Chapter 4: Writing a Content Generator

This chapter will focus entirely on developing a real module.

Introduction

A HelloWorld Module

The module skeleton

Using the request rec

Request, Response and Enviromnent
Module I/O

* % X X X %

In principle, one can do anything with CGI. But the range of problems for which CGI
provides a good solution is much smaller.

The same is true of a content generator in Apache. It is the heart of processing a request,
and of building a web application. And it can be extended to do anything permitted to the
webserver by the underlying system. It is also the most basic kind of module in Apache.

All the main traditional applications normally work as content generators. For example, a
PHP page, or an application server proxied by Apache. The caveat is that systems may
interact with Apache in other ways, although this is not usual.

1 The HelloWorld Module.

In this chapter, we will develop a simple content generator. The customary HelloWorld,
demonstrates the basic concepts of module programming, including the complete module
structure, and use of the handler callback and request rec.

By the end of the chapter, our HelloWorld module will be extended to report the full
details of Request, Response, and Environment and any data posted to it.

The Module Skeleton

Every Apache module works by exporting a module data struct. In general, an Apache
2.x module takes the form:

module AP MODULE DECLARE DATA some module = {
STANDARD20 MODULE_ STUFF,
some dir cfg,
some_dir merge,
some svr cfg,
some svr merge,
some cmds,
some hooks

Copyright © 2005 Nick Kew (nig@apache.org)

Most of this is concerned with module configuration, and will be discussed in detail in
Chapter 8. For the purposes of our HelloWorld module, we only need the hooks:
module AP MODULE DECLARE DATA helloworld module = {

STANDARD20 MODULE STUFF,

NULL,

NULL,

NULL,

NULL,

NULL,

helloworld hooks
b

Having declared the module structure, we now need to instantiate the hooks function.
This function will be run by Apache at server startup, and its purpose is to register our
module's processing functions with the server core, so that our module will subsequently
be invoked whenever it is appropriate. In the case of HelloWorld, we just need to register
a simple content generator (handler):

static void helloworld hooks(apr pool t* pool) {
ap _hook handler (helloworld handler, NULL, NULL, APR HOOK MIDDLE) ;
}

Finally, we need to implement the helloworld handler. This is a callback function that
will be called by Apache at the appropriate point in processing an HTTP request. It may
choose to handle or ignore a request. If it handles a request, it is responsible for sending a
valid HTTP response to the client, and for ensuring that any data coming from the client
gets read (or discarded). This is very similar to the responsibilities of a CGI script, or
indeed of the webserver as a whole.

Our handler will start with a couple of basic sanity checks.

* First we check r->handler, to see if the request is for us. Ifthe request is not for
us, we ignore it by returning DECLINED. Apache will then pass control on to the
next handler.

* Second, we only want to support the HTTP GET (and HEAD) methods. So we
check for that, and return an HTTP error code for method not allowed if not.
Returning an error code here will cause Apache to return an error page to the
client.

The order of these checks is important. If we reversed them, our module might cause
Apache to return an error page for, e.g., POST requests intended for another handler, such
as a CGI script that accepts them.

Once we are satisfied that the request is OK and is meant for this handler, we generate the
actual response: in this case, a trivial HTML page. Having done that, we return ox to tell
Apache that we have dealt with this request, and no other handler should be called.

Copyright © 2005 Nick Kew (nig@apache.org)

static int helloworld handler (request rec* r) {
if (!r->handler || strcmp(r->handler, "helloworld")) {
return DECLINED ;

}
if (r->method number != M GET) {
return HTTP METHOD NOT ALLOWED ;

}
ap_set content type(r, "text/html;charset=ascii") ;
ap_rputs(
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n", r) ;
ap_rputs (
"<html><head><title>Apache HelloWorld Module</title></head>", r) ;
ap_rputs ("<body><hl>Hello World!</hl>", r) ;
ap_rputs ("<p>This is the Apache HelloWorld module!</p>", r) ;
ap_rputs ("</body></html>", r) ;
return OK ;

Return Values

Even this trivial handler has three different return values. This pattern is usual amongst
modules: we can return

* OK, to indicate that this handler has fully and successfully dealt with the request.
No further processing is necessary.

* DECLINED, to indicate that this handler takes no interest in the request and
declines to process it. Apache will then try the next handler. The default handler,
which simply returns a file from the local disc (or an error page if that fails),
never returns DECLINED, So requests are always handled by someone.

* Any HTTP status code to indicate an error. The handler has taken responsibility
for the request, but was unable or unwilling to complete it.

An HTTP status code diverts the entire processing chain within Apache. Normal
processing of the request is aborted, and Apache sets up an internal redirect to an error
document. Note that this can only work if Apache hasn't already started to send the
response down the wire to the client: this can be an important design consideration in
handling errors. To ensure correct behaviour, any such diversion must take place before
writing any data (the first ap_rputs statements in our case).

