
Rapid application development with
Apache Turbine and Maven

Henning Schmiedehausen

<henning@apache.org>

Gesellschaft für Mehrwertdienste mbH

Introduction

� This tutorial shows how to develop web

applications with the Turbine web framework

� Apache Maven is used as the build tool which

glues the build process together.

� This tutorial will show the basics

� Target is to get you „over the hump“

About the Speaker

� Working with Turbine since 2001
(Turbine 2.1)

� Committer on the Turbine project (Fall 2002)

� ASF member (May 2005)

� Did many of the reworkings in the 2.2 -> 2.3
development cycle and made the 2.3 and
2.3.1 releases

� Developed and deployed ~ 20 Turbine based
applications ranging from 1-500 kLOC

Agenda

� 1) Preliminaries

� 1.1) Introduction to Turbine and Maven

� 1.2) Maven and M.E.T.A. installation

� 1.3) „Hello World“

� 2) Turbine Overview

� 3) Turbine example: ApacheFaces

Part 1.1

Introduction to Maven and Turbine

Introduction: Apache Maven

� Integrated Project management tool

� “ant on steroids”

� Project descriptor (project.xml)

� Definition of custom build goals (maven.xml)

� Pre- and Post-Goals control build sequence

� Plugin-oriented approach

� Plugins are written in Jelly

� ~ 90 plugins included with Maven itself

Apache Maven Architecture

(Siegfried Götschl / it20one)

Apache Maven: How to get it

� Integrated artifact repository (jars, plugins)

� Web repo at http://www.ibiblio.org/maven/

� Current release version is 1.0.2

(1.1 is Beta level, 2.0 is Alpha level)

� Get it from http://maven.apache.org/

� Binary and Source versions available

� Even a Windows Installer!

Introduction: Jakarta Turbine

� „A platform for building applications, not just
running them“

� Toolbox for building web applications

� 100% pure Java, JDK 1.3+

� J2EE compilant, servlet based

� MVC oriented

Jakarta Turbine: Architecture

Servlet Core

Tool

Box

Service Broker Module management

Services

A
c
tio

n
s

Pages

Screens Layouts Navig.

Servlet Core

Tool

Box

Service Broker Module management

Services

A
c
tio

n
s

Pages

Screens Layouts Navig.

Jakarta Turbine: Architecture

� View and Controller Framework

� Service framework with ~20 services

� „Tool“ infrastructure

� Utility classes

� Jakarta Velocity to render View templates

� DB Torque for persistence

Jakarta Turbine: How to get it

� http://jakarta.apache.org/turbine/

� Current „official“ release is 2.3.1. A new

major relase with architectural changes (2.4)

is under development

� The Turbine project is looking for contributors

helping with the code and the docs!

Turbine Development Kit

� Turbine up to 2.3 knew only the “TDK”

(Turbine Development Kit)

� Large collection of ant scripts that in the end

spawned the Maven project

� No official version since Turbine 2.2

� Heavy (includes servlet container and jars)

� Rigid (path structure dictated by the TDK)

� Underdocumented

M.E.T.A.

� Maven Environment for Turbine Applications

� Custom Maven plugin

� First release with Turbine 2.3.1

(supporting 2.3 and 2.3.1)

� Lightweight (downloads lots of stuff from the

'net, though)

� IDE support (tested with Eclipse)

� Docs: http://jakarta.apache.org/turbine/meta/

Part 1.2

Maven and M.E.T.A. installation

The M.E.T.A. environment

� Custom plugin for Maven

� Setup of a new Turbine-based application

� Compilation of Turbine and Torque based code

� Generation of necessary SQL files for persistence

� Deployment and WAR generation

� Can be used with “old fashioned editor”

(OFE) environment or IDE

Prerequisites

� A J2SDK, supporting Java 1.3 or Java 1.4

� A servlet container (Unlike the TDK, you are

free to choose one)

� A database for persistence.

� Something for code editing. Either an IDE

oder an editor. Or both.

Software used in the tutorial

� Sun J2SDK 1.4.2 – http://java.sun.com/

� Apache Tomcat 5.0.x –

http://jakarta.apache.org/tomcat/

� MySQL 4.1 – http://www.mysql.org/

� Eclipse 3.0 – http://www.eclipse.org/

� GNU emacs –

http://www.gnu.org/software/emacs/

Installing Maven

� http://maven.apache.org/start/download.html

� Get maven 1.0.x, don’t even think about the

1.1 or 2.0 alpha / beta versions.

