
[vertical list of authors]
© Copyright ,.

[cover art/text goes here]

Contents

Copyright

i

Apache Software FoundationDerby Developer's GuideApache Derby
Copyright

2

Copyright
Copyright 1997, 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

3

About this guide
For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby .

Purpose of this guide
This book explains how to use the core Derby technology and is for developers building
Derby applications. It describes basic Derby concepts, such as how you create and
access Derby databases through JDBC procedures and how you can deploy Derby
applications.

Audience
This book is intended for software developers who already know some SQL and Java.
Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide Is Organized
This document includes the following chapters:

• JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, and starting Derby.

• After installing

Explains the installation layout.

• Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.

• Controlling Derby application behavior

JDBC, cursors, locking and isolation levels, and multiple connections.

• Using Derby as a J2EE resource manager

Information for programmers developing back-end components in a J2EE system.

• Developing Tools and Using Derby with an IDE

Tips for tool designers.

• SQL tips

Insiders' tricks of the trade for using SQL.

• Localizing Derby

An overview of database localization.

Copyright

4

Upgrades
To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

• marks the database as upgraded to the current release (Version 10.1).
• allows use of new features such as SYNONYMS with the upgraded database.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade

Upgrading occurs the first time the new Derby software connects to the old database.
Before connecting with the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Derby Server and Administration Guide .

If you do not perform a soft upgrade, then once the database is upgraded, it cannot
be reverted back to the previous version.

Upgrading a database
To upgrade a database, you must explicitly request an upgrade the first time you connect
to it with the new version of Derby.

Do not attempt to upgrade a database without first backing it up.

To request an upgrade when connecting to the database:

1. Use the upgrade=true database connection URL attribute, as shown in the
following example:

jdbc:derby:sample;upgrade=true

Once the upgrade is complete, you cannot connect to the database with an older
version of Derby.

You can find out the version of Derby using sysinfo:

java org.apache.derby.tools.sysinfo

Note that this is the version of Derby, not the version of the database. Sysinfo uses
information found in the Derby jar files, so verify that only one version of Derby's jar files
are in your class path when you run this tool.

Soft upgrade
Soft upgrade allows you run a newer version of Derby against an existing database
without having to fully upgrade the database. This means that you can continue to run an
older version of Derby against the database.

Copyright

5

If you perform a soft upgrade, you will not be able to perform certain functions that are
not available in older versions of Derby. For example, the following Derby Version 10.1
features cannot be used in a database that has been soft upgraded:

• Synonym functionality
• Creating tables using the GENERATED BY DEFAULT option for identity columns
• Reclaiming unused space using the

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE procedure
Other new features in Derby that do not affect database structure, such as using
timestamp arithmetic, are allowed in a soft upgraded database.

To perform a soft upgrade on a database created using an earlier version of Derby:

1. Simply connect to the database, as shown in the following example:

connect 'jdbc:derby:sample'

In this example, the sample database is a Version 10.0 database.

Copyright

6

JDBC applications and Derby basics
This chapter describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview
Derby application developers use JDBC, the application programming interface that
makes it possible to access relational databases from Java programs. The JDBC API is
part of the Java(TM) 2 Platform, Standard Edition and is not specific to Derby. It consists
of the java.sql and javax.sql packages, which is a set of classes and interfaces that make
it possible to access databases (from a number of different vendors, not just Derby) from
a Java application.

To develop Derby applications successfully, you will need to learn JDBC. This section
does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This chapter gives you the details of
how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of
JDBC in the Derby Reference Manual .

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types. SQL-92 is the version of SQL standardized by ANSI and ISO in 1992; Derby
supports entry-level SQL-92 as well as some higher-level features. Entry-level SQL-92 is
a subset of full SQL-92 specified by ANSI and ISO that is supported by nearly all major
DBMSs today. This chapter does not teach you SQL. You will find reference information
about the particulars of Derby's implementation of SQL in the Derby Reference Manual .

