

The ApacheCon 2000
March 8, 2000

Orlando, Florida

Tutorial :
Getting Started with mod_perl

(Part II of II)

By Stas Bekman
Internet and Intranet programmer

http://singlesheaven.com/stas/
<sbekman@iname.com>

122 Jan 2000

Tutorial: Getting Started with mod_perl (Part II of II)

22 Jan 20002

Stas Bekman

This document is originally written in POD, converted to HTML by pod2html utility and then to
PostScript by html2ps utility.

Copyright © 1998, 1999 Stas Bekman. All rights reserved.

(you will find a Table of Contents at the end)

322 Jan 2000

Tutorial: Getting Started with mod_perl (Part II of II)

1 Getting Started Fast

22 Jan 20004

Stas Bekman1 Getting Started Fast

1.1 mod_perl in Four Slides
Each tutorial will concentrate on different aspects of running a mod_perl server and mod_perl program-
ming. In case you don’t know how to get started with it, or you think it’s a diffi cult task, these slides will
take away any worries you might have had when you came to this tutorial.

In just four slides you will be able to install and configure a mod_perl server. And, of course, to write new
code and reuse the existing code under mod_perl.

The four slides (sections) are:

Installation

Configuration

The ‘‘mod_perl rules’’ Apache::Registry Scripts

The ‘‘mod_perl rules’’ Apache Perl Module

1.2 What is mod_perl?
But before we go any further, there is a chance that you don’t know what mod_perl is. So let’s make a
little introduction to mod_perl.

Everybody knows that Perl scripts running under mod_cgi have numerous shortcomings. There are many
of them, but code recompilation and Perl interpreter loading overhead at each request is the hardest one to
overcome.

Among various attempts to improve on mod_cgi’s shortcomings, mod_perl has proved to be one of the
better ones and has been widely adopted by CGI developers. According to the
http://perl.apache.org/netcraft/ about 412000 hosts use mod_perl. Doug MacEachern fathered the core
code of this Apache module and licensed it under the ‘‘Artis tic License’’ as Perl itself.

mod_perl does away with mod_cgi’s forking by reusing the existing child processes. In this new model,
the child process doesn’t exit anymore when it has processed a request. The Perl interpreter is loaded only
once, when the process is started. Since the interpreter is persistent throughout the process’ lifetime, all
code is loaded and compiled only once, the first time it is seen. This makes all subsequent requests run
much faster because everything is already loaded and compiled. Response processing is now reduced to
running your code. This improves response times by a factor of 10 to 100, depending on the code being
executed.

Doug didn’t stop here, he went and extended mod_cgi’s functionality by adding a complete Perl API to
the Apache core. This makes it possible to write a complete Apache module in Perl, a feat that used to
require coding in C. From then on mod_perl enabled the programmer to handle all phases of request
processing in Perl.

522 Jan 2000

1.1 mod_perl in Four Slidesmod_perl tutorial: Getting Started Fast

http://perl.apache.org/netcraft/

The new Perl API also allows complete server configuration in Perl. This has which made the lives of
many server administrators much easier, as they could now benefit from dynamically generating the
configuration, freed from hunting for bugs in huge configuration files full of similar directives for virtual
hosts and the like.

To provide backwards compatibility for plain CGI scripts that used to be run under mod_cgi, while still
benefit ing from a preloaded perl and modules, a few special handlers were written, each allowing a differ-
ent level of proximity to pure mod_perl functionality. Some take full advantage of mod_perl, while others
only a partial one.

mod_perl embeds a copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. This enables a set of mod_perl-specific configuration direc-
tives, all of which start with the string Perl*. Most, but not all, of these directives are used to specify
handlers for various phases of the request.

It might occur to you that sticking a large executable (Perl) into another large executable (Apache) makes
a very, very large program. mod_perl certainly makes httpd significantly bigger and you will need more
RAM on your production server to be able to run many mod_perl processes, but in reality the situation is
different. Since mod_perl processes requests much faster, the number of the processes needed to handle
the same request rate is much lower relative to the mod_cgi approach. Generally you need slightly more
memory available, and the speed improvements you will see are well worth every megabyte of memory
you can add.

Now let’s get back to the All-In-Four-Slides...

1.3 Installation
Did you know that it takes about 10 minutes to build and install a mod_perl enabled Apache server on a
computer with a pretty average processor and a decent amount of system memory? It goes like this:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Of course you must replace x.x.x with the actual version numbers of the mod_perl and Apache
releases that you use.

22 Jan 20006

Stas Bekman1.3 Installation

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
http://www.apache.org/dist/apache_x.x.x.tar.gz

The GNU tar utility knows how to uncompress a gzipped tar archive (use the z option).

All that’s left is to add a few configuration lines to a httpd.conf, an Apache configuration file, start the
server and enjoy mod_perl.

1.4 Configuration
Add the following to the configuration file httpd.conf:

 # for Apache::Registry mode
 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes every URI starting with /perl to be handled by the Apache mod_perl module. It
will use the handler from the Perl module Apache::Registry .

1.5 The "mod_perl rules" Apache::Registry Scripts
You can write plain perl/CGI scripts just as under mod_cgi:

 mod_perl_rules1.pl

 print "Content-type: text/plain\r\n\r\n";
 print "mod_perl rules!\n";

Of course you can write them in the Apache Perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

Save both files under the /home/httpd/perl directory, make them executable and readable by server, and
issue these requests using your favorite browser:

 http://localhost/perl/mod_perl_rules1.pl
 http://localhost/perl/mod_perl_rules2.pl

In both cases you will see on the following response:

722 Jan 2000

1.4 Configurationmod_perl tutorial: Getting Started Fast

http://localhost/perl/mod_perl_rules2.pl
http://localhost/perl/mod_perl_rules1.pl

 mod_perl rules!

1.6 The "mod_perl rules" Apache Perl Module
To create an Apache Perl module, all you have to do is to wrap the code into a handler subroutine and
return the status to the server.

 ModPerl/Rules.pm

 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "mod_perl rules!\n";
 return OK;
 }

Create a directory called ModPerl under one of the directories in @INC, and put Rules.pm into it. Then
add the following snippet to httpd.conf:

 PerlModule ModPerl::Rules
 <Location /mod_perl_rules>
 SetHandler perl-script
 PerlHandler ModPerl::Rules
 </Location>

Now you can issue a request to:

 http://localhost/perl/mod_perl_rules

and just as with our mod_perl_rules.pl scripts you will see:

 mod_perl rules!

as the response.

1.7 Is That All I Need To Know About mod_perl?
Definitely not!

These slides are intended to show you that you can install and start using a mod_perl server within 30
minutes of downloading the sources.

There is much more to mod_perl than this, you will need to plan your study around the projects you want
to implement. Fortunately, there are many resources and lots of help freely available to you.

At the end of each titorial you will find a chapter describing the available resources and pointers to them.

22 Jan 20008

Stas Bekman1.6 The "mod_perl rules" Apache Perl Module

http://localhost/perl/mod_perl_rules

;o)

922 Jan 2000

1.7 Is That All I Need To Know About mod_perl?mod_perl tutorial: Getting Started Fast

2 Perl Reference

22 Jan 200010

Stas Bekman2 Perl Reference

2.1 What we will learn in this chapter
Tracing Warnings Reports

my() Scoped Variable in Nested Subroutines

When You Cannot Get Rid of The Inner Subroutine

use(), require(), do(), %INC and @INC Explained

Using Global Variables and Sharing Them Between Modules/Packages

The Scope of the Special Perl Variables

Compiled Regular Expressions

perldoc’s Rarely Known But Very Useful Options

2.2 Tracing Warn ings Reports
Sometimes it’s very hard to understand what a warning is complaining about. You see the source code,
but you cannot understand why some specific snippet produces that warning. The mystery often results
from the fact that the code can be called from different places if it’s located inside a subroutine.

Here is an example:

 warnings.pl

 #!/usr/bin/perl -w

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

In the code above, print_value() prints the passed value, correct() passes the value to print and
in incor rect () we forgot to pass it. When we run the script:

1122 Jan 2000

2.1 What we will learn in this chaptermod_perl tutorial: Perl Reference

 % ./warnings.pl

we get the warning:

 Use of uninitialized value at ./warnings.pl line 16.

Perl complains about an undefined variable $var at the line that attempts to print its value:

 print "My value is $var\n";

But how do we know why it is undefined? The reason here obviously is that the calling function didn’t
pass the argument. But how do we know who was the caller? In our example there are two possible
callers, in the general case there can be many of them, perhaps located in other files.

We can use the caller() function, which tells who has called us, but even that might not be enough:
it’s possible to have a longer sequence of called subroutines, and not just two. For example, here it is sub
third() which is at fault, and putting sub caller() in sub second() would not help us very much:

 sub third{
 second();
 }
 sub second{
 my $var = shift;
 first($var);
 }
 sub first{
 my $var = shift;
 print "Var = $var\n"
 }

The solution is quite simple. What we need is a full calls stack trace to the call that triggered the warning.

The Carp module comes to our aid with its cluck() function. Let’s modify the script by adding a
couple of lines. The rest of the script is unchanged.

 warnings2.pl

 #!/usr/bin/perl -w

 use Carp ();
 local $SIG{__WARN__} = \&Carp::cluck;

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

22 Jan 200012

Stas Bekman2.2 Tracing Warnings Reports

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

Now when we execute it, we see:

 Use of uninitialized value at ./warnings2.pl line 19.
 main::print_value() called at ./warnings2.pl line 14
 main::incorrect() called at ./warnings2.pl line 7

Take a moment to understand the calls stack trace. The deepest calls are printed first. So the second line
tells us that the warning was triggered in print_value(); the third, that print_value() was
called by incor rect () subroutine.

 script => incorrect() => print_value()

We go into incor rect () and indeed see that we forgot to pass the variable. Of course when you write
a subroutine like print_value it would be a good idea to check the passed arguments before starting
execution. We omitted that step to contrive an easily debugged example.

Sure, you say, I could find that problem by simple inspection of the code!

Well, you’re right. But I promise you that your task would be quite complicated and time consuming if
your code has some thousands of lines. In addition, under mod_perl, certain uses of the eval operator
and ‘‘here documents’’ are known to throw off Perl’s line numbering, so the messages reporting warnings
and errors can have incorrect line numbers.

Getting the trace helps a lot.

2.3 my() Scoped Vari able in Nested Subroutines
Before we proceed let’s make the assumption that we want to develop the code under the strict
pragma. We will use lexically scoped variables (with help of the my() operator) whenever it’s possible.

2.3.1 The Poison

Let’s look at this code:

 nested.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 sub power_of_2 {
 return $x ** 2;
 }

1322 Jan 2000

2.3 my() Scoped Variable in Nested Subroutinesmod_perl tutorial: Perl Reference

 my $result = power_of_2();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Don’t let the weird subroutine names to fool you, the print_power_of_2() subroutine should print
the square of the passed number. Let’s run the code and see whether it works:

 % ./nested.pl

 5^2 = 25
 6^2 = 25

Ouch, something is wrong. May be there is a bug in Perl and it doesn’t work correctly with number 6?
Let’s try again using the 5 and 7:

 print_power_of_2(5);
 print_power_of_2(7);

And run it:

 % ./nested.pl

 5^2 = 25
 7^2 = 25

Wow, does it works only for 5? How about using 3 and 5:

 print_power_of_2(3);
 print_power_of_2(5);

and the result is:

 % ./nested.pl

 3^2 = 9
 5^2 = 9

Now we start to understand--only the first call to the print_power_of_2() function works correctly.
Which makes us think that our code has some kind of memory for results of the first execution, or it
ignores the arguments in subsequent executions.

2.3.2 The Diagnosis

Let’s follow the guidelines and use the -w flag. Now execute the code:

22 Jan 200014

Stas Bekman2.3.2 The Diagnosis

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 9.
 5^2 = 25
 6^2 = 25

We have never seen such a warning message before and we don’t quite understand what it means. The
diag nos tics pragma will certainly help us. Let’s prepend this pragma before the strict pragma in
our code:

 #!/usr/bin/perl -w

 use diagnostics;
 use strict;

And execute it:

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

 (W) An inner (nested) named subroutine is referencing a lexical
 variable defined in an outer subroutine.

 When the inner subroutine is called, it will probably see the value of
 the outer subroutine’s variable as it was before and during the
 first call to the outer subroutine; in this case, after the first
 call to the outer subroutine is complete, the inner and outer
 subroutines will no longer share a common value for the variable. In
 other words, the variable will no longer be shared.

 Furthermore, if the outer subroutine is anonymous and references a
 lexical variable outside itself, then the outer and inner subroutines
 will never share the given variable.

 This problem can usually be solved by making the inner subroutine
 anonymous, using the sub {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are called or referenced,
 they are automatically rebound to the current values of such
 variables.

 5^2 = 25
 6^2 = 25

Well, now everything is clear. We have the inner subroutine power_of_2() and the outer subroutine
print_power_of_2() in our code.

When the inner power_of_2() subroutine is called for the first time, it sees the value of the outer
print_power_of_2() subroutine’s $x variable. On subsequent calls the $x variable won’t be
updated, no matter what the value of it in the outer subroutine. There are two copies of the $x variable, no
longer a single one shared by the two routines.

1522 Jan 2000

2.3.2 The Diagnosismod_perl tutorial: Perl Reference

2.3.3 The Remedy

The diag nos tics pragma suggests that the problem can be solved by making the inner subroutine
anonymous.

An anonymous subroutine can act as a closure with respect to lexically scoped variables. Basically this
means that if you define a subroutine in a particular lexical context at a particular moment, then it will run
in that same context later, even if called from outside that context. The upshot of this is that when the
subroutine runs, you get the same copies of the lexically scoped variables which were visible when the
subroutine was defined. So you can pass arguments to a function when you define it, as well as when you
invoke it.

Let’s rewrite the code to use this technique:

 anonymous.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 my $func_ref = sub {
 return $x ** 2;
 };

 my $result = &$func_ref();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Now $func_ref contains a reference to an anonymous function, which we later use when we need to
get the power of two. (In Perl, a function is the same thing as a subroutine.) Since it is anonymous, the
function will automatically be rebound to the new value of the outer scoped variable $x, and the results
will now be as expected.

Let’s verify:

 % ./anonymous.pl

 5^2 = 25
 6^2 = 36

Indeed, anonymous.pl worked as we expected.

22 Jan 200016

Stas Bekman2.3.3 The Remedy

2.4 When You Cannot Get Rid of The Inner Subroutine
First you might wonder, why in the world will someone need to define an inner subroutine? Well, for
example to reduce some of Perl’s script startup overhead you might decide to write a daemon that will
compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest and do
it much faster.

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you execute it?
Or let’s put it the other way: after it was executed for the first time and it stays compiled in the daemon
memory, how do you call it again? If you could get all developers to code the scripts so each has a subrou-
tine called run() that will actually execute the code in the script then you have half of the problem
solved.

But how does the daemon know to refer to some specific script if they all run in the main:: name space?
One solution might be to ask the developers to declare a package in each and every script, and for the
package name to be derived from the script name. However, since there is chance that there will be more
than one script with the same name but residing in different directories, then in order to prevent
name-space collisions the directory has to be a part of the package name too. And don’t forget that script
may be moved from one directory to another, so you will have to make sure that the package name is
corrected every time the script gets moved.

But why enforce these strange rules on developers, when we can arrange for our daemon to do this work?
For every script that daemon is about to execute for the first time, it should be wrapped inside the package
whose name is constructed from the mangled path to the script and a subroutine called run(). For
example if the daemon is about to execute the script /tmp/hello.pl:

 hello.pl

 #!/usr/bin/perl
 print "Hello\n";

Prior to running it, the daemon will change the code to be:

 wrapped_hello.pl

 package cache::tmp::hello_2epl;

 sub run{
 #!/usr/bin/perl
 print "Hello\n";
 }

The package name is constructed from the prefix cache:: , each directory separation slash is replaced
with :: , and non alphanumeric characters are encoded so that for example . (a dot) becomes _2e (an
underscore followed by the ASCII code for a dot in hex representation).

1722 Jan 2000

2.4 When You Cannot Get Rid of The Inner Subroutinemod_perl tutorial: Perl Reference

 % perl -e ’printf "%x",ord(".")’

prints: 2e . The underscore is the same you see in URL encoding where % character is used instead (%2E),
but since % has a special meaning in Perl (prefix of hash variable) it couldn’t be used.

Now when the daemon is requested to execute the script /tmp/hello.pl, all it has to do is to build the
package name as before based on the location of the script and call its run() subroutine:

 use cache::tmp::hello_2epl;
 cache::tmp::hello_2epl::run();

We have just written a partial prototype of the daemon we desired. The only method now remaining unde-
fined is how to pass the path to the script to the daemon. This detail is left to the reader as an exercise.

If you are familiar with the Apache::Registry module, you know that it works in almost the same
way. It uses a different package prefix and the generic function is called handler() and not run().
The scripts to run are passed through the HTTP protocol’s headers.

Now you understand that there are cases where your normal subroutines can become inner, since if your
script was a simple:

 simple.pl

 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();

Wrapped into a run() subroutine it becomes:

 simple.pl

 package cache::simple_2epl;

 sub run{
 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();
 }

Therefore, hello() is an inner subroutine and if you have used my() scoped variables defined and
altered outside and used inside hello(), it won’t work as you expect starting from the second call, as
was explained in the previous section.

2.4.1 Remedies for Inner Subroutines

First of all there is nothing to worry about, as long as you don’t forget to turn the warnings On. If you do
happen to have the ‘‘my() Scoped Variable in Nested Subroutines’’ problem, Perl will always alert you.

Given that you have a script that has this problem, what are the ways to solve it? There are many of them
and we will discuss some of them here.

22 Jan 200018

Stas Bekman2.4.1 Remedies for Inner Subroutines

We will use the following code to show the different solutions.

 multirun.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

This code executes the run() subroutine three times, which in turn initializes the $counter variable to
0, every time it executed and then calls the inner subroutine incre ment _counter() twice. Sub
incre ment _counter() prints $counter ’s value after incrementing it. One might expect to see the
following output:

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

But as we have already learned from the previous sections, this is not what we are going to see. Indeed,
when we run the script we see:

 % ./multirun.pl

1922 Jan 2000

2.4.1 Remedies for Inner Subroutinesmod_perl tutorial: Perl Reference

 Variable "$counter" will not stay shared at ./nested.pl line 18.
 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 3 !
 Counter is equal to 4 !
 run: [time 3]
 Counter is equal to 5 !
 Counter is equal to 6 !