� Windows

� The Installer works nicely

� Unix / Linux

� Create ~/.maven and unpack there

Caveat

� JAVA_HOME

� On Windows: Settings -> System -> Environment

� On RPM based Linux: Use the excellent JPackage RPMs

which do a really good job to integrate Java seamlessly

� MAVEN_HOME

� On Windows: Windows Installer does it right

� global build.properties file

� Don‘t forget maven.appserver.home setting!

� On Windows: Make sure to use forward („/“) slashes

� Add MAVEN_HOME/bin to your PATH

Does Maven work?

Installing M.E.T.A.

� Maven can load M.E.T.A. directly from the

central repository at ibiblio

maven –DartifactId=maven-turbine-plugin \

–DgroupId=turbine \

–Dversion=1.2 plugin:download

Did it install correctly?

Running maven –g must show

Turbine related Maven goals.

Ready to go!

� The M.E.T.A. workbench consists of

� Java SDK

� Servlet Container

� Maven

� M.E.T.A. plugin

� Optional components

� IDE

� Database

Part 1.3

„Hello World“

� Setup build environment
� maven –Dturbine.app.name=demo turbine:setup

� Compile application
� maven java:compile

� Deploy it to the web container
� maven turbine:deploy

� Run the container

Instant “Hello World”

“Hello, World”

What has happened?

� turbine:setup generates a new application

� java:compile builds the .class files

� turbine:deploy installs the web application

� Skeleton contains a few demo pages

� “normal” development mode using an editor

(“for the emacs folks”)

� Note: no setup.properties file necessary

Caveat

� Make sure your Maven setup is correct!

� You must have Internet connectivity when

building your project for the first time

� The “missing libraries” problem

� Starting / Stopping your Servlet Container

M.E.T.A. goals in
“normal” mode

� Skeleton setup
� turbine:setup

� Development cycle
� java:compile

� turbine:deploy

� Bind WAR for deployment
� turbine:war

� Documentation
� site

Using an IDE – “inplace” mode

� “inplace” development mode

� Custom setup.properties file necessary:

turbine.app.name = inplace

turbine.app.subdir = true

turbine.app.flavor = turbine-2.3.1

turbine.app.om.layer = torque

turbine.plugin.mode = inplace

turbine.plugin.inplace.dir = tomcat

Setup for Eclipse

� Setup build environment
� maven turbine:setup

� Generate persistence classes
� maven torque:om

� Fetch all necessary libraries
� maven turbine:install-libs

� Generate Eclipse Configuration
� maven eclipse

� Import project into Eclipse

� (optional) Add Information for Tomcat plugin

Eclipse Tomcat plugin

� Eclipse plugin for Tomcat Start/Stop

� Also integrates configuration with Project

� Download from
http://www.sysdeo.com/eclipse/tomcatPlugin.html

“Hello, World”, inplace style

What has happened?

� turbine:setup generates a new application

� torque:om builds persistence layer sources

� turbine:install-libs fetches the libs

� eclipse generates .project and .classpath

� Skeleton contains a few demo pages

� “inplace” development mode for IDE users

� Not the default, a setup.properties file

must be present!

M.E.T.A. goals in
“inplace” mode

� Skeleton setup

� turbine:setup

� Eclipse setup

� turbine:install-libs

� Update source code

� torque:om

� Documentation

� site

“normal” vs. “inplace” Mode

� Maven builds project

� Development cycle
� java:compile

� turbine:deploy

� Webapp location
outside source tree

� Autogenerated classes
are automatically

updated

� IDE builds project

� Maven prepares project
� torque:om

� turbine:install-

libs

� Webapp location inside
source tree

� Autogenerated classes
must be updated
� torque:om

What about SQL code?

� M.E.T.A. also builds SQL code if a

persistence layer is configured

� turbine:sql – builds SQL code

� Torque specific support:

� torque:insert-sql – insert SQL into

database

� torque:create-db – create the database

End of Part 1

� What have we done?

� set up our workbench

� installed M.E.T.A.

� talked about development modes

� old-fashioned and IDE-based “Hello World”

� What have we not done?

� Talked about APIs or programming

� Wrote a single line of code. No Java, XML, …

five minute break

Part 2

Turbine Overview

Why Turbine?

