplished by binding
each one to a specific interface. Modify the httpd.conf in the httpd_docs configuration directory:

 Port 80
 BindAddress 127.0.0.1
 Listen 127.0.0.1:80

Modify the squid.conf :

 http_port 80
 tcp_incoming_address 123.123.123.3
 tcp_outgoing_address 127.0.0.1
 httpd_accel_host 127.0.0.1
 httpd_accel_port 80

Where 123.123.123.3 should be replaced with IP of your main server. Now restart squid and
httpd_docs in either order you want, and voila the port number has gone.

You must also have in the /etc/hosts an entry (most chances that it’s already there):

 127.0.0.1 localhost.localdomain localhost

Now if your scripts were generating HTML including fully qualified self references, using the 8080 or
other port -- you should fix them to generate links to point to port 80 (which means not using the port at
all). If you do not, users will bypass squid, like if it was not there at all, by making direct requests to the
mod_perl server’s port.

6922 Jan 2000

5.4 Running 2 webservers and squid in httpd accelerator modemod_perl tutorial: Real World Scenarios Implementation

The only question left is what to do with users who bookmarked your services and they still have the port
8080 inside the URL. Do not worry about it. The most important thing is for your scripts to return a full
URLs, so if the user comes from the link with 8080 port inside, let it be. Just make sure that all the
consecutive calls to your server will be rewritten correctly. During a period of time users will change their
bookmarks. What can be done is to send them an email if you have one, or to leave a note on your pages
asking users to update their bookmarks. You could avoid this problem if you did not publish this non-80
port in first place.

To save you some keystrokes, here is the whole modified squid.conf :

 http_port 80
 tcp_incoming_address 123.123.123.3
 tcp_outgoing_address 127.0.0.1
 httpd_accel_host 127.0.0.1
 httpd_accel_port 80

 icp_port 0

 hierarchy_stoplist /cgi-bin /perl
 acl QUERY urlpath_regex /cgi-bin /perl
 no_cache deny QUERY

 # debug_options ALL,1 28,9

 redirect_program /usr/lib/squid/redirect.pl
 redirect_children 10
 redirect_rewrites_host_header off

 request_size 1000 KB

 acl all src 0.0.0.0/0.0.0.0
 acl manager proto cache_object
 acl localhost src 127.0.0.1/255.255.255.255
 acl myserver src 127.0.0.1/255.255.255.255
 acl SSL_ports port 443 563
 acl Safe_ports port 80 81 8080 81 443 563
 acl CONNECT method CONNECT

 http_access allow manager localhost
 http_access allow manager myserver
 http_access deny manager
 http_access deny !Safe_ports
 http_access deny CONNECT !SSL_ports
 # http_access allow all

 cache_effective_user squid
 cache_effective_group squid

 cache_mem 20 MB

 memory_pools on

 cachemgr_passwd disable shutdown

22 Jan 200070

Stas Bekman5.4 Running 2 webservers and squid in httpd accelerator mode

Note that all directives should start at the beginning of the line.

5.5 Running 1 webserver and squid in httpd accelerator
mode
When I was first told about squid, I thought: ‘‘Hey, Now I can drop the httpd_docs server and to have
only squid and httpd_perl servers‘‘. Since all my static objects will be cached by squid, I do not need
the light httpd_docs server. But it was a wrong assumption. Why? Because you still have the overhead
of loading the objects into squid at first time, and if your site has many of them -- not all of them will be
cached (unless you have devoted a huge chunk of memory to squid) and my heavy mod_perl servers will
still have an overhead of serving the static objects. How one would measure the overhead? The difference
between the two servers is memory consumption, everything else (e.g. I/O) should be equal. So you have
to estimate the time needed for first time fetching of each static object at a peak period and thus the
number of additional servers you need for serving the static objects. This will allow you to calculate addi-
tional memory requirements. I can imagine, this amount could be significant in some installations.

So I have decided to have even more administration overhead and to stick with squid, httpd_docs and
httpd_perl scenario, where I can optimize and fine tune everything. Of course this can be not your case. If
you are feeling that the scenario from the previous section is too complicated for you, make it simpler.
Have only one server with mod_perl built in and let the squid to do most of the job that plain light apache
used to do. As I have explained in the previous paragraph, you should pick this lighter setup only if you
can make squid cache most of your static objects. If it cannot, your mod_perl server will do the work we
do not want it to.