Obviously, the $counter variable is not reinitialized on each execution of run(). It retains its value
from the previous execution, and sub incre ment _counter() increments that.

One of the workarounds is to use globally declared variables, with the vars pragma.

 multirun1.pl

 #!/usr/bin/perl -w

 use strict;
 use vars qw($counter);

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

If you run this and the other solutions offered below, the expected output will be generated:

 % ./multirun1.pl

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

22 Jan 200020

Stas Bekman2.4.1 Remedies for Inner Subroutines

By the way, the warning we saw before has gone, and so has the problem, since there is no my() (lexi-
cally defined) variable used in the nested subroutine.

Another approach is to use fully qualified variables. This is better, since less memory will be used, but it
adds a typing overhead:

 multirun2.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 $main::counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $main::counter++;
 print "Counter is equal to $main::counter !\n";
 }

 } # end of sub run

You can also pass the variable to the subroutine by value and make the subroutine return it after it was
updated. This adds time and memory overheads, so it may not be good idea if the variable can be very
large, or if speed of execution is an issue.

Don’t rely on the fact that the variable is small during the development of the application, it can grow
quite big in situations you don’t expect. For example, a very simple HTML form text entry field can return
a few megabytes of data if one of your users is bored and wants to test how good is your code. It’s not
uncommon to see users Copy-and-Paste 10Mb core dump files into a form’s text fields and then submit it
for your script to process.

 multirun3.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

2122 Jan 2000

2.4.1 Remedies for Inner Subroutinesmod_perl tutorial: Perl Reference

 my $counter = 0;

 $counter = increment_counter($counter);
 $counter = increment_counter($counter);

 sub increment_counter{
 my $counter = shift || 0 ;

 $counter++;
 print "Counter is equal to $counter !\n";

 return $counter;
 }

 } # end of sub run

Finally, you can use references to do the job. The version of incre ment _counter() below accepts a
reference to the $counter variable and increments its value after first dereferencing it. When you use a
reference, the variable you use inside the function is physically the same bit of memory as the one outside
the function. This technique is often used to enable a called function to modify variables in a calling func-
tion.

 multirun4.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter(\$counter);
 increment_counter(\$counter);

 sub increment_counter{
 my $r_counter = shift || 0;

 $$r_counter++;
 print "Counter is equal to $$r_counter !\n";
 }

 } # end of sub run

Here is yet another and more obscure reference usage. We modify the value of $counter inside the
subroutine by using the fact that variables in @_ are aliases for the actual scalar parameters. Thus if you
called a function with two arguments, those would be stored in $_[0] and $_[1] . In particular, if an
element $_[0] is updated, the corresponding argument is updated (or an error occurs if it is not updat-
able).

22 Jan 200022

Stas Bekman2.4.1 Remedies for Inner Subroutines

 multirun5.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter($counter);
 increment_counter($counter);

 sub increment_counter{
 $_[0]++;
 print "Counter is equal to $_[0] !\n";
 }

 } # end of sub run

Now you have at least five workarounds to choose from.

For more information please refer to perlref and perlsub manpages.

2.5 use(), require(), do(), %INC and @INC Explained

2.5.1 The @INC array

@INC is a special Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains a list of directories to search for executables, @INC contains a list of directories from which Perl
modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from the
@INC variable and searches them for the file it was requested to load. If the file that you want to load is
not located in one of the listed directories, you have to tell Perl where to find the file. You can either
provide a path relative to one of the directories in @INC, or you can provide the full path to the file.

2.5.2 The %INC hash

%INC is another special Perl variable that is used to cache the names of the files and the modules that
were successfully loaded and compiled by use(), require() or do() functions. Before attempting
to load a file or a module, Perl checks whether it’s already in the %INC hash. If it’s there, the loading and
therefore the compilation are not performed at all. Otherwise the file is loaded into memory and an
attempt is made to compiled it.

2322 Jan 2000

2.5 use(), require(), do(), %INC and @INC Explainedmod_perl tutorial: Perl Reference

If the file is successfully loaded and compiled, a new key-value pair is added to %INC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned, and
if it was found in any of the @INC directories except "." the value is the full path to it in the file system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @INC on my system:

 % perl -e ’print join "\n", @INC’
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

Notice the . (current directory) is the last directory in the list.

Now let’s load the module strict.pm and see the contents of %INC:

 % perl -e ’use strict; print map {"$_ => $INC{$_}\n"} keys %INC’

 strict.pm => /usr/lib/perl5/5.00503/strict.pm

Since strict.pm was found in /usr/lib/perl5/5.00503/ directory and /usr/lib/perl5/5.00503/ is a part of
@INC, %INC includes the full path as the value for the key strict.pm .

Now let’s create the simplest module in /tmp/test.pm :

 test.pm

 1;

It does nothing, but returns a true value when loaded. Now let’s load it in different ways:

 % cd /tmp
 % perl -e ’use test; print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Since the file was found relative to . (the current directory), the relative path is inserted as the value. If we
alter @INC, by adding /tmp to the end:

 % cd /tmp
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Here we still get the relative path, since the module was found first relative to "." . The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the "." directory
won’t match,

22 Jan 200024

Stas Bekman2.5.2 The %INC hash

 % cd /
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for matching
before "." and therefore we will get the full path as well:

 % cd /tmp
 % perl -e ’BEGIN{unshift @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

The code:

 BEGIN{unshift @INC, "/tmp"}

can be replaced with the more elegant:

 use lib "/tmp";

Which executes the BEGIN block above exactly.

These approaches to modifying @INC can be labor intensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts from development to a production server.

There is a module called FindBin which solves this problem in the plain Perl world, but unfortunately it
doesn’t work correctly under mod_perl.

If you use this module, you don’t need to write a hard coded path. The following snippet does all the work
for you (the file is /tmp/load.pl):

 load.pl

 #!/usr/bin/perl

 use FindBin ();
 use lib "$FindBin::Bin";
 use test;
 print "test.pm => $INC{’test.pm’}\n";

In the above example $FindBin::Bin is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/x in the code above $FindBin::Bin equals /home/x.

 % /tmp/load.pl

 test.pm => /tmp/test.pm

2522 Jan 2000

2.5.2 The %INC hashmod_perl tutorial: Perl Reference

Just like with use lib but no hard coded path required.

As I’ve mentioned earlier, FindBin will not work in the mod_perl environment, since it’s a module and
as any module it’s loaded only once. So the first script using it will have all the settings correct, but the
rest of the scripts will not if located in a different directory from the first.

2.5.3 Modules, Libraries and Files

Before we proceed, let’s define what we mean by module, and library or file.

The Library or the File

A file which contains perl subroutines and other code.

It generally doesn’t include a package declaration.

Its last statement returns true.

It can be named in any way desired, but generally its extension is .pl or .ph.

Examples:

 config.pl

 $dir = "/home/httpd/cgi-bin";
 $cgi = "/cgi-bin";
 1;

 mysubs.pl

 sub print_header{
 print "Content-type: text/plain\r\n\r\n";
 }
 1;

the Module

A file which contains perl subroutines and other code.

It generally declares a package name at the beginning of it.

Its last statement returns true.

The naming convention requires it to have a .pm extension.

Example:

22 Jan 200026

Stas Bekman2.5.3 Modules, Libraries and Files

 MyModule.pm

 package My::Module;
 $My::Module::VERSION = 0.01;

 sub new{ return bless {}, shift;}
 END { print "Quitting\n"}
 1;

2.5.4 require()

require() reads a file containing Perl code and compiles it. Before attempting to load the file it looks
up the argument in %INC to see whether it has already been loaded. If it has, require() just returns
without doing a thing. Otherwise an attempt will be made to load and compile the file.

require() has to find the file it has to load. If the argument is a full path to the file, it just tries to read
it. For example:

 require "/home/httpd/perl/mylibs.pl";

If the path is relative, require() will attempt to search for the file in all the directories listed in @INC.
For example:

 require "mylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @INC the
first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statement will always return TRUE. That’s why the suggestion is to put ‘‘ 1; ’’ at the end of file.

Although you should use the real filename for most files, if the file is a module, you may use the follow-
ing convention instead:

 require My::Module;

This is equal to:

 require "My/Module.pm";

If require() fails to load the file, either because it couldn’t find the file in question or the code failed
to compile, or it didn’t return TRUE, then the program would die(). To prevent this the require()
statement can be enclosed into an eval() block, as in this example:

2722 Jan 2000

2.5.4 require()mod_perl tutorial: Perl Reference

 require.pl

 #!/usr/bin/perl -w

 eval { require "/file/that/does/not/exists"};
 if ($@) {
 print "Failed to load, because : $@"
 }
 print "\nHello\n";

When we execute the program:

 % ./require.pl

 Failed to load, because : Can’t locate /file/that/does/not/exists in
 @INC (@INC contains: /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

 Hello

We see that the program didn’t die(), because Hello was printed. This trick is useful when you want to
check whether a user has some module installed, but if she hasn’t it’s not critical, perhaps the program can
run without this module with reduced functionality.

If we remove the eval() part and try again:

 require.pl

 #!/usr/bin/perl -w

 require "/file/that/does/not/exists";
 print "\nHello\n";

 % ./require1.pl

 Can’t locate /file/that/does/not/exists in @INC (@INC contains:
 /usr/lib/perl5/5.00503/i386-linux /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require1.pl line 3.

The program just die()s in the last example, which is what you want in most cases.

For more information refer to the perlfunc manpage.

2.5.5 use()

use(), just like require(), loads and compiles files containing Perl code, but it works with modules
only. The only way to pass a module to load is by its module name and not its filename. If the module is
located in MyCode.pm, the correct way to use() it is:

22 Jan 200028

Stas Bekman2.5.5 use()

 use MyCode

and not:

 use "MyCode.pm"

use() translates the passed argument into a file name replacing :: with / and appending .pm at the end.
So My::Module becomes My/Module.pm.

use() is exactly equivalent to:

 BEGIN { require Module; import Module LIST; }

Internally it calls require() to do the loading and compilation chores. When require() finishes its
job, import() is called unless () is the second argument. The following pairs are equivalent:

 use MyModule;
 BEGIN {require MyModule; import MyModule; }

 use MyModule qw(foo bar);
 BEGIN {require MyModule; import MyModule ("foo","bar"); }

 use MyModule ();
 BEGIN {require MyModule; }

The first pair exports the default tags. This happens if the module sets @EXPORT to a list of tags to be
exported by default. The module manpage generally describes what modules are exported by default.

The second pair exports all the tags passed as arguments. No default tags are exported unless explicitly
told to.

The third pair describes the case where the caller does not want any symbols to be imported.

import() is not a builtin function, it’s just an ordinary static method call into the ‘‘ MyModule ’’
package to tell the module to import the list of features back into the current package. See the Exporter
manpage for more information.

When you write your own modules, always remember that it’s better to use @EXPORT_OK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the namespace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When functions and variables aren’t exported you can still access them using their full names, like
$My::Module::bar or $My::Module::foo() . By convention you can use a leading underscore
on names to informally indicate that they are internal and not for public use.

There’s a corresponding ‘‘ no ’’ command that un-imports symbols imported by use , i.e., it calls unim -
port Module LIST instead of import() .

2922 Jan 2000

2.5.5 use()mod_perl tutorial: Perl Reference

2.5.6 do()

While do() behaves almost identically to require(), it reloads the file unconditionally. It doesn’t
check %INC to see whether the file was already loaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the file
but cannot compile it, it returns undef and sets an error message in $@. If the file is successfully
compiled, do() returns the value of the last expression evaluated.

2.6 Using Global Vari ables and Sharing Them Between
Modules/Packages

2.6.1 Making Variables Global

When you first wrote $x in your code you created a global variable. It is visible everywhere in the file you
have used it. If you defined it inside a package, it is visible inside the package. But it will work only if you
do not use strict pragma and you HAVE to use this pragma if you want to run your scripts under
mod_perl. Read the strict pragma manpage to find out why.

2.6.2 Making Variables Global With strict Pragma On

First you use :

 use strict;

Then you use:

 use vars qw($scalar %hash @array);

Starting from this moment the variables are global only in the package where you defined them. If you
want to share global variables between packages, here is what you can do.

2.6.3 Using Exporter.pm to Share Global Variables

Assume that you want to share the CGI.pm object (I will use $q) between your modules. For example,
you create it in script.pl , but you want it to be visible in My::HTML . First, you make $q global.

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 $q = new CGI;

 My::HTML::printmyheader();

22 Jan 200030

Stas Bekman2.6 Using Global Variables and Sharing Them Between Modules/Packages

Note that we have imported $q from My::HTML . And My::HTML does the export of $q :

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();
 }
 1;

So the $q is shared between the My::HTML package and script.pl . It will work vice versa as well, if
you create the object in My::HTML but use it in script.pl . You have true sharing, since if you change
$q in script.pl , it will be changed in My::HTML as well.

What if you need to share $q between more than two packages? For example you want My::Doc to share
$q as well.

You leave My::HTML untouched, and modify script.pl to include:

 use My::Doc qw($q);

Then you write My::Doc exactly like My::HTML - except of course that the content is different :).

One possible pitfall is when you want to use My::Doc in both My::HTML and script.pl. Only if you add

 use My::Doc qw($q);

into My::HTML will $q be shared. Otherwise My::Doc will not share $q any more. To make things
clear here is the code:

3122 Jan 2000

2.6.3 Using Exporter.pm to Share Global Variablesmod_perl tutorial: Perl Reference

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 use My::Doc qw($q); # Ditto
 $q = new CGI;

 My::HTML::printmyheader();

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);
 use My::Doc qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();

 My::Doc::printtitle(’Guide’);
 }
 1;

 My/Doc.pm

 package My::Doc;
 use strict;

 BEGIN {
 use Exporter ();

 @My::Doc::ISA = qw(Exporter);
 @My::Doc::EXPORT = qw();
 @My::Doc::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printtitle{
 my $title = shift || ’None’;

22 Jan 200032

Stas Bekman2.6.3 Using Exporter.pm to Share Global Variables

 print $q->h1($title);
 }
 1;

2.6.4 Using the Perl Aliasing Feature to Share Global Variables

As the title says you can import a variable into a script or module without using Exporter.pm . I have
found it useful to keep all the configuration variables in one module My::Config . But then I have to
export all the variables in order to use them in other modules, which is bad for two reasons: polluting
other packages’ name spaces with extra tags which increase the memory requirements; and adding the
overhead of keeping track of what variables should be exported from the configuration module and what
imported, for some particular package. I solve this problem by keeping all the variables in one hash %c
and exporting that. Here is an example of My::Config :

 package My::Config;
 use strict;
 use vars qw(%c);
 %c = (
 # All the configs go here
 scalar_var => 5,

 array_var => [
 foo,
 bar,
],

 hash_var => {
 foo => ’Foo’,
 bar => ’BARRR’,
 },
);
 1;

Now in packages that want to use the configuration variables I have either to use the fully qualified names
like $My::Config::test , which I dislike or import them as described in the previous section. But
hey, since we have only one variable to handle, we can make things even simpler and save the loading of
the Exporter.pm package. We will use the Perl aliasing feature for exporting and saving the
keystrokes:

 package My::HTML;
 use strict;
 use lib qw(.);
 # Global Configuration now aliased to global %c
 use My::Config (); # My/Config.pm in the same dir as script.pl
 use vars qw(%c);
 *c = \%My::Config::c;

 # Now you can access the variables from the My::Config
 print $c{scalar_val};
 print $c{array_val}[0];
 print $c{hash_val}{foo};

3322 Jan 2000

2.6.4 Using the Perl Aliasing Feature to Share Global Variablesmod_perl tutorial: Perl Reference

Of course $c is global everywhere you use it as described above, and if you change it somewhere it will
affect any other packages you have aliased $My::Config::c to.

Note that aliases work either with global or local() vars - you cannot write:

 my *c = \%My::Config::c;

Which is an error. But you can write:

 local *c = \%My::Config::c;

For more information about aliasing, refer to the Camel book, second edition, pages 51-52.

2.7 The Scope of the Special Perl Vari ables
Special Perl variables like $| (buffering), $^T (time), $^W (warnings), $/ (input record separator), $\
(output record separator) and many more are all global variables. This means that you cannot scope them
with my(). Only local() is permitted to do that. Since the child server doesn’t usually exit, if in one
of your scripts you modify a global variable it will be changed for the rest of the process’ life and will
affect all the scripts executed by the same process.

We will demonstrate the case on the input record separator variable. If you undefine this variable, a
diamond operator will suck in the whole file at once if you have enough memory. Remembering this you
should never write code like the example below.

 $/ = undef;
 open IN, "file"
 # slurp it all into a variable
 $all_the_file = <IN>;

The proper way is to have a local() keyword before the special variable is changed, like this:

 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;

But there is a catch. local() will propagate the changed value to any of the code below it. The modified
value will be in effect until the script terminates, unless it is changed again somewhere else in the script.

A cleaner approach is to enclose the whole of the code that is affected by the modified variable in a block,
like this:

 {
 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;
 }

22 Jan 200034

Stas Bekman2.7 The Scope of the Special Perl Variables

That way when Perl leaves the block it restores the original value of the $/ variable, and you don’t need
to worry elsewhere in your program about its value being changed here.

2.8 Compiled Regular Expressions
When using a regular expression that contains an interpolated Perl variable, if it is known that the variable
(or variables) will not change during the execution of the program, a standard optimization technique is to
add the /o modifier to the regexp pattern. This directs the compiler to build the internal table once, for the
entire lifetime of the script, rather than every time the pattern is executed. Consider:

 my $pat = ’^foo$’; # likely to be input from an HTML form field
 foreach(@list) {
 print if /$pat/o;
 }

This is usually a big win in loops over lists, or when using grep() or map() operators.

In long-lived mod_perl scripts, however, the variable can change according to the invocation and this can
pose a problem. The first invocation of a fresh httpd child will compile the regex and perform the search
correctly. However, all subsequent uses by that child will continue to match the original pattern, regard-
less of the current contents of the Perl variables the pattern is supposed to depend on. Your script will
appear to be broken.

There are two solutions to this problem:

The first is to use eval q// , to force the code to be evaluated each time. Just make sure that the eval
block covers the entire loop of processing, and not just the pattern match itself.

The above code fragment would be rewritten as:

 my $pat = ’^foo$’;
 eval q{
 foreach(@list) {
 print if /$pat/o;
 }
 }

Just saying:

 foreach(@list) {
 eval q{ print if /$pat/o; };
 }

is going to be a horribly expensive proposition.

