
The Business Of Filing Apache Derby  
Issues In Jira 

 
 
Note from the author: As the current volunteer administrator of the Derby project in Jira, I 
intend this document to help those not very familiar with Jira and/or Derby when filing/updating 
issues.  Feedback on the document will be greatly appreciated. 
- Ron Reuben (rreuben@sourcery.org) 
 
Introduction 
 
This document is suggested reading for anyone who wants to enter an issue against Derby.  At 
Apache, the following issue types have been defined in Jira (Derby’s issue tracking system): 
 
Bug – A problem impairing functionality, performance, reliability or documentation  (a defect) 
New Feature – A request for a new feature that has yet to be developed 
Improvement – An improvement/enhancement of an existing feature 
Test – An entry regarding a test (unit, integration, system, stress etc.) including requests for new 
tests 
Wish – A generic “wishlist” item (e.g. INFRA-58 which was a wish to have consistent date 
formats for the “Created” & “Updated” dates displayed at the top of an issue filed in Jira) 
Task – A generic task that does not fit into any of the categories above (not very common) 
 
This document explains the following: 
 

• How to search Jira to identify if the issue you are reporting has already been filed 
• What information helps complete the issue entry 
• Understand some of the non-obvious fields in Jira’s “new issue” entry screen 
• The difference between “Resolve” and “Close” 
• How to provide useful bug reproduction instructions and/or scripts 

 
Once you have read through this document or are familiar with its contents, you may access Jira 
at http://issues.apache.org/jira  
 
 
New Issue Entry 
Before filing a new issue, it is recommended that you first search Jira to verify that it has not yet 
been reported.  
 
How to search Jira 
Once logged in to Jira, click on the “Find Issues” link as indicated in the image below: 
 



 
 
In the screen that follows, click the “New” tab at the top (unless you have saved a query in the 
past; explained below).  Select “Derby” as your project.  You may want to fill in the “Fix For”, 
“Matches Versions” & “In Components” fields to narrow your search.  You will most likely 
want to enter a search keyword in the “Text Search” field labeled ‘Query’.  In the screenshot 
below, we are looking for the keyword “Mac” in the 4 searchable fields – Summary, Description, 
Comments & Environment.  There are other options that you may specify to narrow the search 
but these are optional.  Click “View” to have Jira perform your search.  
  



 
 
 



If the query you just performed is new and likely to be useful in the future, you may want to save 
it as a filter.  To do this, click the “Save” link as shown in the screenshot below. 
 

 
 
Enter a name for your filter and a relevant description.  For our example query filter, we enter the 
details as specified below.   
 

 
 
Once you click “Save”, the filter is saved as a Private filter that only you can see.  You can 
manage this filter (edit, delete etc) by clicking on the “Manage” link as seen below 
 

 
 
 
Note that there are many options available to search Jira; please choose those most relevant to 
your issue at hand.  Choose keywords carefully to increase the chance you will find the issue if it 
has already been reported.  
 
If your search reveals the issue has already been filed, please update the entry with any relevant 
information you may be able to add.  See the section below, titled “What makes a Derby Jira 
entry really useful,” for a list of items that help create a ‘useful-to-the-developer’ issue entry. 



 
If the issue has not been reported, you may want to post your issue on the derby-
user@db.apache.org mail list, asking the following questions: 

 If you are reporting a bug, is your bug really a bug (or a restriction, feature request etc) 
 Has anyone else noticed this issue and if so, under what circumstances 
 Can anyone suggest a workaround for the issue 
 If relevant, why you think the bug is a “blocker” (highest priority that needs to be fixed 

right away) 
This is optional, but recommended and should not be seen as a replacement to filing the issue in 
Jira.   
 
 
Filing a new issue 
 
To file a new issue, click the “Create New Issue” link on the Jira home page.  This presents you 
with the screen below.  You now select the project (‘Derby’ in this case) and issue type.  For a 
description of the various types of issues supported by Jira, see the section titled ‘Introduction’ at 
the top. 
 

 
 
 
Click “Next”.  The subsequent screen that appears will be used to enter you basic issue 
information.  Let’s analyze portions of the screen.  The screenshot below assumes you chose the 
issue to be a “Bug” in the previous screen.  Enter a short, to-the-point summary of the bug issue 
being reported.  Try to include key words into your summary, making it easy to find when a 
search is issued.  Choose the priority of the issue.   
 



