1 TORAUNRURA

Scalable Internet Architectures

how to build scalable production Internet services and...

how not to build them

2 LUy |

A bit about the speaker

Principal Consultant
OmniTl Computer Consulting, Inc.

@ open-source developer

@® mod_backhand, wackamole, Daiquiri,
Spread, OpenSSH/SecurlD,
a variety of CPAN modules, etc.

@ Ecelerity (MTA), EC Cluster (MTA Clustering)

. open-source advocate
@ Closed source software has technical risk.

@ closed-source advocate

@ It’s about business, not software. Finding the right tool for
the job sometimes leads to closed-source solutions.

- @ closed-source developer

Vbbb

9-
N .
— — %m
N - [e) D
o) 8 S 3
N o 2
qv) 0 o s E
[0 c
— E T 0
o o+ o=
S N 3
O 224 &
nwa L 0
QO x o g =
- = o c -
=2 O O ()
o = £ o I
" 52 g
~ 30 n :
o Ses £
(qv] g 3908 £
(= £ 38 £
et
L= o ° s
E T oS c
W) =
o

Vbbb

/p)

e

-

=

C

®)

.

> 0

C o £

LLl c =2
T <9 O

c en%w

O E & o 5

ol = L a c

& 0O ® . O

: ERRE

S © 2 = B

W c O L& o

' 5 LUy |

High Uptime

Availability despite individual system failures

@ parallel servers

@ all servers are live and can handle transactions
@ cheap and common for web servers
@ expensive for databases

@ hot spare/standby

| |
| |
| |
| |
| |
| |
| |
| |
| |
i @ fail-over system that is seamless and immediate (automated) i
i @ common for HA/LB solutions i
i @ many databases have built-in facilities providing hot-spare service i
| |
| |
| |
| |
| |
| |

@ warm spare/standby

@ fail-over system is nearly immediate, but not seamless (not automated)
@® common technique for databases, cheap and easy

@ cold spare/standby

@ “I have the equipment and backups to get it running if it were to fail.”

' 6 LUy |

Maintenance

The single largest expense in most environments

@ Contributing factors:

@ The number of unique required products in the architecture

@ Uneducated development and implementation decisions

@ The stability and “replaceability” of required products
@® The complexity and frequency of staging and pushing new code

7 TORAUNRURA

Formal Procedures

“Scalability marginally impacts procedure
Procedure grossly impacts scalability”

developer code review =

. religious use of revision control |

| planned and reviewed upgrade strategies

| intelligent, low-cost (resources) push |
procedures

8 LUy |

optimize where it counts

complexity has costs

use the right tool

9 LUy |

Three Simple Rules

#1: Amdahl’s Law

improving execution time by 50%
of code that executes 2% of the time
results in 1% performance improvement

@ Better

improving execution time by 10%
of code that executes 80% of the time
results in 8% performance improvement

10 TORAUNRURA

Three Simple Rules

#2: Complex architectures are expensive

® adding an additional
architectural component
to a service or set of
services increases the
system complexity
linearly

@ requiring an additional
architectural component
for a service increases
the system complexity
exponentially

FALLING
DOT-COMS

11 LUy |

Three Simple Rules

#3: Using the wrong tool is expensive (and stupid)

@ using a tool because it is easy
or familiar doesn't make it right

@ it is often a gratuitous waste of
resources

@ white papers are marketing
tools and may not represent the
most practical solution

@ it’s about good design and
implementation practices

LUy |

13 TORAUNRURA

Production Fundamentals

@ understand the stability of the software
@ understand the velocity of development
@ understand administrative aspects

@ understand the likelihood of failure
and the support for each component

14 TORAUNRURA

'Software Stability

@ Stability is not just reliability

@ Also consider:
@ release cycles
@ upgrade paths

@ feature additions,
“deprications”, and removals

15 TORAUNRURA

The Need For Speed

fhe Need For Control

@ Understand the velocity of development

@ For Small Projects: use revision control

@ For Large Projects: use revision control

@ No revision control?