You can use this approach if you require more than one pattern match operator in a given section of code.
If the section contains only one operator (be it an m// or s///), you can rely on the property of the null
pattern, that reuses the last pattern seen. This leads to the second solution, which also eliminates the use of
eval.

3522 Jan 2000

2.8 Compiled Regular Expressionsmod_perl tutorial: Perl Reference

The above code fragment becomes:

 my $pat = ’^foo$’;
 "something" =~ /$pat/; # dummy match (MUST NOT FAIL!)
 foreach(@list) {
 print if //;
 }

The only gotcha is that the dummy match that boots the regular expression engine must absolutely, posi-
tively succeed, otherwise the pattern will not be cached, and the // will match everything. If you can’t
count on fixed text to ensure the match succeeds, you have two possibilities.

If you can guarantee that the pattern variable contains no meta-characters (things like *, +, ^, $...), you can
use the dummy match:

 "$pat" =~ /\Q$pat\E/; # guaranteed if no meta-characters present

If there is a possibility that the pattern can contain meta-characters, you should search for the pattern or
the non-searchable \377 character as follows:

 "\377" =~ /$pat|^\377$/; # guaranteed if meta-characters present

Another approach:

It depends on the complexity of the regexp to which you apply this technique. One common usage where
a compiled regexp is usually more efficient is to ‘‘ match any one of a group of patterns’’ over and over
again.

Maybe with a helper routine, it’s easier to remember. Here is one slightly modified from Jeffery Friedl’s
example in his book ‘‘ Mastering Regex’’.

 ###
 # Build_MatchMany_Function
 # -- Input: list of patterns
 # -- Output: A code ref which matches its $_[0]
 # against ANY of the patterns given in the
 # "Input", efficiently.
 #
 sub Build_MatchMany_Function {
 my @R = @_;
 my $expr = join ’||’, map { "\$_[0] =~ m/\$R[$_]/o" } (0..$#R);
 my $matchsub = eval "sub { $expr }";
 die "Failed in building regex @R: $@" if $@;
 $matchsub;
 }

Example usage:

 @some_browsers = qw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
 $Known_Browser=Build_MatchMany_Function(@some_browsers);

22 Jan 200036

Stas Bekman2.8 Compiled Regular Expressions

 while (<ACCESS_LOG>) {
 # ...
 $browser = get_browser_field($_);
 if (! &$Known_Browser($browser)) {
 print STDERR "Unknown Browser: $browser\n";
 }
 # ...
 }

2.9 perldoc’s Rarely Known But Very Useful Options
First of all, I want to stress that you cannot become a Perl hacker without knowing how to read Perl docu-
mentation and search through it. Books are good, but an easily accessible and searchable Perl reference is
at your fingertips and is a great time saver.

While you can use online Perl documentation at the Web, the perldoc utility provides you with access
to the documentation installed on your system. To find out what Perl manpages are available execute:

 % perldoc perl

To find what functions perl has, execute:

 % perldoc perlfunc

To learn the syntax and to find examples of a specific function, you would execute (e.g. for open()):

 % perldoc -f open

Note: In perl5.00503 and earlier, there is a bug in this and the -q options of perldoc . It won’t call
pod2man, but will display the section in POD format instead. Despite this bug it’s still readable and very
useful.

To search through the Perl FAQ (perlfaq manpage) sections you would (e.g for the open keyword)
execute:

 % perldoc -q open

This will show you all the matching Q&A sections, still in POD format.

To read the perldoc manpage you execute:

 % perldoc perldoc

;o)

3722 Jan 2000

2.9 perldoc’s Rarely Known But Very Useful Optionsmod_perl tutorial: Perl Reference

3 CGI to mod_perl Porting. mod_perl Coding guide-
lines.

22 Jan 200038

Stas Bekman3 CGI to mod_perl Porting. mod_perl Coding guidelines.

3.1 What we will learn in this chapter
Before you start to code

Exposing Apache::Registry secrets

Sometimes it Works, Sometimes it Doesn’t

@INC and mod_perl

Reloading Modules and Required Files

Name collisions with Modules and libs

__END__ and __DATA__ tokens

Output from system calls

Using format() and write()

Terminating requests and processes, the exit() and child_termi nate () functions

die() and mod_perl

I/O is different

STDIN, STDOUT and STDERR streams

Global Variables Persistance

Generating correct HTTP Headers

NPH (Non Parsed Headers) scripts

BEGIN blocks

END blocks

Command line Switches (-w, -T, etc)

The strict pragma

Passing ENV variables to CGI

Apache and syslog

Filehandlers and locks leakages

3922 Jan 2000

3.1 What we will learn in this chaptermod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.

Apache::PerlRun--a closer look

3.2 Before you start to code
It can be a good idea to tighten up some of your Perl programming practices, since mod_perl doesn’t
tolerate sloppy programming.

This chapter relies on a certain level of Perl knowledge. Please read through the Perl Reference chapter
and make sure you know the material covered there. This will allow me to concentrate on pure mod_perl
issues and make them more prominent to the experinced Perl programmer, which would otherwise be lost
in the sea of Perl background notes.

Additional resources:

Perl Module Mechanics

This page describes the mechanics of creating, compiling, releasing, and maintaining Perl modules.
http://world.std.com/~swmcd/steven/perl/module_mechanics.html

The information is very relevant to a mod_perl developer.

The Eagle Book

‘‘Writing Apache Modules with Perl and C’’ is a ‘‘must have’’ book!

See the details at http://www.modperl.com .

"Program ming Perl" Book

"Perl Cookbook" Book

3.3 Exposing Apache::Registry secrets
Let’s start with some simple code and see what can go wrong with it, detect bugs and debug them, discuss
possible pitfalls and how to avoid them.

I will use a simple CGI script, that initializes a $counter to 0, and prints its value to the screen while
incrementing it.

 counter.pl:

 #!/usr/bin/perl -w
 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;

22 Jan 200040

Stas Bekman3.2 Before you start to code

http://www.modperl.com/
http://world.std.com/~swmcd/steven/perl/module_mechanics.html

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

You would expect to see the output:

 Counter is equal to 1 !
 Counter is equal to 2 !
 Counter is equal to 3 !
 Counter is equal to 4 !
 Counter is equal to 5 !

And that’s what you see when you execute this script the first time. But let’s reload it a few times... See,
suddenly after a few reloads the counter doesn’t start its count from 1 any more. We continue to reload
and see that it keeps on growing, but not steadily starting almost randomly at 10, 10, 10, 15, 20... Weird...

 Counter is equal to 6 !
 Counter is equal to 7 !
 Counter is equal to 8 !
 Counter is equal to 9 !
 Counter is equal to 10 !

We saw two anomalies in this very simple script: Unexpected increment of our counter over 5 and incon-
sistent growth over reloads. Let’s investigate this script.

3.3.1 The First Mystery

First let’s peek into the error_log file. Since we have enabled the warnings what we see is:

 Variable "$counter" will not stay shared
 at /home/httpd/perl/conference/counter.pl line 13.

The Variable "$counter" will not stay shared warning is generated when the script contains a named
nested subroutine (a not anonymous subroutine defined inside another subroutine) that refers to a lexically
scoped variable defined outside this nested subroutine.

Add ’use diag nos tics ; ’ to see the long version of the warning.

Do you see a nested named subroutine in my script? I don’t! What’s going on? Maybe it’s a bug? But
wait, maybe the perl interpreter sees the script in a different way, maybe the code goes through some
changes before it actually gets executed? The easiest way to check what’s actually happening is to run the
script with a debugger.

4122 Jan 2000

3.3.1 The First Mysterymod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

But since we must debug it when it’s being executed by the webserver, a normal debugger wouldn’t help,
because the debugger has to be invoked from within the webserver. Luckily Doug MacEachern wrote the
Apache::DB module and we will use it to debug my script. While Apache::DB allows you to debug
the code interactively, we will do it non-interactively.

Modify the httpd.conf file in the following way:

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1 frame=2"
 PerlModule Apache::DB
 <Location /perl>
 PerlFixupHandler Apache::DB
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 </Location>

Restart the server and issue a request to counter.pl as before. On the surface nothing has changed--we still
see the correct output as before, but two things happened in the background:

First, the file /tmp/db.out was written, with a complete trace of the code that was executed.

Second, error_log now contains the real code that was actually executed. This is produced as a side effect
of reporting the Variable "$counter" will not stay shared at... warning that we saw earlier.

Here is the code that was actually executed:

 package Apache::ROOT::perl::conference::counter_2epl;
 use Apache qw(exit);
 sub handler {
 BEGIN {
 $^W = 1;
 };
 $^W = 1;

 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 }

22 Jan 200042

Stas Bekman3.3.1 The First Mystery

The original code wasn’t idented. I’ve idented it for you to stress that the code was wrapped inside the
handler() subroutine.

What do we learn from this?

First, that every cgi script is cached under a package whose name is formed from the Apache::ROOT::
prefix and the relative part of the script’s URL (perl::confer ence ::counter_2epl) by replac-
ing all occurrences of / with :: . That’s how mod_perl knows what script should be fetched from the
cache--each script is just a package with a single subroutine named handler .

Second, you see now why the diag nos tics pragma talked about an inner (nested) subrou-
tine--incre ment _counter is actually a nested subroutine.

With mod_perl, each subroutine in every Apache::Registry script is nested inside the handler
subroutine.

It’s important to understand that the inner subroutine effect happens only with code that
Apache::Registry wraps with a declaration of the handler subroutine. If you put your code into a
library or module, which the main script require()’s or use()’s, this effect doesn’t occur.

For example if we put the subroutine incre ment _counter() into mylib.pl , save it in the same
directory as the main script and require() it, there will be no problem at all. (Don’t forget the 1; at
the end of the library or the require() might fail.)

 mylib.pl:

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 1;

 counter.pl:

 #!/usr/bin/perl -w

 use strict;
 require "./mylib.pl";

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;

 for (1..5) {
 increment_counter();
 }

Personally, unless the script is very short, I tend to write all the code in external libraries, and to have only
a few lines in the main script. Generally the main script simply calls the main function of my library.
Usually I call it init() . I don’t worry about nested subroutine effects anymore (unless I create them
myself :).

4322 Jan 2000

3.3.1 The First Mysterymod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

The section Remedies working for Inner Subroutine from the Perl Reference chapter discusses some of the
possible workarounds for this problem.

You shouldn’t be intimidated by this issue at all, since Perl is your friend. Just keep the warnings mode
On and Perl will gladly tell you whenever you have this effect, by saying:

 Variable "$counter" will not stay shared at ...[snipped]

Just don’t forget to check your error_log file, before going into production!

By the way, the above example was pretty boring. In my first days of using mod_perl, I wrote a simple
user registration program. I’ll give a very simple representation of this program.

 use CGI;
 $q = new CGI;
 my $name = $q->param(’name’);
 print_respond();

 sub print_respond{
 print "Content-type: text/plain\r\n\r\n";
 print "Thank you, $name!";
 }

My boss and I checked the program at the development server and it worked OK. So we decided to put it
in production. Everything was OK, but my boss decided to keep on checking by submitting variations of
his profile. Imagine the surprise when after submitting his name (let’s say ‘‘The Boss’’ :), he saw the
response ‘‘Thank you, Stas Bekman!’’.

What happened is that I tried the production system as well. I was new to mod_perl stuff, and was so
excited with the speed improvement that I didn’t notice the nested subroutine problem. It hit me. At first I
thought that maybe Apache had started to confuse connections, returning responses from other people’s
requests. I was wrong of course.

Why didn’t we notice this when we were trying the software on our development server? Keep reading
and you will understand why.

3.3.2 The Second Mystery

Let’s return to our original example and proceed with the second mystery we noticed. Why did we see
inconsistent results over numerous reloads?

That’s very simple. Every time a server gets a request to process, it hands it over one of the children,
generally in a round robin fashion. So if you have 10 httpd children alive, the first 10 reloads might seem
to be correct because the effect we’ve just talked about starts to appear from the second re-invocation.
Subsequent reloads then return unexpected results.

Moreover, requests can appear at random and children don’t always run the same scripts. At any given
moment one of the children could have served the same script more times than any other, and another may
never have run it. That’s why we saw the strange behavior.

22 Jan 200044

Stas Bekman3.3.2 The Second Mystery

Now you see why we didn’t notice the problem with the user registration system in the example. First, we
didn’t look at the error_log . (As a matter of fact we did, but there were so many warnings in there that
we couldn’t tell what were the important ones and what were not). Second, we had too many server chil-
dren running to notice the problem.

A workaround is to run the server as a single process. You achieve this by invoking the server with the -X
parameter (httpd -X). Since there are no other servers (children) running, you will see the problem on
the second reload.

But before that, let the error_log help you detect most of the possible errors--most of the warnings can
become errors, so you should make sure to check every warning that is detected by perl, and probably you
should write the code in such a way that no warnings appear in the error_log . If your error_log
file is filled up with hundreds of lines on every script invocation, you will have diffi culty noticing and
locating real problems.

Of course none of the warnings will be reported if the warning mechanism is not turned On. Refer to the
‘‘ Warnings Explained’’ section from the Perl Reference chapter to learn about warnings in general and to
the ‘‘ Warnings’’ section in this chapter to learn how to turn them on and off under mod_perl.

3.4 Sometimes it Works, Sometimes it Doesn’t
When you start running your scripts under mod_perl, you might find yourself in a situation where a script
seems to work, but sometimes it screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable and solvable. You have to test your script under a server running in
single process mode (httpd -X).

Generally the problem you have is of using global variables. Because global variables don’t change from
one script invocation to another unless you change them, you can find your scripts do strange things.

Let’s look at three real world examples:

3.4.1 An Easy Break-in

The first example is amazing--Web Services. Imagine that you enter some site where you have an account,
perhaps a free email account. Now you want to see other users’ mail.

You type in a username you want to peek at and a dummy password and try to enter the account. On some
services this will work!!!

You say, why in the world does this happen? The answer is simple: Global Vari ables. You have entered
the account of someone who happened to be served by the same server child as you. Because of sloppy
programming, a global variable was not reset at the beginning of the program and voila, you can easily
peek into others’ email! Here is an example of sloppy code:

 use vars ($authenticated);
 my $q = new CGI;
 my $username = $q->param(’username’);
 my $passwd = $q->param(’passwd’);

4522 Jan 2000

3.4 Sometimes it Works, Sometimes it Doesn’tmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 authenticate($username,$passwd);
 # failed, break out
 unless ($authenticated){
 print "Wrong passwd";
 exit;
 }
 # user is OK, fetch user’s data
 show_user($username);

 sub authenticate{
 my ($username,$passwd) = @_;
 # some checking
 $authenticated = 1 if SOME_USER_PASSWD_CHECK_IS_OK;
 }

Do you see the catch? With the code above, I can type in any valid username and any dummy passwd and
enter that user’s account, if someone has successfully entered his account before me using the same child
process! Since $authen ti cated is global--if it becomes 1 once, it’ll stay 1 for the remainder of the
child’s life!!! The solution is trivial--reset $authen ti cated to 0 at the beginning of the program.

A cleaner solution of course is not to rely on global variables, but rely on the return value from the func-
tion.

 my $q = new CGI;
 my $username = $q->param(’username’);
 my $passwd = $q->param(’passwd’);
 my $authenticated = authenticate($username,$passwd);
 # failed, break out
 unless ($authenticated){
 print "Wrong passwd";
 exit;
 }
 # user is OK, fetch user’s data
 show_user($username);

 sub authenticate{
 my ($username,$passwd) = @_;
 # some checking
 return (SOME_USER_PASSWD_CHECK_IS_OK) ? 1 : 0;
 }

Of course this example is trivial--but believe me it happens!

3.4.2 Thinking mod_cgi

Just another little one liner that can spoil your day, assuming you forgot to reset the $allowed variable.
It works perfectly OK in plain mod_cgi:

 $allowed = 1 if $username eq ’admin’;

But using mod_perl, and if your system administrator with superuser access rights has previously used the
system, anybody who is lucky enough to be served later by the same child which served your administra-
tor will happen to gain the same rights.

22 Jan 200046

Stas Bekman3.4.2 Thinking mod_cgi

The obvious fix is:

 $allowed = $username eq ’admin’ ? 1 : 0;

3.4.3 Regular Expression Memory

Another good example is usage of the /o regular expression modifier, which compiles a regular expression
once, on its first execution, and never compiles it again. This problem can be diffi cult to detect, as after
restarting the server each request you make will be served by a different child process, and thus the regex
pattern for that child will be compiled afresh. Only when you make a request that happens to be served by
a child which has already cached the regex will you see the problem. Generally you miss that. When you
press reload, you see that it works (with a new, fresh child). Eventually it doesn’t, because you get a child
that has already cached the regex and won’t recompile because of the /o modifier.

An example of such a case would be:

 my $pat = $q->param("keyword");
 foreach(@list) {
 print if /$pat/o;
 }

To make sure you don’t miss these bugs always test your CGI in single process mode (httpd -X).

To solve this particular /o modifier problem refer to the Compiled Regular Expressions section of the Perl
Reference chapter.

3.5 @INC and mod_perl
The basic Perl @INC behaviour is explained in the section use(), require(), do(), %INC and @INC
Explained of the Perl Reference chapter.

When running under mod_perl, once the server is up @INC is frozen and cannot be updated. The only
opportunity to temporarily modify @INC is while the script or the module are loaded and compiled for
the first time. After that its value is reset to the original one. The only way to change @INC permanently is
to modify it at Apache startup.

Two ways to alter @INC at server startup:

In the configuration file. For example add:

 PerlSetEnv PERL5LIB /home/httpd/perl

or

 PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

In the startup file directly alter the @INC. For example

4722 Jan 2000

3.5 @INC and mod_perlmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 startup.pl

 use lib qw(/home/httpd/perl /home/httpd/mymodules);

and load the startup file from the configuration file by:

 PerlRequire /path/to/startup.pl

3.6 Reloading Modules and Required Files
You might want to read the ‘‘ use(), require(), do(), %INC and @INC Explained’’ of the Perl Reference
chapter before you proceed.

When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your browser.
Since the script isn’t cached in memory, the next time you call it the server starts up a new perl process,
which recompiles it from scratch. The effects of any modifications you’ve applied are immediately
present.

The situation is different with Apache::Registry , since the whole idea is to get maximum perfor-
mance from the server. By default, the server won’t spend time checking whether any included library
modules have been changed. It assumes that they weren’t, thus saving a few milliseconds to stat() the
source file (multiplied by however many modules/libraries you use() and/or require() in your
script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do not use() or require() other perl modules or packages, there is nothing to worry
about. If, however, you are developing a script that includes other modules, the files you use() or
require() aren’t checked for modification and you need to do something about that.

