
Using DOTS as Apache Derby System Test

Date: 02/16/2005

Author: Ramandeep Kaur
ramank@yngvi.org

Table of Contents

1 Introduction .. 3

2 DOTS Overview .. 3

3 Running DOTS .. 4

4 Issues/Tips/Hints .. 6

5 Summary .. 10

6 References .. 10

Derby System Test with DOTS 2

1 Introduction

Database Open Source Test Suite (DOTS) is a test suite designed for stress testing on database
systems. Apache Derby was tested with DOTS to investigate its usefulness as a system test.
After several iterations of the test, it was found that DOTS may provide some value to Derby as
a system test. This document is intended to provide information to the Derby community
regarding the use of DOTS as a system test suite.

The document initially provides a brief introduction to DOTS and then provides the information
on setting up DOTS to run with Derby, and details of the issues/problems that were found during
Derby system testing with DOTS.

1.1 Notes

This document contains references to urls. The urls may change anytime. If there is any problem
with any url, post it to the Derby mailing list (derby-dev@db.apache.org).

2 DOTS Overview

Database Opensource Test Suite (DOTS) is a set of test cases designed for the purpose of stress
testing and long run testing on database systems to measure database performance and reliability.
It has two kinds of test cases - Basic Cases and Advanced Cases. The primary goal of Basic
Cases is stress and long run database testing; the secondary goal is 100% JDBC API coverage.
There are 8 test cases written in Java to cover JDBC API under the Basic Cases category. The
goal of the Advanced Cases is modeling real-world business logic, stress and long run testing on
database systems. There are 2 test cases written in Java under the Advanced Cases category. [2]

2.1 DOTS Test Cases

DOTS suite has 10 test cases that provide robust and complex version of testing by doing the
database testing close to the production use of the system.

DOTS basic cases mainly gets database meta data, uses single and multiple SQL commands to
execute database operations (insert, update, select and delete), uses PreparedStatement and
CallableStatement to execute database operations, manipulates SQL3 data types CLOB
(Character Large Object) and BLOB (Binary Large Object), sends CLOBs and BLOBs to the
database, and accesses SQL CLOB and BLOB values. [2]

DOTS advanced cases tests real-world business scenario.
DOTS advanced test case 1 simulates the database actions of new user registration, updating
existing user information and user authentication. This test case does the following actions:

Continuously insert new user registration information into the user information table
Continuously check userid/password to validate user login

Derby System Test with DOTS 3

Continuously update user information table for record update [2]

DOTS advanced test case 2 simulates the database actions of an online auction scenario. This
test case does the following actions:

Continuously search auction items for detail information (Buyer)
Continuously update auction prices for the items to bid (Buyer)
Continuously insert new auction items for sale (Seller) Continuously search all the auction
items on which one particular user has transaction with. (Buyer and Seller) [2]

For DOTS test cases, initially a database is created with multiple tables. DOTS test cases
continuously inserts and updates the data into the database for duration of time specified in
DOTS configuration file making the database to grow in size. In case of Network Server, the test
cases continuously creates concurrent database connections as per specifications in DOTS
configuration file. The duration of test cases, number of concurrent connections, and other
parameters can be specified by user in the DOTS configuration files.

2.2 DOTS Database Schema

DOTS test cases uses 9 tables with the following data types:
CHAR
VARCHAR
FLOAT
INTEGER
TIME
TIMESTAMP
DATE
CLOB
BLOB

More information about DOTS, DOTS test cases, Database schema, DOTS configuration file
etc. can be found at:
http://ltp.sourceforge.net/dotshowto.php

3 Running Dots

To run Dots with Derby, main steps are as follows:

1. Install Dots, Derby and required softwares.

2. Create a Derby database to be used for test cases.

3. Set up configuration file needed during test run with various parameters. The brief
description of each parameter is as follows:

Derby System Test with DOTS 4

http://ltp.sourceforge.net/dotshowto.php

3Thread creation intervalCREATIONINTERVAL
100MMaximum file size a log file can occupyMAX_LOGFILESIZE
10,000Maximum rows a table can haveMAX_ROWS

Port that performance monitor usesSERVER_PORT
Database server IP addressSERVER_IP
URL for database connectionURL
DriverClass for database connectionDriverClass
Password for database connectionPassword
User ID for database connectionUserID

30Interval time between two writes of summary
report to test summary file

SUMMARY_INTERVAL

Parameter to run the test automatically to have
enough work load to meet the CPU utilization
target. If set to " yes", DOTS will automatically
add database access workload trying to meet the
CPU utilization target. If set to " no", then DOTS
starts the specified number of Connections.

AUTO_MODE

90Target level of CPU Utilization of Database
Server while DOTS is running

CPU_TARGET

20Number of concurrent database access
connections that will be created by DOTS test
case. This parameter is applicable only if
paramater AUTO_MODE is set to no .