@ For ALL Projects: use revision control
@ Accident waiting to happen

' 16 LUy |

The Need For Speed

fhe Need For Control

@ Unchecked speed is costly

@ Rapid release cycles (once/day) are needed in some
businesses

@ An equilibrium must achieved or the situation will explode

@ Properly used revision control allows for speed and
control

@ It is challenging, but meticulous unwavering adherence to
policy and procedure will deliver you from disaster.

17 ORMORAR

Administration

@ This deserves a lot of attention
(despite the single slide here)

@ Systems Administration costs money

@ Short release cycles on components means perpetual administration
@ Constant change in development product results in different stress on:

@ Databases, Networks, Systems... and the people that maintain them
@ Adding components or complicating the architecture complicates:

@ Monitoring

@ Upgrading

@ Scaling down should the need arise

18 TORAUNRURA

Likelihood of Failure

(the hidden administrative nightmare)

@ Internally Developed Application Failures Suck.
@ Third-Party Component Failures Suck More!

@ It is seen as an administration responsibility
@ Regardless if developers dictated their inclusion in the architecture

@ SAs, NAs, and DBAs suddenly become responsible for the ongoing
maintenance of all third-party products -- open source or commercial

@ This is often beyond the expertise/attention of the individual or team
@ Systems fail, it’s part of life

@ Chronic problems and failures will explode your TCO

19 LUy |

Likelihood of Failure

(solution to the hidden administrative nightmare)

@ Don’t leave “requirement” assessments at:

@ “This won’t work... but you’re the boss”

) Worst

@ implementing something that won’t work
@ being responsible for making it work

¢ Bad

@ getting fired for refusing to implement something that has no hope of
working

) Best

@ work with the development team to revise requirements and

@ getting fired for perceived incompetence
architectural needs

21 LUy |

@ static image serving
@ 120MBs throughput
@ 24x7 uptime requirements :

| . Three geographically distributed sites |

¢
-
¢
-
¢
-
¢
o 0
< Qo.£
T §%
ge) = @©
o Q£
/2]
© T >
Ke) c e
S ®C T
o o2
QO © £
o mM
CC

<> HA/LB

purpose
HA/LB devices

ISIONS

“White Paper” Approach

HA/LB
expensive, dedicated, single-

0
=
=
o
=
<
D
=

O
Q
-

22

LUy |

The Tiirea Tiered Approach

® Pros:

® Fine-grained, connection-based request
distribution (load balancing)

® 100,000+ concurrent connections

® Session management (sticky)

® One IP per service

- ®Cons:

® Expensive
@ Single purpose
® Your HA solution needs HA!!!
® 3 locations requires 6 units
® High maintenance
(additional hardware component)

o
——

——— .1
2 T T (T [)

[T

7 -

"l Gl Rl ol cm
== & A h ‘A il kGl

SR | ’
p— 1 - ; s =T])
h \ [T (T FoA T I,

Peer-based HA

Wackamole

LUy |

® No specialized hardware
® Low maintenance |

(software daemon)
® Simple
® Free

® Cons:

® Naive load balancing (DNS RR)
® Requires multiple IPs for a single
service (bad for multi-SSL)

25 ILILy |

Policy & Procedure

® Pushing content
® Even for small (~100Mb) image repositories, pushes are
expensive
® dumb protocols have horrible network costs
® rsync still incurs substantial 1/0 for each “mirror”
® multicast rsync could work, but there are no solid
implementations

® Pulling content
® Assuming a slow rate of change, cache-on-demand is solid
® Use Apache + mod_proxy (Reverse Proxy + Caching)
® Fine-grained cache purging is a challenge

. 26 ILILy |

Scaling Up

3 Sites

® Goal
® 200Mbs throughput requirement
® The goal is lower latency
® only 2 web servers per site needed for fault tolerance

® Traditional “White Paper” Approach 3 x2x$10000
® 3 x dual HA/LB +3x2x $2000
® 3 x 2 image web servers $72000

® Peer-based HA Solution
® 3 x 2 image web servers 3x2x $2000
$12000

Scaling Down

1 Site

® Goal
® 10Mbs throughput requirement
® The goal is lower latency

® Traditional “White Paper” Approach
® dual HA/LB
® 2 image web servers

® Peer-based HA Solution
® 2 image web servers

® only 2 web servers per site needed for fault tolerance

2 x $10000
+2x $2000

$24000

2 x $2000

$4000

LUy |

. 28 ILILy |

Technical Details

@ Each box running FreeBSD 5-stable |
@ http://www.freebsd.org/

® Spread v3.17.3

| @ http://www.spread.org/ |

@® wackamole 2.1.2 |

@ http://www.backhand.org/wackamole/

@ Apache 1.3.33/mod_ssl + mod_proxy + patches
| @ http://www.apache.org/ |
| @ http://www.omniti.com/~george/ |

29 ILILy |

Spread: What is it?