So how do we get our modperl-enabled server to recognize changes in library modules? Well, there are a
couple of techniques:

3.6.1 Restarting the server

The simplest approach is to restart the server each time you apply some change to your code.

After restarting the server about 100 times, you will tire of it and you will look for other solutions.

3.6.2 Using Apache::StatINC for the Development Process

Help comes from the Apache::StatINC module. When Perl pulls a file via require(), it stores the
full pathname as a value in the global hash %INC with the file name as the key. Apache::StatINC
looks through %INC and it immediately reloads any files it finds in there if it sees that they have been
updated on disk.

22 Jan 200048

Stas Bekman3.6 Reloading Modules and Required Files

To enable this module just add two lines to httpd.conf .

 PerlModule Apache::StatINC
 PerlInitHandler Apache::StatINC

To be sure it really works, turn on debug mode on your development box by adding PerlSet Var
Stat INCDebug On to your config file. You end up with something like this:

 PerlModule Apache::StatINC
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 PerlInitHandler Apache::StatINC
 PerlSetVar StatINCDebug On
 </Location>

Be aware that only the modules located in @INC are reloaded on change, and you can change @INC only
before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in with require() after server startup
will have any effect on @INC.

When you write:

 use lib qw(foo/bar);

@INC is changed only for the time the code is being parsed and compiled. When that’s done, @INC is
reset to its original value.

To make sure that you have set @INC correctly, configure /perl-status location, fetch
http://www.nowhere.com/perl-status?inc and look at the bottom of the page, where the contents of @INC
will be shown.

Notice the following trap:

While ‘‘ . ’’ is in @INC, perl knows to require() files with pathnames given relative to the current
(script) directory. After the script has been parsed, the server doesn’t remember the path!

So you can end up with a broken entry in %INC like this:

 $INC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--modify @INC at server startup, or use a full path in the
require() call.

4922 Jan 2000

3.6.2 Using Apache::StatINC for the Development Processmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

http://www.nowhere.com/perl-status?inc

3.6.3 Reloading handlers

If you want to reload a perlhandler on each invocation, the following trick will do it:

 PerlHandler "sub { do ’MyTest.pm’; MyTest::handler(shift) }"

do() reloads MyTest.pm on every request.

3.7 Name collisions with Modules and libs
This sections requires an indepth understanding of use(), require(), do(), %INC and @INC. Please refer to
the Perl Reference chapter to learn more about it.

To make things clear before we go into details: each child process has its own %INC hash which is used to
store information about its compiled modules. The keys of the hash are the names of the modules and files
passed as arguments to require() and use(). The values are the full or relative paths to these
modules and files.

Suppose we have my-lib.pl and MyModule .pm both located at /home/httpd/perl/my/ .

/home/httpd/perl/my/ is in @INC at server startup.

 require "my-lib.pl";
 use MyModule.pm;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 /home/httpd/perl/my/my-lib.pl
 /home/httpd/perl/my/MyModule.pm

Adding use lib :

 use lib qw(.);
 require "my-lib.pl";
 use MyModule.pm;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 my-lib.pl
 MyModule.pm

/home/httpd/perl/my/ isn’t in @INC at server startup.

 require "my-lib.pl";
 use MyModule.pm;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

22 Jan 200050

Stas Bekman3.7 Name collisions with Modules and libs

wouldn’t work, since perl cannot find the modules.

Adding use lib :

 use lib qw(.);
 require "my-lib.pl";
 use MyModule.pm;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 my-lib.pl
 MyModule.pm

Let’s look at three scripts with faults related to name space. For the following discussion we will consider
just one individual child process.

Scenario 1

First, You can’t have two identical module names running under the same server! Only the first one
found in a use() or require() statement will be compiled into the package, the request for the
other module will be skipped, since the server will think that it’s already compiled. This is a direct
result of using <%INC>, which has keys equal to the names of the modules. Two identical names
will refer to the same key in the hash.

So if you have two different Foo modules in two different directories and two scripts script1.pl
and script2.pl , placed like this:

 ./perl/tool1/Foo.pm
 ./perl/tool1/tool1.pl
 ./perl/tool2/Foo.pm
 ./perl/tool2/tool2.pl

Where a sample code could be:

 ./perl/tool1/tool1.pl

 use Foo;
 print "Content-type: text/plain\r\n\r\n";
 print "I’m Script number One\n";
 foo();

 ./perl/tool1/Foo.pm

 sub foo{
 print "I’m Tool Number One!\n";
 }
 1;

5122 Jan 2000

3.7 Name collisions with Modules and libsmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 ./perl/tool2/tool2.pl

 use Foo;
 print "Content-type: text/plain\r\n\r\n";
 print "I’m Script number Two\n";
 foo();

 ./perl/tool2/Foo.pm

 sub foo{
 print "I’m Tool Number Two!\n";
 }
 1;

Both scripts call use Foo; . Only the first one called will know about Foo. When you call the
second script it will not know about Foo at all--it’s like you’ve forgotten to write use Foo; . Run
the server in the single server mode (httpd -X) to detect this kind of bug immediately.

You will see the following in the error_log file:

 Undefined subroutine
 &Apache::ROOT::perl::tool2::tool2_2epl::foo called at
 /home/httpd/perl/tool2/tool2.pl line 4.

Scenario 2

If the files do not declare a package, the above is true for files you require() as well:

Suppose the content of the scripts and config.pl files is exactly like in the example above, and
you have a directory structure like this:

 ./perl/tool1/config.pl
 ./perl/tool1/tool1.pl
 ./perl/tool2/config.pl
 ./perl/tool2/tool2.pl

and both scripts contain

 use lib qw(.);
 require "config.pl";

The second scenario is not different from the first, there is almost no difference between use() and
require() if you don’t have to import some symbols into a calling script. Only the first script
served will actually do the require(), for the same reason as the example above. %INC already
includes the key "config.pl"!

Scenario 3

22 Jan 200052

Stas Bekman3.7 Name collisions with Modules and libs

It is interesting that the following scenario will fail too!

 ./perl/tool/config.pl
 ./perl/tool/tool1.pl
 ./perl/tool/tool2.pl

where tool1.pl and tool2.pl both require() the same config.pl .

There are three solutions for this:

Solution 1

The first two faulty scenarios can be solved by placing your library modules in a subdirectory struc-
ture so that they have different path prefixes. The file system layout will be something like:

 ./perl/tool1/Tool1/Foo.pm
 ./perl/tool1/tool1.pl
 ./perl/tool2/Tool2/Foo.pm
 ./perl/tool2/tool2.pl

And modify the scripts:

 use Tool1::Foo;
 use Tool2::Foo;

For require() (scenario number 2) use the following:

 ./perl/tool1/tool1-lib/config.pl
 ./perl/tool1/tool1.pl
 ./perl/tool2/tool2-lib/config.pl
 ./perl/tool2/tool2.pl

And each script contains respectively:

 use lib qw(.);
 require "tool1-lib/config.pl";

 use lib qw(.);
 require "tool2-lib/config.pl";

This solution isn’t good, since while it might work for you now, if you add another script that wants
to use the same module or config.pl file, it would fail as we saw in the third scenario.

Let’s see some better solutions.

Solution 2

Another option is to use a full path to the script, so it will be used as a key in %INC;

 require "/full/path/to/the/config.pl";

5322 Jan 2000

3.7 Name collisions with Modules and libsmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

This solution solves the problem of the first two scenarios. I was surprised that it worked for the third
scenario as well!

With this solution you loose some portability. If you move the tool around in the file system you will
have to change the base directory or write some additional script that will automatically update the
hardcoded path after it was moved. Of course you will have to remember to invoke it.

Solution 3

Make sure you read all of this solution.

Declare a package in the required files! It should be unique to the rest of the package names you use.
%INC will then use the unique package name for the key. It’s a good idea to use at least two-level
package names for your private modules, e.g. MyProject ::Carp and not Carp , since the latter
will collide with an existing standard package. Even if as of the time of your coding it doesn’t yet
exist, a package might enter the next perl distribution as a standard module and your code will be
broken. Foresee problems like this and save yourself future trouble.

What are the implications of package declaration?

Without package declarations, it is very convenient to use() or require() files because all the
variables and subroutines are part of the main:: package. Any of them can be used as if they are
part of the main script. With package declarations things are more awkward. You have to use the
Package::func tion () method to call a subroutine from Package and to access a global vari-
able $foo inside the same package you have to write $Package::foo .

Lexically defined variables, those declared with my() inside Package will be inaccessible from
outside the package.

You can leave your scripts unchanged if you import the names of the global variables and subrou-
tines into the namespace of package main:: like this:

 use Module qw(:mysubs sub_b $var1 :myvars);

You can export both subroutines and global variables. Note however that this method has the disad-
vantage of consuming more memory for the current process.

See perldoc Exporter for information about exporting other variables and symbols.

This completely covers the third scenario. When you use different module names in package declara-
tions, as explained above, you cover the first two as well.

See also the perlmod lib and perlmod manpages.

From the above discussion it should be clear that you cannot run development and production versions of
the tools using the same apache server! You have to run a separate server for each. They can be on the
same machine, but the servers will use different ports.

22 Jan 200054

Stas Bekman3.7 Name collisions with Modules and libs

3.8 __END__ and __DATA__ tokens
Apache::Registry scripts cannot contain __END__ or __DATA__ tokens.

Why? Because Apache::Registry scripts are being wrapped into a subroutine called handler , like
the script at URI /perl/test.pl :

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";

When the script is being executed under Apache::Registry handler, it actually becomes:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 }

So if you happen to put an __END__ tag, like:

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed

it will be turned into:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed
 }

and you try to execute this script, you will receive the following warning:

 Missing right bracket at line 4, at end of line

Perl cuts everything after the __END__ tag. The same applies to the __DATA__ tag.

Also, rememeber that whatever applies to Apache::Registry scripts, in most cases applies to
Apache::PerlRun scripts.

3.9 Output from system calls
The output of system() , exec() , and open(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured with sfio .

5522 Jan 2000

3.8 __END__ and __DATA__ tokensmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

You can use backticks as a possible workaround:

 print ‘command here‘;

But you’re throwing performance out the window either way. Best not to fork at all if you can avoid it.

3.10 Using format() and write()
The interface to filehandles which are linked to variables with Perl’s tie() function is not yet complete.
The format() and write() functions are missing. If you configure Perl with sfio , write() and
format() should work just fine.

3.11 Terminating requests and processes, the exit() and
child_terminate() functions
Perl’s exit() built-in function cannot be used in mod_perl scripts. Calling it causes the mod_perl
process to exit (which defeats the object of using mod_perl). The Apache::exit() function should be
used instead.

You might start your scripts by overriding the exit() subroutine (if you use Apache::exit()
directly, you will have a problem testing the script from the shell, unless you put use Apache (); into
your code.) I use the following code:

 BEGIN {
 # Auto-detect if we are running under mod_perl or CGI.
 $USE_MOD_PERL = ((exists $ENV{’GATEWAY_INTERFACE’}
 and $ENV{’GATEWAY_INTERFACE’} =~ /CGI-Perl/)
 or exists $ENV{’MOD_PERL’}) ? 1 : 0;
 }
 use subs qw(exit);

 # Select the correct exit function
 ########
 sub exit{
 $USE_MOD_PERL ? Apache::exit(0) : CORE::exit(0);
 }

Now the correct exit() will be always chosen, whether you run the script under mod_perl, ordinary
CGI or from the shell.

Note that if you run the script under Apache::Registry , The Apache function exit() overrides
the Perl core built-in function. While you see exit() listed in @EXPORT_OK of the Apache package,
Apache::Registry does something you don’t see and imports this function for you. This means that
if your script is running under Apache::Registry handler you don’t have to worry about exit().
The same applies to Apache::PerlRun .

22 Jan 200056

Stas Bekman3.10 Using format() and write()

If you use CORE::exit() in scripts running under modperl, the child will exit, but neither a proper exit
nor logging will happen on the way. CORE::exit() cuts off the server’s legs.

Note that Apache::exit(-2) or Apache::exit(Apache::Constants::DONE) will cause
the server to exit gracefully , completing the logging functions and protocol requirements etc.

If you need to shut down the child cleanly after the request was completed, use the
$r->child_termi nate method. You can call it anywhere in the code, and not just at the ‘‘end’’. This
sets the value of the MaxRequestsPer Child configuration variable to 1 and clears the keepalive
flag. After the request is serviced, the current connection is broken, because of the keepalive flag, and
the parent tells the child to cleanly quit, because MaxRequestsPer Child is smaller than the number
of requests served.

You can accomplish this in two ways--in the Apache::Registry script:

 Apache->request->child_terminate;

or in httpd.conf:

 PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the child to terminate every time the regis-
tered handler is called. Probably this is not what you want.

Here is an example of assigning of the postprocessing handler:

 my $r = shift;
 $r->post_connection(\&exit_child);
 sub exit_child{
 # some logic here if needed
 $r->child_terminate;
 }

The above is the code that is used by the Apache::Size Limit module which terminates processes
that grow bigger than a value you choose.

Apache::GTopLimit (based on libgtop) is a similar module. It does the same thing, plus you can
configure it to terminate processes when their shared memory shrinks below some specified size.

As mentioned before, it is unnecessary to postpone the execution of child_termi nate (). You can
call it anywhere in the code, it won’t terminate the child’s execution until the request has been served.
Don’t confuse it with exit().

3.12 die() and mod_perl
When you write:

5722 Jan 2000

3.12 die() and mod_perlmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script would die() if it will be unable to open the file, by aborting the
script execution, printing the death reason and quitting the Perl interpreter.

You hardly will find a properly written Perl script that doesn’t have at least one die() statement in it, if
it has to cope with system calls and alike.

CGI script running under mod_cgi exits on its completion. The Perl interperter exits as well. So it doesn’t
really matter whether the interpreter quits because the script died by natural death (when the last statement
was executed) or aborted by die() statement.

In mod_perl we don’t want the interpreter to quit. We know already that when the script completes its
chores the interpeter won’t quit. There is no reason why it should quit when the script is stopped because
of die(). As a result calling die() wouldn’t quit the process.

And this is how it works--when the die() gets triggered, it’s mod_perl’s $SIG{__DIE__} handler that
logs the error message and calls Apache::exit() instead of real die(). Thus the script stops, but the
process doesn’t quit.

This is an example of a trapping code, not the real code:

 $SIG{__DIE__} = sub { print STDERR @_; Apache::exit(); }

3.13 I/O is differ ent
If you are using Perl 5.004 or better, most CGI scripts can run under mod_perl untouched. If you’re using
5.003, Perl’s built-in read() and print() functions do not work as they do under CGI. If you’re using
CGI.pm , use $query->print instead of plain ol’ print() .

3.14 STDIN, STDOUT and STDERR streams
In mod_perl both STDIN and STDOUT are tied to the socket the request came from. STDERR is tied to the
error_log file.

To print to STDOUT you can either use a regular print() (which is automagically tied to the the
socket) or the $r->print method.

3.15 Global Vari ables Persistance
Since the child process generally doesn’t exit before it has serviced several requests, global variables
persist inside the same process from request to request. This means that you must never rely on the value
of the global variable if it wasn’t initialized at the beginning of the request processing.

22 Jan 200058

Stas Bekman3.13 I/O is different

You should avoid using global variables unless it’s impossible without them, because it will make the
code development harder and you will have to make very sure that all the variables are initialized before
being used. Use my() scoped variables everywhere you can.

You should be especially careful with Perl Special Variables (See the Perl Reference chapter) which
cannot be lexically scoped. You have to use local() instead.

3.16 Generating correct HTTP Headers
A HTTP response header consists of at least two fields. HTTP response and Content-type :

 HTTP/1.0 200 OK
 Content-Type: text/plain

after adding one more new line, you can start printing the content. A more complete response includes the
date timestamp and server type, like in this response:

 HTTP/1.0 200 OK
 Date: Tue, 28 Dec 1999 18:47:58 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Content-Type: text/plain

To notify that the server was configured with KeepAlive Off, you need to tell the client that the connec-
tion was closed, with:

 Connection: close

There can be other headers as well, like caching control and other specified by HTTP protocol. You can
code the response header with a single print():

 print qq{HTTP/1.1 200 OK
Date: Tue, 28 Dec 1999 18:49:41 GMT
Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
Connection: close
Content-type: text/plain

 };

Notice the double new line at the end. But you have to prepare a timestamp string
(Apache::Util::ht_time() does just this) and to know what server you are running under. You
needed to send only the response MIME type (Content-type) under mod_cgi, why should you do that
manually under mod_perl.

Actually do want to set some headers manually, but not everytime. So mod_perl gives you the default set
of headers, just like in the example above. And if you want to override or add more headers you can do
that as well. Let’s see how to do that.

When writing your own handlers and scripts with the Perl API the proper way to send the HTTP header is
with send_http_header() method. If you need to add or override methods you can use the
headers_out() method:

5922 Jan 2000

3.16 Generating correct HTTP Headersmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 $r->headers_out("Server" => "Apache Next Generation 10.0");
 $r->headers_out("Date" => "Tue, 28 Dec 1999 18:49:41 GMT");

When you have prepared all the headers you send them with:

 $r->send_http_header;

Some headers have special aliases:

 $r->content_type(’text/plain’);

is the same as:

 headers_out("Content-type" => "text/plain");

A typical handler looks like this:

 $r->content_type(’text/plain’);
 $r->send_http_header;
 return OK if $r->header_only;

If the client issues a HTTP HEAD request rather than the usual GET, to be compliant with the HTTP proto-
col we should not send the document body, but the the HTTP header only. When Apache receives a
HEAD request, it sets header_only() to true. If we see that this has happened, we return from the handler
immediately with an OK status code.

Generally, you don’t need the explicit content type setting, since Apache does it for you, by looking up the
MIME type of the request by matching the extension of the URI in the MIME tables (from the mime.types
file). So if the request URI is /welcome.html, the text/html content-type will be picked. However for
CGI scripts or URIs that cannot be mapped by a known extension, you should set the appropriate type by
using content_type() method.

