
Developing Application Extensions with Apache Axis2
Chathura Herath, Eran Chinthaka
{chathura,chinthaka}@apache.org

Introduction
When looking back at the transition of web service technologies, several generations are
clearly visible. The first generation web services were highly controlled interactions and
can be considered as mere tests of feasibility. SOAP engines of that era, notably Apache
SOAP, were meant to be “proof of concept” and not at all concerned about performance.
The purpose of these first generation SOAP engines was to convince the world that web
services are feasible.
Soon the toll of these first generation SOAP engines paid off. Web services were
pursued as a suitable technology. More companies started showing their interest and the
SOA started taking shape. This period, which can be called as the second generation of
web services, required better SOAP engines that were faster. Aspects such as discovery
and definition were already standardized and SOAP engines also needed to support these
standards. Axis was born as one of these second generation SOAP engines.
Now the second generation of web services is also coming to an end. Web services are
becoming highly demanding and a large number of players have entered the web service
arena. Aspects governing different facets of web service interactions have been
standardized. The third generation of web services requires faster, far more robust SOAP
engines and the existing Axis is not enough for this. Axis2 was made to fill this gap.

Features of Axis2
Axis2 is shaped by the experience from the Axis 1.x family and the advancements in the
Web Service stack during the last few years. Axis2 developers take conscious effort to
make sure that Axis2 performs better in terms of speed and memory despite the fact that
new features and functionalities are added. Following are the key features of Axis2.

1. New XML Object Model
2. Messaging based core
3. Improved deployment Model
4. Pluggable data binding

Birds eye view of Axis2

The figure depicts the abstract appearance of Axis2. It has a core component that
encapsulates the main functionality, built on the new XML object, AXIOM and the
WSDL processing framework.
There are two major add-ons for the core, namely the transport and the data binding
components. The deployment component is laid on top of them all.

Axis2 Installation

Introduction

Axis 2.0 can be downloaded as a zipped binary or the source . This section describes how
Axis2 can be installed either as a standalone server or as part of a J2EE compliant servlet
container.

Prerequisites

Axis2 requires the Java Runtime Environment to be properly installed. Axis2 is
developed to be run on JRE 1.4 and upwards but it has not been fully tested with the
latest JRE 1.5. Hence it is safe to run Axis2 with Java 1.4. If the JRE is not already in
place it must be installed to proceed further. For instructions on setting up the JRE in
different operating systems, please visit http://java.sun.com .

All the required jars are shipped with the binary distribution and if the source distribution
is used, running the maven build will automatically download the required jars for you.

Following sections describe how each type of distribution needs to be installed. Since the
process with the source distribution is similar to the binary distribution after building, the
first section explains the process of building Axis2 from source. If you have the binary

http://java.sun.com/

distribution you can skip the build sections and directly go to the binary installation
section.

Building Axis2 from source

Setting up the Environment and the tools

The Axis2 build is based on Maven . Hence the only prerequisite to build Axis2 from
s

sit here

source distribution is to have Maven installed. Even though extensive instruction guide
are available at the Maven site, this guide also contains the easiest path for quick
environment setting. Advanced users who wish to know more about Maven can vi
.

For Windows users the easiest way is to download the windows installer package. Once
the installer package is run, all the necessary environment variables will be properly set.
Once Maven is installed, the success of the installation can be tested by typing maven
version in the command prompt.

For Unix/Linux users the tar ball or the zip archive is the best option. Once the archive is

ctions for
downloaded expand it to a directory of choice and set the environment variable
MAVEN_HOME and add MAVEN_HOME/bin to the path as well. More instru
installing Maven in Unix based operating systems can be found here .

Once maven is properly installed it's all that is needed to start building Axis2.

The Axis2 source distribution

The source distribution is available as a zipped archive. All the necessary build scripts are

nd will
included with the source distribution. Once the source archive is expanded into a
directory of choice, moving to the particular directory and running maven comma
build the Axis2 jar file.

http://maven.apache.org/
http://maven.apache.org/start/install.html

Once the command completes, the binaries (jar files in this case) can be found at a newly
created "target" directory.

Note For the first Maven build (if the maven repository is not built first) it will take
a while since required jars need to be downloaded. However this is a once only
process and will not affect any successive builds.

The default maven build will however build only the Axis2 jar file. To obtain a WAR
(Web Archive), "maven war" command should be issued. This will create a complete
WAR with the name axis2.war inside the target directory.