Derby implements JDBC that allows Derby to serve a resource manager in a J2EE
compliant system.

Derby embedded basics
This section discusses the basics of the Derby database.

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database. Applications must load the driver in order to work
with the database.

In an embedded environment, loading the driver also starts Derby.

In a Java application, you typically load the driver with the static Class.forName method
or with the jdbc.drivers system property. For example:

Copyright

7

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver" in the
Derby Reference Manual . See also javadoc for org.apache.derby.util.DriverUtil.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object. The standard way to obtain a Connection object is to
call the method DriverManager.getConnection , which takes a String containing a
connection URL (uniform resource locator). A JDBC connection URL provides a way of
identifying a database. It also allows you to perform a number of high-level tasks, such as
creating a database or shutting down the system.

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment. See
the Derby Server and Administration Guide for more information on the Network Server.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

• you can specify the name of the database you want to connect to
• you can specify a number of attributes and values that allow you to accomplish

tasks. For more information about what you can specify with the Derby connection
URL, see "Examples". For detailed reference about attributes and values, as well as
syntax of the database connection URL, see the "Derby Database Connection URL
Syntax" in the Derby Reference Manual .

An example use of the connection URL:

Connection conn=DriverManager.getConnection("jdbc:derby:sample");

Derby system

A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a
system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties . This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the system - as well as its directory, which you name - is an essential part of a
running database or databases. Understanding the Derby system is essential to
successful development and deployment of Derby applications.

Figure1. Derby databases live in a system, which includes system-wide properties,
an error log, and one or more databases.

Copyright

8

The system directory can also contain an error log file called derby.log (see The error log
).

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

You can use a property (see "derby.service" in Tuning Derby) to include databases in
other directories or in subdirectories of the system directory in the current system when
you start it up.

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

One Derby instance for each Java Virtual Machine

You could potentially have two instances of a Derby system (JVM) running on the same
machine at the same time. Each instance must run in a different JVM. Two separate
instances of Derby must not access the same database. For example, in an embedded
environment, an application that accesses Derby databases starts up the local JDBC
driver, which starts up an instance of Derby. If you start another application, such as ij,
and connect to the same database, severe database corruption can result. See
Double-booting system behavior .

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

Copyright

9

You can also configure your system to automatically boot all databases in the system
when it starts up; see derby.system.bootAll in the Tuning Derby manual. Because of the
time needed to boot a database, the number of databases in the system directory affects
startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, it prints a message in the error log:

2005-06-10 03:54:06.196 GMT: Booting Derby version Apache Derby
- 10.0.0.1 - (29612): instance c013800d-00fd-0cb0-e736-ffffd1025a25 on
database directory sample

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.

Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the JVM running,
Derby continues to run and is available for database connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

DriverManager.getConnection("jdbc:derby:;shutdown=true");

Shutdown commands always raise SQLExceptions.

When a Derby system shuts down, a message goes to the error log:

Sat Jan 10 14:31:54 PDT 2005:
Shutting down instance 80000001-00d0-8bdf-d115-000a0a0b2d00

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart it in
the same JVM session. To restart Derby successfully, the JVM needs to unload
org.apache.derby.jdbc.EmbeddedDriver, so that it can reload it when it restarts Derby.
(Loading the local driver starts Derby.)

You cannot explicitly request that the JVM unload a class, but you can ensure that the
EmbeddedDriver class is unloaded by using a System.gc() to force it to garbage
collect classes that are no longer needed. Running with -nogc or -noclassgc
definitely prevents the class from being unloaded and makes you unable to restart Derby
in the same JVM.