The situation is a little bit different with Apache::Registry and similar handlers. If you take a basic
CGI script like this:

 print "Content-type: text/plain\r\n\r\n";
 print "Hello world";

it wouldn’t work, because the HTTP header will not be sent. By default, mod_perl does not send any
headers itself. You may wish to change this by adding

 PerlSendHeader On

in the <Loca tion > part of your configuration. Now, the response line and common headers will be sent
as they are by mod_cgi. Just as with mod_cgi, PerlSend Header will not send the MIME type and a
terminating double newline. Your script must send that itself, e.g.:

 print "Content-type: text/html\r\n\r\n";

22 Jan 200060

Stas Bekman3.16 Generating correct HTTP Headers

According to HTTP specs, you should send ‘‘\cM\cJ’’, ‘‘\015\012’’ or ‘‘\0x0D\0x0A’’ string. The ‘‘\r\n’’
is the way to do that on UNIX and MS-DOS/Windows machines. However, on a Mac ‘‘\r\n’’ eq
‘‘\012\015’’, exactly the other way around.

Note, that in most UNIX CGI scripts, developers use a simpler ‘‘\n\n’’ and not ‘‘\r\n\r\n’’. There are occa-
sions where sending ‘‘\n’’ without ‘‘\r’’ can cause problems, make it a habit to send ‘‘\r\n’’ every time.

The PerlSend Header On directive tells mod_perl to intercept anything that looks like a header line
(such as Content-Type: text/plain) and automatically turn it into a correctly formatted
HTTP/1.0 header, the same way it happens with CGI scripts running under mod_cgi. This allows you to
keep your CGI scripts unmodified.

You can use $ENV{PERL_SEND_HEADER} to find out whether PerlSend Header is On or Off . You
use it in your module like this:

 if($ENV{PERL_SEND_HEADER}) {
 print "Content-type: text/html\r\n\r\n";
 }
 else {
 my $r = Apache->request;
 $r->content_type(’text/html’);
 $r->send_http_header;
 }

If you use CGI.pm ’s header() function to generate HTTP headers, you do not need to activate this
directive because CGI.pm detects mod_perl and calls send_http_header() for you. However, it
does not hurt to use this directive anyway.

There is no free lunch--you get the mod_cgi behavior at the expense of the small but finite overhead of
parsing the text that is sent. Note that mod_perl makes the assumption that individual headers are not split
across print statements.

The Apache::print() routine has to gather up the headers that your script outputs, in order to pass
them to $r->send_http_header . This happens in src/modules/perl/Apache.xs (print)
and Apache/Apache.pm (send_cgi_header). There is a shortcut in there, namely the assumption
that each print statement contains one or more complete headers. If for example you generate a
Set-Cookie header by multiple print() statements, like this:

 print "Content-type: text/html\n";
 print "Set-Cookie: iscookietext\; ";
 print "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
 print "path=\/\; ";
 print "domain=\.mmyserver.com\; ";
 print "\r\n\r\n";
 print "hello";

your generated Set-Cookie header is split over a number of print statements and gets lost. The above
example wouldn’t work! Try this instead:

6122 Jan 2000

3.16 Generating correct HTTP Headersmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 print "Content-type: text/html\n";
 my $cookie = "Set-Cookie: iscookietext\; ";
 $cookie .= "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
 $cookie .= "path=\/\; ";
 $cookie .= "domain=\.mmyserver.com\; ";
 print $cookie;
 print "\r\n\r\n";
 print "hello";

Sometimes when you call a script you see an ugly "Content-Type: text/html" displayed at the
top of the page, and of course the HTML the rest of the HTML code won’t be rendered correctly by the
browser. As you have seen above, this generally happens when your code has already sent the header so
you see it rendered into a browser’s page. This might happen when you call the CGI.pm $q->header
method or mod_perl’s $r->send_http_header .

If you have a complicated application where the header might be generated from many different places,
depending on the calling logic, you might want to write a special subroutine that sends a header, and keeps
track of whether the header has been already sent. Of course you can use a global variable to flag that the
header has already been sent:

 use strict;
 use vars qw{$header_printed};
 $header_printed = 0;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 sub print_header {
 my $type = shift || "text/html";
 unless ($header_printed) {
 $header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }

$header_printed variable that flags whether the header was sent or not gets initialized to false (0) at
the beginning of each code invocation. Note that the second invocation of print_header() within the
same code, will do nothing, since $header_printed will become true after print_header() will
be executed for the first time.

A little bit memory more friendly solution is to use a fully qualified variable instead:

 use strict;
 $main::header_printed = 0;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 sub print_header {
 my $type = shift || "text/html";

22 Jan 200062

Stas Bekman3.16 Generating correct HTTP Headers

 unless ($main::header_printed) {
 $main::header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }

We just removed the global variable predeclaration, allowing you to use $header_printed under
"use strict" and replaced $header_printed with $main::header_printed ;

Someone may become tempted to use a more elegant Perl solution--the closure effect which seems to be a
natural to be used here. Unfortunately it will not work. If the process was starting fresh for each script or
handler, like with plain mod_cgi scripts, it would work just fine:

 use strict;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 {
 my $header_printed = 0;
 sub print_header {
 my $type = shift || "text/html";
 unless ($header_printed) {
 $header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }
 }

In this code $header_printed is declared as lexically scoped (with my()) outside the subroutine
print_header() and modified inside of it. Curly braces define the block which limits the scope of the
lexically variable.

This means that once print_header() sets it to 1, it will stay 1 as long as the code is running. So all
consequent calls to this subroutine will just return without doing a thing. Which serves our goal, but
unfortunately it will work only for the first time the script will be invoked within a process. When the
script will be accessed for a second time and will be served by the same process--the header will not be
printed anymore, since print_header() will remember that the value of $header_printed equals
to 1, it wouldn’t be reinitialized, since the soubroutine wouldn’t be recompiled.

Let’s make our smart method more elaborate with PerlSend Header directive settings, so it always
does the right thing. It’s especially important if you write an application that you are going to distribute,
hopefully as Open Source.

You can continue to improve this subroutine even further to handle additional headers, such as cookies.

6322 Jan 2000

3.16 Generating correct HTTP Headersmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

3.17 NPH (Non Parsed Headers) scripts
To run a Non Parsed Header CGI script under mod_perl, simply add to your code:

 local $| = 1;

And if you normally set PerlSend Header On, add this to your server’s configuration file:

 <Files */nph-*>
 PerlSendHeader Off
 </Files>

3.18 BEGIN blocks
Perl executes BEGIN blocks as soon as possible, at the time of compiling the code. The same is true under
mod_perl. However, since mod_perl normally only compiles scripts and modules once, either in the
parent server or once per-child, BEGIN blocks in that code will only be run once. As the perlmod
manpage explains, once a BEGIN block has run, it is immediately undefined. In the mod_perl environ-
ment, this means that BEGIN blocks will not be run during the response to an incoming request unless that
request happens to be the one that causes the compilation of the code.

BEGIN blocks in modules and files pulled in via require() or use() will be executed:

Only once, if pulled in by the parent process.

Once per-child process if not pulled in by the parent process.

An additional time, once per child process if the module is pulled in off a disk again via
Apache::StatINC .

An additional time, in the parent process on each restart if Perl FreshRestart is On.

Unpredictable if you fiddle with %INC yourself.

BEGIN blocks in Apache::Registry scripts will be executed, as above plus:

Only once, if pulled in by the parent process via

Apache::Registry Loader .

Once per-child process if not pulled in by the parent process.

An additional time, once per child process, each time the script file changes on disk.

An additional time, in the parent process on each restart if pulled in by the parent process via
Apache::Registry Loader and Perl FreshRestart is On.

22 Jan 200064

Stas Bekman3.17 NPH (Non Parsed Headers) scripts

3.19 END blocks
As the perlmod manpage explains, an END subroutine is executed as late as possible, that is, when the
interpreter exits. In the mod_perl environment, the interpreter does not exit until the server shuts down.
However, mod_perl does make a special case for Apache::Registry scripts.

Normally, END blocks are executed by Perl during its perl_run() function. This is called once each time
the Perl program is executed, i.e. under mod_cgi, once per invocation of the CGI script. However,
mod_perl only calls perl_run() once, during server startup. Any END blocks encountered during main
server startup, i.e. those pulled in by the Perl Require or by any PerlMod ule , are suspended.

Apache versions 1.3b3 and later run the END blocks at child_exit() .

Except during the cleanup phase, any END blocks encountered during compilation of
Apache::Registry scripts, including subsequent invocations when the script is cached in memory,
are called after the script has completed.

All other END blocks encountered during other Perl*Handler call-backs, e.g. PerlChil -
dInitHandler , will be suspended while the process is running and called during child_exit()
when the process is shutting down. Module authors might wish to use $r->regis ter _cleanup() as
an alternative to END blocks if this behavior is not desirable. $r->regis ter _cleanup() is called at
the CleanUp processing phase of each request and thus can be used to emulate plain perl’s END{} block
behavior.

3.20 Command line Switches (-w, -T, etc)
Normally when you run perl from the command line, you have the shell invoke it with #!/bin/perl
(sometimes referred to as a shebang line). In scripts running under mod_cgi, you may use perl execution
switch arguments as described in the perlrun manpage, such as -w , -T or -d . Since scripts running
under mod_perl don’t need the shebang line, all switches except -w are ignored by mod_perl. This feature
was added for a backward compatibility with CGI scripts.

Most command line switches have a special variable equivalent. Consult the perlvar manpage for more
details.

3.20.1 Warnings

There are three ways to enable warnings:

Globally to all Processes

Setting:

 PerlWarn On

6522 Jan 2000

3.19 END blocksmod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

in httpd.conf will turn warnings On in any script.

You can then fine tune your code, turning warnings Off and On by setting the $^W variable in your
scripts.

Locally to a script

 #!/usr/bin/perl -w

will turn warnings On for the scope of the script. You can turn them Off and On in the script by
setting the $^W variable as noted above.

Locally to a block

This code turns warnings mode On for the scope of the block.

 {
 local $^W = 1;
 # some code
 }

This turns it Off :

 {
 local $^W = 0;
 # some code
 }

Note, that if you forget the local operator this code will affect the child processing the current
request, and all the subsequent requests processed by that child. Thus

 $^W = 0;

will turn the warnings Off, no matter what.

If you want to turn warnings On for the scope of the whole file, as in the previous item, you can do
this by adding:

 local $^W = 1;

at the beginning of the file. Since a file is effectively a block, file scope behaves like a block’s curly
braces { } and local $^W at the start of the file will be effective for the whole file.

While having warning mode turned On is a must for a development server, you should turn it globally Off
in a production server, since if every served request generates only one warning, and your server serves
millions of requests per day, your log file will eat up all of your disk space and your system will die.

22 Jan 200066

Stas Bekman3.20.1 Warnings

3.20.2 Taint Mode

Perl’s -T switch enables Taint mode. If you aren’t forcing all your scripts to run under Taint mode you
are looking for trouble from malicious users. (See the perlsec manpage for more information)

Since the -T switch doesn’t have an equivalent perl variable, mod_perl provides the Perl TaintCheck
directive to turn on taint checks. In httpd.conf , enable this mode with:

 PerlTaintCheck On

Now any code compiled inside httpd will be taint checked.

If you use the -T switch, Perl will warn you that you should use the Perl TaintCheck configuration
directive and will otherwise ignore it.

3.20.3 Other switches

Finally, if you still need to to set additional perl startup flags such as -d and -D , you can use an environ-
ment variable PERL5OPT.

3.21 The strict pragma
It’s _absolutely_ mandatory (at least for development) to start all your scripts with:

 use strict;

If needed, you can always turn off the ’strict’ pragma or a part of it inside the block, e.g:

 {
 no strict ’refs’;
 ... some code
 }

It’s more important to have strict pragma enabled under mod_perl than anywhere else. While it’s not
required by the language, its use cannot be too strongly recommended. It will save you a great deal of
time. And, of course, clean scripts will still run under mod_cgi (plain CGI)!

3.22 Passing ENV variables to CGI
To pass an environment variable from a configuration file, add to it:

 PerlSetEnv key val
 PerlPassEnv key

e.g.:

6722 Jan 2000

3.21 The strict pragmamod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1"

will set $ENV{PERLDB_OPTS}, and it will be accessible in every child.

%ENV is only set up for CGI emulation. If you are using the API, you should use $r->subpro -
cess _env , $r->notes or $r->pnotes for passing data around between handlers. %ENV is slow
because it must update the underlying C environment table. This also exposes the data on systems which
allow users to see the environment with ps .

In any case, %ENV and the tables used by those methods are all cleared after the request is served so that
$ENV{SESSION_ID} will not be swapped or reused by different http requests.

3.23 Apache and syslog
When native syslog support is enabled, the stderr stream will be redirected to /dev/null !

It has nothing to do with mod_perl (plain Apache does the same). Doug wrote the Apache::LogSTDERR
module to work around this.

3.24 Filehandlers and locks leakages
When you write a script running under mod_cgi, you can get away with sloppy programming, like
opening a file and letting the interpreter close it for you when the script had finished its run:

 open IN, "in.txt" or die "Cannot open in.txt for reading : $!\n";

For mod_perl, before the end of the script you must close() any files you opened!

 close IN;

If you forget to close() , you might get file descriptor leakage and (if you flock()ed on this file
descriptor) unlock problems.

Even if you do close the files, but for some reason the interpreter was stopped before the close() call,
the leakage is still there. For example when a user presses the Stop button. After a long run without
restarting Apache your machine might run out of file descriptors, and worse, files might be left locked and
unusable.

What can you do? Use IO::File (and the other IO::* modules). This allows you to assign the file
handler to variable which can be my() (lexically) scoped. When this variable goes out of scope the file or
other file system entity will be properly closed (and unlocked if it was locked). Lexically scoped variables
will always go out of scope at the end of the script’s invocation even if it was aborted in the middle. If the
variable was defined inside some internal block, it will go out of scope at the end of the block. For
example:

22 Jan 200068

Stas Bekman3.23 Apache and syslog

 {
 my $fh = new IO::File("filename") or die $!;
 # read from $fh
 } # ...$fh is closed automatically at end of block, without leaks.

As I have just mentioned, you don’t have to create a special block for this purpose. A script in a file is
effectively written in a block with the same scope as the file, so you can simply write:

 my $fh = new IO::File("filename") or die $!;
 # read from $fh
 # ...$fh is closed automatically at end of script, without leaks.

Using a { BLOCK }) makes sure is that the file is closed the moment that the end of the block is reached.

An even faster and lighter technique is to use Symbol.pm :

 my $fh = Symbol::gensym();
 open $fh, "filename" or die $!;

Use these approaches to ensure you have no leakages, but don’t be too lazy to write close() statements.
Make it a habit.

3.25 The Script Is Too Dirty, But It Does The Job And I
Cannot Afford To Rewrite It.
You still can win from using mod_perl.

One approach is to replace the Apache::Registry handler with Apache::PerlRun and define a
new location. The script can reside in the same directory on the disk.

 # srm.conf
 Alias /cgi-perl/ /home/httpd/cgi/

 # httpd.conf
 <Location /cgi-perl>
 #AllowOverride None
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

Another ‘‘bad’’, but workable method is to set MaxRequestsPer Child to 1, which will force each
child to exit after serving only one request. You will get the preloaded modules, etc., but the script will be
compiled for each request, then thrown away. This isn’t good for ‘‘high-traffic’’ sites, as the parent server
will need to fork a new child each time one is killed. You can fiddle with MaxStart Servers and
MinSpare Servers , so that the parent pre-spawns more servers than actually required and the killed
one will immediately be replaced with a fresh one. Probably that’s not what you want.

6922 Jan 2000

3.25 The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.mod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.

3.26 Apache::PerlRun--a closer look
Apache::PerlRun gives you the benefit of preloaded Perl and its modules. This module’s handler
emulates the CGI environment, allowing programmers to write scripts that run under CGI or mod_perl
without any change. Unlike Apache::Registry , the Apache::PerlRun handler does not cache
the script inside a subroutine. Scripts will be ‘‘compiled’’ on each request. After the script has run, its
name space is flushed of all variables and subroutines. Still, you don’t have the overhead of loading the
Perl interpreter and the compilation time of the standard modules. If your script is very light, but uses lots
of standard modules, you will see no difference between Apache::PerlRun and
Apache::Registry !.

Be aware though, that if you use packages that use internal variables that have circular references, they
will be not flushed!!! Apache::PerlRun only flushes your script’s name space, which does not
include any other required packages’ name spaces. If there’s a reference to a my() scoped variable that’s
keeping it from being destroyed after leaving the eval scope (of Apache::PerlRun), that cleanup
might not be taken care of until the server is shutdown and perl_destruct() is run, which always
happens after running command line scripts. Consider this example:

 package Foo;
 sub new { bless {} }
 sub DESTROY {
 warn "Foo->DESTROY\n";
 }

 eval <<’EOF’;
 package my_script;
 my $self = Foo->new;
 #$self->{circle} = $self;
 EOF

 print $@ if $@;
 print "Done with script\n";

First you’ll see:

 Foo->DESTROY
 Done with script

Then, uncomment the line where $self makes a circular reference, and you’ll see:

 Done with script
 Foo->DESTROY

In this case, under mod_perl you wouldn’t see Foo->DESTROY until the server shutdown, or until your
module properly took care of things.

;o)

22 Jan 200070

Stas Bekman3.26 Apache::PerlRun--a closer look

4 Control ling and Moni tor ing the Server

7122 Jan 2000

4 Controlling and Monitoring the Servermod_perl tutorial: Controlling and Monitoring the Server

4.1 What we will learn in this chapter
Restarting techniques

Implications of sending TERM, HUP, and USR1 to the server

Using apachectl to control the server

Safe Code Updates on a Live Production Server

SUID start-up scripts

Preparing for Machine Reboot

Monitoring the Server. A watchdog.

Running server in a single mode

4.2 Restarting techniques
All of these techniques require that you know the server PID (Process ID). The easiest way to find the PID
is to look it up in the httpd.pid file. With my configuration it exists as
/usr/local/var/httpd_perl/run/httpd.pid . It’s easy to discover where to look at, by
checking out the httpd.conf file. Open the file and locate the entry PidFile :

 PidFile /usr/local/var/httpd_perl/run/httpd.pid

Another way is to use the ps and grep utilities:

 % ps auxc | grep httpd_perl

or maybe:

 % ps -ef | grep httpd_perl

This will produce a list of all httpd_perl (the parent and the children) processes. You are looking for
the parent process. If you run your server as root - you will easily locate it, since it belongs to root. If you
run the server as user, most likely all the processes will belong to that user (unless defined differently in
the httpd.conf), but it’s still easy to know ’who is the parent’ -- the one of the smallest size...

You will notice many httpd_perl executables running on your system, but you should not send signals
to any of them except the parent, whose pid is in the PidFile . That is to say you shouldn’t ever need to
send signals to any process except the parent. There are three signals that you can send the parent: TERM ,
HUP, and USR1.