 
 
The Jira system at Apache defines 5 priority levels: 
 

• Blocker: Show-stopper!  Blocks development and/or test work. No work-around possible.  
Needs to be worked on right away. 

• Critical: Severe issue that potentially has a work-around but may not be acceptable under 
all circumstances. Includes issues such as system crashes, loss of data or severe memory 
leaks. New features & improvements in this category are required urgently but not asap. 

• Major: Issue has a work-around but there is a major loss of functionality.  For new 
feature/improvements, this needs to be implemented soon (but not urgently) 

• Minor: Some loss of functionality.  Work-around exists.  For new feature/improvements, 
there is no urgency with the implementation of this request. 

• Trivial: Lowest priority.  No loss of functionality.  No hurry to fix/code this.  Mostly a 
cosmetic issue like misspelled words or misaligned text 

 
Next, select the component and versions the issue is being filed against.  The “Affects Version/s” 
is the version/s that was being used when it was detected.  Derby defines the following 
components: 
 
Unknown – to be used when you do not know the right component (remember any "developer" 
can update your entry later)  
Build tools – for issues with the build scripts  
Documentation – for issues with Derby documentation  
JDBC – for issues that can be attributed to the JDBC driver (including XA) 
Localization – when localization is the issue  
Network Server – for network server related issues (including servlet)  
Security – for issues related to security  
Services – for issues with Derby code related to basic services (e.g. cache, lock manager etc.) 
SQL – for issues that can be attributed to query parsing/processing/optimizing etc 
Store – for issues related to the storage of data on disk (i.e. disk storage module)  



Test – for issues with the tests  
Tools – for issues with ij, dblook, import/export & sysinfo  
  
 
 
 

 
The “Assign To” field shows who should own the fix to the issue being reported.  You will only 
assign someone to the issue if you have had prior agreement with the person to fix it or you are 
assigning the issue to yourself. 
 

 
 



 
Next, make entries in the “Environment” and “Description” fields.  In the former, you should 
give all relevant details that will help the assigned developer fix the issue.  This includes 
information such as: 

- Hardware platform 
- Software environment 
- JDK/JRE being used (give the output of java –version if appropriate) 

The “Description” field should be used to give all possible details of the issue in question.  If the 
issue you are filing is a bug, please include the following details in this field: 

- Output of org.apache.derby.tools.sysinfo 
- How to reproduce the bug (either step-by-step information or attach a reproduction 

script/program) 
- Chained nested exceptions reported by Derby and the SQLSTATE reported by the system 

 

 
Once you are done, click the “Create” button to log your issue in Jira. 
 
To attach a file, program or screenshot to the issue you filed, you will click the “Attach file” or 
“Attach screenshot” links on the screen that describes your issue. 
 



 
 
 
How to edit an issue 
Once you file an issue, you can edit it only if you have “developer” access to the Derby project.  
To gain “developer” access, send a mail to the derby-dev@db.apache.org email list.  To edit an 
issue, first open the issue in Jira, then look for the “Operations” section on the left side of the 
screen.  Here, you will find options to “Edit”, “Link”, “Comment” etc.  Please do not delete an 
issue unless you are absolutely sure of what you are doing.  To comment on an issue, click 
“Comment”, to edit any information contained in the issue, click the “Edit” link, to assign the 
issue to yourself or some other developer (assuming you have agreement with the developer to 
do this), you click the “Assign” link.  The “Link this issue” option is meant to annotate the fact 
that the issue in question is either a duplicate of or has a dependency relationship with another 
issue already filed in Jira.   

 
 
 
Resolve an issue 
Once an issue has been addressed appropriately, you need to “Resolve” it.  Do not close the 
issue!  “Close” and “Resolve” are separate “workflow actions” identified.  You will ideally first 
resolve an issue before the submitter closes it.  
 
To resolve an issue click on the “Resolve Issue” link on the left side of the screen that appears 
once you open the issue.   



 
 

 
 
 
In the resulting screen, you will update the resolution to one of the following values: 

• Fixed – Issue has been fixed as per your understanding. The fix has been tested and 
checked in.  Remember to add a comment with relevant details that explain your fix.  