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database . You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called derby.system.home . If you do not specify the system directory when
starting up Derby, the current directory becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system

Copyright

10

directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See Tuning Derby for more information on
setting this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages, if any. Typically, Derby writes this information to a log
called derby.log in the system directory, although you can also have Derby send
messages to a stream, using a property. By default, Derby overwrites derby.log when you
start the system. You can configure Derby to append to the log with the
derby.infolog.append property. For information on setting this and other properties,
see Tuning Derby .

derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters valid for the entire system. This file is not automatically created; if you wish to
set Derby properties with this file, you need to create it yourself. The file should be in the
format created by the java.util.Properties.save method. For more information
about properties and the Derby.properties file, see Tuning Derby .

Double-booting system behavior

Derby attempts to prevent two instances of Derby from booting the same database by
using a file called db.lck inside the database directory (see "The Database Directory").

On all platforms running with a JDK of 1.4 or higher, Derby can successfully prevent a
second instance of Derby from booting the database and thus prevents corruption.

On some platforms running with a JDK lower than 1.4, Derby may prevent a second
instance of Derby from booting the database (previous to JDK 1.4 the ability to do this
was OS dependent).

If this is the case, you will see an SQLException like the following:

ERROR XJ040: Failed to start database 'sample', see the next exception
for details.
ERROR XSDB6: Another instance of Derby might have already booted
the databaseC:\databases\sample.

The error is also written to the error log.

If you are running a JVM prior to 1.4, Derby issues a warning message on some
platforms if an instance of Derby attempts to boot a database that already has a running
instance of Derby attached to it. However, it does not prevent the second instance from
booting, and thus potentially corrupting, the database. (You can change this behavior
with the property derby.database.forceDatabaseLock .)

If a warning message has been issued, corruption might already have occurred.
Corruption can occur even if one of the two booting systems has "readonly" access to the
database.

The warning message looks like this:

WARNING: Derby
(instance 80000000-00d2-3265-de92-000a0a0a0200) is
attempting to boot the database /export/home/sky/wombat
even though Derby
(instance 80000000-00d2-3265-8abf-000a0a0a0200) might still be active.

Copyright

11

Only one instance of Derby
should boot a database at a time. Severe and non-recoverable corruption
can
result and might have already occurred.

The warning is also written to the error log.

If you see this warning, you should close the connection and exit the JVM, minimizing the
risk of a corruption. Close all instances of Derby, then restart one instance of Derby and
shut down the database properly so that the db.lck file can be removed. The warning
message continues to appear until a proper shutdown of the Derby system can delete the
db.lck file.

When developing applications, you might want to configure Derby to append to the log.
Doing so will help you detect when you have inadvertently started more than one
instance of Derby in the same system. For example, when the derby.infolog.append
property is set to true for a system, booting two instances of Derby in the same system
produces the following in the log:

Sat Aug 14 09:42:51 PDT 2005:
Booting Derby version Apache Derby - 10.0.0.1 - (29612):

instance 80000000-00d2-1c87-7586-000a0a0b1300 on database at
directory C:\tutorial_system\sample
--
Sat Aug 14 09:42:59 PDT 2005:
Booting Derby version Apache Derby - 10.0.0.1 - (29612):
instance 80000000-00d2-1c87-9143-000a0a0b1300 on database at
directory C:\tutorial_system\HelloWorldDB

Derby allows you to boot databases that are not in the system directory. While this might
seem more convenient, check that you do not boot the same database with two JVMs. If
you need to access a single database from more than one JVM, you will need to put a
server solution in place. You can allow multiple JVMs that need to access that database
to connect to the server. The Derby Network Server is provided as a server solution. See
the Derby Server and Administration Guide for more information on the Network Server.

Recommended practices
When developing Derby applications, create a single directory to hold your database or
databases. Give this directory a unique name, to help you remember that:

• All databases exist within a system.
• System-wide properties affect the entire system, and persistent system-wide

properties live in the system directory.
• You can boot all the databases in the system, and the boot-up times of all

databases affect the performance of the system.
• You can preboot databases only if they are within the system. (Databases do not

necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

• Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

• Only one instance of Derby can run in a JVM at a single time, and only one instance
of Derby should boot a database at one time. Keeping databases in the system
directory makes it less likely that you would use more than one instance of Derby.

