1
The Next Generation:
MySQL 5 + PHP 5

= ApacheCon Europe 2005

#July 19, 2005 :: Stuttgart

* Georg Richter & Zak Greant
2 [@] About Georg Richter
= Author/maintainer of PHP's MySQL and ncurses extensions
= Author of MySQL Connector/00.org
= ASF Member
= MySQL AB Senior Developer
3 [@] About Zak Greant

* Co-maintainer of PHP’s MySQL extensions

* Works with eZ systems as their Director, Free Software and Open Source

= Author, PHP Functions Essential Reference
4 @] Questions ?

= If something isn’t clear, just ask

= ... or wait for a break

= ... or wait for the end of the tutorial

= ... or send mail to apachecon@greant.com
5 How many of you use:

(in production)

*PHP 4.x ?

*PHP 5.0.x ?

*PHP 5.17

* MySQL 3.237?

= MySQL 4.0?

=MySQL 4.17

=MySQL 5.07?

= MaxDB ?
6 (3] An Overview of ext/mysqli

= ... or, why make another MySQL API for PHP?
7 |2 The PHP 5 MySQL API

= Called ext/mysqli, with the 'i' standing for any one of: improved, interface, ingenious, incompatible or
incomplete (and hopefully not for: idiotic, impaired, etc.)

= Supports all modern MySQL versions. (Older versions (< 4.1.x) do not support all features)

* Needs version 4.1.3+ of the MySQL client library.

= Written by Georg Richter.

8 2 Why was ext/mysqli created?

= ext/mysql was difficult to extend (due to design flaws like: optional connections and arguments, many
deprecated functions, lots of nasty code to support all this)

= New features in MySQL 4.1.+ could not be easily supported in ext/mysql

* Better mapping between the ext/mysqli and the MySQL C API will make it easier to maintain this extension in
the future

9 [3] Why use ext/mysqli: Safer

= Safer connections with SSL and strong password hashing

= Safer queries with prepared statements

= No default connections or links make it harder to accidentally compromise or damage databases or the server.

10 (@] Why use ext/mysqli: Faster

= New MySQL binary protocol is more efficient

* Prepared statements can give massive performance enhancements (1+ orders of magnitude) over large data
sets

* Faster overall code

11 [3] Why use ext/mysqli: Simpler

= OO0 interface is simple, concise and extensible

= Prepared statements make certain operations simpler

* No persistent connections

* Less to go wrong

12 [@] Comparing new and old
= The procedural interfaces are very similar, with the exception of some additional functions and the lack of
default links and connections.
= For the most part, we will focus on the object-oriented interface. If you don't like OO, don't worry - you can
easily mix the OO interface into procedural code.
* Note that code based on the OO interface is easier to extend

13 [@] No Default Data Sources

= Unlike the old extension, a default connection is never created or set. This prevents queries accidentally getting
sent to the wrong place if the php.ini file is modified.
= Calling mysqli_query() without a valid connection to MySQL always fails, unlike mysgl_query()
= Calling mysgli_query() without specifying a link also fails, unlike mysqgl_query()
14 [@] Procedural vs. OO
* Connecting to a MySQL server
* $link = mysqli_connect($h, $u, $p, $db);
* $link = new mysqli($h, $u, $p, $db);
*Sending a query
* $result = mysqli_query($link,'SELECT 1";
* $result = $link->query('SELECT 1";
= Getting results
* $row = mysqli_fetch_row($result);
* $row = $result->fetch_row();
15 [@] Using
ext/mysqli
= More Fun.
16 @] Connecting to the server
= Each parameter is optional.
* $link = new mysqgli($host, $Suser, $password, $db, $port, $socket);
17 (@l Don't Use Defaults!
= file::/etc/php.ini
= mysqli.default_host = "staging"
* mysqli.default_host = "live"

=file::/../test.php
= $link->query("DROP DATABASE foo");
= code to recreate db for testing suite

