The Apache Portable Runtime (APR)

The Apache Portable Runtime (APR) and Utilities (APR-UTILS or APU) are a pair of
libraries used by the Apache httpd, but autonomously developed and maintained within
the Apache group. Although many core developers are involved in both httpd (the
webserver) and APR, the projects are separate. These libraries provide core functions
that are not specific to webserving but are also useful in more general applications.

The best-known other application is Subversion, a revision and change control
management system . Another is this author's Site Valet, a suite of software for QA and
accessibility audit on the web.

This chapter discusses APR as it applies to Apache modules. It does not go into subjects
such as application initialisation, which are necessary but are handled internally by the
Apache core code (this is documented fairly clearly within APR itself, for developers
working outside the webserver context).

1 APR

The main purpose of APR is to provide a portable, platform-independent layer for
applications. Functions such as filesystem access, network programming, process and
thread management, and shared memory are supported in a low-level, cross-platform
library. Apache modules that use exclusively APR instead of native system functions are
portable across platforms, and can expect to compile cleanly — or at worst with a trivial
amount of tidying up — on all platforms supported by Apache.

Each APR module comprises an application programming interface (API) shared between
all platforms, together with implementations of the functions defined in the API. The
implementations are often wholly or partly platform-specific, but this is of no concern to
applications.

At the core of APR is Apache's resource management (pools), on which more below.
The full list of APR modules is

Name Purpose
apr_allocator used internally for memory allocation
apr_atomic atomic operations
apr_dso dynamic loading of code (.so/.dll)
apr_env reading/setting environment variables
apr_errno defines error conditions and macros
apr_file info properties of filesystem objects and paths
apr_file io filesystem I/O
apr_fnmatch filesystem pattern-matching
apr_general initialisation/termination; useful macros
apr_getopt command arguments

Copyright © 2005 Nick Kew (nig@apache.org)

Name

apr_global mutex
apr_hash

apr_ inherit
apr_1lib

apr_ mmap

apr_ network io
apr_poll
apr_pools
apr_portable
apr_proc_mutex
apr_ random
apr_ring

apr_shm

apr signal

apr_ strings
apr_support

apr_ tables
apr_thread cond
apr_thread mutex

apr_ thread proc

apr_thread rwlock

apr_time
apr_user
apr_version

apr_want

2 APR-UTIL

Purpose
global locking routines
hash tables
file handle inheritance helpers
odds and sods

memory mapping

network i/o (sockets)

poll routines

resource management
APR <--> native mapping conversion
process locking routines
random numbers

ring data struct and macros
shared memory

signal handling

string operations

internal support function
table and array functions
thread conditions

thread mutex routines
threads and process functions
reader/writer lock routines
time/date functions

user and group ID services
APR version

standard header support

APR-UTIL is a second library in the APR project. The purpose of APU is to provide a
small set of utilities, based on the APR and with a unified programming interface. APU
doesn't have separate per-platform modules, but does adopt a similar approach to some
other resources commonly used, such as databases.

Copyright © 2005 Nick Kew (nig@apache.org)

A complete list of APU modules is

Name Purpose

apr_anylock transparent any lock flavor wrapper
apr_base64 base64 encoding

apr_buckets buckets/bucket brigades

apr_date date string parsing

apr_dbd common API for SQL databases
apr_dbm common API for DBM databases
apr_hooks hook implementation macros
apr_ldap LDAP

apr_ldap init

apr ldap option

apr ldap url

apr_md4 MD4 encoding
apr_md> MD)5 encoding
apr_optional optional functions

apr_optional hooks optional hooks

apr_queue thread-safe FIFO queues
apr_reslist pooled resources

apr_rmm relocatable managed memory
apr_sdbm SDBM library

apr_shal SHA1 encoding
apr_strmatch string pattern matching
apr_uri URI parsing/construction

apr_uuid

apr_xlate charset conversion (I18N)

apr_xml XML parsing

3 Basic Conventions

APR and APR-UTIL adopt a number of conventions throughout, that give them a
homogenous API and make them easy to work with.

