Developing Applications using the Derby Plug-ins
Lab Instructions

Goal: Use the Derby plug-ins to write a simple embedded and network server application.

In this lab you will use the tools provided with the Derby plug-ins to create a simple
database schema in the Java perspective and a stand-alone application which accesses a
Derby database via the embedded driver and/or the network server. Additionally, you
will create and use three stored procedures that access the Derby database.

Intended Audience: This lab is intended for both experienced and new users to Eclipse
and those new to the Derby plug-ins. Some of the Eclipse basics are described, but may
be skipped if the student is primarily focused on learning how to use the Derby plug-ins.

High Level Tasks Accomplished in this Lab

Create a database and two tables using the jay tables.sql file. Data is also inserted into
the tables.

Create a public java class which contains two static methods which will be called as SQL
stored procedures on the two tables.

Write and execute the SQL to create the stored procedures which calls the static methods
in the java class.

Test the stored procedures by using the SQL 'call' command.

Write a stand alone application which uses the stored procedures. The stand alone

application should accept command line or console input.

Detailed Instructions

These instructions are detailed, but do not necessarily provide each step of a task. Part of

the goal of the lab is to become familiar with the Eclipse Help document, the Derby Plug-

ins User Guide. Use this help document to assist with completing any task associated

with using the plug-ins like starting and stopping the network server or running SQL

scripts.

1. Unzip the file derby_plugins_lab.zip into a convenient location on the host where
Eclipse is installed.

2. After unzipping this file the following directory structure and files are present:

Directory Files Description

derby plugins lab.sxw This file in OpenOffice format.



derby plugins lab.pdf

sql
execute_sp.sql
jay tables.sql
stored procedures.sql
java
Jays.java
JaySpecies.java

This file in PDF format.

A sample sql script to execute the
stored procedures.

The sql script to create the necessary
jay_species and jay_attributes tables
and populate them with data.

The create procedure sql commands.
A possible solution to the stand alone
Java application.

The public Java class that contains

static methods which implement
the logic of the stored procedures.

3. If Eclipse 3.x is not already installed, install it now. Install both the 10.1 Core and the
1.0 UI and Help plug-ins if they have not already been installed. Refer to the document
Using the 10.1 Core and 1.0 UI Derby plug-ins at
http://incubator.apache.org/derby/integrate/plugin_howto.html if you need help.

4. Launch Eclipse and bring up the Help for the Derby plug-ins. Help >> Help

Contents>> Derby Plug-in User Guide.

5. Task: Create a database containing the jay species and jay attributes tables.

a) Create a java project and name it DerbyLab.

b) Add the Apache Derby Nature to the DerbyLab project.

c¢) Import the jay _tables.sql file (including the sql directory) from the directory where
you unzipped the derby plugins lab.zip file. To import the file: Right click the
DerbyLab project, select Import, then File System, click the Next button. Browse
to the directory where you unzipped the lab zip file. Once this is done the directory
will appear as a folder icon in the left frame of the Import window. Expand this
folder and check only the sql directory (the parent directory will have a grey check
next to it, but don't directly check this directory too.) The 'Into Folder' text field
should say 'DerbyLab'. The radio button, 'Create selected folders only' should be
the only one selected. Now click 'Finish'. If the import is successful your
DerbyLab project folder should have an sql directory under it along with the three

sql files.

d) Start the Derby network server by right-clicking the DerbyLab project and
selecting Apache Derby >> Start Derby Network Server. Confirm the pop-up

box stating the server is being started.

e) Now run the jay tables.sql file via ij as a script, but first open it. Open the sql



folder in the Package Explorer view and double click the jay tables.sql file to see
the contents of it. Right click the jay tables.sql file from the Package Explorer
View and select Apache Derby >> Run SQL Script using ij. If the script runs
successfully the console view will show output from running the script, with the
output from the select statements.

6) Create a public java class called JaySpecies2.java containing three static methods
which use PreparedStatements.

a) Create a java class by right-clicking the DerbyLab project and selecting New >>
Class. Follow the wizard to create the class, placing the class in a package, for
instance, org.apache.derby.plugin.lab.

b) Name the first static method selectLatinCommonName. This method takes the
genus name as input, and the common and latin names of the genus are returned as
a ResultSet. The signature for this java method looks like this:

public static void selectLatinCommonName(String genus,
ResultSet[] common_latin) throws SQLEXxception

The full code for the first static method is shown below:

public static void selectLatinCommonName(String genus,
ResultSet[] common_latin) throws SQLException

{

Connection conn = DriverManager
.getConnection("jdbc:default:connection”);