22 Jan 200072

Stas Bekman4.1 What we will learn in this chapter

4.3 Impli cations of sending TERM, HUP, and USR1 to the
server
We will concentrate here on the implications of sending these signals to a mod_perl enabled server. For
documentation on the implications of sending these signals to a plain Apache server see
http://www.apache.org/docs/stopping.html .

TERM Signal: stop now

Sending the TERM signal to the parent causes it to immediately attempt to kill off all of its children.
This process may take several seconds to complete, following which the parent itself exits. Any
requests in progress are terminated, and no further requests are served.

That’s the moment that the accumulated END blocks will be executed! Note that if you use
Apache::Registry or Apache::PerlRun , then END blocks are being executed upon each
request (at the end).

HUP Signal: restart now

Sending the HUP signal to the parent causes it to kill off its children like in TERM (Any requests in
progress are terminated) but the parent doesn’t exit. It re-reads its configuration files, and re-opens
any log files. Then it spawns a new set of children and continues serving hits.

The server will reread its configuration files, flush all the compiled and preloaded modules, and rerun
any startup files. It’s equivalent to stopping, then restarting a server.

Note: If your configuration file has errors in it when you issue a restart then your parent will not
restart but exit with an error. See below for a method of avoiding this.

USR1 Signal: graceful restart

The USR1 signal causes the parent process to advise the children to exit after their current request (or
to exit immediately if they’re not serving anything). The parent re-reads its configuration files and
re-opens its log files. As each child dies off the parent replaces it with a child from the new genera-
tion of the configuration, which begins serving new requests immediately.

The only difference between USR1 and HUP is that USR1 allows children to complete any
in-progress request prior to killing them off.

By default, if a server is restarted (ala kill -USR1 ‘cat logs/httpd.pid‘ or with HUP
signal), Perl scripts and modules are not reloaded. To reload PerlRequire’s, PerlModule’s, other
use() ’d modules and flush the Apache::Registry cache, enable with this command:

 PerlFreshRestart On (in httpd.conf)

7322 Jan 2000

4.3 Implications of sending TERM, HUP, and USR1 to the servermod_perl tutorial: Controlling and Monitoring the Server

http://www.apache.org/docs/stopping.html

It’s worth mentioning that restart or termination can sometimes take quite a lot of time. Check out the
PERL_DESTRUCT_LEVEL=-1 option during the mod_perl perl Makefile .PL stage, which speeds
this up and leads to more robust operation in the face of problems, like running out of memory. It is only
usable if no significant cleanup has to be done by perl END blocks and DESTROY methods when the child
terminates, of course. What constitutes significant cleanup? Any change of state outside of the current
process that would not be handled by the operating system itself. So committing database transactions is
significant but closing an ordinary file isn’t.

Some folks prefer to specify signals using numerical values, rather than symbolics. If you are looking for
these, check out your kill(3) man page. My page points to /usr/include/sys/signal.h , the
relevant entries are:

 #define SIGHUP 1 /* hangup, generated when terminal disconnects */
 #define SIGTERM 15 /* software termination signal */
 #define SIGUSR1 30 /* user defined signal 1 */

4.4 Using apachectl to control the server
Apache’s distribution provides a nice script to control the server. It’s called apachectl and it’s installed
into the same location with httpd. In our scenario - it’s
/usr/local/sbin/httpd_perl/apachectl .

Start httpd:

 % /usr/local/sbin/httpd_perl/apachectl start

Stop httpd:

 % /usr/local/sbin/httpd_perl/apachectl stop

Restart httpd if running by sending a SIGHUP or start if not running:

 % /usr/local/sbin/httpd_perl/apachectl restart

Do a graceful restart by sending a SIGUSR1 or start if not running:

 % /usr/local/sbin/httpd_perl/apachectl graceful

Do a configuration syntax test:

 % /usr/local/sbin/httpd_perl/apachectl configtest

Replace httpd_perl with httpd_docs in the above calls to control the httpd_docs server.

There are other options for apachectl, use help option to see them all.

It’s important to understand that this script is based on the PID file which is
PIDFILE=/usr/local/var/httpd_perl/run/httpd.pid . If you delete the file by hand -
apachectl will fail to run.

22 Jan 200074

Stas Bekman4.4 Using apachectl to control the server

Also, notice that apachectl is suitable to use from within your Unix system’s startup files so that your web
server is automatically restarted upon system reboot. Either copy the apachectl file to the appropriate
location (/etc/rc.d/rc3.d/S99apache works on my RedHat Linux system) or create a symlink
with that name pointing to the the canonical location. (If you do this, make certain that the script is
writable only by root -- the startup scripts have root privileges during init processing, and you don’t want
to be opening any security holes.)

4.5 Safe Code Updates on a Live Production Server
You have prepared a new version of code, uploaded it into a production server, restarted it and it doesn’t
work. What could be worse than that? You also cannot go back, because you have overwritten the good
working code.

It’s quite easy to prevent it! Just don’t overwrite the previous good files!!!

Personally I do all updates on the live server with a following sequence. Assume that the root directory
lies in /home/httpd/perl/rel . When I’m about to update the files I create a new directory
/home/httpd/perl/beta , copy the old files from /home/httpd/perl/rel and update it with
new files I’m about to replace. The I do last sanity checks (file permissions (read+executable), run perl
-c on the new modules to make sure there no errors in them). When I think I’m ready I do:

 % cd /home/httpd/perl
 % mv rel old && mv beta rel && stop && sleep 3 && restart && err

Let’s explain what I’m doing. First I use alises to make things faster:

 % alias | grep apachectl
 graceful /usr/local/apache/bin/apachectl graceful
 rehup /usr/local/apache/sbin/apachectl restart
 restart /usr/local/apache/bin/apachectl restart
 start /usr/local/apache/bin/apachectl start
 stop /usr/local/apache/bin/apachectl stop

 % alias err
 tail -f /usr/local/apache/logs/error_log

So I write all the commands in one line, separated with semicolon and only then press Enter key. That
ensures that if I suddenly get a connection lost (sadly but that happens sometimes) I wouldn’t leave the
server down if only the stop command squeezed in.

I backup the old working directory in old , and move the new one instead. I stop the server, give it a few
seconds to shutdown (it might take even longer) and then do restart followed by immediate view of
the tail of the error_log file in order to see that everything is OK. apachectl generates the status
messages too early (e.g. on stop it says server has been stopped, while it’s not yet, so don’t rely on it,
rely on error_log file instead). Also you have noticed that I use restart and not just start . I do
this for the same reason of Apache’s long stopping times (it depends on what you do with it of course!), so
if you use start and Apache didn’t release the port it listens to, the start would fail and error_log
would tell that port is in use, e.g.:

7522 Jan 2000

4.5 Safe Code Updates on a Live Production Servermod_perl tutorial: Controlling and Monitoring the Server

 Address already in use: make_sock: could not bind to port 8080

But if you use restart , it will patiently wait for the server to quit and then will cleanly start it.

Now what happens if the new modules are broken? First of all, I see immediately the indication of the
problems reported at error_log file, which I tail -f immediately after a restart command. That’s
easy, we just put everything as it was before:

 % mv rel bad && mv old rel && stop && sleep 3 && restart && err

And 99.9% that everything would be alright, and you have had only about 10 secs of downtime, which is
pretty good!

4.6 SUID start-up scripts
For those who wants to use SUID startup script, here is an example for you. This script is SUID to root,
and should be executable only by members of some special group at your site. Note the 10th line, which
‘‘fixes an obscure error when starting apache/mod_perl’’ by setting the real to the effective UID. As
others have pointed out, it is the mismatch between the real and the effective UIDs that causes Perl to
croak on the -e switch.

Note that you must be using a version of Perl that recognizes and emulates the suid bits in order for this to
work. The script will do different things depending on whether it is named start_http , stop_http
or restart_http . You can use symbolic links for this purpose.

 #!/usr/bin/perl

 # These constants will need to be adjusted.
 $PID_FILE = ’/home/www/logs/httpd.pid’;
 $HTTPD = ’/home/www/httpd -d /home/www’;

 # These prevent taint warnings while running suid
 $ENV{PATH}=’/bin:/usr/bin’;
 $ENV{IFS}=’’;

 # This sets the real to the effective ID, and prevents
 # an obscure error when starting apache/mod_perl
 $< = $>;
 $(= $) = 0; # set the group to root too

 # Do different things depending on our name
 ($name) = $0 =~ m|([^/]+)$|;

 if ($name eq ’start_http’) {
 system $HTTPD and die "Unable to start HTTP";
 print "HTTP started.\n";
 exit 0;
 }

 # extract the process id and confirm that it is numeric
 $pid = ‘cat $PID_FILE‘;
 $pid =~ /(\d+)/ or die "PID $pid not numeric";

22 Jan 200076

Stas Bekman4.6 SUID start-up scripts

 $pid = $1;

 if ($name eq ’stop_http’) {
 kill ’TERM’,$pid or die "Unable to signal HTTP";
 print "HTTP stopped.\n";
 exit 0;
 }

 if ($name eq ’restart_http’) {
 kill ’HUP’,$pid or die "Unable to signal HTTP";
 print "HTTP restarted.\n";
 exit 0;
 }

 die "Script must be named start_http, stop_http, or restart_http.\n";

4.7 Preparing for Machine Reboot
When you run your own development box, it’s OK to start the webserver by hand when you need it. On
the production system, there is chance that the machine the server is running on will have to be rebooted.
Once the reboot is completed, who is going to rememeber to start the server? It’s an easy to forget task,
and what happens if you aren’t around when the machine was rebooted?

After the server installation is complete, it’s important not to forget that you need to put a script, to
perform the server startup and shutdown, into a standard system location, like /etc/rc.d/init.d or
equivalent (varies from OS to OS). This is the directory where all other daemons are being started and
shutted down from.

Generally the simplest solution is to copy there the apachectl script, that you will find in the same direc-
tory with httpd executable after Apache installation. If you have more than one Apache server, you have
to put a script for each one, of course renaming them on the way.

For example on Linux RedHat machine with two server setup, I’ve the following setup:

 /etc/rc.d/init.d/httpd_docs
 /etc/rc.d/init.d/httpd_perl
 /etc/rc.d/rc3.d/S86httpd_docs -> ../init.d/httpd_docs
 /etc/rc.d/rc3.d/S87httpd_perl -> ../init.d/httpd_perl
 /etc/rc.d/rc6.d/K86httpd_docs -> ../init.d/httpd_docs
 /etc/rc.d/rc6.d/K87httpd_perl -> ../init.d/httpd_perl

In <init.d> directory reside the scripts themselves. In the rest of directories reside the symbolic links to
these scripts, prepended with numbers to preserve a particular order of execution.

When a machine is booted and its runlevel set as 3 (multiuser+network), Linux goes into
/etc/rc.d/rc3.d/ and executes the scripts the symbolic links point to with the start argument, so
when it sees the S87httpd_perl, it executes:

 /etc/rc.d/init.d/httpd_perl start

7722 Jan 2000

4.7 Preparing for Machine Rebootmod_perl tutorial: Controlling and Monitoring the Server

When the machine is being shutted down, the scripts pointed from /etc/rc.d/rc6.d/ directory are being
executed, this time the scripts are called with stop argument, like:

 /etc/rc.d/init.d/httpd_perl stop

Most of the systems are coming with GUI utilites to automate the symbolic links creation. For example
Linux RH includes a control-panel utility, which among other utilities includes a RunLevel
Manager that will help you to properly create the symbolic links. Of course before you use it, you should
put the apachectl or similar scripts into a init.d or equivalent directory.

4.8 Moni tor ing the Server. A watchdog.
With mod_perl many things can happen to your server. The worst one is the possibility that the server will
die when you will be not around. As with any other critical service you need to run some kind of watch-
dog.

One simple solution is to use a slightly modified apachectl script which I called apache.watchdog and to
put it into the crontab to be called every 30 minutes or even every minute - if it’s so critical to make sure
the server will be up all the time.

The crontab entry:

 0,30 * * * * /path/to/the/apache.watchdog >/dev/null 2>&1

The script:

 #!/bin/sh

 # this script is a watchdog to see whether the server is online
 # It tries to restart the server if it’s
 # down and sends an email alert to admin

 # admin’s email
 EMAIL=webmaster@somewhere.far
 #EMAIL=root@localhost

 # the path to your PID file
 PIDFILE=/usr/local/var/httpd_perl/run/httpd.pid

 # the path to your httpd binary, including options if necessary
 HTTPD=/usr/local/sbin/httpd_perl/httpd_perl

 # check for pidfile
 if [-f $PIDFILE] ; then
 PID=‘cat $PIDFILE‘

 if kill -0 $PID; then
 STATUS="httpd (pid $PID) running"
 RUNNING=1
 else
 STATUS="httpd (pid $PID?) not running"
 RUNNING=0

22 Jan 200078

Stas Bekman4.8 Monitoring the Server. A watchdog.

 fi
 else
 STATUS="httpd (no pid file) not running"
 RUNNING=0
 fi

 if [$RUNNING -eq 0]; then
 echo "$0 $ARG: httpd not running, trying to start"
 if $HTTPD ; then
 echo "$0 $ARG: httpd started"
 mail $EMAIL -s "$0 $ARG: httpd started" </dev/null >& /dev/null
 else
 echo "$0 $ARG: httpd could not be started"
 mail $EMAIL -s "$0 $ARG: httpd could not be started" </dev/null >& /dev/null
 fi
 fi

Another approach, probably even more practical, is to use the cool LWP perl package , to test the server by
trying to fetch some document (script) served by the server. Why is it more practical? Because, while
server can be up as a process, it can be stuck and not working, So failing to get the document will trigger
restart, and ‘‘probably’’ the problem will go away. (Just replace start with restart in the
$restart_command below.

Again we put this script into a crontab to call it every 30 minutes. Personally I call it every minute, to
fetch some very light script. Why so often? If your server starts to spin and trash your disk’s space with
multiply error messages, in a 5 minutes you might run out of free space, which might bring your system to
its knees. And most chances that no other child will be able to serve requests, since the system will be too
busy, writing to an error_log file. Think big -- if you are running a heavy service, which is very fast,
since you are running under mod_perl, adding one more request every minute, will be not felt by the
server at all.

So we end up with crontab entry:

 * * * * * /path/to/the/watchdog.pl >/dev/null 2>&1

And the watchdog itself:

 #!/usr/local/bin/perl -w

 use strict;
 use diagnostics;
 use URI::URL;
 use LWP::MediaTypes qw(media_suffix);

 my $VERSION = ’0.01’;
 use vars qw($ua $proxy);
 $proxy = ’’;

 require LWP::UserAgent;
 use HTTP::Status;

 ###### Config ########
 my $test_script_url = ’ http://www.stas.com:81/perl/test.pl ’;
 my $monitor_email = ’root@localhost’;

7922 Jan 2000

4.8 Monitoring the Server. A watchdog.mod_perl tutorial: Controlling and Monitoring the Server

http://www.stas.com:81/perl/test.pl

 my $restart_command = ’/usr/local/sbin/httpd_perl/apachectl restart’;
 my $mail_program = ’/usr/lib/sendmail -t -n’;
 ######################

 $ua = new LWP::UserAgent;
 $ua->agent("$0/Stas " . $ua->agent);
 # Uncomment the proxy if you don’t use it!
 # $proxy=" http://www-proxy.com" ;;
 $ua->proxy(’http’, $proxy) if $proxy;

 # If returns ’1’ it’s we are alive
 exit 1 if checkurl($test_script_url);

 # We have got the problem - the server seems to be down. Try to
 # restart it.
 my $status = system $restart_command;
 # print "Status $status\n";

 my $message = ($status == 0)
 ? "Server was down and successfully restarted!"
 : "Server is down. Can’t restart.";

 my $subject = ($status == 0)
 ? "Attention! Webserver restarted"
 : "Attention! Webserver is down. can’t restart";

 # email the monitoring person
 my $to = $monitor_email;
 my $from = $monitor_email;
 send_mail($from,$to,$subject,$message);

 # input: URL to check
 # output: 1 if success, o for fail
 #######################
 sub checkurl{
 my ($url) = @_;

 # Fetch document
 my $res = $ua->request(HTTP::Request->new(GET => $url));

 # Check the result status
 return 1 if is_success($res->code);

 # failed
 return 0;
 } # end of sub checkurl

 # sends email about the problem
 #######################
 sub send_mail{
 my($from,$to,$subject,$messagebody) = @_;

 open MAIL, "|$mail_program"
 or die "Can’t open a pipe to a $mail_program :$!\n";

 print MAIL <<__END_OF_MAIL__;
 To: $to

22 Jan 200080

Stas Bekman4.8 Monitoring the Server. A watchdog.

http://www-proxy.com"/

 From: $from
 Subject: $subject

 $messagebody

 __END_OF_MAIL__

 close MAIL;
 }

4.9 Running server in a single mode
Often while developing new code, you will want to run the server in single process mode. Running in
single process mode inhibits the server from ‘‘daemonizing’’, allowing you to run it more easily under
debugger control.

 % /usr/local/sbin/httpd_perl/httpd_perl -X

When you execute the above the server will run in the fg (foreground) of the shell you have called it from.
So to kill you just kill it with Ctrl-C .

Note that in -X mode the server will run very slowly while fetching images. If you use Netscape while
your server is running in single-process mode, HTTP’s KeepAlive feature gets in the way. Netscape
tries to open multiple connections and keep them open. Because there is only one server process listening,
each connection has to time-out before the next succeeds. Turn off KeepAlive in httpd.conf to
avoid this effect while developing or you can press STOP after a few seconds (assuming you use the
image size params, so the Netscape will be able to render the rest of the page).

In addition you should know that when running with -X you will not see any control messages that the
parent server normally writes to the error_log. (Like ‘‘server started, server stopped and etc’’.) Since
httpd -X causes the server to handle all requests itself, without forking any children, there is no
controlling parent to write status messages.

;o)

8122 Jan 2000

4.9 Running server in a single modemod_perl tutorial: Controlling and Monitoring the Server

5 mod_perl and Relational Databases

22 Jan 200082

Stas Bekman5 mod_perl and Relational Databases

5.1 What we will learn in this chapter
Why Relational (SQL) Databases

Apache::DBI - Initiate a persistent database connection

Introduction

Configuration

Preopening DBI connections

Debugging Apache::DBI

Troubleshooting

5.2 Why Relational (SQL) Databases
Nowadays millions of people surf the Internet. There are millions of Terabytes of data lying around. To
manipulate the data new smart techniques and technologies were invented. One of the major inventions
was the relational database, which allows us to search and modify huge stores of data in very little time.
We use SQL (Structured Query Language) to manipulate the contents of these databases.