Copyright © 2005 Nick Kew (nig@apache.org)

Reference Manual: APl Documentation and Doxygen

All of APR/APU is very well documented at the code level. Every public function and
datatype is documented in the header file that defines it, in doxygen-friendly format. The
header files themselves, or the doxygen-generated documentation, provide a full API
reference for programmers.

Namespacing

All APR/APU public interfaces are prefixed with the string “apr (data types and
functions) or “apr_” (macros). This defines APR's 'reserved' namespace.

Within the APR namespace, most of the different APR and APU modules use secondary
namespacing. This is often based on the name of the module in question: for example, all
functions in module apr dbd are prefixed with the string “apr dbd . Sometimes an
obviously descriptive secondary namespace is used: for example, socket operations in

2

module apr network io are prefixed “apr socket

Declaration macros

Public functions in APR/APU are declared using macros such as APR_DECLARE,
APU DECLARE, and APR DECLARE NONSTD. For example:

APR DECLARE (apr status t) apr initialize(void);

On most platforms, this is a null declaration and expands simply to

apr_status_t apr initialize(void);

but on platforms such as Windows with Visual C++, which require their own nonstandard
keywords such as dllexport to enable other modules to use a function, these macros
will expand to the required keywords.

apr_status_t and return values

A convention widely adopted in APR/APU is that functions return a status value
indicating success or an error code to the caller. The type is an enumeration
apr_status_t, defined in apr _errno.h. Thus the usual prototype for an APR function
is

APR DECLARE (apr_ status t) apr do something(...function args...);

Return values should routinely be tested, and error handling (recovery or graceful failure)
implemented. The return value APR_SUCCESS indicates success, so we can commonly
handle errors using constructs like

apr_status t rv;
rv = apr_do something (... args ...);
if (rv != APR SUCCESS) {

/* log an error */
return rv;

Copyright © 2005 Nick Kew (nig@apache.org)

Sometimes we may do more: for example, if do _something was a non-blocking I/O
operation and returned APrR_EAGAIN, we will probably want to retry.

Some functions return a string value (char* or const char*), a void*, or void. These
are assumed to have no failure conditions.

Conditional Compilation

By its nature, there are a number of features of APR that may not be supported on every
platform. For example, FreeBSD prior to Version 5.x had no native thread
implementation considered suitable for Apache, so threads were not supported in APR
(unless the relevant options were set manually for compilation).

To enable applications to work with this, APR provides AprR _Has * macros for such
features. When an application is concerned with such a feature, it should use conditional
compilation based on these macros. For example, a module performing an operation that
could lead to a race condition in a multithreaded environment may want to use something
like:
#if APR HAS THREADS
rv = apr thread mutex lock (mutex);
if (rv != APR_SUCCESS) {
/* log an error */
goto unlock;

}
#endif

/* Execute critical section of code here */

#if APR _HAS THREADS
unlock:

apr_ thread mutex unlock (mutex);
#endif

4 Resource Management: APR Pools

The APR pools are a fundamental building block at the heart of APR and Apache, and are
the basis for all resource management. They serve to allocate memory, either directly (in a
malloc-like manner) or indirectly (e.g. in string manipulation), and, crucially, ensure that
memory is freed at the appropriate time. But they extend much further, to ensure that
other resources such as files or mutexes can be allocated and will always be properly
cleaned up. They can even deal with resources managed opaquely by third-party libraries.

The Problem of Resource Management

Every programmer knows that when you allocate a resource, you must ensure it is
released again when you've finished with it. For example:
char* buf = malloc(n) ;
. check buf is non null ...

... do something with buf ...
free (buf) ;

Copyright © 2005 Nick Kew (nig@apache.org)

or

FILE* £ = fopen(path, "r")
. check f is non null ...
. read from £

fclose (f) ;

Clearly, failure to free buf or to close £ is a bug, and in the context of a long-lasting
program such as Apache it would have serious consequences, up to and including
bringing the entire system down. So it is important to get it right.