If you are still with me, install apache with mod_perl and squid. Then use a similar configuration from the
previous section, but now httpd_docs is not there anymore. Also we do not need the redirector anymore
and we specify httpd_accel_host as a name of the server and not virtual . There is no need to
bind two servers on the same port, because we do not redirect and there is neither Bind nor Listen
directives in the httpd.conf anymore.

The modified configuration (see the explanations in the previous section):

 httpd_accel_host put.your.hostname.here
 httpd_accel_port 8080
 http_port 80
 icp_port 0

 hierarchy_stoplist /cgi-bin /perl
 acl QUERY urlpath_regex /cgi-bin /perl
 no_cache deny QUERY

 # debug_options ALL, 1, 28, 9

 # redirect_program /usr/lib/squid/redirect.pl
 # redirect_children 10
 # redirect_rewrites_host_header off

 request_size 1000 KB

7122 Jan 2000

5.5 Running 1 webserver and squid in httpd accelerator modemod_perl tutorial: Real World Scenarios Implementation

 acl all src 0.0.0.0/0.0.0.0
 acl manager proto cache_object
 acl localhost src 127.0.0.1/255.255.255.255
 acl myserver src 127.0.0.1/255.255.255.255
 acl SSL_ports port 443 563
 acl Safe_ports port 80 81 8080 81 443 563
 acl CONNECT method CONNECT

 http_access allow manager localhost
 http_access allow manager myserver
 http_access deny manager
 http_access deny !Safe_ports
 http_access deny CONNECT !SSL_ports
 # http_access allow all

 cache_effective_user squid
 cache_effective_group squid

 cache_mem 20 MB

 memory_pools on

 cachemgr_passwd disable shutdown

5.6 Build ing and Using mod_proxy
To build it into apache just add --enable-module=proxy during the apache configure stage.

Now we will talk about apache’s mod_proxy and understand how it works.

The server on port 80 answers http requests directly and proxies the mod_perl enabled server in the
following way:

 ProxyPass /modperl/ http://localhost:81/modperl/
 ProxyPassReverse /modperl/ http://localhost:81/modperl/

PPR is the saving grace here, that makes apache a win over Squid. It rewrites the redirect on its way back
to the original URI.

You can control the buffering feature with Prox yReceive Buffer Size directive:

 ProxyReceiveBufferSize 16384

The above setting will set a buffer size to be of 16Kb. If it is not set explicitly or set to 0, then the default
buffer size is used. It may not be smaller than 512 and it should be a number that it’s a multiplicative of
512.

Both the default and the maximum possible value are depend on OS. For example on linux OS with kernel
2.2.5 the maximum and default values are either 32k or 64k (hint: grep the kernel sources for
SK_RMEM_MAX variable). If you set the value bigger than limit, the default one will be used.

22 Jan 200072

Stas Bekman5.6 Building and Using mod_proxy

http://localhost:81/modperl/
http://localhost:81/modperl/

Under FreeBSD it’s possible to configure kernel to have bigger socket buffers:

 % sysctl -w kern.ipc.maxsockbuf=2621440

When you tell the kernel to use bigger sockets you can set bigger values for ProxyReceiveBufferSize. i.e.
1048576 (1Mb) and bigger.

So basically to get an immediate release of the mod_perl server from stale awaiting, Prox yReceive -
Buffer Size should be set to a value greater than the biggest generated respond produced by any
mod_perl script but not bigger than the limit. But even if not all the requests’ output will be small enough
or the buffer big enough to absorb it all, you’ve got an improve since the processes that generated smaller
responds will be immideately released.

As the name states, its buffering feature applies only to downstream data (coming from the origin server
to the proxy) and not upstream (i.e. buffering the data being uploaded from the client browser to the
proxy, thus freeing the httpd_perl origin server from being tied up during a large POST such as a file
upload).

Apache does caching as well. It’s relevant to mod_perl only if you produce proper headers, so your
scripts’ output can be cached. See apache documentation for more details on configuration of this capabil-
ity.