� Well suited for “spontanous development”

(aka “agile processes” aka “hacking”)

� Turbine applications can “grow”

� The Turbine concepts are easy to understand

� A Number of helper classes for “boring” tasks

Turbine buzzwords

� Modules. Generic term for View parts and

Actions. Modules are organized in Java

packages.

� Tool. Part of the tool box provided by Turbine

� Action. Part of the Controller, responsible for

changing model state.

� Service. Plug-in part of the framework

Model 2+1

� blurs the MVC concept by integrating View

and Controller

� “paradigm” for writing Turbine applications

� expression coined by Jon S. Stevens

� based on MVC (Model 2)

Turbine MVC

You are not expected to be able to read this slide from the last row in the audience. This is why you got hand-outs.
If you can, call NASA at +1 202 358 0001 to become a test pilot instead of a Java Hacker

Turbine View Model

� The Turbine View is composed from

� Page “Everything you see”

� Screen “Content of the page”

� Navigation “Top, Bottom, Menu”

� Layout “Where to put everything”

� Each part of the View is a Module

Turbine View composition

Turbine View quirks

� Most web frameworks use a Templating

solution or JSPs for the View

� Turbine uses Java classes for Page,
Layout, Screen and Navigation

� Turbine provides classes that implement

templating with Velocity or JSPs

� Using Java classes as View makes things

like PDF rendering screens easy

Turbine View Classes

� View classes are controlled by the module

manager (Assembler Broker)

� Java class names are composed from the

module names and packages

� Default module package is
org.apache.turbine.modules

� additional packages can be added in the

configuration

Templating - Velocity

� A View should be built from web pages, JSPs

or Templates, not Java classes

� Turbine leans heavily towards Templates and

uses the Velocity templating engine

� Building the View with templates needs “glue”

for calling the templating engine

Velocity in a nutshell

� “The other ugly duckling”

� Designed to replace WebMacro

� Simple notation for conditionals and loops

� Contains macro definition and execution

� Can load its templates from many sources

� Provides Context between Java and
Template code

� Integrated bean access in template code

Velocity and Turbine

� Turbine provides classes for Velocity

integration:

� Pages: VelocityPage

� Screens: VelocityScreen, VelocitySecureScreen

� Layouts: VelocityOnlyLayout, VelocityDirectLayout

� Navigation: VelocityNavigation

� These classes are used as defaults

Velocity View composition

Content

Page Top

Page Bottom
M

e
n
u

Navigation Templates

provide static content

Layout Template

controls the Position

of the elements on the

page

Screen Template

application content

Navigation Template

References

Screen Template

Reference

<html>

<head/>

<body>

<table>

<tr><td colspan=“2”>$navigation.setTemplate(“Top.vm”)</td></tr>

<tr>

<td>$navigation.setTemplate(“Menu.vm”)</td>

<td>$screen_placeholder</td>

</tr>

<tr><td colspan=“2”>$navigation.setTemplate(“Bottom.vm”)</td></tr>

</table>

</body>

</html>

Example: A Layout Template

Requesting a Page

Pages are requested by providing the

“template” CGI parameter

http://localhost:8080/helloworld/app/template/Demo.vm

Templates name parts are separated
with a comma
Demo.vm

demo,Demo.vm

complex,page,Example.vm

Template names are not file paths!

� Prior to T2.3, template naming was a mess

� T2.3 introduced the two golden rules for
templates:
� “Template Names never contain slashes”

� “Template names are no paths. They’re not
absolute and have no leading slash”

� A template name can resolve to a very
different filename

View rendering with Velocity

Matching templates

� Page class, Screen and Layout templates are

found by a search mechanism

� Java classes and Templates are looked up

using various search patterns

� Each search pattern has a default value

� Most search mechanisms work in a

hierarchical fashion

Matchmaking

� When requesting a Page, Turbine fetches

Layout, Screen and Navigation

� Finding a Layout template:

Request: demo,page,Page.vm

1. match: demo,page,Page.vm

2. match: demo,page,Default.vm

3. match: demo,Default.vm

4. match: Default.vm

Template Files

� File lookup through
Velocity

� Separate trees for all
template types

� Templates are kept in
sub directories

� This is just the default!

Dynamic content

� Until now we have seen only static content

� A Web application (of course) needs active

content

� And we haven’t programmed a single line of

Java code yet!