In trivial cases this is straightforward. But in a more complex case with multiple error
paths, and even the scope of a resource being uncertain at the time it is allocated, it
becomes a serious problem to ensure that cleanup takes place in every execution path. So
we need a better way to manage resources.

Constructor/Destructor model

One method of resource management is exemplified by the C++ concept of objects
having a constructor and destructor. A method adopted by many C++ programmers is to
make the destructor responsible for cleanup of all resources allocated by the object. This
approach works well provided all dynamic resources are clearly made the responsibility
of an object. But, as with the simple C approach, it requires a good deal of care and
attention to detail - for example where resources are conditionally allocated, or shared
between many different objects - and is vulnerable to programming bugs.

Garbage Clearance Model

A high-level method of resource management, typified by Lisp and Java, is garbage-
clearance. This has the advantage of taking the problem right away from the programmer
and transferring it to the language itself, so the danger of crippling programming errors is
removed altogether. The drawback is that it is a substantial overhead even where it isn't
necessary, and it deprives the programmer of useful levels of control, such as the ability
to control the lifetime of a resource. It also requires that all program components -
including third-party libraries - are built on the same system, which is clearly not possible
in an open system written in C.

APR Pools

The APR pools provide an alternative model for resource management. Like garbage
collection, they liberate the programmer from the complexities of dealing with cleanups
in all possible cases. But they offer several additional advantages, including full control
over the lifetime of resources, and the ability to manage heterogenous resources.

The basic concept is that whenever you allocate a resource that requires cleanup, you
register it with a pool. The pool then takes responsibility for the cleanup, which will
happen when the pool itself is cleaned. That means that the problem is reduced to one of
allocating and cleaning up a single resource: the pool itself. And since the Apache pools
are managed by the server itself, the complexity is removed from applications

Copyright © 2005 Nick Kew (nig@apache.org)

programming. All the programmer has to do is select the appropriate pool for the required
lifetime of a resource.

Basic Memory Management

The most basic usage of pools is for memory management. Instead of

mnytype* myvar = malloc(sizeof (mytype)) ;
/* make sure it gets freed later in every possible execution path */

W€ use

mytype* myvar = apr palloc(pool, sizeof (mytype)) ;

and the pool automatically takes responsibility for freeing it, regardless of what may
happen in the meantime.

This takes many forms in APR and Apache, where memory is allocated within another
function. Examples are string-manipulation functions and logging, where we gain the
immediate benefit of being able to use constructs like the APR version of sprintf ()
without having to know the size of a string in advance:

char* result = apr psprintf(pool, fmt, ...) ;

APR also provides higher-level abstractions of pool memory, for example in the buckets
used to pass data down the filter chain.

Generalised Memory Management

APR provides inbuilt functions for managing memory, and a few other basic resources
such as files, sockets, and mutexes. But there is no requirement to use these. An
alternative is to use native allocation functions, and explicitly register a cleanup with the
pool:
mytype* myvar = malloc (sizeof (mytype)) ;
apr _pool cleanup register(pool, myvar, free,
apr_pool cleanup null) ;

or

FILE* f = fopen(filename, "r")
apr_pool cleanup register(pool, £, fclose, apr pool cleanup null) ;

will delegate responsibility for cleanup to the pool, so that no further action from the
programmer is required. However, native functions may be less portable than APR
equivalents from apr pools and apr file io respectively.

This method generalises to resources opaque to Apache and APR. For example, to open a
database connection and ensure it is closed after use:

Copyright © 2005 Nick Kew (nig@apache.org)

MYSQL* sgl = NULL ;
sgl = mysgl init(sql) ;
if (sgl == NULL) { log error and return failure ; }
apr _pool cleanup register(pool, sgl, mysgl close,
apr pool cleanup null) ;

sql = mysql real connect(sgl, host, user, pass,
dbname, port, sock, 0) ;
if (sgl == NULL) { log error and return failure ; }

Note that apr dbd provides an altogether better method for managing database
connections.