• The error log is located inside the system directory.

A Derby database

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory

A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.

Copyright

12

A database directory contains the following, as shown in Derby database directories
contain files and directories used by the software. :

• log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).

• seg0 directory

Contains one file for each user table, system table, and index (known as
conglomerates).

• service.properties file

A text file with internal configuration information.

• tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

• jar directory

(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file .

Figure1. Derby database directories contain files and directories used by the
software.

Derby imposes relatively few limitations on the number and size of databases and
database objects. The following table shows some size limitations of Derby databases
and database objects:

Table1. Size Limits to Derby Database Objects

Type of Object Limit

tables per database java.lang.Long.MAX_VALUE

Copyright

13

Type of Object Limit

Some operating systems impose a limit to the number of files
allowed in a single directory.

indexes per table 32,767 or storage

columns per table 1,012

number of columns on an index key 16

rows per table no limit

size of table no limit Some operating systems impose a limit on the size of
a single file.

size of row no limit--rows can span pages. Rows cannot span tables so
some operating systems impose a limit on the size of a single
file, and therefore limit the size of a table and size of a row in
that table.

For a complete list of restrictions on Derby databases and database objects, see the
Derby Reference Manual .

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL (see Database connection examples).

There is no drop database command. To drop a database, delete the database directory
with operating system commands. The database must not be booted when you remove a
database. You can get a list of booted databases with getPropertyInfo (see Offering
Connection Choices to the User).

To back up a database, you can use the online backup utility. For information on this
utility, see the Derby Server and Administration Guide .

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Derby Server and Administration Guide .

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running. See Shutting down Derby or an individual database .

Storage and recovery

A Derby database provides persistent storage and recovery. Derby ensures that all
committed transactions are durable, even if the system fails, through the use of a
database transaction log. Whereas inserts, updates, and deletes may be cached before
being written to disk, log entries tracking all those changes are never cached but always
forced to disk when a transaction commits. If the system or operating system fails
unexpectedly, when Derby next starts up it can use the log to perform recovery,
recovering the "lost" transactions from the log and rolling back uncommitted transactions.
Recovery ensures that all committed transactions at the time the system failed are
applied to the database, and all transactions that were active are rolled back. Thus the
databases are left in a consistent, valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Copyright

14

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

Log on separate device

You can put a database's log on a separate device when you create it. For more
information, see the Derby Server and Administration Guide .

Database Pages

Derby tables and indexes, known as conglomerates, consist of two or more pages. A
page is a unit of storage whose size is configurable on a system-wide, database-wide, or
conglomerate-specific basis. By default, a conglomerate grows one page at a time until
eight pages of user data (or nine pages of total disk use, which includes one page of
internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in Tuning Derby .) After that, it grows eight pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.

Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property. For more information, see "Database-Wide Properties" in Tuning Derby
.

Note: You should work with database-level properties wherever possible.
Database limitations

Derby databases have these limitations:

• Indexes are not supported for columns defined on CLOB, BLOB, and LONG
VARCHAR data types.

If the length of the key columns in an index is larger than half the page size of the
index, creating an index on those key columns for the table fails. For existing
indexes, an insert of new rows for which the key columns are larger than half of the
index page size causes the insert to fail.

It is generally not recommended to create indexes on long columns. It is best to
create indexes on small columns that provide a quick look-up to larger, unwieldy
data in the row. You might not see performance improvements if you index long
columns. For information about indexes, see Tuning Derby .

• The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of IOException will occur in the derby.log if the
system runs out of space. If the system has no more disk space to append to the
derby.log, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call (see Derby JDBC database connection URL). You
specify a path to the database within this connection URL.