When people started to use the web, they found that they needed to write web interfaces to their databases.
CGI is the most widely used technology for building such interfaces. The main limi tation of a CGI script
driving a database is that its database connection is not persistent - on every request the CGI script has to
initiate a connection to the database, and when the request is completed the connection is closed.
Apache::DBI was written to remove this limi tation. When you use it, you have a database connection
which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache::DBI provides a valid connection immediately and your script starts work right away without
having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It’s almost as straightforward as is it sounds, there are just a few things to know about and we will cover
them in this section.

5.3 Apache::DBI - Initi ate a persistent database connection
This module initiates a persistent database connection. It is possible only with mod_perl.

8322 Jan 2000

5.1 What we will learn in this chaptermod_perl tutorial: mod_perl and Relational Databases

5.3.1 Introduction

The DBI module can make use of the Apache::DBI module. When it loads, the DBI module tests if the
environment variable $ENV{GATEWAY_INTERFACE} starts with CGI-Perl , and if the
Apache::DBI module has already been loaded. If so, the DBI module will forward every connect()
request to the Apache::DBI module. Apache::DBI uses the ping() method to look for a database
handle from a previous connect() request, and tests if this handle is still valid. If these two conditions
are fulfilled it just returns the database handle.

If there is no appropriate database handle or if the ping() method fails, Apache::DBI establishes a
new connection and stores the handle for later re-use. When the script is run again by a child that is still
connected, Apache::DBI just checks the cache of open connections by matching host,username and
password parameters against it. A matching connection is returned if available or a new one is initiated
and then returned.

There is no need to delete the discon nect () statements from your code. They won’t do anything
because the Apache::DBI module overloads the discon nect () method with an empty one.

When this module should be used and when shouldn’t?

You will want to use this module if you are opening several database connections to the server.
Apache::DBI will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened and
persistent connections. After the initial connect() you will save the connection time for every
connect() request from your DBI module. This can be a huge benefit for a server with a high volume
of database traffic.

You must NOT use this module if you are opening a special connection for each of your users. Each
connection will stay persistent and in a short time the number of connections will be so big that your
machine will scream in agony and die.

If you want to use Apache::DBI but you have both situations on one machine, at the time of writing the
only solution is to run two Apache/mod_perl servers, one which uses Apache::DBI and one which does
not.

5.3.2 Configuration

After installing this module, the configuration is simple - add the following directive to httpd.conf

 PerlModule Apache::DBI

Note that it is important to load this module before any other Apache*DBI module and DBI module
itself!

You can skip preloading DBI , since Apache::DBI does that. But there is no harm in leaving it in, as
long as it is loaded after Apache::DBI .

22 Jan 200084

Stas Bekman5.3.1 Introduction

5.3.3 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed after a
server restart, then you should use the connect_on_init() method in the startup file to preload every
connection you are going to use. For example:

 Apache::DBI->connect_on_init
 ("DBI:mysql:myDB::myserver",
 "username",
 "passwd",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

As noted above, use this method only if you only want all of apache to be able to connect to the database
server as one user (or as a very few users).

Be warned though, that if you call connect_on_init() and your database is down, Apache children
will be delayed at server startup, trying to connect. They won’t begin serving requests until either they are
connected, or the connection attempt fails. Depending on your DBD driver, this can take several minutes!

5.3.4 Debugging Apache::DBI

If you are not sure this module is working as advertised, you should enable Debug mode in the startup
script by:

 $Apache::DBI::DEBUG = 1;

Starting with ApacheDBI-0.84 , setting $Apache::DBI::DEBUG = 1 will produce only minimal
output. For a full trace you set $Apache::DBI::DEBUG = 2.

Another approach is to add to httpd.conf (which does the same):

 PerlModule Apache::DebugDBI

After setting the DEBUG level you will see entries in the error_log both when Apache::DBI
initializes a connection and when it returns one from its cache. Use the following command to view the
log in real time (your error_log might be located at a different path, it is set in the Apache configura-
tion files):

 tail -f /usr/local/apache/logs/error_log

I use alias (in tcsh) so I do not have to remember the path:

 alias err "tail -f /usr/local/apache/logs/error_log"

8522 Jan 2000

5.3.3 Preopening DBI connectionsmod_perl tutorial: mod_perl and Relational Databases

5.3.5 Troubleshooting

5.3.5.1 The Morning Bug

The SQL server keeps a connection to the client open for a limited period of time. Many developers were
bitten by so called Morning bug, when every morning the first users to use the site received a No Data
Returned message, but after that everything worked fine. The error is caused by Apache::DBI
returning a handle of the invalid connection (the server closed it because of a timeout), and the script was
dying on that error. The infamous ping() method was introduced to solve this problem, but still people
were being bitten by this problem. Another solution was found - to increase the timeout parameter when
starting the SQL server. Currently I startup MySQL server with a script safe_mysql , so I have modified
it to use this option:

 nohup $ledir/mysqld [snipped other options] -O wait_timeout=172800

1. 0

seconds is equal to 48 hours. This change solves the problem.

Note that as from version 0.82 , Apache::DBI implements ping() inside the eval block. This
means that if the handle has timed out it should be reconnected automatically, and avoid the morning bug.

5.3.5.2 Opening connections with differ ent parameters

When it received a connection request, before it will decide to use an existing cached connection,
Apache::DBI insists that the new connection be opened in exactly the same way as the cached connec-
tion. If I have one script that sets LongReadLen and one that does not, Apache::DBI will make two
different connections. So instead of having a maximum of 40 open connections, I can end up with 80.

However, you are free to modify the handle immediately after you get it from the cache. So always initiate
connections using the same parameters and set LongReadLen (or whatever) afterwards.

5.3.5.3 Debugging code which deploys DBI

To log a trace of DBI statement execution, you must set the DBI_TRACE environment variable. The
PerlSetEnv DBI_TRACE directive must appear before you load Apache::DBI and DBI .

For example if you use Apache::DBI , modify your httpd.conf with:

 PerlSetEnv DBI_TRACE "3=/tmp/dbitrace.log"
 PerlModule Apache::DBI

Replace 3 with the TRACE level you want. The traces from each request will be appended to
/tmp/dbitrace.log . Note that the logs might interleave if requests are processed concurrently.

Within your code you can control trace generation with the trace() method:

22 Jan 200086

Stas Bekman5.3.5 Troubleshooting

 DBI->trace($trace_level)
 DBI->trace($trace_level, $trace_filename)

0 disables the trace. 2 generates detailed call trace information including parameters and return values.

;o)

8722 Jan 2000

5.3.5 Troubleshootingmod_perl tutorial: mod_perl and Relational Databases

6 mod_perl and dbm files

22 Jan 200088

Stas Bekman6 mod_perl and dbm files

6.1 What we will learn in this chapter
Where and Why to use dbm files

mod_perl and dbm

Locking dbm handlers

6.2 Where and Why to use dbm files
If you need a light database, with an easy API, using simple key-value pairs to store and manipulate the
records, this is a solution that should be amongst the first you consider. The maximum practical size of a
dbm database depends on your hardware and the desired response times of course, but as a rough guide
consider 5000 to 10000 records to be reasonable.

Some of the earliest databases implemented on Unix were dbm files, and many are still in use today. As of
this writing the Berkeley DB is the most powerful dbm implementation.

With dbm, the whole database is rarely read into a memory. Combine this feature with the use of smart
storage techniques, and dbm files can be manipulated much faster than their flat file brothers. Flat file
databases can become very slow on insert, update and delete operations, especially when the number of
records exceeds a couple of thousand. The situation is worse if you need to run a sort algorithm on a flat
file.

Several different indexing algorithms can be used with dbm:

The HASH algorithm gives a 0(1) complexity of search and update, fast insert and delete, but a slow
sort. (You have to do it yourself.)

The BTREE algorithm allows arbitrary key/value pairs to be stored in a sorted, balanced binary tree,
which allows us to get a sorted sequence of data pairs in 0(1) , but at the expense of much slower
insert, update, delete operations than is the case with HASH.

The RECNO algorithm is more complicated, and enables both fixed-length and variable-length flat
text files to be manipulated using the same key/value pair interface as in HASH and BTREE. In this
case the key will consist of a record (line) number.

Most often you will want to use the HASH method, but your choice depends very much on your applica-
tion.

dbm databases are not limited to storing key/value pairs. They can store more complicated data structures
with the help of the MLDBM module. This module can dump and restore the whole symbol table of your
script, including arrays, hashes and other complicated data structures.

8922 Jan 2000

6.1 What we will learn in this chaptermod_perl tutorial: mod_perl and dbm files

6.3 mod_perl and dbm
Where does mod_perl fit into the picture?

If you are using a read only dbm file you can have it work faster if you keep it open (tied) all the time, so
when your CGI script wants to access the database it is already tied and ready to be used. It will work with
dynamic (read/write) databases as well but you need to use locking and data flushing to avoid data corrup-
tion.

Although mod_perl and dbm can give huge performance gains to your CGIs scripts, you should be very
careful. You need to consider locking, and the consequences of die() and unexpected process deaths.

If your locking mechanism cannot handle dropped locks, a stale lock can deactivate your whole site. You
can enter a deadlock situation if two processes simultaneously try to acquire locks on two separate
databases. Each has locked only one of the databases, and cannot continue without locking the second.
Yet this will never be freed because it is locked by the other process. If your processes all ask for their DB
files in the same order, this situation cannot occur.

If you modify the DB you should be make very sure that you flush the data and synchronize it, especially
when the process serving your CGI unexpectedly dies. In general your application should be tested very
thoroughly before you put it into production to handle important data.

6.4 Locking dbm handlers
Let’s make the lock status a global variable, so it will persist from request to request. If we request a lock -
READ (shared) or WRITE (exclusive), we obtain the current lock status first.

If we are making a READ lock request, it is granted as soon as the file becomes unlocked or if it is already
READ locked. The lock status becomes READ on success.

If we make a WRITE lock request, it is granted as soon as the file becomes unlocked. The lock status
becomes WRITE on success.

The treatment of the WRITE lock request is most important.

If the DB is READ locked, a process that makes a WRITE request will poll until there are no reading or
writing processes left. Lots of processes can successfully read the file, since they do not block each other.
This means that a process that wants to write to the file (so first it needs to obtain an exclusive lock) may
never get a chance to squeeze in. The following diagram represents a possible scenario where everybody
can read but no one can write:

 [-p1-] [--p1--]
 [--p2--]
 [---------p3---------]
 [------p4-----]
 [--p5--] [----p5----]

22 Jan 200090

Stas Bekman6.3 mod_perl and dbm

The result is a starving process, which will timeout the request, and it will fail to update the DB. This is a
good reason not to cache the dbm handle with dynamic dbm files. It will work perfectly with static DBM
files without any need to lock files at all.

Ken Williams solved the above problem with his Tie::DB_Lock module, which I will present in the
next section.

6.4.1 Tie::DB_Lock

Tie::DB_Lock ties hashes to databases using shared and exclusive locks. This module, by Ken
Williams, solves the problems raised in the previous section.

The main difference from what I have described above is that Tie::DB_Lock copies a dbm file on read.
Reading processes do not have to keep the file locked while they read it, and writing processes can still
access the file while others are reading. This works best when you have lots of long-duration reading, and
a few short bursts of writing.

The drawback of this module is the heavy IO performed when every reader makes a fresh copy of the DB.
With big dbm files this can be quite a disadvantage and can slow the server down considerably.

An alternative would be to have one copy of the dbm image shared by all the reading processes. This can
cut the number of files that are copied, and puts the responsibility of copying the read-only file on the
writer, not the reader. It would need some care to make sure it does not disturb readers when putting a new
read-only copy into place.

6.4.2 Locking techniques that work with dbm files

6.4.2.1 Flawed methods which must not be used

Caution: The suggested locking methods in the Camel book and DB_File man page (at least before the
version 1.72) are flawed. If you use them in an environment where more than one process can modify the
dbm file, it can get corrupted!!! The following is an explanation of why this happens.

You may not use a tied file’s filehandle for locking, since you get the filehandle after the file has been
already tied. It’s too late to lock. The problem is that the database file is locked after it is opened. When
the database is opened, the first 4k (in my dbm library) are read and then cached in memory. Therefore, a
process can open the database file, cache the first 4k, and then block while another process writes to the
file. If the second process modifies the first 4k of the file, when the original process gets the lock is now
has an inconsistent view of the database. If it writes using this view it may easily corrupt the database on
disk.

This problem can be diffi cult to trace because it does not cause corruption every time a process has to wait
for a lock. One can do quite a bit of writing to a database file without actually changing the first 4k. But
once you suspect this problem you can easily reproduce it by making your program modify the records in
the first 4k of the DB.

9122 Jan 2000

6.4.1 Tie::DB_Lockmod_perl tutorial: mod_perl and dbm files

6.4.2.2 Lock on tie (only supported by a few operating systems)

On some Operating Systems like FreeBSD, it’s possible to lock on tie:

 tie my %t, ’DB_File’, $TOK_FILE, O_RDWR | O_EXLOCK, 0664;

and only release the lock by untieing the file. Notice the O_EXLOCK flag, which is not available on all
Operating Systems.

6.4.2.3 DB_File::Lock

Here is DB_File::Lock which does the locking by using an external lockfile. This allows you to gain
the lock before the file is tied. Note that it’s not yet on CPAN and so is listed here in its entirety. Note also
that this code still needs some testing, so be careful if you use it on a production machine.

 package DB_File::Lock;
 require 5.004;

 use strict;

 BEGIN {
 # RCS/CVS compliant: must be all one line, for MakeMaker
 $DB_File::Lock::VERSION = do { my @r = (q$Revision: 1.5 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r };

 }

 use DB_File ();
 use Fcntl qw(:flock O_RDWR O_CREAT);
 use Carp qw(croak carp verbose);
 use Symbol ();

 @DB_File::Lock::ISA = qw(DB_File);
 %DB_File::Lock::lockfhs = ();

 use constant DEBUG => 0;

 # file creation permissions mode
 use constant PERM_MODE => 0660;

 # file locking modes
 %DB_File::Lock::locks =
 (
 read => LOCK_SH,
 write => LOCK_EX,
);

 # SYNOPSIS:
 # tie my %mydb, ’DB_File::Lock’, $filepath,
 # [’read’ || ’write’, ’HASH’ || ’BTREE’]
 # while (my($k,$v) = each %mydb) {
 # print "$k => $v\n";
 # }
 # untie %mydb;
 #########
 sub TIEHASH {
 my $class = shift;
 my $file = shift;
 my $lock_mode = lc shift || ’read’;
 my $db_type = shift || ’HASH’;

 die "Dunno about lock mode: [$lock_mode].\n
 Valid modes are ’read’ or ’write’.\n"
 unless $lock_mode eq ’read’ or $lock_mode eq ’write’;

22 Jan 200092

Stas Bekman6.4.2 Locking techniques that work with dbm files

 # Critical section starts here if in write mode!

 # create an external lock
 my $lockfh = Symbol::gensym();
 open $lockfh, ">$file.lock" or die "Cannot open $file.lock for writing: $!\n";
 unless (flock $lockfh, $DB_File::Lock::locks{$lock_mode}) {
 croak "cannot flock: $lock_mode => $DB_File::Lock::locks{$lock_mode}: $!\n";
 }

 my $self = $class->SUPER::TIEHASH
 ($file,
 O_RDWR|O_CREAT,
 PERM_MODE,
 ($db_type eq ’BTREE’ ? $DB_File::DB_BTREE : $DB_File::DB_HASH)
);

 # remove the package name in case re-blessing occurs
 (my $id = "$self") =~ s/^[^=]+=//;

 # cache the lock fh
 $DB_File::Lock::lockfhs{$id} = $lockfh;

 return $self;

 } # end of sub new

 # DESTROY is automatically called when a tied variable
 # goes out of scope, on explicit untie() or when the program is
 # interrupted, e.g. with a die() call.
 #
 # It unties the db by forwarding it to the parent class,
 # unlocks the file and removes it from the cache of locks.
 ###########
 sub DESTROY{
 my $self = shift;

 $self->SUPER::DESTROY(@_);

 # now it safe to unlock the file, (close() unlocks as well). Since
 # the object has gone we remove its lock filehandler entry
 # from the cache.
 (my $id = "$self") =~ s/^[^=]+=//; # see ’sub TIEHASH’
 close delete $DB_File::Lock::lockfhs{$id};

 # Critical section ends here if in write mode!

 print "Destroying ".__PACKAGE__."\n" if DEBUG;

 }

 ####
 END {
 print "Calling the END from ".__PACKAGE__."\n" if DEBUG;

 }

 1;

And you use it like this:

 use DB_File::Lock ();

A simple tie, READ lock and untie

9322 Jan 2000

6.4.2 Locking techniques that work with dbm filesmod_perl tutorial: mod_perl and dbm files

 use DB_File::Lock ();
 my $dbfile = "/tmp/test";
 tie my %mydb, ’DB_File::Lock’, $dbfile, ’read’;
 print $mydb{foo} if exists $mydb{foo};
 untie %mydb;

You can even skip the untie() call. When $mydb goes out of scope everything will be done automati-
cally. However it is better use the explicit call, to make sure the critical sections between lock and unlock
are as short as possible. This is especially important when requesting an exclusive (write) lock.

The following example shows how it might be convenient to skip the explicit untie() . In this example,
we don’t need to save the intermediate result, we just return and the cleanup is done automatically.

 use DB_File::Lock ();
 my $dbfile = "/tmp/test";
 print user_exists("stas") ? "Yes" : "No";
 sub user_exists{
 my $username = shift || ’’;

 warn("No username passed\n"), return 0 unless $username;

 tie my %mydb, ’DB_File::Lock’, $dbfile, ’read’;

 # if we match the username return 1, else 0
 return $mydb{$username} ? 1 : 0;

 } # end of sub user_exists

Now let’s write all the upper case characters and their respective ASCII values to a dbm file. Then read
the file and print them the contents of the DB, unsorted.

 use DB_File::Lock ();
 my $dbfile = "/tmp/test";

 # write
 tie my %mydb, ’DB_File::Lock’, $dbfile,’write’;
 for (0..26) {
 $mydb{chr 65+$_} = $_;
 }
 untie %mydb;

 # now, read them and printout (unsorted)
 tie %mydb, ’DB_File::Lock’, $dbfile;
 while (my($k,$v) = each %mydb) {
 print "$k => $v\n";
 }
 untie %mydb;

If your CGI was interrupted in the middle, DESTROY block will take care of unlocking the dbm file and
flush any changes. So your DB will be safe against possible corruption because of unclean program termi-
nation.