Where possible, it is usually good practice to deal with errors earlier in the request
processing cycle: this will be discussed in Chapter 5.

The Complete Module

Putting it all together and adding the required headers, we have a complete
mod_helloworld.c source file:

Copyright © 2005 Nick Kew (nig@apache.org)

/* The simplest HelloWorld module */

#include <httpd.h>
#include <http protocol.h>

static int helloworld handler (request rec* r) ({
if (!r->handler || strcmp(r->handler, "helloworld")) {
return DECLINED ;
}
if (r->method number != M GET) {
return HTTP METHOD NOT ALLOWED ;
}
ap_set content type(r, "text/html;charset=ascii")
ap_rputs (
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n", r) ;
ap_rputs (
"<html><head><title>Apache HelloWorld Module</title></head>", r) ;
ap_rputs ("<body><hl>Hello World!</hl>", r) ;
ap_rputs ("<p>This is the Apache HelloWorld module!</p>", r) ;
ap_rputs ("</body></html>", r) ;
return OK ;
}
static void helloworld hooks(apr pool t* pool) {
ap _hook handler (helloworld handler, NULL, NULL, APR HOOK MIDDLE) ;
}
module AP MODULE DECLARE DATA helloworld module = {
STANDARDZO_MODULE_STUFF,
NULL,
NULL,
NULL,
NULL,
NULL,
helloworld hooks

o

And that's all we need! Now we can build the module and insert it into Apache:

apxs -cie mod helloworld.c

and configure it as a handler in httpd.conf or in some .htaccess.

For example

LoadModule helloworld module modules/mod helloworld.so
<Location /helloworld>

SetHandler helloworld
</Location>

will cause requests to /helloworld on our server to invoke this module as its handler.

Note that both the helloworld hooks and helloworld handler functions are declared

Copyright © 2005 Nick Kew (nig@apache.org)

static. This is usual, though not quite universal, in Apache modules. In general, only the
module symbol itself is exported, and everything else is private to the module itself, so it
is good practice to declare all functions as static. Exceptions arise when a module exports
a service or API for other modules, as discussed in Chapter 7.

Using the request_rec

As we have just seen, the single argument to our handler function is the request rec.
This is equally true for all hooks involved in request processing.

The request_rec is a large data struct representing an HTTP request, and providing
access to all the data involved in processing a request. It is also an argument to many
lower-level API calls: in helloworld handler, it serves as an argument to
ap set content type and as an io-descriptor-like argument to ap rputs.

To take just one more example, suppose we want to serve a file from the local filesystem
instead of a fixed HTML page. To do that we would use the r->filename argument to
identify the file. But we also have file stat information we can use to optimise sending it.
Instead of reading the file and sending its contents with ap_rwrite, we can send the file
itself, allowing APR to take advantage of available system optimisations:

static int helloworld handler (request rec* r) {
apr_file t* fd ;
apr_size t sz ;
apr_status t rv ;

/* "is it for us?" checks omitted for brevity */

/* it's an error if r->filename and finfo haven't been set for us.
* We could omit this check if we make certain assumptions concerning
* use of our module, but if 'normal' processing is prevented by
* some other module then r->filename might be null, and we don't
* want to risk a segfault!

*/
if (! r->filename || ! r->finfo || ! r->finfo.size) {
ap log rerror (APLOG _MARK, APLOG ERR, 0, r,
"Incomplete request rec!")
return HTTP INTERNAL SERVER ERROR ;
}

ap_set content type(r, "text/html;charset=ascii") ;
/* Now we can usefully set some additional headers from the file info

* (1) Content-Length
* (2) Last-Modified

*/
ap_set content length(r, r->finfo.size) ;
if (r->finfo.mtime) {

char* datestring = apr palloc(r->pool, APR RFC822 DATE LEN) ;
apr rfc822 date(datestring, r->finfo.mtime) ;

Copyright © 2005 Nick Kew (nig@apache.org)

apr_table setn(r->headers out, "Last-Modified",

}

rv = apr file open(&fd, r->filename,
APRfREAD\APRfSHARELOCK\APRfSENDFILEiENABLED,
APR OS DEFAULT, r->pool) ;
if (rv != APR SUCCESS) {
ap log rerror (APLOG MARK, APLOG ERR, 0, r,
"can't open %s", r->filename) ;
return HTTP_NOT FOUND ;
}

ap_send fd(fd, r, 0, r->finfo.size, &sz) ;

/* file close here is purely optional. If we omit
* it for us when r is destroyed, because apr file
* a close on r->pool.

*/

apr file close(fd) ;

return OK ;

2 The Request, Response and Environment

datestring) ;

it, APR will close

_open registered

Setting aside this little diversion into the filesystem, what else can a HelloWorld module
usefully do?