Standard connections
Connecting to databases within the system:

Copyright

15

The standard way to access databases is in the file system by specifying the path to the
database, either absolute or relative to the system directory. In a client/server
environment, this path is always on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system, just
specify the database name on the connection URL. For example, if your system directory
contains a database called myDB, you can connect to that database with the following
connection URL:

jdbc:derby:myDB

The full call within a Java program would be:

Connection conn =DriverManager.getConnection("jdbc:derby:myDB");

Connecting to databases outside the system directory:

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system (see
java.io.File.isAbsolute). You must specify a path for a database in a directory other than
the system directory even if you have defined the derby.service property to have
Derby boot the database automatically (see "derby.service" in Tuning Derby).

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

Two examples:

jdbc:derby:../otherDirectory/myDB

jdbc:derby:c:/otherDirectory/myDB

Note: Once connected to, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and that no other instance of Derby should access that
database, among other things. It is recommended that you connect to databases only in
the system directory. See Recommended practices for suggestions about working with a
Derby system.
Conventions for specifying the database path

When accessing databases from the file system (instead of from classpath or a jar file),
any path that is not absolute is interpreted as relative to the system directory.

The path must do one of the following:

• refer to a previously created Derby database
• specify the create=true attribute

The path separator in the connection URL is / (forward slash), as in the standard file://
URL protocol.

You can specify only databases that are local to the machine on which the JVM is
running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path and its relative path are connections to the same database.

Copyright

16

Within Derby, the name of the database is defined by the canonical path of its directory
from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

If the path to the database is ambiguous, i.e., potentially the same as that to a database
that is available on the classpath (see "Special Database Access"), use the directory:
subsubprotocol to specify the one in the file system. For example:

jdbc:derby:directory:myDB

Special database access

You can also access databases from the classpath or from a jar file (in the classpath or
not) as read-only databases.

Accessing databases from the classpath:

In most cases, you access databases from the file system as described above. However,
it is also possible to access databases from the classpath. The databases can be
archived into a jar or zip file or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, specify the name of the database
relative to the directory in the classpath. You can use the classpath subprotocol if such a
database is ambiguous within the directory system. See Embedded Derby JDBC
database connection URL for more information.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

jdbc:derby:/sample

The forward slash is required before sample to indicate that it is relative to
C:\derby\demo\databases directory.

If only C:\derby were in the class path, you could access sample (read-only) like this:

jdbc:derby:/demo/databases/sample

Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file can be, but does not have to
be, on the classpath.

Note: All such databases are read-only.

For example, suppose you have archived the database jarDB1 into a file called jar1.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with
the following connection URL

jdbc:derby:/jarDB1

To access a database in a jar file that is not on the classpath, use the jar subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.

Copyright

17

This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocol, like this:

jdbc:derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file .

Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment. This information also applies to the client connection URL in a
client/server environment. For reference information about client connection URLs, see
"java.sql.Connection" in the Derby Reference Manual .

• jdbc:derby:db1

Open a connection to the database db1. db1 is a directory located in the system
directory.

• jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.

• jdbc:derby:/reference/phrases/french

Open a connection to the database /reference/phrases/french.

On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C. If a jar file
storing databases were in the user's classpath, this could also be a path within the
jar file.

• jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.

• jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.

• jdbc:derby:support/bugsdb;create=true

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.

• jdbc:derby:sample;shutdown=true

Shut down the sample database.

• jdbc:derby:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database.

• jdbc:derby:classpath:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database. The reason for using the subsubprotocol is that it might have the same
path as a database in the directory structure.

• jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Copyright

18

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.

• jdbc:derby:directory:myDB

Access myDB, which is in the system directory. The reason for using the
directory: subsubprotocol is that it might happen to have the same path as a
database in the classpath.

Working with the database connection URL attributes

You specify attributes on the Derby connection URL (see Derby JDBC database
connection URL). The examples in this section use the syntax of the connection URL for
use in an embedded environment. You can also specify these same attributes and values
on the client connection URL if you are using Derby as a database server. For more
information, see the Derby Server and Administration Guide .

You can also set these attributes by passing a Properties object along with a connection
URL to DriverManager.getConnection when obtaining a connection; see
"Specifying Attributes in a Properties Object".