Once this build step is complete, the binaries are ready to be deployed.

Installing Axis2 in a Servlet container

Installation of the WAR is quite simple. It's a matter of dropping the war in the webapps
folders and most servlet containers will automatically install the war. However some
servlet containers may require a restart in order to capture the new web application.
Please refer your servlet container documentation for more information about this.

Once the WAR is successfully installed it can be tested by pointing the web browser to
the http:// <host :port>/ axis2. It should produce the following page.

To ensure that everything is fine and smooth, a probing of the system can be done
through the validate link. If the validation fails then the war has failed to install properly
or some essential jars are missing. At such a situation the documentation of the particular
servlet container should be consulted to find the problem. The following page is a
successful validation. Note the statement core Axis2 libraries are present.

The Axis2 web application also provides an interface to upload services. Once a service
is created according to the service specification as described in userguide that jar file can
be uploaded using the upload page.

The uploaded jar files will be stored in the default service directory. For Axis2 this will
be the <webapps>/axis2/WEB-INF/services directory. Once a service is uploaded it will
be instantly installed.

Since Axis2 supports hot deployment one can drop the service jar directly through the file
system to the above mentioned services directory and it will also cause the service to be
automatically installed without the container being restarted.

To check the successful installation of a service available services link is provided. The
services and the operations of successfully installed services will be displayed in the
available services page.

If the service has deployment time error it will listed out those services as faulty services.
And If you click on the link it will show your the deployment fault

Deployment time error message

Axis2 Administration is all about configuring Axis2 at the run time and the configuration
will be transient , and more descriptions are avilable in Axis2 admin web guide

Installing Axis2 Eclipse plug-in

The easiest way to obtain the plug-in would be the binary distribution. The full Axis
binary distribution contains the compiled version of this plug-in under the tools directory.

If one needs to build the plugin from source it is not as trivial as running the Maven
build. The reason is that the plug-in depends heavily on the Eclipse classes, which are
only available in an Eclipse environment. The recommended procedure is to run the
create-project.xml (in the "modules\tool" directory of the source distribution) build file
which will create two folders (the other one for the Service Archiver tool) and copy the
necessary files to relevant folders. Then Eclipse should be configured to open the
contents in a PDE project. Please go through the Eclipse documentation to learn how to
open projects in the PDE format.

Once you've obtained the plug-in just unzip the content of the plug-in archive to the
eclipse plug-in directory (if it is the zipped-binary version) or copy the necessary folders
to the eclipse plug-in directory and restart Eclipse.

Note - This plug-in works on Eclipse version 3.0 and upwards

If the plug-in is properly installed you should see a new wizard under the "New"
section.(use the File -> New -> Other or Ctrl + N)

http://ws.apache.org/axis2/webadminguide.html

More information on Axis2 eclipse plug-in is available here
(http://ws.apache.org/axis2/CodegenToolReference.html).

Scenario for the Client demonstration – Google Spell checker

Introduction
In order to demonstrate the capabilities of the axis2 client API and the power of its tools,
the client demonstration includes the code generation from a publicly available web
service and using the generated stubs to access the service.

The selected public Web service is the Google Web service available at
http://www.google.com/apis/ . In a nutshell accessing this service requires one to register
at Google and to obtain a personal key code, free of charge. This key code is only
allowed a certain number of requests per day. More information of the formalities of
registration can be found at http://www.google.com/apis/api_faq.html. The rest of this

http://ws.apache.org/axis2/CodegenToolReference.html
http://ws.apache.org/axis2/CodegenToolReference.html
http://www.google.com/apis/
http://www.google.com/apis/api_faq.html

note assumes that you have successfully registered at Google and already has a valid key
code.

In Web services, the most important descriptor is the WSDL file of the service. It
includes all the information needed for a client to access a service and usually tools are
available for code generation, based on the WSDL file. The WSDL for the Google web
service is available at http://api.google.com/GoogleSearch.wsdl.
Once the WSDL is known, the next step is to generate the code. Axis2 comes bundled
with a code generation tool, which has both the graphical and command line user
interfaces. This demonstration uses the eclipse plug-in of the code generation tool.