Well, it can report general information, in the manner of programs such as the printenv
CGI script bundled with Apache. Three of the most commonly used and useful sets of
information in Apache modules are the Request headers, the Response headers, and the
internal Environment variables. So, let's update the original HelloWorld to print them in
the response page.

Each of these sets of information is held in an APR table that is part of the request rec.
We can iterate over the tables to print the full contents using apr table do and a
callback. We'll use HTML tables to represent these Apache tables.

First, here's a callback to print a table entry as an HTML row. Of course, we need to
escape the data for HTML.:

static int printitem(void* rec, const char* key, const char* value) {
/* rec is a userdata pointer. We'll pass the request rec in it */

}

request rec* r = rec ;
ap_rprintf(r, "<tr><th scope=\"row\">%$s</th><td>%s
ap_escape html (r->pool, key), ap escape html (r

</td></tr>\n",
->pool, value)) ;

/* Zero would stop interating; any other return value continues */

return 1 ;

Second, a function to use this to print an entire table:

Copyright © 2005 Nick Kew (nig@apache.org)

static void printtable(request rec* r, apr table t* t,
const char* caption, const char* keyhead, const char* valhead) {

/* print a table header */

ap_rprintf(r, "<table><caption>%s</caption><thead>"
"<tr><th scope=\"col\">%$s</th><th scope=\"col\">%s"
"</th></tr></thead><tbody>", caption, keyhead, valhead) ;

/* Print the data: apr table do iterates over entries with our
callback */
apr_table do(printitem, r, t, NULL) ;

/* and finish the table */
ap_rputs ("</tbody></table>\n", r) ;
}

Now we can simply wrap this in our HelloWorld handler:

static int helloworld handler (request rec* r) {
if (!r->handler || strcmp(r->handler, "helloworld")) {
return DECLINED ;

}
if (r->method number != M GET) {
return HTTP METHOD NOT ALLOWED ;

}

ap_set content type(r, "text/html;charset=ascii")

ap_rputs ("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"
"<html><head><title>Apache HelloWorld Module</title></head>"
"<body><hl>Hello World!</h1>"
"<p>This is the Apache HelloWorld module!</p>", r) ;

/* Print the tables */

printtable(r, r->headers in, "Request Headers", "Header", "Value")
printtable(r, r->headers out, "Response Headers", "Header", "Value")
printtable(r, r->subprocess env, "Environment", "Variable", "Value")

ap_rputs ("</body></html>", r) ;
return OK ;

Module 1/0

Our HelloWorld module generates output using a stdio-like family of functions:
ap_rputc, ap_rputs, ap_rwrite, ap_ rvputs, ap vrprintf, ap rprintf, ap rflush.
We have also seen the sendfile call ap send file. This is a very simple, high-level API
inherited originally from earlier Apache versions, and suitable for many content
generators. They are defined in http protocol.h.

This simple high-level API is available to content generators only. Since the introduction
of the filter chain, the underlying mechanism for generating output is based on buckets
and brigades, as discussed in Chapters 3 and 6. Filter modules have different

Copyright © 2005 Nick Kew (nig@apache.org)

mechanisms for generating output, and these are also available, and sometimes
appropriate, to a content handler.

There are two fundamentally different ways to process or generate output in a filter:
* By direct manipulation of bucket and brigades.

* By another stdio-like API (which is in fact rather better than the ap r* API, as
back-compatibility wasn't an issue).

We will describe these in detail in Chapter 6. For now, we will simply look at the basic
mechanics of using the filter-oriented I/O in a content generator.

There are three steps to using filter I/O for output:
(1) Create a bucket brigade
(2) Populate the brigade with the data we are writing
(3) Pass the brigade to the first output filter on the stack (r->output filters)

These can be repeated as many times as needed, either by creating a new brigade or by
reusing a single one. Ifa response is large and/or slow to generate, we may want to pass
it down the filter chain in smaller chunks. The response can then be passed through the
filters and to the client in chunks, giving us an efficient pipeline and avoiding the
overhead of buffering the entire response. Working properly with the pipeline whenever
possible is an extremely useful goal for filter modules.

For our HelloWorld module, all we need to do is to create the brigade, and then replace
ap_r* family calls with the alternative stdio-like API defined in util filter.h:

ap_ fflush, ap fwrite, ap fputs, ap fputc, ap fputstrs, ap fprintf. These have a
slightly different prototype: instead of passing the request_rec as a file descriptor, we
have to pass both the destination filter rec we are writing to, and the bucket brigade.

We'll see examples in Chapter 6.

Module input is slightly different. Again there is a legacy method inherited from Apache
1.x, but this is now treated as deprecated by most developers (though it is still supported).
So we should normally prefer to use the input filter chain directly in new code:

(1) Create a bucket brigade
(2) Pull data in to the brigade from the first input filter (r->input filters)
(3) Read the data in our buckets, and use it.