As a second example, consider XML processing:

xmlDocPtr doc = xmlReadFile (filename)
apr_pool cleanup register(pool, doc, xmlFreeDoc,
apr pool cleanup null) ;

/* now do things with doc, that may allocate further memory
managed by the XML library but will be cleaned by xmlFreeDoc
*/

Integrating C++ destructor-cleanup code provides yet another example. Suppose we
have:

class myclass {
public:
virtual ~myclass() { do cleanup ; }

//

We define a C wrapper:

void myclassCleanup (void* ptr) { delete (myclass*)ptr ; }

and register it with the pool when we allocate myclass:

myclass* myobj = new myclass(...) ;
apr_pool cleanup register(pool, (void*)myobj, myclassCleanup,
apr pool cleanup null) ;

// now we've hooked our existing resource management from C++
// into apache and never need to delete myob]

Implicit and Explicit Cleanup

Now, supposing we want to free our resource explicitly before the end of the request - for
example, because we're doing something memory-intensive but have objects we can free.

We may want to do everything according to normal scoping rules, and just use pool-based
cleanup as a fallback to deal with error paths. However, since we registered the cleanup,

Copyright © 2005 Nick Kew (nig@apache.org)

it will run regardless, and could lead to a double-free and a segfault.

Another pool function, apr pool cleanup kill, is provided to deal with this situation.
When we run the explicit cleanup, we unregister the cleanup from the pool. Or we can be
a little more clever about it. Here's the outline of a C++ class that manages itself based
on a pool, regardless of whether it is explicitly deleted or not:
class poolclass {
private:
apr_pool t* pool ;
public:
poolclass (apr _pool t* p) : pool(p) {
apr_pool cleanup register(pool, (void*)this,
myclassCleanup, apr pool cleanup null) ;
}
virtual ~poolclass() {
apr_pool cleanup kill(pool, (void*)this, myclassCleanup) ;
}
b

If you use C++ with Apache (or APR), you can derive any class from poolclass. Most
APR functions do something equivalent to this, using register and kill whenever
resources are allocated or cleaned up.

Resource Lifetime

When we allocate resources on a pool, we ensure that they get cleaned up at some point.
But when? We need to ensure the cleanup happens at the right time. Neither while the
resource is still in use, nor long after it is no longer required.

Apache Pools

Fortunately, Apache makes this easy for us, by providing different pools for different
types of resource. These pools are associated with relevant structures of the httpd, and
have the lifetime of the corresponding struct. There are four general-purpose pools always
available in Apache:

* the request pool, with the lifetime of an HTTP request

* the process pool, with the lifetime of an server process

* the connection pool, with the lifetime of a TCP connection
* the configuration pool.

The first three are associated with the relevant Apache structs, and accessed as
request->pool, connection->pool and process->pool, respectively. The fourth,
process->pconf, 1S also associated with the process, but differs from the process pool
because it is cleared whenever Apache re-reads its configuration.

The process pool is suitable for long-lived resources, such as those that are initialised at
server startup, or those cached for re-use over multiple requests. The request pool is
suitable for transient resources used to process a single request.

Copyright © 2005 Nick Kew (nig@apache.org)

A third general-purpose pool is the connection pool, which has the lifetime of a
connection, being one or more Request. This is useful for transient resources that cannot
be associated with a request: most notably in a connection-level filter, where the

request rec structure is undefined.

As well as these standard pools, special-purpose pools are created for other purposes
including configuration and logging, or may be created privately by modules for their
own use.

Using Pools in Apache: Processing a Request

All request-processing hooks take the form

int my func(request rec* r) {
/* implement the request processing hook here */

}

This puts the request pool r->poo1 at our disposal. As discussed above, the request pool
is appropriate for the vast majority of operations involved in processing a request. That's
what we pass to Apache and APR functions that need a pool argument, as well as our
own.