= great way to accidentally trash the production database
* Hopefully, we can remove this "feature" in future versions of ext/mysqli
18 [@] Making Queries
=Just as you would expect
* $result = $link->query('SELECT 1";
= Optional last parameter allows use of buffered or unbuffered queries
= Unbuffered queries provide more rapid access to the first elements of large data sets, but tie up the
= Buffered queries require more storage on the client side, and require all of a result to be transferred before it
can be used.
19 @] Fetching meta-data
= Via functions, as in ext/mysq|
=By accessing a property of an object (faster)
= Properties are fetched as required. Using var_dump() won't reveal them.
=# dump all connection properties
»foreach(array(‘affected_rows', 'client_info', 'client_version', 'errno’, 'error', 'field_count’, 'host_info', 'info',
'insert_id", 'protocol_version', 'sqlstate’, 'thread_id', 'warning_count') as $p){ echo $p,": ', $link->$p, "\n"; }
20 [@] Fetching the insert id
* $link->query('CREATE TEMPORARY TABLE foo (id int(11) NOT NULL auto_increment, bar text, PRIMARY KEY

* $link->query('INSERT foo (bar) VALUES (NOW());
=echo "Insert ID: ", $link->insert_id,
« "\n%
*|nsert ID: 1
21 [@] Prepared Statements |

* A method of running queries that provides performance and security benefits.

= Allows separation of query preparation (syntactic validation, parsing, query execution plan, ...) from query
execution (modifying a table or fetching a result set)
= Works with CREATE TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET, UPDATE, and many SHOW statements
22 [@I Prepared Statements |l
= Queries are split into two parts
= ... statements with optional placeholders
* SELECT name, count FROM birds
* SELECT name, count FROM birds WHERE station = ?
= ... and data corresponding to the placeholders
='ENSN' # Skien, Norway weather station
23 [@] Prepare
* The statement is sent to the server
= $query = 'SELECT title, review, year FROM movie WHERE actor LIKE ?';
* $stmt = $link->prepare($query);
= The server syntactically validates, parses and (possibly) plans the query.
= If the query is successfully prepared, the prepared statement is saved and a statement handle is returned.

24 [@] Bind Parameters

= Bind local variables to any placeholders
= # bind variable to prepared statement
* $stmt->bind_param('s', $actor);
= Parameters can be of the following types:
*b: blob (send max_allowed_package chunks)
=d: double/float
*i. integer
=s: string (includes enum, set and string representations of numbers, such as decimal)

25 (@] Execute

= Request that the server execute the query referenced by the link, passing any bound parameters with the
request.
= $stmt->execute();

26 [@| Bind Results

*If the query returned rows of data, bind fields in the query to local variables.

* $stmt->
bind_result(
$title,
$review,
$year
);
27 @I Fetch Data
* Then fetch a row from the result set. Each field is bound into the corresponding variable from the bind_result
call.
*while($stmt->fetch() X
= printf("Actor: %s, Title: %s (%s)
* Review: %0.1d/5\n",
. $actor, $title, $year, Sreview);
'}
28 [@] Simple Prepared SELECT

= $link = new mysqli($h, $u, $p, 'information_schema’);\

* $query = 'SELECT TABLE_NAME FROM VIEWS';

= $stmt = $link->prepare($query);
$stmt->execute();
$stmt->bind_result($name);

= while($stmt->fetch()){

echo $name, "\n";
}
29 [@] Simple Prepared INSERT
* $link = new mysqli($h, $u, $p, 'test’);

$stmt = $link->prepare('INSERT movie (actor, review, title, year) VALUES (7, ?, 7, ?)");

= $stmt->bind_param('sdsi', $actor, $review, $title, $Syear);
$actor = 'Audrey Tautou’;

$review = 5;
$title = 'Amelie’;
$year = 2001;

$stmt->execute();
30 (@] Error Handling

= Most functions return false on failure
= For more info, use properties from mysqli or mysgli_stmt objects
* $link->error()
* $stmt->error()
= ... or a function-based idiom, like ext/mysqli
= mysql_connect_error()
*mysql_error()
31 [@] Report Functions
* Provides information to help debugging and development
= Report instances where indexes are not used
* Report errors in function calls (which usually need to be explicitly requested)
32 Basic Reporting Example
* mysqli_report(MYSQLI_REPORT_ALL);
= $link = new mysqli($h, $u, $p, 'world");

* $Sresult = $link->query('SELECT * FROM city WHERE name LIKE "%k%" LIMIT 10";
while($row = $result->fetch_row()){
echo join(" ", $row), "\n";
}
* PHP Warning: mysqli::query(): No index used in query/prepared statement SELECT * FROM city WHERE name
LIKE "%k%" LIMIT 10 in /Users/zag/Projects/Sessions/mysqluc05/prepared_2.php on line 4

33 [@] Exceptions |

= ext/mysqli has been recently extended to throw exceptions
= This helps prevent standard ugly procedural error handling code:

* $link = new mysqli(...);

= if(FALSE === $link){ ... }

= $result->query(...);

= if(FALSE === S$result){ ... }
* # etc.