• Won’t fix – This issue will not be fixed for reasons explained in the comments field 
• Duplicate – Issue in question is a duplicate of an existing issue.  You should “Link” this 

issue to the existing entry and make a mention of the issue id in the comments field 
• Invalid – The issue is invalid for the project in question.  The submitter needs to re-

evaluate the entry and perhaps re-submit the issue with additional details (if relevant) 
• Incomplete – Insufficient information to work on the issue 
• Cannot Reproduce – Usually set by the developer who tries to fix this issue.  Indicates 

that the issue cannot be reproduced.  Comments are an absolute must to explain the steps 
you took 

 
The “Fix Version” entry is relevant if the resolution of an issue is “Fixed” or “Duplicate”. 
 



 
 
Once you enter the required information, you will usually just “Resolve” the issue.  If you are 
confident that the issue needs to be closed as well (see below), click the “Resolve and Close” (if 
the option is presented).  One would usually only “Resolve and Close” if the fix has already been 
verified by the submitter or the person Resolving is the submitter. 
 
Resolving an issue changes the “State” of the issue to “Resolved” from “Open” or “In Progress”. 
 
Note: One can always re-open an issue once it is resolved.  This marks the status to “Open” 
 
Close an issue 
A developer who fixes/codes an issue will usually only “resolve” it to one of the states 
mentioned above.  It is the submitter’s responsibility to “close” the issue once the fix/code is 
verified.  Closing an issue is the final workflow step in the life of an entry in Jira. To close an 
issue, click the “Close Issue” link of the issue, as seen below. 



 
 
As seen in the screen below, it will be nice to enter a comment before you click “Close”.   
 

 
 
Closing an issue sets the status of the issue to “Closed”.  This indicates there is no more work to 
be done on it and that the issue has been verified as complete.  
 
Note: One can always re-open an issue once it is closed.  This sets the status back to “Open” 
 
 
What makes a Derby Jira entry “really useful” 
 
This mainly pertains to bug entries.  The 2 key parts of a bug entry are the reproduction 
script/program and the bug description. 
 



Reproduction scripts/programs 
A developer who attempts to fix a bug will find it much easier if the entry contains instructions 
or scripts/programs that help reproduce the bug.  The following kinds of reproduction 
information will prove useful: 
 

• Scripts – Given that the community will be working on a diverse set of platforms, it will 
be best to provide a SQL script that reproduces the bug in question.  For example, a Perl 
or Shell script may not be useful to someone working on the Windows platform without 
additional developer packages installed.  When providing a SQL script, please try to 
insert relevant comments that assist with readability and understanding. 

 
• Programs – Sometimes, a JDBC application program may help reproduce an issue.  

Attach the file if relevant 
 
• Code snippets – include any relevant code snippets in the description or attach these to 

the bug entry 
 
• Step-by-Step instructions – This approach is usually highly effective. Make sure your 

instructions are precise and include all the relevant steps you did when uncovering the 
bug. 

 
Bug descriptions 
As part of the bug description, you should also enter the following information if relevant: 
 

• ‘sysinfo’ details – Run the ‘org.apache.derby.tools.sysinfo’ tool and include the output of 
the command with your description (see below for a sample screenshot). This contains 
important version, CLASSPATH, build, JRE and platform information that will be useful 
to a developer trying to reproduce and resolve the bug.  
Please run the following command in the exact same environment your Derby application 
ran under when the bug was detected 
‘java org.apache.derby.tools.sysinfo’ 
When you set your application environment manually, make sure you do the very same 
setup before running sysinfo.  On the other hand, when the application sets up the 
environment, you need to run sysinfo under the application environment to ensure that 
accurate information is captured by sysinfo. 
 

• Nested Exception information – Derby will most likely generate nested exceptions when 
an error is detected.  When you catch an exception in a JDBC application, remember to 
iterate through the chained exceptions one by one and capture these in the output of your 
program (getNextException() method).  When an exception is thrown on the console 
window, please copy-paste (or screen-capture) the entire output (including nested 
exceptions) into the bug entry 

 
• SQLSTATE – Derby will generate a SQLSTATE along with an exception.  Do not forget 

to capture this information in your bug entry. 
 



• Include any relevant output from the derby.log file.  If this information is too confusing 
for you to understand and the file isn’t too big, you may want to attach it to your bug 
entry 

 

 