The process pool is available as r->server->process->pool for operations that need to
allocate long-lived resources; for example, caching a resource that should be computed
once and subsequently re-used in other requests.

The connection pool is r->connection->pool.

Using Pools in Apache: Initialisation and Configuration

The internals of Apache's initialisation are complex. But as far as modules are concerned,
it can normally be treated as simple: one just sets up a configuration, and everything is
permanent. Apache makes that easy: most of the relevant hooks have prototypes that pass
the relevant pool as their first argument:

Configuration handlers

static const char* my cfg(cmd parms* cmd, void* cfg, /* args */)

Use the configuration pool, cmd->poo1l, to give a configuration the lifetime of the
directive.
Pre- and Post-config

These hooks are unusual in having several pools passed:

static int my pre config(apr pool t* pool,
apr_pool t* plog,apr pool t* ptemp)

For most purposes, just use the first pool, but if a function uses pools for temporary
resources within itself, use ptemp.

Copyright © 2005 Nick Kew (nig@apache.org)

Child init

static void my child init (apr pool t* pool, server rec* s).
Again, the pool is the first argument.

Monitor

static int my monitor (apr_pool t* pool)

The monitor is a special case: it is running in the parent process and not tied to any time-
limited structure. So resources allocated in a monitor function should be explicitly freed.
If necessary, a monitor may create and free its own subpool. Few applications will need

to use the monitor hook.

Using Pools in Apache: Other Cases
Most Apache modules involve the initialisation and request-processing we have
discussed. But there are two other cases to deal with:

Connection Functions

Thepre_connectionandprocess_connectionCOHHCCﬁOHJCVClhOOkSpassa
conn_rec as their first argument, and are directly analogous to request functions as far as
pool resources are concerned. The create connection connection-initialisation hook
passes the pool as its first argument: any module implementing it takes responsibility for
setting up the connection.

Filter Functions

Filter functions receive an ap filter t as their first argument. This ambiguously
contains both a request rec and a conn_rec as members, regardless of whether it is a
request-level or a connection-level filter. Content filters should normally use the request
pool. Connection-level filters will get a junk pointer in £->r and must use the connection
pool. This can be a trap for the unwary.

5 Basics

APR provides a direct alternative to functions which are familiar and almost certain to be
available on your system without any need for APR. Nevertheless, there are good reasons
to use the APR versions of these functions:

* APR functions are platform-independent, and give better portability.

* APR functions get the benefit of APR's pool-based resource management for free.
We won't go into detail here: for more information, see the excellent documentation in
the header files.
Strings and Formats

The apr_strings module provides APR implementations of

Copyright © 2005 Nick Kew (nig@apache.org)

* common string functions: comparisons, substring matches, copying,
concatenation

* stdio-like functions: sprintf and family, including vformatters
* parsing, including thread-safe strtok
 conversion to and from other data types (atoi, etc)

There is no regular expression support in APR (although there is in Apache), but the
apr_strmatch module provides fast string matching that deals with the issues of case-
insensitive (as well as case-sensitive) search, and non-null-terminated strings.
Internationalisation

The apr_xlate module provides conversion between different character sets.

At the time of writing, apr xlate on the Windows platform relies on a third APR
library, apr_iconv, because Windows lacks (or lacked) native internationalisation
support. This dependency is expected to be removed in future.

Time and Date

The apr_time module provides a microsecond timer and clock, together with conversion
to/from <time.h> types, timezones, time arithmetic, sleep, and formatting functions
(ctime and RFC822 time as used in HTTP and other network protocols).

The apr_date module provides additional functions for parsing commonly-used time and
date formats.

Data Structs
* apr_hash provides hash tables.
* apr_table provides tables and arrays.
* apr_gqueue provides FIFO queues.

* apr_ring provides a ring struct, which is also the basis for APR bucket brigades.