@® Group Communication
@ Messaging Bus

@ Membership .s.‘
@ Clear Delivery Semantics i ‘ ®

@ Reliable or Unreliable / _____________ \ |
@ FIFO, Causal el X
o= o

Ring §E |

8y I

@ Agreed, Safe
@ Fast and Efficient @\

; Spread Daemon

@ View of membership for delivery
@ N subscribers != N x bandwidth

@ Multicast or broadcast L_SereadDoenen

@® Usable
@® C, Perl, Python, Java, PHP, Ruby API

30 LUy |

New Jersey Site

Spread_Segment 225.0.1.1:4803 {
image-0-1 a.b.c.101
image-0-2 a.b.c.102

}

i # San Jose Site i
. Spread_Segment 225.0.1.2:4803 {
| image-1-1 d.e.f.101 |

image-1-2 d.e.f.102 Internet

}

Germany Site

Spread_Segment 225.0.1.3:4803 {
image-2-1 g.h.i.101
image-2-2 g.h.i.102

31 TORAUNRURA

Spread = 4803
SpreadRetryinterval = 5s
Group = wack1

Control = /var/run/wack.it

Prefer None
Virtualinterfaces {
fxp 0 a.b.c.111/32

Virtual Interfaces fxpO-a.b.o.112/32

—)p

Controlied ™=
-
—)

Arp-Cache = 90s |
Notify { |
fxp0:a.b.c.1/32 I
fxp0:a.b.c.0/24 throttle 16 i
arp-cache !

Notifications of
ownership

balance {
AcquisitionsPerRound = all
interval = 4s

Balancing parameters

mature = 5s

32 LUy |

Apache: Configuration

Don’t act as a free image caching service!
<Directory proxy:*>

deny from all
</Directory>

But act provide service to us

<Directory proxy:http://www.example.com/*>
allow from all

</Directory>

RewriteEngine on
RewriteLoglLevel O

RewriteRule “proxy: - [F]
RewriteRule *(http:|ftp:) - [F]
RewriteRule A\/*([*\/]+)(.*)$ http://$1$2 [PL]
RewriteRule .* - [F]
ProxyRequests on

CacheRoot /data/cache

CacheSize 5120000

ProxyPassReverse / http://www.example.com/

- 33 ILILy |

Why patch mod_proxy?

@ mod_proxy hashes URLSs for local caching

@ better distribution of files over directories
@ nice to your filesystem

@ good for forward caches

@ makes purging individual URLs less intuitive

@ Patched to write intuitive filenames

@ a URL like: http://www.example.com/logo.gif
becomes /data/cache/www.example.com/logo.gif
@ SAs can troubleshoot issues with certain URLs
@ cached files can be purged easily with ‘rm’
@ use Spread to distribute and coordinate cache purging operations

34 TORAUNRURA

The Next Step

@ We have three mini-clusters installed and
configured, ready to throw bits by the
trillions

@® How people find them?
...DNS, obviously

@ How do people find the closest cluster to
them?
...clever DNS, [not so] obviously

Vbbb

35

10N

Locati

iCa
server-side redirection

Repl

@ Application is responsible

@ Use HTTP redirects:

nj.example.com
-de.example.com

@ images-sj.example.com

@® images
@® images

¢
-
¢
-
¢
-
¢
®
=
2
£
o
N -
T
H I
©
S |
2 " |
Ono g £EE |
J ol o 88 ¢° |
@ £ ¥ goo m
7] S © oo |
aa N < < mmm |
0 o ¥ ©Cx !
Q = 255 ¢ 5309 |
- O%ut W@w.l...l..e |
"= EOG DO G &b |
> et i
Q £ 9EO g9pccc |
ew co® o000 |
N o ® o |
™ RP &

| Replica Location
| DNS Shared IP (a.k.a. AnyCast)