Ask Bjoern Hansen has written a mod_proxy_add_forward module for apache, that sets the
X-Forwarded-For field when doing a Prox yPass , similar to what squid can do. (Its location is
specified in the help section). Basically, that module adds an extra HTTP header to proxying requests.
You can access that header in the mod_perl-enabled server, and set the IP of the remote server. You won’t
need to compile anything into the back-end server, if you are using Apache::{Registry,PerlRun}
just put something like the following into start-up.pl :

 sub My::ProxyRemoteAddr ($) {
 my $r = shift;

 # we’ll only look at the X-Forwarded-For header if the requests
 # comes from our proxy at localhost
 return OK unless ($r->connection->remote_ip eq "127.0.0.1");

 # Select last value in the chain -- original client’s ip
 if (my ($ip) = $r->headers_in->{’X-Forwarded-For’} =~ /([^,\s]+)$/) {
 $r->connection->remote_ip($ip);
 }

 return OK;
 }

And in httpd.conf :

 PerlPostReadRequestHandler My::ProxyRemoteAddr

Different sites have different needs. If you’re using the header to set the IP address, apache believes it is
dealing with (in the logging and stuff), you really don’t want anyone but your own system to set the
header. That’s why the above ‘‘recommended code’’ checks where the request is really coming from,

7322 Jan 2000

5.6 Building and Using mod_proxymod_perl tutorial: Real World Scenarios Implementation

before changing the remote_ip .

Generally you shouldn’t trust the X-Forwarded-For header. You only want to rely on
X-Forwarded-For headers from proxies you control yourself. If you know how to spoof a cookie
you’ve probably got the general idea on making HTTP headers and can spoof the X-Forwarded-For
header as well. The only address *you* can count on as being a reliable value is the one from
r->connec tion ->remote_ip .

From that point on, the remote IP address is correct. You should be able to access REMOTE_ADDR as
usual.

It was reported that Ben Laurie’s Apache-SSL does not seem to put the IPs in the X-Forwarded-For
header (it does not set up such a header at all). However, the REMOTE_ADDER it sets up and contains the
IP of the original client machine.

You could do the same thing with other environment variables (though I think several of them are
preserved, you will want to run some tests to see which ones).

;o)

22 Jan 200074

Stas Bekman5.6 Building and Using mod_proxy

6 mod_perl for ISPs

7522 Jan 2000

6 mod_perl for ISPsmod_perl tutorial: mod_perl for ISPs

6.1 What we will learn in this chapter
ISPs providing mod_perl services - a fantasy or reality

6.2 ISPs provid ing mod_perl services - a fantasy or reality.
You have fallen in love with mod_perl from the first sight, since the moment you have installed it at your
home box. But when you wanted to convert your CGI scripts, currently running on your favorite ISPs
machine, to run under mod_perl - you have discovered, your ISPs either have never heard of such a beast,
or refuse to install it for you.

You are an old sailor in the ISP business, you have seen it all, you know how many ISPs are out there and
you know that the sales margins are too low to keep you happy. You are looking for some new service
almost no one provides, to attract more clients to become your users and hopefully to have a bigger slice
than a neighbor ISP.

If you are a user asking for a mod_perl service or an ISP considering to provide this service, this section
should make things clear for both of you.

An ISP has 3 choices to choose from:

1. ISP cannot afford having a user, running scripts under mod_perl, on the main server, since it will die
very soon for one of the many reasons: either sloppy programming, or user testing just updated script
which probably has some syntax errors and etc, no need to explain why if you are familiar with
mod_perl peculiarities. The only scripts that CAN BE ALLOWED to use, are the ones that were
written by ISP and are not being modified by user (guest books, counters and etc - the same standard
scripts ISPs providing since they were born). So you have to say NO for this choice.

More things to think about are file permissions (any user who is allowed to write and run CGI script,
can at least read if not write any other files that has a permissions of the web server. This has nothing
to do with mod_perl, and there are solutions for that suEXEC and cgiwrap for example) and
Apache::DBI connections (You can pick a connection from the pool of cached connenctions,
opened by someone else by hacking the Apache::DBI code).

2. But, hey why I cannot let my user to run his own server, so I clean my hands off and do not care how
dirty and sloppy user’s code is (assuming that user is running the server by his own username).