Filesystem

* apr_file io provides standard file operations: open/close, stdio-style read/write
operations, locking, create/delete/copy/rename/chmod. It supports ordinary files,
tempfiles, directories, and pipes.

* apr_file info provides filesystem info (stat), directory manipulation functions
(open, close, read, etc), file path manipulation and relative path resolution.

* apr_fnmatch provides pattern-matching for the filesystem, to support wildcard
operations.

Copyright © 2005 Nick Kew (nig@apache.org)

Network

* apr network io is a socket layer supporting IPv4 and IPv6, and TCP, UDP and
SCTP protocols. It supports a number of features subject to underlying operating
system support, and will emulate them where not available. These include
sendfile, accept filters, and multicast.

* apr_poll provides functions for polling a socket (or other descriptor).

System Users and Groups

* apr_user provides a cross-platform implementation of system users and groups.

Encoding and Crypto

APR does not provide a cryptographic library, and Apache's mod ss1 relies on the
external OpenSSL package for implementation of transport-level security. However, it
does support a number of data encoding and hashing techniques in its apr_base64,
apr_md4, apr_md5 and apr_shal modules.

URI handling

* apr_uri defines a struct for URI/URLSs, and provides parsing and unparsing
functions

6 Databases in APR/Apache

Readers of a certain age will recollect a time in the 1980s, when every application for the
PC came bundled with hundreds of different printer drivers on ever-growing piles of
floppy discs. Eventually, the operating system implemented the sensible solution: a
unified printing API, so that each printer had a single driver, and each application a single
print function that works with any driver.

The history of database support in Apache echoes this. At first, Apache had no database
support, so every module needing it had to implement it. Apache 1.3 had separate
virtually identical modules for authentication with ndbm and Berkeley DB, and a whole
slew of different (third-party) authentication modules for popular SQL databases such as
MySQL. Similarly, every scripting language — such as Perl, PHP and Python — has its
own database management.

Then in time for Apache 2.0, the apr dom module provided a unified interface for the
DBM (simple key/value lookup) class of databases. Most recently, another module

apr dbd provides an analogous API for SQL databases. Just as with the printer drivers,
the APR database classes remove the need for duplication, and are the preferred means of
database support for new applications in APR and Apache.

DBMs and apr_dbm

DBMs have been with us since the early days of computing, when the need for fast keyed
lookups was recognised. The original DBM is a Unix-based library and file format for

Copyright © 2005 Nick Kew (nig@apache.org)

fast, highly scalable keyed access to data. It was followed in order by NDBM (“new
DBM”), GDBM (“GNU DBM”) and the Berkeley DB. This last is by far the most
advanced, and the only DBM under active development today, but all of these, from
NDBM onwards, provide the same core functionality used by most programs, including
Apache.

Although NDBM is now old — like the city named NewTown (“Neapolis”) by the Greeks
in about 600 BC and still called Naples today — it is still the baseline DBM, and is the one
used by early Apache modules such as the Apache 1.x versions of mod auth dbm and
mod_rewrite. Both GDBM and Berkeley DB provide NDBM emulations, and Linux
distributions ship with one or other of those emulations in place of the “real” NDBM,
which is excluded for licensing reasons. Unfortunately, the various file formats are
totally incompatible, and there are subtle differences in behaviour concerning database
locking. This led to a steady stream of Linux users having problems with DBMs in
Apache 1.x.

Apache 2 replaces direct access to a DBM with a unified wrapper layer, apr dbm. There
can be one or more underlying databases: this will be determined at build time, either as a
configuration option, or by default detected automatically by the build scripts. The
database to be used by an application may be passed as a parameter whenever a DBM is
opened, so it is under direct programmer control (or administrator control, if the database
is configurable) and can be trivially switched if that is ever necessary. Alternatively, for
cases like authentication that are known to work well with any DBM, it can use a system
default. Apache only has to support a single DBM interface, so for example a single
DBM authentication module serves regardless of the underlying DBM used.