� But there were some strange place holders

starting with a dollar sign…

The Velocity context

� Vehicle between templates and Java code

� The context can contain arbitrary Java

objects referenced by a key (hash table)

� Velocity provides access to Bean getters with

a short hand notation

� Velocity can call any method on an object in

the context.

Getting Stuff in the Context

� All Screens in the View are rendered by Java

classes

� A mechanism similar to the template lookup

exists for the Java classes

� And, of course, we can provide our own

class…

Example: A Screen class

public class DateScreen

extends VelocityScreen

{

public void doBuildTemplate(RunData data,

Context context)

throws Exception

{

Date d = new Date();

context.put(“date”, d);

}

}

Example: Screen Template

The current date is $date.

Side Track: RunData Object

� Turbine instantiates a RunData object for

each request/response cycle

� This object gives access to user, session and

Turbine related information

� It is only valid for one request cycle

“Don’t keep a reference in application
objects unless you know exactly what
you’re doing!”

Screen classes make sense?

� Writing a class for each Screen is much work

� Lots of Code duplication!

� Code and Template must be kept in sync

� All objects must be put in the context by

every screen

Screen classes are the push model

Turbine Tools

� Tools are small Java classes that implement

a turbine-specific tool interface

� Tools are managed and added to the context

by Turbine

� Tools have defined scopes and lifetime

Tools are the pull model

Tool Scopes

� global global for all sessions

� request per request cycle

� session per user session

� authorized per users session, after login

� persistent per user, is put in storage

public class DateTool

implements ApplicationTool

{

private Date d = null;

public DateTool() { /* empty */ }

public void init(Object data)

{

d = new Date();

}

public void refresh() { /* empty */ }

public String getDate() {

return d.toString();

}

}

Example: Date Tool

Application Tool

Interface

Custom Tool Code

Activating the Date Tool

� Adding the tool to Turbine configuration

Request Tool. Refreshed with every request cycle

tool.request.requestDateTool = de.intermeta.demo.tools.DateTool

Global Tool. Instantiated only once

Tool.global.globalDateTool = de.intermeta.demo.tools.DateTool

� Usage

<p>Request Tool: The current date is $requestDateTool.getDate()</p>

<p>Global Tool: The current date is $globalDateTool.getDate()</p>

Predefined tools

� Turbine contains a number of pull tools

� Some tools are even activated by default
� $link builds URI for linking template

pages

� $content URI for container provided pages
like images or style sheets

� $page controls HTML HEAD and BODY
attributes.

� The RunData object is available as $data

Using predefined tools

$page.setBgColor(“yellow”)

Go to the Target

Resulting HTML code

<html>

<head><title></title></head>

<body BGCOLOR=“yellow">

Go to the Target

</body>

</html>

Tool lifecycle

� Tool interface methods

� init()

� refresh()

� init() is called at tool initialization

� refresh() is called each time the tool is put

to the context

Turbine Actions

� In Model 2+1, the Controller is part of the

Turbine servlet

� Turbine provides Actions to map Controller

actions to Java classes

� Actions are modules which are managed by

the Assembler Broker

� There are no default actions

Requesting a Turbine Action

� Actions are requested by providing the

action parameter

http://localhost:8080/helloworld/app/action/LoginUser

� The $link Tool contains a few convenience

methods for building Action requests

� Every action has its own class

Example: Action

import org.apache.turbine.modules.actions.VelocityAction;

import org.apache.turbine.util.RunData;

import org.apache.velocity.context.Context;

public class DemoAction

extends VelocityAction

{

public void doPerform(RunData data, Context context)

throws Exception

{

String msg = “Action was executed!”;

context.put(“done”, msg);

}

}

Executing Actions

� Due to historic reasons, Actions are actually

part of the Page

� You can’t change the page from an Action!