Running the Code Generator
1. Select the Stub generation wizard

http://api.google.com/GoogleSearch.wsdl

2. Select the WSDL file (Either the URL directly or point to the local file system
where the WSDL file is available)

3. Select the options. If only the client side code is needed the default options are
usually sufficient. However ticking on the “generate test case” will generate a
junit test case that can be used to test the generated stubs

4. Select the output location. This will be defaulted to the users home directory

Once the Finish button is pressed, the code will be generated for the given WSDL.
This message will be displayed if the code generation is successful.

Well done! We are through the first hurdle.

Examining the generated code
The Generated client code comprises of several types of classes.

1. The Stub Implementation

2. The Stub interface
3. The call back handler class for asynchronous call backs (would not be available if

the sync only option is selected)
4. the test class(would be available only if the ‘generate test class’ option is selected)
5. Databinding classes. Found in the *.databinding package.

The most important and ultimately the most useful class here is the Stub implementation.
The stub implementation will have two methods per operation in the web service. Here is
a sample method signature

public <return type> <method name> (<input type> param)
throws java.rmi.RemoteException;

public void start<method name> (<input type> param,final
<callback handler> callback) throws
java.rmi.RemoteException;

First method includes code to call the service synchronously. This method is the
equivalent of the usual method call that blocks until the processing is done.

The second method call is somewhat special. It is the asynchronous method call and
requires a callback handler as a parameter

Implementing And Developing Services In Axis2

Web service is intended to provide interoperability between heterogeneous environments.
So the contract that governs the communication is a key. The WSDL defines the contract
that governs the message exchange. This tutorial will start the development of the web
service from the contract the WSDL.
Axis2 distribution ships an Eclipse pug-in that is capable of generated required server
skeletons and the required types that are necessary for the service deployment. Once the
plug-ins are properly integrated to the Eclipse the Wizards will be available as shown in
the following figure.

In the first screen of the Wizard the user is supposed to select whether he wants to start
from the WSDL and then code generate or starting from a java artifact the WSDL to be
generated. In this case the generation of java source given a WSDL file will be described.

Next the Wizard will require the user to specify the WSDL file that the code generation
should be based on.

Next the user can specify the more specific things like the output language, programming
model, etc of which are explained below.

• Output Language- Language of the generated stub.
• Programming model- Blocking or non Blocking.
• Package Name - Package of the generated code.
• Test case – To generate a unit test case that will test the generated code.
• Generate server side – The default code generation is for the server side. This

option will enable the server side code generation.

Next the user can select the output location of the generated code.

Notes about generated code : One can generate server side skeletons and/or client
stubs using this tool or both along with a unit test case.

Client side generated code

The client side generated code can be generated either using the blocking API
(synchronous) or non-blocking API (asynchronous) or both. This can be selected from
ticking the relevant check boxes in the code generation tool.

• Blocking API -Once the service invocation is called, the client application hangs
and gets the control back only when the operation completes and the client
receives a response or a fault. This is the simplest way of invoking Web Services
and suites many business situations.

• Non-Blocking API - A callback or polling based API and hence once a service
invocation is called, the client application immediately gets the control back and

the response is retrieved using the callback object provided. This approach
provides the flexibility to the client application to invoke several Web Services
simultaneously with out blocking on the operation already invoked.

The generated code will consist of following artifacts if both blocking and non-blocking
cases are selected.

• An interface with the name of the port-type of the bound interface of the service
which will have all the methods that will be available under that particular
service.

• A stub that implements the above interface and hides the engine level complexity
and presents a nice API to invoke a particular operation. For a given WSDL
operation “foo”, the stub will contain two methods if both synchronous and
asynchronous option is selected.

o Method foo(<parameters>) which will be used during a synchronous web
service call

o Method startFoo(<parameters>, <callbackhanbler>) which will be used
during an asynchronous web service call.

• A callback handler class with two methods for each method “foo” with empty
method stubs. This class is only applicable in the case of the asynchronous web
service invocation.

o Method receiveResultFoo(<result object>) which will be called by the
engine once the asynchronous invocation receives a result.

o Method receiveErrorFoo(<exception) which will be called by the engine if
an unexpected result occur during the invocation.

• Set of classes that will be used for data binding.

Server side generated code

Server side generated code will basically consist of a skeleton with empty method stubs
so that use can fill it up and deploy it as the service implementation. Generated artifacts
include a Message Receiver, thus the selection of the programming model (i.e. whether
its synchronous or asynchronous) will be encapsulated in that particular Message
Receiver.