This option is fine as long as you are concerned about your new system requirements. If you have
even some very limited experience with mod_perl, you know that mod_perl enabled apache servers
while freeing up your CPU and lets you run scripts much much faster, has a huge memory demands
(5-20 times the plain apache uses). The size depends on the code length, sloppiness of the program-
mer, possible memory leaks the code might have and all that multiplied by the number of children
each server spawns. A very simple example : a server demanding 10Mb of memory which spawns 10
children, already rises your memory requirements by 100Mb (the real requirement are actually
smaller if your OS allows code sharing between processes and a programmer exploits these features
in her code). Now multiply the received number by the number of users you intend to have and you
will get the memory requirements. Since ISPs never say no, you better use an opposite approach -

22 Jan 200076

Stas Bekman6.1 What we will learn in this chapter

think of a largest memory size you can afford then divide it by one user’s requirements as I have
shown in example, and you will know how much mod_perl users you can afford :)

But who am I to prognosticate how much memory your user may use. His requirement from a single
server can be very modest, but do you know how many of servers he will run (after all she has all the
control over httpd.conf - and it has to be that way, since this is very essential for the user running
mod_perl)?

All this rumbling about memory leads to a single question: Can you restrict user from using more
than X memory? Or another variation of the question: Assuming you have as much memory as you
want, can you charge user for the average memory usage?

If the answer for either of the above question is positive, you are all set and your clients will prize
your name for letting them run mod_perl! There are tools to restrict resources’ usage (See for
example man pages for ulimit(3) , getr limit (2) , setr limit (2) and sysconf(3)).

If you have picked this choice, you have to provide your client:

Shutdown/startup scripts installed together with the rest of your daemon startup scripts (e.g
/etc/rc.d directory) scripts, so when you reboot your machine user’s server will be correctly
shutdowned and will be back online the moment your system comes back online. Also make
sure to start each server under username the server belongs to, if you are not looking for a big
trouble.

Proxy (in a forward or httpd accelerator mode) services for user’s virtual host. Since user will
have to run her server on unprivileged port (>1024), you will have to forward all requests from
user.given.virtual.host name:80 (which is user.given.virtual.host name
without port - 80 is a default) to your.machine.ip:port_assigned_to_user and
user to code his scripts to write self referencing URLs to be of
user.given.virtual.host name base of course.

Letting user to run a mod_perl server, immediately adds a requirement for user to be able to
restart and configure their own server. But only root can bind port 80. That is why user has to
use ports numbers >1024.

Another problem you will have to solve is how to assign ports between users. Since user can
pick any port above 1024 to run his server on, you will have to make some regulation here. A
simple example will stress the importance of this problem: I am a malicious user or I just a rival
of some fellow who runs his own server on your ISP. All I should do is to find out what port his
server is listening to (e.g. with help of netstat(8)) and configure my own server to listen on
the same port. While I am unable to bind to this same port, imagine what will happen when you
reboot your system and my startup script happen to be run before my rivals! I get the port first,
now all requests will be redirected to my server and let your imagination go wild about what
nasty things might happen then. Of course the ugly things will be revealed pretty soon, but the
damage has been done.

7722 Jan 2000

6.2 ISPs providing mod_perl services - a fantasy or reality.mod_perl tutorial: mod_perl for ISPs

3. A much better, but costly solution is co-location. Let user to hook her (or ISP’s) stand alone machine
into your network, and forget about this user. Of course either user or you will have to make all the
system administration chores and it will cost your client more money.

All in all, who are the people who seek the mod_perl support? The ones who run serious
projects/businesses, who can afford a stand alone box, thus gaining their goal of self autonomy and
keeping their ISP happy. So money is not an obstacle.

;o)

22 Jan 200078

Stas Bekman6.2 ISPs providing mod_perl services - a fantasy or reality.

7 Getting Help and Further Learning

7922 Jan 2000

7 Getting Help and Further Learningmod_perl tutorial: Getting Help and Further Learning

7.1 What we will learn in this chapter
Getting help

Get help with mod_perl

Get help with Perl

Get help with Perl/CGI

Get help with Apache

Get help with DBI

Get help with Squid

7.2 Getting help
If after reading this guide and other documents listed in this section, you feel that your question is not yet
answered, please ask the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Most of the time you will find the answer for your question by searching the mailing archive,
since there is a big chance someone else has already encountered the same problem and found a solution
for it. If you ignore this advice, do not be surprised if your question will be left unanswered - it bores
people to answer the same question more than once. It does not mean that you should avoid asking ques-
tions. Just do not abuse the available help and RTFM before you call for HELP . (You have certainly
heard the infamous fable of the shepherd boy and the wolves)

7.3 Get help with mod_perl
mod_perl home

http://perl.apache.org

mod_perl Garden project

http://modperl.sourcegarden.org

mod_perl Books

’Apache Modules’ Book

http://www.modperl.com is the home site of The Apache Modules Book, a book about creating
Web server modules using the Apache API, written by Lincoln Stein and Doug MacEachern.