All attributes are optional. For detailed information about the connection URL syntax and
attributes, see "Derby Database Connection URL Syntax"in the Derby Reference Manual
.

You can specify the following attributes:

• bootPassword=key
• create=true
• databaseName=nameofDatabase
• dataEncryption=true
• encryptionProvider=providerName
• encryptionAlgorithm=algorithm
• territory=ll_CC
• logDevice=logDirectoryPath
• createFrom=BackupPath
• restoreFrom=BackupPath
• rollForwardrecoveryFrom=BackupPath
• password=userPassword
• shutdown=true
• user=userName

Using the databaseName attribute

jdbc:derby:;databaseName=databaseName

You can access read-only databases in jar or zip files by specifying jar as the
subsubprotocol, like this:

jdbc:derby:jar:(pathToArchive)databasePathWithinArchive

Or, if the jar or zip file has been included in the classpath, like this:

jdbc:derby:/databasePathWithinArchive

Shutting down Derby or an individual database

Copyright

19

Applications in an embedded environment shut down the Derby system by specifying the
shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you must not specify any other attribute.

jdbc:derby:;shutdown=true

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

You can also shut down an individual database if you specify the databaseName. You
can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

// shutting down a database from your application
DriverManager.getConnection(

"jdbc:derby:sample;shutdown=true");

Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true. Derby creates a new database inside a new subdirectory in the
system directory. This system directory has the same name as the new database. If you
specify a partial path, it is relative to the system directory. You can also specify an
absolute path.

jdbc:derby:databaseName;create=true

For more details about create=true, see "create=true" in the Derby Reference Manual .

Providing a user name and password

When user authentication is enabled, an application must provide a user name and
password. One way to do this is to use connection URL attributes (see user=userName
and password=userPassword).

jdbc:derby:sample;user=jill;password=toFetchAPail

For more information, see Working with user authentication .

Encrypting a database when you create it

If your environment is configured properly, you can create your database as an encrypted
database (one in which the database is encrypted on disk). To do this, you use the
dataEncryption=true attribute to turn on encryption and the bootPassword=key
attribute to specify a key for the encryption. You can also specify an encryption provider
and encryption algorithm other than the defaults with the
encryptionProvider=providerName and encryptionAlgorithm=algorithm
attributes For more information about data encryption, see Encrypting databases on disk
.

jdbc:derby:encryptedDB;create=true;dataEncryption=true;
bootPassword=DBpassword

Booting an encrypted database

You must specify the encryption key with the bootPassword=key attribute for an

Copyright

20

encrypted database when you boot it (which is the first time you connect to it within a
JVM session or after shutting it down within the same JVM session). For more
information about data encryption, see Encrypting databases on disk .

jdbc:derby:encryptedDB;bootPassword=DBpassword

Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes as
properties in a Properties object that you pass as a second argument to the
DriverManager.getConnection method. For example, to set the user name and
password:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

Properties p = new Properties();

p.put("user", "sa");

p.put("password", "manager");

Connection conn = DriverManager.getConnection(

"jdbc:derby:mynewDB", p);

Copyright

21

After installing
This chapter provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the install.html file that is installed with Derby for information on installing
the Derby development environment. See the Release Notes for information on platform
support, changes that may affect your existing applications, defect information, and
recent documentation updates. See Getting Started with Derby for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath.

The installation directory
The installation program installs the Derby software in a directory of your choice. See the
install.html file for information on how to install Derby.

The installer automatically creates setup scripts that include an environment variable
called DERBY_INSTALL. The installer's value is set to the Derby base directory.

C:>echo %DERBY_INSTALL%
C:\DERBY_INSTALL

If you want to set your own environment, Getting Started with Derby instructs you on
setting its value to the directory in which you installed the Derby software.