34 [@] Exceptions Il

= With exceptions, you get nice clean code like:
*try {

$my = new my_mysgli($h, $u, $p);
$result = $my->query("SELECT NOW()");
var_dump($result->fetch_row());
$result->free();
$my->close();

} catch (Exception $e){
error handling here

}

35 [@] Exceptions Il

= Use specific catch blocks for specific errors. A generic catch block could also be used.
=try {
$my = new my_mysgli($h, $u, $p);
$result = $my->query("SELECT NOW()");
var_dump($result->fetch_row());

*} catch(ConnectException $exception) {
echo "Connection Error\n";
var_dump($exception->getMessage());

} catch(QueryException $exception) {
echo "Query Error\n";
var_dump($exception->getMessage());

}

36 [@] Extending ext/mysqli

= Adding a new method.
= class my_mysqgli extends mysqgli {
function quick_fetch($Squery) {
if(1$result = $this—->query($Squery))
return FALSE;
}
return array_pop($this->query($query)->fetch_row());
}
}
$my = new my_mysqli($, $u, $p);
echo $link->quick_fetch('SELECT NOW()");
37 |2 Migrating is a Piece of Cake
= The similarities of ext/mysqgl and ext/mysqli make migration simple
= The major choices are choosing whether or not to use OO and prepared statements
38 [@] Migrating is a Tough Cookie
* Don’t trust new code for a production setting
= The old MySQL extension has been in production use for years.
= ext/mysqli hasn’t. There may be bugs or subtle change in behavior
39 |=] Migration: Duplicate Environment
* Duplicate all or part of your application environment (or create your desired app. environment)
= Replicate data from your current MySQL install to a newer version of MySQL
* Use rsync to sync file data
= Write simple scripts to automate all the process - you will likely need several tries to get it right and doing it all
by hand gets boring
40 [@] Migration: Live Data
= Ensure that your duplicate environment can’t trash data on shared servers
* Crank up the error reporting, logs, etc
= Use socat or ipfilters to split traffic between your real environment and your test environment
= Fix what you forgot to do
*Try again
41 [@] Migration: Followup
* Compare the state of the MySQL databases at the end of a test run

= Use mysqldump to dump data in a format that can easily be diffed
= Comparing log files

* Run test suites

* etcC.

42 @] Coffee Break?
43 [@] A Quick Trip Through MySQL Feature Land
44 UNIREG
* Ancient History
45 [@] MySQL 3.x
* Rest In Peace.
46 @] MySQL 4.0.x
= Very Stable.

* Mostly Harmless.
= General Availability.
47 @ MySQL 4.1.x
* General Availability.
48 [@] MySQL 4.1 Major Features
= Error and Warnings Reporting System, Improved Client/Server Protocol, Improved I118L, Integrated Help, Stored
Procedures, Subqueries
49 Errors and Warnings
= Better reporting for warnings and errors
* Use SHOW WARNINGS/ERRORS to view warning and error messages
= Each query resets the warning/error message cache
50 2/ Showing warnings and errors
= # display last 10 errors from prior query
* SHOW ERRORS LIMIT 10;

= # display the total number of errors
* SHOW COUNT(*) ERRORS;

* # fetch the total number of warnings

* SELECT @@warning_count;
= # fetch max. # of error messages that will be stored for a single query
+« SELECT @@max_error_count;
51 [@l Sample warning display
* DROP TABLE IF EXISTS no_such_table;
= SHOW WARNINGS\G
= Level: Note
Code: 1051
Message: Unknown table 'no_such_table'
52 [@] Improved Client/Server Protocol
= Supports prepared statements
= Allows blob/clob data to be sent in chunks to server without storing requiring client-side storage
* Lower overhead - transmits data in its natural representation
= Optional inline zlib compression
= Optional SSL connections