The generated code will consist of following artifacts.

• A skeleton that has methods with empty bodies which will become the actual
service implementation once the method bodies are filled with the proper business
logic.

• A Message Receiver which will be deployed along with the service
implementation.

• A service.xml file which will be generated based on the default configurations,
which is required when deploying the service.

• Set of classes that will be used for data binding.

Generate test code

In the code generation tool if the user selects the “generate a test case” option, the code
generation tool will generate files required to test the generated code in a package <user
package>/test.
The generated code will consist of following artifacts.

• A dummy implementation of the server skeleton.
• A service.xml file to deploy the service.
• A unit test case that will setup a server and deploy the dummy implementation of

the server skeleton and use the client stub to invoke each one of the services.

Bundling the service

Axis2 comes with a simple service archiver tool which provides easy to use functionality
to develop a axis archive or an "aar" file or a "jar" file that can be deployed as a web
service to the Axis2. This tool is in the form of an Eclipse plug-in and can be downloaded
from the downloads section. The following sections describe how the tool can be used.

If the plug-in is properly installed you should see a new wizard under the "New"
section.(use the File -> New -> Other or Ctrl + N)

Selecting the wizard and pressing the next button will start the code generator wizard.
Following is the first wizard page.

Once the class file folder is given (which should be a folder in the file system) the next
button will be enabled. Page 2 of the wizard requires you to locate the server.xml

Note that the automatic generation of the service.xml is disabled for this release. After the
service.xml is located you can point to the output location and specify the file name.

Once all the parameters are filled, finishing the wizard will generate the service archive.
This service archive can be hot deployed to the axis2.

WSDL Generation
It is logical to start the development of the web service by first writing the WSDL, but in
some situations the reverse happens, where the implementation is already written and the
user may want to generate the relevant web service artifacts. This can be done by using
the java2WSDL tool which is also provided as an Eclipse plug-in.

In the first screen of the Code Generation tool the user should select the “Generate a
WSDL from a Java Source option” which will guide the user through the WSDL
generation process.

In the next step the user should point to the implementation class and the application will
pick up the probable methods that can be possible candidates for the Web service
operations. The user can select the methods of the implementation class that he/she desres
to be exposed as web service operations.

Finally the user can select the output location and the WSDL file name and then Finish so
that the WSDL file will be generated.

Developing Extensions – Supporting Custom MEP

Axis 2 architecture has provided for a pluggable extension to interface the Asis2 Engine
and the service implementation. In other words the Axis2 engine uses a pluggable
component called a “Message Receiver” handle the interactions with the actual service
implementation. Form the point of Axis2 engine an incoming message gets its headers
processed by the handlers in the “In” chain(or pipe) and the payload or the body of the
message will be delivered to a “Message Receiver” who knows what to do with it. Axis2
supports first class support for the ability to plug-in new or different Message Receivers
through deployment mechanisms.

Message Receiver’s behavior is based on the Message Exchange pattern and the fact that
the service invocation is blocking or non-blocking. Message receivers can fully control
the synchronous or asynchronous behavior of the service invocation and same service can
be invoked synchronously or asynchronously by associating the service with relevant
message receivers. Since it is a valid requirement to change the programming model to
synchronous or to asynchronous, the Axis2 deployment provides room to deploy and
bind specific Message Receivers during the service deployment. In addition to this Axis2
ships most frequently used Message Receivers such as InOutSyncMessageReceiver,
InOutAsyncMessageReceiver, etc.

Axis2 code generation tool generates a Message Receiver for each time code generation
happens for a particular service and this enables the service implementation to be tightly
bound, where necessary, by way of a java method invocation rather than reflectively
calling the operations of the service invocation(Which the generalized Message Receivers
such as InOutSyncMessageReceiver do.).

Further the fact that the actual web service implementation can be decoupled with the
Axis2 engines using a Message Receiver will enable the users to write the service
implementation in languages other than java that compiles to the java platform. There are
few examples for such providers in the source distribution.

The Message exchange patterns are not frequently used extension, thus axis on the run
does not support the deployment of a service that has a totally new Message Exchange
Pattern. Axis2 has a well defined context hierarchy and among them the
OperationContext handles the context with respect to different Message Exchange
Patterns. Current implementation of the OperationContext supports all eight Message
Exchange Patterns defined in the WSDL 2.0 specification.