Now you can purchase the book at your local bookstore or from the online dealer. O’Reilly lists
this book as:

22 Jan 200080

Stas Bekman7.1 What we will learn in this chapter

http://www.modperl.com/
http://modperl.sourcegarden.org/
http://perl.apache.org/

 Writing Apache Modules with Perl and C
 By Lincoln Stein & Doug MacEachern
 1st Edition March 1999
 1-56592-567-X, Order Number: 567X
 746 pages, $34.95

’Enabling web services with mod_perl’ Book

http://www.modperlbook.com is the home site of the new mod_perl book, that Eric Cholet and
Stas Bekman are co-authoring together. We expect the book to be published in fall 2000.

Ideas, suggestions and comments are welcome. You may send them to info@modperlbook.com
.

mod_perl Guide

by Stas Bekman at http://perl.apache.org/guide

mod_perl FAQ

by Frank Cringle at http://perl.apache.org/faq/ .

mod_perl performance tuning guide

by Vivek Khera at http://perl.apache.org/tuning/ .

mod_perl plugin reference guide

by Doug MacEachern at http://perl.apache.org/src/mod_perl.html .

Quick guide for moving from CGI to mod_perl

at http://perl.apache.org/dist/cgi_to_mod_perl.html .

mod_perl_traps, common traps and solutions for mod_perl users

at http://perl.apache.org/dist/mod_perl_traps.html .

mod_perl Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

mod_perl Resources Page

http://www.perlreference.com/mod_perl/

mod_perl mailing list

The Apache/Perl mailing list (modperl@apache.org) is available for mod_perl users and develop-
ers to share ideas, solve problems and discuss things related to mod_perl and the Apache::*
modules. To subscribe to this list, send mail to majordomo@apache.org with empty Subject and

8122 Jan 2000

7.3 Get help with mod_perlmod_perl tutorial: Getting Help and Further Learning

http://www.perlreference.com/mod_perl/
http://www.refcards.com/
http://perl.apache.org/dist/mod_perl_traps.html
http://perl.apache.org/dist/cgi_to_mod_perl.html
http://perl.apache.org/src/mod_perl.html
http://perl.apache.org/tuning/
http://perl.apache.org/faq/
http://perl.apache.org/guide
http://www.modperlbook.com/

with Body :

 subscribe modperl

A searchable mod_perl mailing list archive available at http://forum.swarth-
more.edu/epigone/modperl . We owe it to Ken Williams.

More archives available:

http://www.geocrawler.com/lists/3/web/182/0/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.egroups.com/group/modperl/

7.4 Get help with Perl
The Perl FAQ

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

The Perl home

http://www.perl.com/

The Perl Journal

http://www.tpj.com/

Perl Module Mechanics

http://world.std.com/~swmcd/steven/perl/module_mechanics.html - This page describes the mechan-
ics of creating, compiling, releasing and maintaining Perl modules.

7.5 Get help with Perl/CGI
Perl/CGI FAQ

at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

22 Jan 200082

Stas Bekman7.4 Get help with Perl

http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html
http://world.std.com/~swmcd/steven/perl/module_mechanics.html
http://www.tpj.com/
http://www.perl.com/
http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html
http://www.egroups.com/group/modperl/
http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl
http://www.davin.ottawa.on.ca/archive/modperl/
http://www.mail-archive.com/modperl%40apache.org/
http://www.bitmechanic.com/mail-archives/modperl/
http://www.geocrawler.com/lists/3/web/182/0/
http://forum.swarthmore.edu/epigone/modperl
http://forum.swarthmore.edu/epigone/modperl

Answers to some bothering Perl and Perl/CGI questions

http://www.singlesheaven.com/stas/TULARC/webmaster/myfaq.html

Idiot’s Guide to CGI programming

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

WWW Security FAQ

http://www.w3.org/Security/Faq/www-security-faq.html

CGI/Perl Taint Mode FAQ

http://www.gunther.web66.com/FAQS/taintmode.html (by Gunther Birznieks)