The apr dbm layer, which is similar to the DBM APIs, is documented in apr dbm.h.
When programming with it, one should not assume any locking, although update
operations are in fact safe if the DBM is GDBM or the original NDBM. Using a mutex
for critical updates makes it safe in all cases.

The DBM functions supported in APR are basically the same as those common to all the
DBMs, an API essentially equivalent to NDBM, GDBM and early versions of Berkeley
DB. Advanced capabilities of recent Berkeley DB, such as transactions, are not
supported, so applications requiring them have to access DB directly.

Example

The function fetch dbm value in mod authn dbm looks up a value in a DBM database.

static apr_status_t fetch dbm value (const char *dbmtype,
const char *dbmfile,
const char *user, char **value,
apr pool t *pool)

apr_dbm t *f;

apr datum t key, val;

apr_status t rv;

rv = apr _dbm open ex(&f, dbmtype, dbmfile, APR DBM READONLY,
APR_OS DEFAULT, pool);

Copyright © 2005 Nick Kew (nig@apache.org)

if (rv != APR _SUCCESS) {
return rv;

}

key.dptr = (char*)user;
#ifndef NETSCAPE DBM COMPAT

key.dsize = strlen (key.dptr);
#else

key.dsize = strlen(key.dptr) + 1;
fendif

*value = NULL;

if (apr_dbm fetch(f, key, &val) == APR SUCCESS && val.dptr) {
*value = apr_ pstrmemdup (pool, val.dptr, val.dsize);

}
apr_dbm close (f);

return rv;

}

SQL Databases and apr_dbd

Note: apr_dbd is not available in APRO0.x, and therefore Apache 2.0. It requires APR 1.2
or higher, or current CVS.

SQL is the standard for non-trivial database applications, and there are many databases
regularly used with Apache in web applications. The most popular is the lightweight
open-source MySQL, but overall it is one among many.

SQL databases are altogether bigger and more complex than DBMs, and are not in
general interchangeable, except where applications are explicitly designed to be portable
(or in a limited range of simple tasks). Nevertheless, a unified API for SQL applications
brings benefits analogous to the printer drivers.

The apr dbd module is a unified API for using SQL databases in Apache and other APR
applications. The concept is similar to Perl's DBI/DBD framework, or the C libdbi, but
apr dbd differs from these in that APR pools are used for resource management, so it is
much easier to work with in APR applications.

apr_dbd is also unusual within APR in its modular approach. Whereas the apr dbd API
is compiled into 1ibaprutil, the drivers for individual databases are (by default)
dynamically loaded at runtime. This means that when you install a new database
package, you can install an APR driver for it without having to recompile the whole of
APR or APR-UTIL.

At the time of writing, apr dbd supports MySQL, PostgreSQL and SQLite databases. It
is likely that drivers for Oracle and other databases will be contributed in due course.

Copyright © 2005 Nick Kew (nig@apache.org)

The MySQL driver

MySQL is a special case. Because it is licensed under the GNU General Public License
(GPL), a driver for it must also be distributed under the GPL (or not at all). This is
incompatible with Apache licensing policy, because it would impose additional
restrictions on Apache users.

The author has dealt with this issue by making a MySQL driver available separately, from
http://apache.webthing.com/, and licensing it under the GPL. Users requiring this driver
should download it into the apr dbd directory or folder and build it there. If MySQL is
installed in a standard location, it should then be automatically detected and built by the
standard APR-UTIL configuration process.

Usage

Apache modules should normally use apr dbd through the provider module mod dbd,
which is discussed in detail in Chapter 7.

7 Advanced Topics

Resource Pooling

A database is a fundamental component of many web applications. But connecting to it is
an overhead that affects traditional application architectures such as CGI and the
environment commonly known as LAMP (Linux, Apache, MySQL, [Perl|PHP|Python]).
Using apr reslist (APR's resource pooling module) with Apache 2's threaded MPMs,
we can achieve significant improvements in performance and scalability in applications
using 'expensive' resources such as databases.