@ DNS servers near clusters: |

@ ns-sj.example.com
| @ ns-nj.example.com |
| @ ns-de.example.com

@ AIll DNS servers have the
| same IP |

. @ Network block is |
~ announced from all sites
via BGP |

. @ Routing protocols provide |
' immediate convergence |

LUy |

- 39 ILILy |

@ Cluster of web servers
@® Apache
@ thttpd

@ Logs are vital
@ must be stored in more than
one place

@ Real-time assessments
@ hit rates
@ load balancing
@ HTTP response code rates

40 ORMORAR

Traditional Configuration

| Local Logging, Post-process Aggregation

@ Log written locally on web servers
@ space must be allocated !

@ Consolidation happens periodically
@ crashes will result in missing data
| @ aggregators must preserve chronology (expensive) |
| @ real-time metrics cannot be calculated

@ Monitor(s) must run against log server

| @ monitors must tail log files |
@ requires resources on the logging server

Traditional Configuration

| Local Logging, Post-process Aggregation

LUy |

42 ORMORAR

TCP/IP or UDP/IP Logging

| Syslog, Syslog-NG

@ Logs are written directly to logging server(s)
@ UDP is unreliable and thus not useful
@ TCP is a point-to-point protocol
@ Two logging servers means all info gets sent twice.
@ Add a monitor and that’s three times!

® Real-time metrics can now be collected
@ monitors must still be run against log servers
(or the publishers must be reconfigured)

43 TORAUNRURA

TCP/IP or UDP/IP Logging

| Syslog, Syslog-NG

Apache Children

Real-time TCP/IP or UDP/IP

.............. B R R T

44 ORMORAR

Passive Network Logging

| sniffers

@ Requires no modification of architecture
| @ Add/remove publishers (web severs) on-the-fly |

| @ Drops Logs! |

@ When tested head-to-head with traditional logging mechanisms we
; see loss :
| @® “Missing” logs are unacceptable |

O Clean the white dust off your upper lip and
; choose another implementation |

- 45 ORMORAR

Reliable Multicast Logging

mod_log_spread

@ Flexible Operations

@ Add/remove publishers (web severs) on-the-fly
@ Add/remove subscribers (loggers/monitors) on-the-fly

@ Reliable Multicast (based on Spread)

@ Multiple subscribers don’t incur addition network overhead

@ Individual real-time passive and active monitors

@ Monitors can be “attached” without resource consumption concerns
@ Passive monitors that draw graphs, assess trends, detect failures
@ Active monitors that feed metrics back into a production system

@ Who'’s online

@ Real-time page access metrics

Reliable Multicast Logging

| mod_log_spread

LUy |

47 ORMORAR

'mod_log_spread
| “The Publisher”

- mod_log_spread is really a patch to mod_log_config

Like pipes in mod_log_config:
| “|/path/to/rotatelogs filename 3600”

mls adds a Spread group destination:

i Sgroupname i

! LogFormat "%h %1 2%u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %T" combined :
CustomLog $example combined

Vbbb

CommonLogFormat

65536

"example"
/data/logs/apache/www.example.com/combined_ log

= 4803
RewriteTimestamp
Group =
File =

spreadlogd writes logs...
BufferSize
Spread {

Port

Log {

d
o

O

d
©
O
L.
o
7

,r |
O
o
=
O
0
a
S
7p)
0
c
=

48

. 49 TORAUNRURA

Other Real-Time Tools

“Other Subscribers”

i LOO O mils_mon: Basic Metrics i
i ~ Metrics , | Codes Servers i
| @ ApacheTop Requests 275 | HTTP Codes |
i . : Code | Rate | Accum| i
| ® C++ “top”-style Bulk 1670444 200 0.20/s 261 |
real-time hit display Sandwigth 0000b/s || | o Yoo s
@ mis_mon o204 a
@ graphical hit rates '
i by server and by ' i
| code . |
i Spread Daemon: '4913@10:??.52.5? ' | i
| e [|
i | mis_mon: Connected., ' i
| =

LUy |

' 51 TORAUNRURA

What is a cache?