7.6 Get help with Apache
Apache Project’s Home

http://www.apache.org

Apache Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

The Apache FAQ

http://www.apache.org/docs/misc/FAQ.html

Apache Server Documentation

http://www.apache.org/docs/

Apache Handlers

http://www.apache.org/docs/handler.html

mod_rewrite Guide

http://www.engelschall.com/pw/apache/rewriteguide/

7.7 Get help with DBI
Perl DBI examples

8322 Jan 2000

7.6 Get help with Apachemod_perl tutorial: Getting Help and Further Learning

http://www.engelschall.com/pw/apache/rewriteguide/
http://www.apache.org/docs/handler.html
http://www.apache.org/docs/
http://www.apache.org/docs/misc/FAQ.html
http://www.refcards.com/
http://www.apache.org/
http://www.gunther.web66.com/FAQS/taintmode.html
http://www.w3.org/Security/Faq/www-security-faq.html
http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html
http://www.singlesheaven.com/stas/TULARC/webmaster/myfaq.html

http://www.saturn5.com/~jwb/dbi-examples.html (by Jeffrey William Baker).

DBI Homepage

http://www.symbolstone.org/technology/perl/DBI/

DBI mailing list infor mation

http://www.fugue.com/dbi/

DBI mailing list archives

http://outside.organic.com/mail-archives/dbi-users/ http://www.xray.mpe.mpg.de/mailing-lists/dbi/

Persistent connections with mod_perl

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

7.8 Get help with Squid - Inter net Object Cache
Home page - http://squid.nlanr.net/

FAQ - http://squid.nlanr.net/Squid/FAQ/FAQ.html

Users Guide - http://squid.nlanr.net/Squid/Users-Guide/

Mailing lists - http://squid.nlanr.net/Squid/mailing-lists.html

;o)

22 Jan 200084

Stas Bekman7.8 Get help with Squid - Internet Object Cache

http://squid.nlanr.net/Squid/mailing-lists.html
http://squid.nlanr.net/Squid/Users-Guide/
http://squid.nlanr.net/Squid/FAQ/FAQ.html
http://squid.nlanr.net/
http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS
http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://outside.organic.com/mail-archives/dbi-users/
http://www.fugue.com/dbi/
http://www.symbolstone.org/technology/perl/DBI/
http://www.saturn5.com/~jwb/dbi-examples.html

Table of Contents:
.......... 1Tutorial: Getting Started with mod_perl (Part I of II)
............. 4mod_perl tutorial: Getting Started Fast
................. 41 Getting Started Fast
............... 51.1 mod_perl in Four Slides
................ 51.2 What is mod_perl?
.................. 61.3 Installation
................. 71.4 Configuration
.......... 71.5 The "mod_perl rules" Apache::Registry Scripts
........... 81.6 The "mod_perl rules" Apache Perl Module
.......... 81.7 Is That All I Need To Know About mod_perl?
............. 10mod_perl tutorial: mod_perl Installation
................. 102 mod_perl Installation
............. 112.1 What we will learn in this chapter
.............. 112.2 mod_perl Installation scenario
................. 112.3 The Gory Details
.......... 122.3.1 Sources Configuration (perl Makefile.PL ...)
............. 122.3.1.1 Configuration parameters
........... 142.3.1.2 Reusing Configuration Parameters
.............. 152.3.2 mod_perl Building (make)
............ 152.3.3 Built Server Testing (make test)
............... 162.3.3.1 Manual Testing
.............. 162.3.4 Installation (make install)
........ 172.4 mod_perl Installation with CPAN.pm’s Interactive Shell
........... 192.5 Installation Without Superuser Privileges
........ 192.5.1 Installing Perl Modules into a Directory of Choice
....... 212.5.2 Making Your Scripts Find the Locally Installed Modules
............ 242.5.3 Making a Local Apache Installation
........ 242.5.4 Actual Local mod_perl Enabled Apache Installation
................ 262.6 Miscellaneous issues
....... 262.6.1 Should I rebuild mod_perl if I have upgraded my perl?
.......... 272.6.2 Should I Build mod_perl with gcc or cc?
............ 28mod_perl tutorial: mod_perl Configuration
................ 283 mod_perl Configuration
............. 293.1 What we will learn in this chapter
................ 293.2 Server Configuration
................ 293.3 Apache Configuration
.............. 293.3.1 Configuration Directives
............... 303.4 mod_perl Configuration
............... 303.4.1 Alias Configurations
.............. 313.4.2 <Location> Configuration
........... 333.4.3 PerlModule and PerlRequire Directives
................ 343.4.4 Perl*Handlers
................ 353.4.5 Stacked Handlers
................ 383.4.6 PerlFreshRestart