CONCURRENT_CONNE
CTIONS

/usr/local/D
OTS/Output

Directory where a DOTS test case stores its
output, such as log files, error files, and summary
files

LOG_DIR

24:00Duration a Dots test case will run in hours. The
format is hh:mm

DURATION

Default
value

DescriptionParameter

During Dots testing, the configuration file was set up with the following parameters:
 DURATION = 120:00
 LOG_DIR = /home/derby//Dots/results_120hrs
 CONCURRENT_CONNECTIONS= 30
 CPU_TARGET = 95
 AUTO_MODE = yes
 SUMMARY_INTERVAL = 10
 UserID = u1
 Password = p1
 SERVER_IP = 12.34.225.456
 SERVER_PORT = 8001
 MAX_ROWS= 500000
 MAX_LOGFILESIZE = 10485760

Derby System Test with DOTS 5

 CREATIONINTERVAL = 1
 For Network server, the parameters DriverClass and URL were set as follows:
 DriverClass = com.ibm.db2.jcc.DB2Driver
 URL = jdbc:derby:net://12.34.225.456/TESTDB

 For embedded database, the parameters DriverClass and URL were set as follows:
 DriverClass = org.apache.derby.jdbc.EmbeddedDriver
 URL = jdbc:derby:TESTDB

 Note:
A dummy ip address is been used for parameters SERVER_IP and URL (Network
Server).

4. Run Dots performance monitor and Dots test case as following:
>java dots.perfmon.PerfMon -port portnumber
>java dots.framework.Dots -config config_filename -case testcase_name

5. Review the results in log directory specified in configuration file.

More detailed information about Dots environment, installing Dots and Derby, creating Derby
database, setting up Dots configuration file, and executing DOTS test cases, and reviewing the
results can be found at:
http://incubator.apache.org/derby/DOTS_Derby.html

4 Issues/Tips/Hints

As part of initial testing, DOTS test cases were executed with Derby. Each test case or
combination of test cases were executed for about 5 days. While running DOTS, some issues
such as DOTS incompatibility with linux kernel, out of memory errors, and exceptions were
found. This sections provides information about and/or solutions to those issues.

4.1 DOTS Code

DOTS is currently supported on Linux platform. As DOTS reports system level information such
as CPU usage and memory usage, it accesses the system level files (/proc/meminfo, /proc/stat
etc.) and gets CPU and memory usage information by parsing the system level files. As the
format of system level files may vary depending on kernel version, the information in system
files is not parsed properly by DOTS if linux kernel on your machine does not match with kernel
version supported by DOTS code. Therefore the reported information such as CPU usage and
memory usage is incorrect or is not reported at all.

I ran DOTS test cases on Linux kernel version 2.6.5-7.111.5-bigsmp. During testing, I found that
summary file was printing memory usage as 0. After debugging the problem, I found that the
format of file /proc/meminfo

on my machine was not as expected by DOTS source code. To

Derby System Test with DOTS 6

http://incubator.apache.org/derby/DOTS_Derby.html

support format of file /proc/meminfo

from my machine, I modified DOTS source code

(src/dots/perfmon/PerfReader.java) and re-ran build to create new DOTS jar files with my
changes. The original and modified code is as follows:

Original code:

public static int getMemory() {
 String memString;
 long totalMemory,usedMemory;

 try {
 /* Get memory usage */
 BufferedReader memReader = new BufferedReader(new FileReader(MEMINFO));
 memString = memReader.readLine();
 while (memString != null) {
 if (memString.startsWith("Mem:")) {
 StringTokenizer stk = new StringTokenizer(memString);
 if (stk.hasMoreTokens()) {
 memString = stk.nextToken();
 totalMemory = Long.parseLong(stk.nextToken());
 usedMemory = Long.parseLong(stk.nextToken());
 usedMemory = usedMemory/(1024*1024);
 return (int)usedMemory;
 }
 }
 memString = memReader.readLine();
 }
 memReader.close();
 } catch (IOException e) {
 System.out.println("PerfMon.PerfReader:" + e);
 }
 return 0;
}

Modified code:

public static int getMemory() {
 String memString;
 long totalMemory=0;
 long freeMemory=0;
 long usedMemory=0;

 try {
 /* Get memory usage */
 BufferedReader memReader = new BufferedReader(new FileReader(MEMINFO));
 memString = memReader.readLine();
 while (memString != null) {

 if (memString.startsWith("MemTotal:")) {
 StringTokenizer stk = new StringTokenizer(memString);

 if (stk.hasMoreTokens()) {

memString = stk.nextToken();

totalMemory = Long.parseLong(stk.nextToken());
 }
 }
 if (memString.startsWith("MemFree:")) {
 StringTokenizer stk1 = new StringTokenizer(memString);
 if (stk1.hasMoreTokens()) {

Derby System Test with DOTS 7

 memString = stk1.nextToken();
 freeMemory = Long.parseLong(stk1.nextToken());
 }
 }
 memString = memReader.readLine();
 }
 usedMemory = totalMemory-freeMemory;
 usedMemory = usedMemory/1024;
 memReader.close();
 return (int)usedMemory;
 } catch (IOException e) {
 System.out.println("PerfMon.PerfReader:" + e);
 }
 return 0;
}

The highlighted lines in original code were modified to highlighted lines in modified code. After
deploying modified jar files, I was able to get correct memory informaiton.