A More Efficient LAMP

Many web-based applications generate dynamic content in whole or in part from a back-
end server. Where the backend is designed as connection-oriented, there is a mismatch
with the request-oriented HTTP protocol. This can easily lead to inefficiency in
applications. The most common case is that of an SQL backend, where there is always an
overhead to creating a connection and logging in. LAMP exemplifies this.. When the
connection is TCP/IP over a network, that is an additional overhead.

Simple CGI

A CGI script services a single request. So the baseline for CGI to access a database is to
open a connection, run any necessary queries, close the connection, and return content to
the client.

This is fine for a low-traffic site, but grows inefficient as the hit rate rises above a few
tens per minute. So as traffic rises, an alternative model is required. For CGI, we can use
an alternative implementation such as FastCGI. But the most widely used architecture is
LAMP.

Copyright © 2005 Nick Kew (nig@apache.org)

Classic LAMP

The classic solution to this, as provided for many years by application development
environments such as mod_perl and PHP, is for the Apache server process to hold a
database connection open, saving the overhead of opening and closing a connection for
every request. With Apache 1.x, this is essentially the best you can do, and is the usual
way of working.

However, this solution has its own problems. Although it substantially reduces the per-hit
overhead, it introduces another: holding a large number of backend connections open.
This in itself puts a load both on the webserver itself and the backend, and limits the
number of users that can be concurrently serviced. This doesn't just affect database-driven
traffic: requests for static web pages also have to be served by an Apache process that is
keeping an open connection to the backend.

Taking advantage of Apache 2

With Apache 2 and threaded MPMs, a wider range of altogether more efficient and
scalable options present themselves. Starting from what we already have, we can list our
options:

* classic CGI: one connection per request
* classic LAMP: one persistent connection per thread

* alternative LAMP: one persistent connection per process, with a mechanism for a
thread to take and lock it

* connection pooling: more than one connection per process, but fewer than one per
thread, with a mechanism for a thread to take and lock a connection from the pool

* dynamic connection pooling: a variable-size connection pool, that will grow or
shrink according to actual database traffic levels.

“Alternative LAMP” dispenses with the LAMP overhead at the cost of preventing
parallel accesses to the backend. It may be an efficient solution in some cases, but clearly
presents its own problems with servicing concurrent requests.

The fourth and fifth present an optimal solution whose scalability is limited only by the
available hardware and operating system. The number of backend connections to threads
should reflect the proportion of the total traffic that requires the backend. So, in simple
terms, if one in every five requests to the webserver requires the database, then a pool
might have one connection per five threads. Just as Apache itself maintains a dynamic
pool of threads to service incoming HTTP connections, so the optimal solution to
managing backend connections is a dynamic pool whose size is driven by actual demand
rather than best-guess configuration.

Implementation of Connection Pooling

Although the case for connection pooling is clear, implementation has been a gradual
process. Its conception was around the time of ApacheCon in November 2003, when this
author floated the idea in a "Birds of a Feather" session entitled "the module developers

Copyright © 2005 Nick Kew (nig@apache.org)

wishlist". Having discussed it and found I was not alone in wanting it, I proceeded to
implement, in addition to the Site Valet connection pooling module, open-source.
PostgreSQL and MySQL connection pooling modules. Paul Querna implemented a
similar module for connecting to a database with libdbi. Towards the end of 2004 this
work matured into the Apache DBD framework, and mod_dbd was merged into the
Apache source code as recently as May 2005.

The current implementation is mod dbd, which is presented at length as our example of a
service module in Chapter 7.

MultiProcess and Thread Support
Thread support, Mutexes and Atomics, Shared Memory, Signals

Miscellaneous
Optional Functions and Hooks

Buckets and Brigades

Copyright © 2005 Nick Kew (nig@apache.org)