i22 Jan 2000

.......... 383.4.7 PerlSetVar, PerlSetEnv and PerlPassEnv

............. 383.4.8 PerlWarn and PerlTaintCheck

.................. 393.5 Start-up File

.............. 393.5.1 The Sample Start-up File

...... 413.5.2 What Modules Should You Add to the Start-up File and Why

........ 423.5.3 The Confusion with use() at the Server Start-up File

........ 433.5.4 The Confusion with Global Variables in Start-up File

............... 433.6 <Perl>...</Perl> Sections

.................. 433.6.1 Usage

.................. 443.6.2 Enabling

................. 443.6.3 Verifying

................ 453.7 Miscellaneous issues

........... 453.7.1 Validating the Configuration Syntax

............. 453.7.2 Testing the mod_perl Server

.......... 463.7.3 Publishing Port Numbers Different from 80

............ 473.7.4 Apache Restarts Twice On Start

........... 48mod_perl tutorial: Choosing the Right Strategy

............... 484 Choosing the Right Strategy

............. 494.1 What we will learn in this chapter

............. 494.2 mod_perl Deployment Overview

........ 504.3 Alternative architectures for running one and two servers

......... 504.3.1 Standalone mod_perl Enabled Apache Server

...... 514.3.2 One Plain Apache and One mod_perl-enabled Apache Servers

..... 534.3.3 One light non-Apache and One mod_perl enabled Apache Servers

.......... 534.4 Adding a Proxy Server in http Accelerator Mode

............. 554.5 Implementations of Proxy Servers

................ 554.5.1 The Squid Server

............... 564.5.2 Apache’s mod_proxy

......... 58mod_perl tutorial: Real World Scenarios Implementation

............. 585 Real World Scenarios Implementation

............. 595.1 What we will learn in this chapter

.......... 595.2 Standalone mod_perl Enabled Apache Server

........ 595.3 One Plain and One mod_perl enabled Apache Servers

......... 615.3.1 Configuration and Compilation of the Sources.

............ 615.3.1.1 Building the httpd_docs Server

....... 625.3.1.2 Building the httpd_perl (mod_perl enabled) Server

............. 645.3.2 Configuration of the servers

......... 645.3.2.1 Basic httpd_docs Server’s Configuration

.......... 645.3.2.2 Basic httpd_perl Server’s Configuration

....... 655.4 Running 2 webservers and squid in httpd accelerator mode

........ 715.5 Running 1 webserver and squid in httpd accelerator mode

............. 725.6 Building and Using mod_proxy

.............. 75mod_perl tutorial: mod_perl for ISPs

................. 756 mod_perl for ISPs

............. 766.1 What we will learn in this chapter

........ 766.2 ISPs providing mod_perl services - a fantasy or reality.

22 Jan 2000ii

.......... 79mod_perl tutorial: Getting Help and Further Learning

.............. 797 Getting Help and Further Learning

............. 807.1 What we will learn in this chapter

.................. 807.2 Getting help

............... 807.3 Get help with mod_perl

................ 827.4 Get help with Perl

............... 827.5 Get help with Perl/CGI

................ 837.6 Get help with Apache

................ 837.7 Get help with DBI

........... 847.8 Get help with Squid - Internet Object Cache

iii22 Jan 2000

	1€€Getting Started Fast
	1.1€€mod_perl in Four Slides
	1.2€€What is mod_perl?
	1.3€€Installation
	1.4€€Configuration
	1.5€€The "mod_perl rules" Apache::Registry Scripts
	1.6€€The "mod_perl rules" Apache Perl Module
	1.7€€Is That All I Need To Know About mod_perl?