4.2 Test Cases Duration

The duration of DOTS test cases can be specified in DOTS configuration file with parameter -
DURATION. The limitation on duration of DOTS test cases is mainly machine memory. DOTS
test cases keep on inserting data into the database which makes database keep on getting bigger
during the test cases execution. If the memory on the machine is not enough to store the size of
growing database, the test cases will fail with an out of memory error.

4.3 Java OutOfMemory Error

While running DOTS test cases with Derby, some instances of java.lang.OutOfMemoryError
were found in the log file for DOTS Client. This is due to the fact that the jvm default memory
was not big enough for the given test case. This problem was fixed by increasing the jvm
memory by changing jvm configuration.

Example:
java -Xms400m -Xmx400m dots.framework.Dots -config config.ini -case BTCJ1

The same problems were found on network server side when test cases were executed with
Derby network server.

Tip:
The jvm memory size will depend on how long the test cases will be executed for.
For example, to run DOTS basic and advanced test cases with Derby network server for 120
hours, jvm memory for DOTS client was increased to 400M and for Derby network server was
increased to 720M. I gave memory of 400M and 720M to ensure that there is no memory
problem after running it for few days. It is possible that the problem could be solved by setting
jvm memory lower than 400M for client and 720M for Network Server.

Derby System Test with DOTS 8

4.4 Expected Exceptions

While running DOTS with Derby, the following exceptions were caught which after
investigation were found to be expected exceptions. If you find any of the following exceptions
while doing DOTS testing, you may ignore them.

The exceptions information is as follows:

4.4.1 Duplicate Key Exception with Embeded Database

Exception Output:

SQL Exception: The statement was aborted because it would have caused a
duplicate key value in a unique or primary key constraint or unique index

This exception was caught while running DOTS with embedded derby database. This exception
was found when DOTS test case was trying to write the same entry to the table of database
where one of the datatype was declared as primary key.

4.4.2 Duplicate Key Exception with Network Server

Exception Output:

com.ibm.db2.jcc.c.SqlException: DB2 SQL error: SQLCODE: -1,
SQLSTATE: 23505. The statement was aborted because it would have caused a duplicate key
value in a unique or primary key constraint or unique index .

This exception was caught while running DOTS with derby database Network Server. This
exception was found when DOTS test case was trying to write the same entry to the table of
database where one of the datatype was declared as primary key.

4.4.3 Lock Timeout Exception

Exception

Output:

com.ibm.db2.jcc.c.SqlException: DB2 SQL error: SQLCODE: -1,
SQLSTATE: 40XL1, SQLERRMC: 40XL1. A lock could not be obtained within the time
requested .

This exception was caught because Dots test case could not obtain lock within the time
requested. This exception was thrown when cases (basic) were running at a time.

4.4.4 Deadlock Exception

Exception

Output: "com.ibm.db2.jcc.c.SqlException: DB2 SQL error: SQLCODE: -1,
SQLSTATE: 40001, SQLERRMC: Lock : ROW. A lock could not be obtained due to a deadlock,
cycle of locks .

This exception was caught because DOTS test case could not obtain lock due to a deadlock,
cycle of locks & waiters. This exception was thrown when multiple cases (basic) were running at
time.

Derby System Test with DOTS 9

4.4.5 Batch Failure Exception

Exception

Output:

com.ibm.db2.jcc.c.vd: Non-atomic batch failure. The batch was submitted,

but at least one exception occurred on an individual member of the batch. Use
getNextException() to retrieve the exceptions for specific batched elements.

This exception was caught when Dots test case sent SQL statements as a batch/unit. One or more
of the statement was with duplicate primary key.

5 Summary

In this document, a brief overview of DOTS has been given to get started with DOTS. Most of
the information can be found from the DOTS web site
(http://ltp.sourceforge.net/dotshowto.php#SEC11) and DOT and Derby paper
(http://incubator.apache.org/derby/DOTS_Derby.html). This paper mainly described some of
the issues/problems that were found during initial system testing of Derby with DOTS.

6 References

[1] Sunitha Kambhampati, Running DOTS with Derby
http://incubator.apache.org/derby/DOTS_Derby.html

[2] David Barrera, Database Opensource Test Suite User s Guide
http://ltp.sourceforge.net/dotshowto.php#SEC11

Derby System Test with DOTS 10

http://ltp.sourceforge.net/dotshowto.php#SEC11
http://incubator.apache.org/derby/DOTS_Derby.html
http://incubator.apache.org/derby/DOTS_Derby.html
http://ltp.sourceforge.net/dotshowto