Cache:

A small fast memory holding recently
accessed data, designed to speed up
subsequent access to the same data. Most
often applied to processor-memory access
but also used for a local copy of data
accessible over a network etc.

- 52 LUy |

The Layered Cache

@ Exists above/in-front

@ Knows little or nothing about what’s cache
underneath |

@ Works fabulously for static data (like application
images) |

- 53 ORMORAR

The Integrated Cache

application
@ Exists in the application.

@ Knows the data and how the cache
application uses it. |

@ Works well for data that doesn’t
change rapidly but is relatively
expensive to query.

54 LUy |

The Data Cache

@ Exists in the data store : .
| application |

@ Knows the data, the queries and how ,
: the data has changed. | i

@ Works well always .
! @ called computational reuse ! .
| @ oldest trick in the book

- @ MySAQL 4 has this |
| they call it a Query Cache | ,

. 55 ORMORAR

Write-thru Cache

- @ Occurs at update location | application |

@ Knows the data, the app, the queries admin |
| and how the data has changed. | |

. . | cache |
- @ Works well for administrative | ,

updates
| @ many WebLogs work this way | |

- @ Can be very adaptive and flexible =

- 56 ORMORAR

“Real-World” Example

@ News site
@ News items are stored in Oracle

@ User Preferences are stored in Oracle
@ Hundreds of different sections
@ Each with thousands of different articles

@® Pages:
@® 1000+ hits/second
@ shows personalized user info on EVERY page

@ front page shows top N, articles for forum F (limit 10)

57 LUy |

@ Oracle is fast enough
@ why abuse Oracle for this purposes?
@ surely there are better things for Oracle to be doing

@ Updates are controlled
@ updates to news items only happen from a publisher
@ news update:read ratio is miniscule
@ user preferences are only ever updated by the user

' 58 LUy |

- @ Article publishing |
@ sticks news items in Oracle

@ The straight forward way
@ http://news.example.com/news/article.php?id=12345
i @ page pulls user prefs from cookie i
. (or bounces off a cookie populator) .
| @ page pulls news item from database |

I @ | hate query strings I
@ | like: http://news.example.com/news/items/12345.html

| RewriteRule "“/news/items/(["/]*).html$ /www/docs/news/article.php?id=$1 [L] |

- 59 ORMORAR

Articles Cached

@ We pull the item that is likely to never change |

@ cheaper if the page just hard coded the news item
| @ writing the news article out into a PHP page is a hassle |
| ... Or is it? |

@ Have the straight forward page cache it
| @ /news/article.php writes /news/items/12345.html |
i as a PHP page that still expands personal info from i
. cookie, but has the news item content statically
| included as HTML. |

RewriteCond %{REQUEST FILENAME} “/news/items/(["/]*).html
RewriteCond %{REQUEST FILENAME} !-f
| RewriteRule "/news/items/(["/]*).html$ /www/docs/news/article.php?id=$1 [L] |

- 60 ILILy |

Articles Cache Invalidation

@ Run a cache invalidator on each web server

| @ connects to Spread as a subscriber .
@ accepts /www/docs/news/items/##i##.html deletion requests
@ accepts full purge requests

@ Article publishing
@ stash item #### in Oracle (insert or update)
@ publish through Spread an invalidation of ####

@ Changing the look of the article pages
- @ change article.php to have the desired effect
(and write the appropriate php cache pages)
@ publish through Spread a full purge

. 61 LUy |

@ All news item pages require zero DB requests
@ the business can now make your life difficult by requesting
new crap on these pages that can’t be so easily cached

@ Far fewer database connections required
@ all databases appreciate that (Oracle, MySQL, Postgres)

@ Bottleneck is now Apache+mod_php
@ crazy fast with tools like APC
@ inherently scalable... just add more web servers
@ room for more application features

LUy |

. 63 ILILy |

(Why Tier?