String select = "'select common_name, latin_name from
APP.jay species where genus = 2'"';

PreparedStatement prepStmt = conn.prepareStatement(select);
prepStmt.setString(1, genus);
common_latin[0] = prepStmt.executeQuery();

conn.close();

/

¢) Given the common name as input, all attributes from the jay attributes table are
returned as a ResultSet. The java signature for the static method to be used for this
stored procedure should look like this:

public static void selectAttributes(String common_name,
ResultSet[] jay attributes) throws SQLException

d) Given a minimum and maximum value for the wing span as input return the genus,



latin_name, common name, wing_span, length, weight, range and voice of all jays
which have wing spans greater than or equal to the minimum wing span and less
than or equal to the maximum wing span. The java signature for the static method
is this:

public static void wingSpan(java.math. BigDecimal minWingSpan,
java.math.BigDecimal maxWingSpan,
ResultSet[] jay attributes) throws SQLException

e) Make sure the class compiles correctly.
f) Optional: Import the java class, JaySpecies.java to see the solution and not write
the code yourself.

7) Either create a new file called stored _procedures2.sql and write the Stored Procedures
which call the static methods you just created or open the stored procedures.sql file
you imported earlier.

a) An example of the sql to create the stored procedure named selectName which calls
the static method selectLatinCommonName shown above is listed below:

create procedure selectNames(IN genus VARCHAR(30)

parameter style java dynamic result sets 1 language java

external name
'org.apache.derby.plugin.lab.JaySpecies.selectLatinCommonName'
READS SQL DATA;

b) Create all three sql procedures to correspond with the three static methods.

¢) Run the create procedure sql commands to create them in the database using ij.

d) To run the commands as an entire script in ij the first statement in the script needs
to connect to the jaysDB database. Make sure the network server is started if you
are connecting using the Derby Client driver.

8) Either create a new file called execute sp2.sql which calls each stored procedure you
created above with some sample data from the jay attributes or jay species tables or
open the execute _sq.sql file you imported earlier.

a) An example of calling the 'selectNames' stored procedure is:

call selectNames('Cyanocitta’);

b) Make sure to test all three of the procedures before continuing to ensure they work
correctly.

9) Create a stand-alone Java class (it includes a main method) called Jays2.java which
either allows for command line arguments or reads input from the console which calls
all of the stored procedures correctly given various input. Alternately import
Jays.java from the lab zip file into your project to see a possible solution.

a) An example of a class that reads command line arguments could be invoked like



this:
Jjava Jays names Cyanocitta

The results would be the output of the selectLatinCommonName static method with
Cyanocitta as the input.

b) Another example of calling a stored procedure is:
Jjava Jays attributes Western Scrub-Jay

The results would show all attributes for the bird with the common name of
Western Scrub-Jay

¢) A final example would be to create a class that reads from standard input as a
console program. An example of how this works is shown below:

Usage:

names <genus_name>,

attributes <common_name>,

wingspan <min_wingspan> <max_wingspan>,
quit

>> names Nucifraga
Common name: Clark's Nutcracker, Latin name: Nucifraga columbiana

Usage:

names <genus_name>,attributes <common_name>,
wingspan <min_wingspan> <max_wingspan>,
quit

>> attributes Clark's Nutcracker

Common name: Clark's Nutcracker, Wingspan in: 24.00, Length in: 12.0,
Weight oz: 4.6, Range: southwest, northwest,

Voice: Varied; common call a long, harsh, slightly rising shraaaaaa.
Usage:

names <genus_name>,

attributes <common_name>,

wingspan <min_wingspan> <max_wingspan>,

quit

>> wingspan 19.0 25.0

Genus: Cyanocitta, Latin name: Cyanocitta stelleri

Common name: Stellar's Jay, Wingspan in: 19.00, Length in: 11.5, Weight oz:
3.7, Range: pacific, queen charlotte islands,

Voice: Varied; most common a very harsh, unmusical, descending shaaaar



Genus: Nucifraga, Latin name: Nucifraga columbiana

Common name: Clark's Nutcracker, Wingspan in: 24.00, Length in: 12.0,
Weight oz: 4.6, Range: southwest, northwest,

Voice: Varied; common call a long, harsh, slightly rising shraaaaaa.

Genus: Pica, Latin name: Pica nuttalli

Common name: Yellow-billed Magpie, Wingspan in: 24.00, Length in: 16.5,
Weight oz: 5.0, Range: california coast, valley,

Voice: Chatter call reportedly higher-pitched and clearer than Black-billed.