To introduce a new MEP other than the ones that are defined in the WSDL 2.0
specification, One must extend the org.apache.context.OperationContext that will be
capable of identifying where does a given message fits in the given Message Exchange
pattern. Then the user needs to write a new Message receiver that knows what to do with
all the incoming messages of the given MEP and how those will get consumed by the
service implementation and how and when would the results or out messages should be
sent out. Though there is no on the run mechanism in Axis2 to adapt to a completely new
MEP other than those of which are defined in the WSDL 2.0 specification, it can be
easily extended to make it work properly for any given Message Exchange Pattern.

RESTful Web Services Support

Axis2 can be configured as a REST Container and can be used to send and receive restful
web services. The REST Web Services can be access in two ways, using HTTP GET and
POST.

Doing REST web services with HTTP POST

REST support can be enabled in the Server side by adding the following line to the
axis.xml file.

<parameter name="eanbleREST" locked="xsd:false">true</parameter>

But it act both as a REST endpoint as well as a SOAP endpoint. When a Message is
received if the content type is text/xml and the SOAP Action Header is missing the

Message is considered as a RESTful Message. Else they are treated as usual SOAP
Messages.

On sending a message out, the fact that the message is RESTful or not, can be decided
from the client API or by deployment descriptor of the client.

• By adding an entry in the client.xml file similar to that of the axis.xml.
• Through client API e.g.

call.set(Constants.Configuration.DO_REST,"true")

Access a REST Web Service Via HTTP GET

Axis2 lets the user to access Web Service that has simple type parameters via the HTTP
GET. For example following URL requests the version service Via HTTP GET. But the
Web Services arrived via GET assumes REST. Other parameters are converted in to the
XML and put them in to the SOAP Body.

http://127.0.0.1:8080/axis2/services/Version/getVersion?operation=getVe
rsion

Result can be viewed in the browser as shown below.

A GET request should fulfill following conditions

1. All the parameters the Web Service should accept MUST be simple types (e.g.
String, int, float, long)

2. There must be a parameter called operation that states the name of the operation

For an example request
http://127.0.0.1:8080/axis2/services/Version/getVersion?operation=getVe
rsion will be converted to the following SOAP Message for processing by Axis2

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <soapenv:Body>
 <axis2:getVersion
xmlns:axis2="http://ws.apache.org/goGetWithREST" ></axis2:getVersion>
 </soapenv:Body>
</soapenv:Envelope>

MTOM Support

Users may need to transmit a SOAP message together with attachments in various like
images, drawings, xml docs, etc. Such data are often in a particular binary format.
Traditionally, two techniques for dealing with opaque data in XML have been used,
namely; "by value" or "by reference." The former is achieved by embedding opaque data
as element or attribute content. XML supports opaque data as content through the use of
either base64 or hexadecimal text encoding. It is well-known that base64 encoded data
expands by a factor of 1.33x original size, and that hexadecimal encoded data expands by
a factor of 2x, assuming an underlying UTF-8 text encoding. Also of concern is the
overhead in processing costs (both real and perceived) for these formats, especially when
decoding back into raw binary. When comparing base64 decoding to a straight-through
copy of opaque data, the throughput of at least one popular programming system
decreased by a factor of 3 or more.

Resources
• Apache Axis2 official site (http://ws.apache.org/axis2)

http://ws.apache.org/axis2

	Developing Application Extensions with Apache Axis2
	
	Introduction
	Features of Axis2
	Birds eye view of Axis2
	Axis2 Installation
	Introduction
	Prerequisites
	Building Axis2 from source
	Setting up the Environment and the tools
	The Axis2 source distribution

	Installing Axis2 in a Servlet container
	Installing Axis2 Eclipse plug-in

	Scenario for the Client demonstration – Google Spell checker
	Introduction
	Running the Code Generator
	Examining the generated code

	Implementing And Developing Services In Axis2
	Notes about generated code : One can generate server side skeletons and/or client stubs using this tool or both along with a unit test case.
	Client side generated code
	Server side generated code
	Generate test code
	Bundling the service

	WSDL Generation
	Developing Extensions – Supporting Custom MEP
	RESTful Web Services Support
	Doing REST web services with HTTP POST
	Access a REST Web Service Via HTTP GET

	MTOM Support
	Resources