Both input methods are common in existing modules, including modules for Apache 2.x.
So for familiarity's sake, let's introduce each in turn into our HelloWorld module. We'll
update the module to support POSTs, and count the number of bytes POSTed (note that
this will usually, but not necessarily, also be available in a “Content-Length” request
header). We won't decode or display the actual data: although we could do, this is usually
best handled by an input filter (or by a library such as 1ibapreq). The functions we use
here are documented in http protocol.h:

Copyright © 2005 Nick Kew (nig@apache.org)

#define BUFLEN 8192

static void check postdata old method(request rec* r) {
char buf [BUFLEN] ;
size t bytes, count = 0 ;

/* decide how to treat input. */
if (ap_setup client block(r, REQUEST CHUNKED DECHUNK) != OK) ({
ap log rerror (APLOG MARK, APLOG ERR, 0, r, "Bad request body!") ;
ap_rputs ("<p>Bad request body.</p>\n", r) ;
return ;
}
if (ap_should client block(r)) {
for (bytes = ap get client block(r, buf, BUFLEN) ; bytes > 0 ;
bytes = ap _get client block(r, buf, BUFLEN)) {
count += bytes ;
}
ap_rprintf(r, "<p>Got %d bytes of request body data.</p>\n",
count) ;
} else {
ap_rputs ("<p>No request body.</p>\n", r) ;
}
}

static int helloworld handler (request rec* r) {
if (!r->handler || strcmp(r->handler, "helloworld")) {
return DECLINED ;
}
/* We could be just slightly sloppy and drop this altogether.
* But it's good practice to reject anything that's not explictly
* allowed. It cuts off *potential* exploits for someone trying
* to compromise the server.
*/
if ((r->method number != M GET) && (r->method number != M POST)) {
return HTTP METHOD NOT ALLOWED ;
}
ap_set content type(r, "text/html;charset=ascii")
ap_rputs ("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"
"<html><head><title>Apache HelloWorld Module</title></head>"
"<body><hl>Hello World!</hl>"
"<p>This is the Apache HelloWorld module!</p>", r) ;

/* Print the tables */

printtable(r, r->headers in, "Request Headers", "Header", "Value")
printtable (r, r->headers out, "Response Headers", "Header", "Value") ;
printtable(r, r->subprocess env, "Environment", "Variable", "Value") ;

check postdata old method(r) ;

ap_rputs ("</body></html>", r) ;

return OK ;
}
Here finally is check postdata using the preferred method of direct access to the input
filters, using functions documented in util filter.h.

Copyright © 2005 Nick Kew (nig@apache.org)

We create a brigade, then loop until EOS, filling it from the input filters. We will see this
technique again in Chapter 6.

static void check postdata new method(request rec* r) {
apr_ status_t status ;
int end = 0 ;
apr_size_ t bytes, count = 0 ;
const char* buf ;
apr bucket* b ;
apr bucket brigade* bb ;

/* check whether there's any input to read */
int has _input = 0 ;
const char* hdr = apr table get(r->headers in, "Content-Length")
if (hdr) {
has input =1 ;
}
hdr = apr table get(r->headers in, "Transfer-Encoding")
if (hdr) {
if (!strcasecmp (hdr, "chunked")) {
has input =1 ;
} else {
ap_rprintf ("<p>Unsupported Transfer Encoding: $s</p>",
ap_escape_ html (r->pool, hdr)) ;

return ;
}
}
if (! has_input) {
ap_rputs ("<p>No request body.</p>\n", r) ;
return ;

}

/* OK, we have some input data. Now read and count it */
bb = apr brigade create(r->pool, r->connection->bucket alloc) ;
do {
status = ap get brigade(r->input filters, bb,
AP MODE READBYTES, APR BLOCK READ, BUFLEN) ;
if (status == APR SUCCESS) {
for (b = APR BRIGADE FIRST (bb) ;
b != APR_BRIGADE_SENTINEL(bb) ;
b = APR BUCKET NEXT (b)) {
if (APR BUCKET IS EOS(b)) {
end = 1 ;
break ;

}

/* to get the actual length, we need to read the data */
status = apr bucket read(b, &buf, &bytes, APR BLOCK READ) ;
count += bytes ;
}
}
apr_brigade cleanup (bb) ;
} while (! end && status == APR SUCCESS) ;

Copyright © 2005 Nick Kew (nig@apache.org)

if (status == APR SUCCESS) {
ap_rprintf(r, "<p>Got %d bytes of request body data.</p>\n",
count) ;
} else {
ap_rputs ("<p>Error reading request body.</p>", r) ;
}

Copyright © 2005 Nick Kew (nig@apache.org)