53 [@] Improved 118L

* Much better support for character sets and collations

= Can mix character sets, etc. inside of any data context in the server, from databases to tables to queries.
= Supported in InnoDB, MEMORY and MyISAM storage engines

*Includes UNICODE support

54 [@] Collations

= Rules for sorting character sets
= One character set can have many collations. e.g. latinl has latinl_bin, latinl_german1l_ci, latinl_german2_ci,
etc.
= A string has zero or one default collations.
= Collations can only be used for the corresponding character set
=# using a collation with ORDER BY
* SELECT * FROM names ORDER BY name COLLATE latin1_bin;
55 [@I A Binary Collation (ASCII)
* ... WHERE 'A' < 'B'

= Comparison returns true, as the encoding of ‘A’ (65) is less than the encoding of ‘B' (66)
*... WHERE 'A' ="a'

= Comparison returns false, as the encoding of ‘A’ (65) is different than the encoding of ‘a' (97)

56 (@] A Non-Binary Collation

= Non-binary collations use transformative rules to alter the comparison

«“0" == "ue”
A7 =="q"
*“A” == "eh” // latinl_canadian ;)
57 [@] Examining a String
*«SET @str =
CONVERT(_latin1'Foo!" USING utf8);
* SELECT CHARSET(@str),
CHAR_LENGTH(@chr_str),
BIT_LENGTH(@chr_str),
COLLATION(@chr_stn)\G
* Results
= CHARSET(@str): utf8
CHAR_LENGTH(@str): 3
BIT_LENGTH(@str): 24
COLLATION(@str): utf8_general_ci
58 [@] Examining a Table
= SHOW CREATE TABLE mysql.user\G

* CREATE TABLE user (
Host char(60) collate utf8_bin NOT NULL default ",
User char(16) collate utf8_bin NOT NULL default ",
Password char(41) collate utf8_bin NOT NULL default ",
Select_priv enum('N","Y") character set utf8 NOT NULL default 'N’,

) ... DEFAULT CHARSET=utf8 COLLATE=utf8_bin ...

59 [@] Charset/Collation Info
* Use SHOW CHARACTER SET to show the available character sets on a MySQL server
= Use SHOW COLLATION to show the available collations on a MySQL server
= Note that the collation names generally end in suffixes that indidicate if they are case-sensitive (_cs), case-
insensitive (_ci) or binary (_bin) collations
60 [Pl Integrated Help
* Provides simple help on MySQL features and functions via queries.
= Help data is stored in the mysqgl.help_% tables on the MySQL server.
= Generated from the included manual using the fill_help_tables script
=Very handy if dealing with an unfamiliar feature or version of MySQL
61 [@] Using Integrated Help
= HELP CONTENTS
= HELP SELECT
= Use SQL wildcards
= HELP EL_
* HELP DATA MAN%
62 [@] Subqueries
= Allow a query within another query to be treated as a table, list or scalar value
= More powerful and easier to use than joins
* Can be of correlated (where a table referenced in a subquery also appears in the outer query) or uncorrelated
forms (where this is not the case or is forbidden (as in derived tables))
63 [@] Simple Subquery
= # MEMORY tables/total # of tables

» SELECT (COUNT(*) FROM TABLES WHERE ENGINE = 'MEMORY"), (SELECT COUNT(*) FROM TABLES);
64 [@] Subquery as Scalar

= Subqueries can go most places that a scalar value can be used
= Determine how many cities, from all of the cities listed in the world database are larger than the largest city in
Norway.

* SELECT COUNT(*), (SELECT COUNT(*) FROM city) FROM city WHERE city.population >
(SELECT MAX(population) FROM city
WHERE countrycode = 'NOR');
65 [@] Subqueries and Exists
= Correlated subquery with exists
= SELECT name, code FROM country
WHERE NOT EXISTS
(SELECT * FROM city
WHERE countrycode = country.code);
66 @ MySQL 5.x
= Still a beta release.
* Don’t use it in production without a lot of testing.

67 [@] MySQL 5.0 Major Features

= Information Schema
= Stored Procedures
*Triggers
= Views
68 [@l Information Schema

= A consistent, query-based method for retrieving meta-data about the server

= Accessing meta-data becomes just another query, allowing much easier programmatic access of the meta-
data.

= Provides access to meta-data on tables, columns, stored procedures, views, etc.