	2€€mod_perl Installation
	2.1€€What we will learn in this chapter
	2.2€€mod_perl Installation scenario
	2.3€€The Gory Details
	2.3.1€€Sources Configuration †perl Makefile.PL ...‡
	2.3.1.1€€Configuration parameters
	2.3.1.2€€Reusing Configuration Parameters

	2.3.2€€mod_perl Building †make‡
	2.3.3€€Built Server Testing †make test‡
	2.3.3.1€€Manual Testing

	2.3.4€€Installation †make install‡

	2.4€€mod_perl Installation with CPAN.pm's Interactive Shell
	2.5€€Installation Without Superuser Privileges
	2.5.1€€Installing Perl Modules into a Directory of Choice
	2.5.2€€Making Your Scripts Find the Locally Installed Modules
	2.5.3€€Making a Local Apache Installation
	2.5.4€€Actual Local mod_perl Enabled Apache Installation

	2.6€€Miscellaneous issues
	2.6.1€€Should I rebuild mod_perl if I have upgraded my perl?
	2.6.2€€Should I Build mod_perl with gcc or cc?

	3€€mod_perl Configuration
	3.1€€What we will learn in this chapter
	3.2€€Server Configuration
	3.3€€Apache Configuration
	3.3.1€€Configuration Directives

	3.4€€mod_perl Configuration
	3.4.1€€Alias Configurations
	3.4.2€€<Location> Configuration
	3.4.3€€PerlModule and PerlRequire Directives
	3.4.4€€Perl*Handlers
	3.4.5€€Stacked Handlers
	3.4.6€€PerlFreshRestart
	3.4.7€€PerlSetVar, PerlSetEnv and PerlPassEnv
	3.4.8€€PerlWarn and PerlTaintCheck

	3.5€€Start-up File
	3.5.1€€The Sample Start-up File
	3.5.2€€What Modules Should You Add to the Start-up File and Why
	3.5.3€€The Confusion with use†‡ at the Server Start-up File
	3.5.4€€The Confusion with Global Variables in Start-up File

	3.6€€<Perl>...</Perl> Sections
	3.6.1€€Usage
	3.6.2€€Enabling
	3.6.3€€Verifying

	3.7€€Miscellaneous issues
	3.7.1€€Validating the Configuration Syntax
	3.7.2€€Testing the mod_perl Server
	3.7.3€€Publishing Port Numbers Different from 80
	3.7.4€€Apache Restarts Twice On Start

	4€€Choosing the Right Strategy
	4.1€€What we will learn in this chapter
	4.2€€mod_perl Deployment Overview
	4.3€€Alternative architectures for running one and two servers
	4.3.1€€Standalone mod_perl Enabled Apache Server
	4.3.2€€One Plain Apache and One mod_perl-enabled Apache Servers
	4.3.3€€One light non-Apache and One mod_perl enabled Apache Servers

	4.4€€Adding a Proxy Server in http Accelerator Mode
	4.5€€Implementations of Proxy Servers
	4.5.1€€The Squid Server
	4.5.2€€Apache's mod_proxy

	5€€Real World Scenarios Implementation
	5.1€€What we will learn in this chapter
	5.2€€Standalone mod_perl Enabled Apache Server
	5.3€€One Plain and One mod_perl enabled Apache Servers
	5.3.1€€Configuration and Compilation of the Sources.
	5.3.1.1€€Building the httpd_docs Server
	5.3.1.2€€Building the httpd_perl †mod_perl enabled‡ Server

	5.3.2€€Configuration of the servers
	5.3.2.1€€Basic httpd_docs Server's Configuration
	5.3.2.2€€Basic httpd_perl Server's Configuration

	5.4€€Running 2 webservers and squid in httpd accelerator mode
	5.5€€Running 1 webserver and squid in httpd accelerator mode
	5.6€€Building and Using mod_proxy

	6€€mod_perl for ISPs
	6.1€€What we will learn in this chapter
	6.2€€ISPs providing mod_perl services - a fantasy or reality.

	7€€Getting Help and Further Learning
	7.1€€What we will learn in this chapter
	7.2€€Getting help
	7.3€€Get help with mod_perl
	7.4€€Get help with Perl
	7.5€€Get help with Perl/CGI
	7.6€€Get help with Apache
	7.7€€Get help with DBI
	7.8€€Get help with Squid - Internet Object Cache