@ Dedicate resources to specific components :

@ Often a good approach to scaling systems up
! @ Requiring single purpose components is a good way to lock into a big !
(expensive) architecture

@ Tiers make computer science problems easier

@ Understand the trade off of solving hard problems vs. maintaining |
tiered solutions

@ Tiers add complexity and increase maintenance

i costs i
@ More components, more pieces, more moving parts...
| More can (and does) go wrong. |

- 64 LUy |

Dedicated Resources

@ Classic Example:
@ Apache on dedicated web servers
@ Database on dedicated machine
@ Why? it is easy to have 4 web server, hard to have 4 databases

@ Lock-in Example:
@ Web application on several servers
@ Requires local session state and sticky sessions
@ Why? scaling down to 2 servers will still require a load balancer that can
“stick” sessions.

. 65 ILILy |

Tiering to Compensate

(for problems that are hard to solve)

- @ Database Replication is hard
| @ Anyone who tells you otherwise is lying or not telling you the
whole story

@ Session Replication is not so hard

@ use a technology like Splash!
@ offload responsibility to the client

@ Tiers are expensive technically and

financially
@ Some problems more difficult than tiers are expensive

. 66 ILILy |

Tiers are expensive

@ Intrinsically difficult to scale down

@ If it is a real production system...
@ Complete staging environment

@ Complete development environment

LUy |

Effective Replication
Eliminating The Need To Tier

. 68 ILILy |

Types of Database Replication

Master-Slave

@ a data set has a master server

@ changes to the data set are sent to slaves

@ dml must be performed at the master

@ read-only queries can be performed anywhere

@ no challenging synchronization algorithms

- 69 ILILy |

Types of Database Replication

| Master-Master

@ data modification can be performed anywhere

@ coordinating ACID and XA constraints is hard
@ manage full transactions
@ view consistency
@ initial synchronization

@ synchronization algorithms

@® 2-phase commit (2PC)
@ 3-phase commit (3PC)

- 70 ORMORAR

Types of Database Replication

| Multi-Master

@ data modification can be performed anywhere

@ coordinating ACID and XA constraints is hard

@ manage full transactions
@ view consistency
@ initial synchronization

@ synchronization algorithms are complex

@ 2PC and 3PC are unrealistic as N2 handshakes must
happen

@ EVS Engine

@ CORelL

R |
> |
3 |
> |
> |
2 |
3 |
|
|
|
Yok— “
e |
REEEN
m
nv | “
b) mlm “
Y- O | g |
O 5 8 I
C 7 I .
o - 1.2
O s : 1E
° 8 IR flE
N O & Wl 2
S T [(O
= 5 5[11e2
N S i :_m-mm |
O ¢¢ L 2
o ' i “
C i 1,
oo 285 i |
~N IEmr ._*m.“nls “
O =3 A
5 3 m 5 x_“ “
S5 N .
S 3 g " “
T T | x "
Q0 T T
O s: g § § § § °
v ﬂm ﬂw (puonassarepdn) 1ndyBnoiy] m
smmm O O |
= 55 |
(C &3 m
D 53 |
J o “
|
N~ = B

Vbbb

i

|

|

i

|

|

|

g |

14 |

| !

mCL |

ls

()] |

O 5 |

Yo = I

C 5y Iy

> o _

n 1 |

® <8 B

OS5 g |

wz n"

1S 88

38 -

= & |

rAC mm

~N SN |

Ot e

PG ot !

O O < !

ﬁpp |

© ®© !

o o |

~N NN |

R -

== 18 !

A ss |

NN |

S 3 !

T O [. |

O :: L

| | |

£ o “

v.l..i.. S g S 2 8 2 ° !

x “% (sw) fousreq m

tnn |

© O |

© 3 |

—-— 3 |

D s m

oo “

Yy 0 i: “
~ < < -

73 ORMORAR

State of Affairs

@ Multi-Master replication is a long way off
@ current implementors use 2PC
@ no enterprise offerings achieve EVS Engine performance
@ architectures that push databases hard aren’t willing to cut
performance for replication
@ multi-master is ready for architectures with low update
rates that demand replication for data safety

@ Master-Slave is ready for prime time
@ MySQL (native master-slave replication)
@ Oracle snapshots/materialized views

74 ORMORAR

News Site Revisited

@ Replicate the database on each web server
@ Oracle on each web server
@ replicate the needed tables
@ certainly doesn’t scale financially