;o)

22 Jan 200094

Stas Bekman6.4.2 Locking techniques that work with dbm files

7 Getting Help and Further Learning

9522 Jan 2000

7 Getting Help and Further Learningmod_perl tutorial: Getting Help and Further Learning

7.1 What we will learn in this chapter
Getting help

Get help with mod_perl

Get help with Perl

Get help with Perl/CGI

Get help with Apache

Get help with DBI

Get help with Squid

7.2 Getting help
If after reading this guide and other documents listed in this section, you feel that your question is not yet
answered, please ask the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Most of the time you will find the answer for your question by searching the mailing archive,
since there is a big chance someone else has already encountered the same problem and found a solution
for it. If you ignore this advice, do not be surprised if your question will be left unanswered - it bores
people to answer the same question more than once. It does not mean that you should avoid asking ques-
tions. Just do not abuse the available help and RTFM before you call for HELP . (You have certainly
heard the infamous fable of the shepherd boy and the wolves)

7.3 Get help with mod_perl
mod_perl home

http://perl.apache.org

mod_perl Garden project

http://modperl.sourcegarden.org

mod_perl Books

’Apache Modules’ Book

http://www.modperl.com is the home site of The Apache Modules Book, a book about creating
Web server modules using the Apache API, written by Lincoln Stein and Doug MacEachern.

Now you can purchase the book at your local bookstore or from the online dealer. O’Reilly lists
this book as:

22 Jan 200096

Stas Bekman7.1 What we will learn in this chapter

http://www.modperl.com/
http://modperl.sourcegarden.org/
http://perl.apache.org/

 Writing Apache Modules with Perl and C
 By Lincoln Stein & Doug MacEachern
 1st Edition March 1999
 1-56592-567-X, Order Number: 567X
 746 pages, $34.95

’Enabling web services with mod_perl’ Book

http://www.modperlbook.com is the home site of the new mod_perl book, that Eric Cholet and
Stas Bekman are co-authoring together. We expect the book to be published in fall 2000.

Ideas, suggestions and comments are welcome. You may send them to info@modperlbook.com
.

mod_perl Guide

by Stas Bekman at http://perl.apache.org/guide

mod_perl FAQ

by Frank Cringle at http://perl.apache.org/faq/ .

mod_perl performance tuning guide

by Vivek Khera at http://perl.apache.org/tuning/ .

mod_perl plugin reference guide

by Doug MacEachern at http://perl.apache.org/src/mod_perl.html .

Quick guide for moving from CGI to mod_perl

at http://perl.apache.org/dist/cgi_to_mod_perl.html .

mod_perl_traps, common traps and solutions for mod_perl users

at http://perl.apache.org/dist/mod_perl_traps.html .

mod_perl Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

mod_perl Resources Page

http://www.perlreference.com/mod_perl/

mod_perl mailing list

The Apache/Perl mailing list (modperl@apache.org) is available for mod_perl users and develop-
ers to share ideas, solve problems and discuss things related to mod_perl and the Apache::*
modules. To subscribe to this list, send mail to majordomo@apache.org with empty Subject and

9722 Jan 2000

7.3 Get help with mod_perlmod_perl tutorial: Getting Help and Further Learning

http://www.perlreference.com/mod_perl/
http://www.refcards.com/
http://perl.apache.org/dist/mod_perl_traps.html
http://perl.apache.org/dist/cgi_to_mod_perl.html
http://perl.apache.org/src/mod_perl.html
http://perl.apache.org/tuning/
http://perl.apache.org/faq/
http://perl.apache.org/guide
http://www.modperlbook.com/

with Body :

 subscribe modperl

A searchable mod_perl mailing list archive available at http://forum.swarth-
more.edu/epigone/modperl . We owe it to Ken Williams.

More archives available:

http://www.geocrawler.com/lists/3/web/182/0/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.egroups.com/group/modperl/

7.4 Get help with Perl
The Perl FAQ

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

The Perl home

http://www.perl.com/

The Perl Journal

http://www.tpj.com/

Perl Module Mechanics

http://world.std.com/~swmcd/steven/perl/module_mechanics.html - This page describes the mechan-
ics of creating, compiling, releasing and maintaining Perl modules.

7.5 Get help with Perl/CGI
Perl/CGI FAQ

at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

22 Jan 200098

Stas Bekman7.4 Get help with Perl

http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html
http://world.std.com/~swmcd/steven/perl/module_mechanics.html
http://www.tpj.com/
http://www.perl.com/
http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html
http://www.egroups.com/group/modperl/
http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl
http://www.davin.ottawa.on.ca/archive/modperl/
http://www.mail-archive.com/modperl%40apache.org/
http://www.bitmechanic.com/mail-archives/modperl/
http://www.geocrawler.com/lists/3/web/182/0/
http://forum.swarthmore.edu/epigone/modperl
http://forum.swarthmore.edu/epigone/modperl

Answers to some bothering Perl and Perl/CGI questions

http://www.singlesheaven.com/stas/TULARC/webmaster/myfaq.html

Idiot’s Guide to CGI programming

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

WWW Security FAQ

http://www.w3.org/Security/Faq/www-security-faq.html

CGI/Perl Taint Mode FAQ

http://www.gunther.web66.com/FAQS/taintmode.html (by Gunther Birznieks)

7.6 Get help with Apache
Apache Project’s Home

http://www.apache.org

Apache Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

The Apache FAQ

http://www.apache.org/docs/misc/FAQ.html

Apache Server Documentation

http://www.apache.org/docs/

Apache Handlers

http://www.apache.org/docs/handler.html

mod_rewrite Guide

http://www.engelschall.com/pw/apache/rewriteguide/

7.7 Get help with DBI
Perl DBI examples

9922 Jan 2000

7.6 Get help with Apachemod_perl tutorial: Getting Help and Further Learning

http://www.engelschall.com/pw/apache/rewriteguide/
http://www.apache.org/docs/handler.html
http://www.apache.org/docs/
http://www.apache.org/docs/misc/FAQ.html
http://www.refcards.com/
http://www.apache.org/
http://www.gunther.web66.com/FAQS/taintmode.html
http://www.w3.org/Security/Faq/www-security-faq.html
http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html
http://www.singlesheaven.com/stas/TULARC/webmaster/myfaq.html

http://www.saturn5.com/~jwb/dbi-examples.html (by Jeffrey William Baker).

DBI Homepage

http://www.symbolstone.org/technology/perl/DBI/

DBI mailing list infor mation

http://www.fugue.com/dbi/

DBI mailing list archives

http://outside.organic.com/mail-archives/dbi-users/ http://www.xray.mpe.mpg.de/mailing-lists/dbi/

Persistent connections with mod_perl

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

7.8 Get help with Squid - Inter net Object Cache
Home page - http://squid.nlanr.net/

FAQ - http://squid.nlanr.net/Squid/FAQ/FAQ.html

Users Guide - http://squid.nlanr.net/Squid/Users-Guide/

Mailing lists - http://squid.nlanr.net/Squid/mailing-lists.html

;o)

22 Jan 2000100

Stas Bekman7.8 Get help with Squid - Internet Object Cache

http://squid.nlanr.net/Squid/mailing-lists.html
http://squid.nlanr.net/Squid/Users-Guide/
http://squid.nlanr.net/Squid/FAQ/FAQ.html
http://squid.nlanr.net/
http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS
http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://outside.organic.com/mail-archives/dbi-users/
http://www.fugue.com/dbi/
http://www.symbolstone.org/technology/perl/DBI/
http://www.saturn5.com/~jwb/dbi-examples.html

Table of Contents:
......... 1Tutorial: Getting Started with mod_perl (Part II of II)
............. 4mod_perl tutorial: Getting Started Fast
................. 41 Getting Started Fast
............... 51.1 mod_perl in Four Slides
................ 51.2 What is mod_perl?
.................. 61.3 Installation
................. 71.4 Configuration
.......... 71.5 The "mod_perl rules" Apache::Registry Scripts
........... 81.6 The "mod_perl rules" Apache Perl Module
.......... 81.7 Is That All I Need To Know About mod_perl?
.............. 10mod_perl tutorial: Perl Reference
.................. 102 Perl Reference
............. 112.1 What we will learn in this chapter
.............. 112.2 Tracing Warnings Reports
.......... 132.3 my() Scoped Variable in Nested Subroutines
................. 132.3.1 The Poison
................ 142.3.2 The Diagnosis
................ 162.3.3 The Remedy
......... 172.4 When You Cannot Get Rid of The Inner Subroutine
............ 182.4.1 Remedies for Inner Subroutines
......... 232.5 use(), require(), do(), %INC and @INC Explained
............... 232.5.1 The @INC array
................ 232.5.2 The %INC hash
............. 262.5.3 Modules, Libraries and Files
................. 272.5.4 require()
.................. 282.5.5 use()
.................. 302.5.6 do()
.... 302.6 Using Global Variables and Sharing Them Between Modules/Packages
.............. 302.6.1 Making Variables Global
........ 302.6.2 Making Variables Global With strict Pragma On
......... 302.6.3 Using Exporter.pm to Share Global Variables
...... 332.6.4 Using the Perl Aliasing Feature to Share Global Variables
........... 342.7 The Scope of the Special Perl Variables
............. 352.8 Compiled Regular Expressions
......... 372.9 perldoc’s Rarely Known But Very Useful Options
..... 38mod_perl tutorial: CGI to mod_perl Porting. mod_perl Coding guidelines.
......... 383 CGI to mod_perl Porting. mod_perl Coding guidelines.
............. 393.1 What we will learn in this chapter
............... 403.2 Before you start to code
............ 403.3 Exposing Apache::Registry secrets
............... 413.3.1 The First Mystery
............... 443.3.2 The Second Mystery
........... 453.4 Sometimes it Works, Sometimes it Doesn’t
............... 453.4.1 An Easy Break-in

i22 Jan 2000

............... 463.4.2 Thinking mod_cgi

............. 473.4.3 Regular Expression Memory

................ 473.5 @INC and mod_perl

............ 483.6 Reloading Modules and Required Files

............... 483.6.1 Restarting the server

....... 483.6.2 Using Apache::StatINC for the Development Process

............... 503.6.3 Reloading handlers

............ 503.7 Name collisions with Modules and libs

............. 553.8 __END__ and __DATA__ tokens

............... 553.9 Output from system calls

.............. 563.10 Using format() and write()

... 563.11 Terminating requests and processes, the exit() and child_terminate() functions

................ 573.12 die() and mod_perl

................. 583.13 I/O is different

........... 583.14 STDIN, STDOUT and STDERR streams

.............. 583.15 Global Variables Persistance

............ 593.16 Generating correct HTTP Headers

............ 643.17 NPH (Non Parsed Headers) scripts

................. 643.18 BEGIN blocks

................. 653.19 END blocks

............ 653.20 Command line Switches (-w, -T, etc)

................. 653.20.1 Warnings

................ 673.20.2 Taint Mode

................ 673.20.3 Other switches

................ 673.21 The strict pragma

............. 673.22 Passing ENV variables to CGI

................ 683.23 Apache and syslog

............. 683.24 Filehandlers and locks leakages

.. 693.25 The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.

............. 703.26 Apache::PerlRun--a closer look

......... 71mod_perl tutorial: Controlling and Monitoring the Server

............. 714 Controlling and Monitoring the Server

............. 724.1 What we will learn in this chapter

............... 724.2 Restarting techniques

...... 734.3 Implications of sending TERM, HUP, and USR1 to the server

............ 744.4 Using apachectl to control the server

.......... 754.5 Safe Code Updates on a Live Production Server

............... 764.6 SUID start-up scripts

............. 774.7 Preparing for Machine Reboot

............ 784.8 Monitoring the Server. A watchdog.

............. 814.9 Running server in a single mode

......... 82mod_perl tutorial: mod_perl and Relational Databases

............. 825 mod_perl and Relational Databases

............. 835.1 What we will learn in this chapter

............. 835.2 Why Relational (SQL) Databases

........ 835.3 Apache::DBI - Initiate a persistent database connection

22 Jan 2000ii

................ 845.3.1 Introduction

................ 845.3.2 Configuration

............. 855.3.3 Preopening DBI connections

.............. 855.3.4 Debugging Apache::DBI

................ 865.3.5 Troubleshooting

.............. 865.3.5.1 The Morning Bug

........ 865.3.5.2 Opening connections with different parameters

.......... 865.3.5.3 Debugging code which deploys DBI

............ 88mod_perl tutorial: mod_perl and dbm files

................ 886 mod_perl and dbm files

............. 896.1 What we will learn in this chapter

............. 896.2 Where and Why to use dbm files

................ 906.3 mod_perl and dbm

............... 906.4 Locking dbm handlers

................ 916.4.1 Tie::DB_Lock

......... 916.4.2 Locking techniques that work with dbm files

......... 916.4.2.1 Flawed methods which must not be used

...... 926.4.2.2 Lock on tie (only supported by a few operating systems)

............... 926.4.2.3 DB_File::Lock

......... 95mod_perl tutorial: Getting Help and Further Learning

............. 957 Getting Help and Further Learning

............. 967.1 What we will learn in this chapter

................. 967.2 Getting help

............... 967.3 Get help with mod_perl

................ 987.4 Get help with Perl

............... 987.5 Get help with Perl/CGI

............... 997.6 Get help with Apache

................ 997.7 Get help with DBI

.......... 1007.8 Get help with Squid - Internet Object Cache

iii22 Jan 2000

	1€€Getting Started Fast
	1.1€€mod_perl in Four Slides
	1.2€€What is mod_perl?
	1.3€€Installation
	1.4€€Configuration
	1.5€€The "mod_perl rules" Apache::Registry Scripts
	1.6€€The "mod_perl rules" Apache Perl Module
	1.7€€Is That All I Need To Know About mod_perl?

	2€€Perl Reference
	2.1€€What we will learn in this chapter
	2.2€€Tracing Warnings Reports
	2.3€€my†‡ Scoped Variable in Nested Subroutines
	2.3.1€€The Poison
	2.3.2€€The Diagnosis
	2.3.3€€The Remedy

	2.4€€When You Cannot Get Rid of The Inner Subroutine
	2.4.1€€Remedies for Inner Subroutines

	2.5€€use†‡, require†‡, do†‡, %INC and @INC Explained
	2.5.1€€The @INC array
	2.5.2€€The %INC hash
	2.5.3€€Modules, Libraries and Files
	2.5.4€€require†‡
	2.5.5€€use†‡
	2.5.6€€do†‡

	2.6€€Using Global Variables and Sharing Them Between Modules/Packages
	2.6.1€€Making Variables Global
	2.6.2€€Making Variables Global With strict Pragma On
	2.6.3€€Using Exporter.pm to Share Global Variables
	2.6.4€€Using the Perl Aliasing Feature to Share Global Variables

	2.7€€The Scope of the Special Perl Variables
	2.8€€Compiled Regular Expressions
	2.9€€perldoc's Rarely Known But Very Useful Options

	3€€CGI to mod_perl Porting. mod_perl Coding guidelines.
	3.1€€What we will learn in this chapter
	3.2€€Before you start to code
	3.3€€Exposing Apache::Registry secrets
	3.3.1€€The First Mystery
	3.3.2€€The Second Mystery

	3.4€€Sometimes it Works, Sometimes it Doesn't
	3.4.1€€An Easy Break-in
	3.4.2€€Thinking mod_cgi
	3.4.3€€Regular Expression Memory

	3.5€€@INC and mod_perl
	3.6€€Reloading Modules and Required Files
	3.6.1€€Restarting the server
	3.6.2€€Using Apache::StatINC for the Development Process
	3.6.3€€Reloading handlers

	3.7€€Name collisions with Modules and libs
	3.8€€__END__ and __DATA__ tokens
	3.9€€Output from system calls
	3.10€€Using format†‡ and write†‡
	3.11€€Terminating requests and processes, the exit†‡ and child_terminate†‡ functions
	3.12€€die†‡ and mod_perl
	3.13€€I/O is different
	3.14€€STDIN, STDOUT and STDERR streams
	3.15€€Global Variables Persistance
	3.16€€Generating correct HTTP Headers
	3.17€€NPH †Non Parsed Headers‡ scripts
	3.18€€BEGIN blocks
	3.19€€END blocks
	3.20€€Command line Switches †-w, -T, etc‡
	3.20.1€€Warnings
	3.20.2€€Taint Mode
	3.20.3€€Other switches

	3.21€€The strict pragma
	3.22€€Passing ENV variables to CGI
	3.23€€Apache and syslog
	3.24€€Filehandlers and locks leakages
	3.25€€The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.
	3.26€€Apache::PerlRun--a closer look

	4€€Controlling and Monitoring the Server
	4.1€€What we will learn in this chapter
	4.2€€Restarting techniques
	4.3€€Implications of sending TERM, HUP, and USR1 to the server
	4.4€€Using apachectl to control the server
	4.5€€Safe Code Updates on a Live Production Server
	4.6€€SUID start-up scripts
	4.7€€Preparing for Machine Reboot
	4.8€€Monitoring the Server. A watchdog.
	4.9€€Running server in a single mode

	5€€mod_perl and Relational Databases
	5.1€€What we will learn in this chapter
	5.2€€Why Relational †SQL‡ Databases
	5.3€€Apache::DBI - Initiate a persistent database connection
	5.3.1€€Introduction
	5.3.2€€Configuration
	5.3.3€€Preopening DBI connections
	5.3.4€€Debugging Apache::DBI
	5.3.5€€Troubleshooting
	5.3.5.1€€The Morning Bug
	5.3.5.2€€Opening connections with different parameters
	5.3.5.3€€Debugging code which deploys DBI

	6€€mod_perl and dbm files
	6.1€€What we will learn in this chapter
	6.2€€Where and Why to use dbm files
	6.3€€mod_perl and dbm
	6.4€€Locking dbm handlers
	6.4.1€€Tie::DB_Lock
	6.4.2€€Locking techniques that work with dbm files
	6.4.2.1€€Flawed methods which must not be used
	6.4.2.2€€Lock on tie †only supported by a few operating systems‡
	6.4.2.3€€DB_File::Lock

	7€€Getting Help and Further Learning
	7.1€€What we will learn in this chapter
	7.2€€Getting help
	7.3€€Get help with mod_perl
	7.4€€Get help with Perl
	7.5€€Get help with Perl/CGI
	7.6€€Get help with Apache
	7.7€€Get help with DBI
	7.8€€Get help with Squid - Internet Object Cache