Page Execution

Execute Action
Exec. Screen,

Layout & Navigation

skip, if no Action
defined

Action Events

� Grouping actions together in classes is done

with ActionEvents

� Action Events are very useful for Forms

� Action Event avoid having lots of classes with

just one method

� The $link tool provides methods for dealing

with Action Events

Form Submission

� Action Events are called by providing special

named parameters to a request

� The method name is prefixed with

“eventSubmit_”

<form method=“post”

action=“$link.setPage(“FormResult.vm”).setAction(“FormAction”)”>

Enter a value: <input type=“text” size=“10” name=“value”>

<input type=“submit” value=“Cancel” name=“eventSubmit_doCancel”>

<input type=“submit” value=“Enter” name=“eventSubmit_doEnter”>

</form>

Example: Action Event

public class FormAction

extends VelocityAction

{

[…]

public void doCancel(RunData data, Context context)

throws Exception

{

data.setScreenTemplate(“Cancel.vm”);

}

public void doEnter(RunData data, Context context)

throws Exception

{

context.put(“value”, data.getParameters().getString(“value”, “”));

}

}

Action Event in a link

� $link provides support for Action events

� Resulting HTML Code

Turbine Services

� Singleton based architecture

� Most parts of the Turbine core are services

� Only one Service object per Service for all

sessions and users

� Service broker provides management for

startup and shutdown

Existing Services

� Services used by the HelloWorld application

� AssemblerBroker (Module Management)

� RunData Service (Run Data Management)

� Template Service (Template Lookup)

� Velocity Service (Velocity Rendering)

� Pull Service (Tools)

� Factory & Pool Service (Object Management)

Service Management

� Services are configured in the Turbine

configuration file

� “late init”: Initialization at first lookup

� “early init”: Initialization at Turbine startup

� Default is “late init”

Service lifecycle

Turbine Services

� Turbine provides ~ 20 different services

� Security Service (User authentication)

� Intake (Input validation)

� Localization

� Upload (file uploading)

Accessing Turbine Services

� Most Turbine services provide a static

Façade for calling its methods

� Using the Façade hides the Service lookup

and makes the calling code more readable

� Each façade should provide a
getService() method for fetching a

reference to the Service object

Example: Accessing a Service

public class CryptoTool

implements ApplicationTool

{

private CryptoService cs = null;

[…]

public void init(Object data)

{

cs = TurbineCrypto.getService();

}

[…]

public String encrypt(String value)

throws Exception

{

CryptoAlgorithm ca = cs.getCryptoAlgorithm(“MD5”);

return ca.encrypt(value);

}

}

import org.apache.turbine.services.BaseService;

public DemoService

extends BaseService

{

public void init() throws InitializationException

{

setInit(true);

}

public void shutdown()

{

setInit(false);

}

[… add your service methods here …]

}

Example: Service skeleton

Activating a Service

� Services are added in the Turbine

Configuration

services.DemoService.classname=de.intermeta.demo.DemoService

� For early initialization, an optional parameter
can be added

services.DemoService.earlyInit = true

Turbine parameter passing

� Turbine allows an application to use three

types of parameters

� CGI GET (…?param=value)

� CGI POST (stdin on a POST request)

� PATH_INFO (…/param/value)

� All three methods are equal

� PATH_INFO allows bookmarking

� PATH_INFO params must be in pairs!

Getting Parameters

� All CGI and PATH_INFO parameters are

pulled together

� Multiple params are available as Arrays

� The RunData object provides access to the

parameters

� The values can be queried as various types

Getting Parameters

String s = data.getParameters().getString(“val”);

String s = data.getParameters().getString(“val”,
“default”);

int i = data.getParameters().getInt(“val”);

int i = data.getParameters().getInt(“val”, 0);

int [] i = data.getParameters().getInts(“val”);

boolean b =
data.getParameters().getBoolean(“bool”, false);

Set allParamNames = data.getParameters().keySet();

Turbine Configuration

� Turbine uses commons-configuration to read

its configuration

� Default is properties based configuration from
TurbineResources.properties file

� multiple lines or comma-separated values are

provided as multiple values for a property

� M.E.T.A. separates application and core

configuration

End of Part 2

� What have we done?

� Learned about the main parts of Turbine

� View with Page, Screen, Navigation, Layout

� Tools

� Pull and Push model

� Controller with Action and Action Events

� Services

five minute break

Part 3

Turbine example: ApacheFaces

About ApacheFaces

� An application to be able to “match faces to

names”

� Written as an entry to the ApacheCon 2004

Derby programming contest

� Written in about six hours time during

AC2004

� Made 2nd place.

Any questions?

Where to go from here

� The Turbine home page

� http://jakarta.apache.org/turbine/

� All materials from this talk are available at

� http://henning.schmiedehausen.org/turbine/

Thanks a lot for your attention