@ If the site used MySQL...
@ zero capital investment
@ news items don’t need to be cached in PHP pages
@ legitimizes more intense queries in live site pages

. 76 ORMORAR

'Who’s Online?

| a real-world example

| @ A “service” requires who’s online info |

@ Users that have loaded an object within x
minutes

| @ Need to know the last page the user hit |

| @ The “service” is exposed throughout the site |

77 ORMORAR

@ x = 30 (minutes)
@ 5000 hits/second

@ 100,000 concurrent users

@ Queries:
@ current users online (count)
@ current users on “this” page
sorted by last access (limit 30)

. 78 ORMORAR

Let’s use a familiar tool

We use MySQL anyway

@ We use MySQL to “drive” the site
@ We are familiar with MySQL

@® Queries are cake:

where hitdate > SUBDATE(NOW(), INTERVAL 30 MINUTE)

@ select username, hitdate from recent_hits
where url = ? and hitdate > SUBDATE(NOW(), INTERVAL 30 MINUTE)
order by hitdate desc

@ select count(1) from recent_hits
i limit 30 |

79 ORMORAR

Getting More Specific

@ 100,000+ row table

@ assuming we sweep out stale data

@ 5,000 replaces/second

@ indexes required on hitdate and url

@ 1,000 queries/second

@ MySQL’s query cache doesn’t help at all, the updates
invalidate it

@ Replaces cannot block queries
MyISAM is not an option, we use InnoDB

@ Both queries require a full table scan!

All in addition to the existing demands of the site!

- 80 ILILy |

Try Some Tests

@ On the development box

(Idle dual Xeon, SCSI drives)

@ 1,400 replaces/second
@ 800 queries/second

@ On the production box
(dual Xeon, SCSI disk array w/ 1GB

cache)
@ 200 replaces/second
@® 150 queries/second

ARE YOU INSANE?!

. 81 TORAUNRURA

Build a Custom Tool

@ We need which urls/users/timestamp tracking
@ So... we need to add an “update” to each page
@ No... that won’t catch images, let’s use a mod_perl log hook.

@ Wait... we are already writing logs, let’s aggregate passively
if we use mod_log_spread, we just need to add a subscriber

@ Passive aggregation
@ can handle “bursty” traffic by lagging behind a bit
@ it can’t slow down the app!

@ Pick a data structure
@ Multi-Indexed Skiplist -- why?
@ Free “balancing” -- randomized
@ O(lg n) insertion, deletion, location
@ O(1) popping (for culling expired sessions)
@ it precisely meets the requirements... and | like them.

- 82 LUy |

Choose a Language

| like C... sO sue me.

The concept:

@ Skiplist Index on:
@ username
@ url hitdate
@ hitdate

@ Single thread, event driven
| @® Receive messages from Spread: |
@ parse username, url, hitdate
@ delete from skiplist by username O(lg n)
| @ insert into skiplist O(lg n) |
@ pop the end of the skiplist of any hitdate > 30 minutes O(1)
| @ Receive client requests |
@ Cardinality query is O(1), single write()
@ Users on a url query is O(lg), O(1) to fill out iovec, single writev()

- 83 ILILy |

© 6 hours worth of coding and testing

@ 800 lines of C code (server)
@ use libspread and libskiplist

@ 40 lines of perl (client module for web app)

© On commodity hardware ($2k box)
@ ~80,000 inserts/second

@ more hits than we’ll ever see!
@ -~100,000,000 counts/second -- not including write()
@ ~500,000 users for urls/second -- not including writev()

That’ll do.

84 LUy |

The Right Tool For The Job

@ MySAQL is a great tool
@ it is used to drive the rest of the site...
spectacularly

@ Using it for this project would:
@ wasted valuable resources in the architecture
@ saved a few hours of work
@ allowed you to not use your brain

LUy |

This Image
Intentionally
Left Blank

. 86 ILILy |

Scalable Internet Architectures

@ Building them just isn’t that hard... if you
@ carefully analyze the problem at hand
@ don’t make sloppy or rash technical decisions

@ always think like a computer scientist

- 87 LUy |

| ¢» My biggest fan club
Lisa, Zoe & Gianna