69 [@! Stored Procedures

= A collection of SQL statements stored on the server and callable by name
= Greater independence from the client application

= Better network performance vs. more server load

* More secure - keeps operations on data on the server

* Not yet stable - still limited

70 [@] Stored Procedure Example

* CREATE PROCEDURE withdraw(p_amt DECIMAL(6,2), p_tellerid INT, p_custid INT)
MODIFIES SQL DATA
BEGIN ATOMIC
UPDATE customers
SET balance=balance - p_amt;
UPDATE tellers
SET cashonhand=cashonhand - p_amt
WHERE tellerid = p_tellerid;
INSERT INTO transactions
VALUES (p_custid, p_tellerid, p_amt);
END
71 =] Triggers
= A chunk of SQL run when a data modification query is executed on a given table.
= Can be set to run before or after DELETE, INSERT and UPDATE queries.
= Created with syntax:
* CREATE TRIGGER name BEFORE QUERY_TYPE ON table FOR EACH ROW statement(s);
= Trigger support is still rudimentary.
72 [@ Simple Sample Triggers
* These just echo out a snippet of text on DELETE or INSERT.
= CREATE TABLE test (i int NOT NULL, PRIMARY KEY (i));
* CREATE TRIGGER show_insert BEFORE INSERT ON test FOR EACH ROW SELECT CONCAT('inserted ', NEW.i);
= CREATE TRIGGER show_delete BEFORE DELETE ON test FOR EACH ROW SELECT CONCAT('deleted ', NEW.i);
73 [@] Sample Trigger
= Keep track of the number of updates to a column
* CREATE TRIGGER count_changes BEFORE UPDATE ON address FOR EACH ROW SET NEW.count = IFNULL
(OLD.count, 1) + 1;
/74 Views
= A logical table (rather than physical) created from a query
= Can be updated (but be careful)
* Has its own permissions
= Relies on the underlying table indexes for efficiency
* Managed much like a normal table: CREATE VIEW, SHOW VIEW, ALTER VIEW, DROP VIEW

75 [@] Creating and Using a View

« CREATE VIEW scandinavia AS SELECT id, name, population, district, countrycode FROM city WHERE countrycode
in ('DNK', 'NOR', 'SWE");

* SELECT name FROM scandinavia ORDER BY population DESC LIMIT 4;

e +
| name |
e +
| Stockholm |

| Oslo |

| Kebenhavn |

| Gothenburg [Goteborg] |

+
76 @] Creating a View of a View
= CREATE VIEW norway AS SELECT id, name, population, district FROM scandinavia WHERE countrycode = 'NOR’;

= SELECT name, district FROM norway;

t——— o +
| name | district |
e tmmm - +
| Oslo | Oslo |

Bergen	Hordaland
Trondheim	Ser-Trendelag
Stavanger	Rogaland
Berum	Akershus

77 [@l Inserting Into a View
= Works much like expected

= INSERT norway (name, population, district) VALUES ('Skien', 50507, "Telemark’);
= Watch our for missing defaults!

* SELECT Name, CountryCode as Country, Population as ‘Pop.’, District FROM city WHERE Name = 'Skien";

e - +———— e +
| Name | Country | District | Pop. |
e +———————= +————————= e +
| Skien | | Telemark | 50507 |
+—————— +——————— +——————— e +

78 @] Creating Alternate Views of Data
=« CREATE VIEW privs AS SELECT host, user,

(if(Select_priv="Y"',1 << 0, 0) |
if(insert_priv="Y",1 << 1, 0) |
if(Update_priv ="Y",1 << 2, 0) |
if(Delete_priv ="Y',1 << 3, 0) |
if(Create_priv="Y"1 << 4,0) |
if(Drop_priv="Y"1 << 5,0) |
if(Reload_priv ="Y',1 << 6, 0) |
ifShutdown_priv ="Y",1 << 7, 0) |

if(Show_view_priv = "Y', 1 << 22, 0))
= AS privmap FROM mysqgl.user;
79 [@] Using the Alternate View
* mysql> SELECT * FROM privs;

Fom————————— +-———— o +
| host | user | privmap |
Fmm e e o —————— +

| localhost | root | 8388607 |

| towel.local | root | 8388607 |

| towel.local | | O |

| localhost | | O |

t——m +————- +———————— +
4 rows in set (0.00 sec)

80 [@] Questions?