The installer for Derby installs all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

• index.html in the top-level directory is the top page for the on-line documentation.
• release_notes.html, in the top-level Derby base directory, contains important

last-minute information. Read it first.
• /demo contains some sample applications, useful scripts, and prebuilt databases.

• /databases includes prebuilt sample databases.
• /programs includes sample applications.

• /doc contains the on-line documentation (including this document).
• /frameworks contains utilities and scripts for running Derby.
• /javadoc contains the documented APIs for the public classes and interfaces.

Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

• /lib contains the Derby libraries.

Batch files and shell scripts

The /frameworks/embedded/bin directory contains scripts for running some of the Derby
tools and utilities. To customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on
any platform. However, they can require modification in order to run properly on certain
platforms.

Derby and JVMs
Derby is a database engine written completely in Java; it will run in any JVM, version 1.3
or higher.

Copyright

22

Derby libraries and classpath
Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath on your development machine to include the appropriate libraries.

Getting Started with Derby explains how to set the classpath in a development
environment.

UNIX-specific issues

Configuring file descriptors

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time. If the default is a low number, such
as 64, you might run into unexpected IOExceptions (wrapped in SQLExceptions). If
your operating system lets you configure the number of file descriptors, set this number
to a higher value.

Scripts

Your installation contains executable script files that simplify invoking the Derby tools. On
UNIX systems, these files might need to have their default protections set to include
execute privilege. A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

Copyright

23

Derby embedded basics
This section explains how to use and configure Derby in an embedded environment.
Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

Embedded Derby JDBC driver
The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver. In a Java application, you typically load the
driver with the static Class.forName method or with the jdbc.drivers system
property. For more information, see "Starting Derby as an Embedded Database".

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver" in the
Derby Reference Manual .

Embedded Derby JDBC database connection URL

The standard Derby JDBC connection URL, which you can use for tasks besides
connecting to a database, is

jdbc:derby:[subsubprotocol:][databaseName][;attribute=value]*

Subsubprotocol, which is not typically specified, determines how Derby looks for a
database: in a directory, in a class path, or in a jar file. Subsubprotocol is one of the
following:

• directory The default. Specify this explicitly only to distinguish a database that might
be ambiguous with one on the class path.

• classpath Databases are treated as read-only databases, and all databaseNames
must begin with at least a slash, because you specify them "relative" to the
classpath directory.

• jar Databases are treated as read-only databases. DatabaseNames might require a
leading slash, because you specify them "relative" to the jar file.

jar requires an additional element immediately before the database name:

(pathToArchive)

pathToArchive is the path to the jar or zip file that holds the database.

For examples of using this syntax, see Accessing a read-only database in a zip/jar file .

You typically pass the connection URL as an argument to the JDBC
DriverManager.getConnection method call. For example:

DriverManager.getConnection("jdbc:derby:sample");

You can specify attributes and attribute values to a connection URL. For more
information about what you can specify with the Derby connection URL, see Database

Copyright

24

connection examples . For detailed reference about attributes and values, see the Derby
Reference Manual .

Getting a nested connection
When you are executing a method within SQL, that method might need to reuse the
current connection to the database in order to execute more SQL statements. Such a
connection is called a nested connection. The way for a method to get a nested
connection is to issue a connection request using the connection URL.

jdbc:default:connection

URL attributes are not supported as part of this connection URL. Any URL attributes
specified in a Properties object, user name, or password that are passed to a
java.sql.DriverManager.getConnection() call will be ignored.

Starting Derby as an embedded database

To start Derby, you start the Derby JDBC driver. Starting the Derby driver starts up the
complete Derby system within the current JVM.

For example, when using the JBDC driver manager directly within Java code, you
typically start a JDBC driver in one of two ways:

• Specify the jdbc.drivers system property, which allows users to customize the JDBC
drivers used by their applications. For example:

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver
applicationClass

• Load the class directly from Java code using the static method Class.forName. For
example:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

For more details, see "java.sql.Driver" in the Derby Reference Manual .

Once the Derby JDBC driver class has been loaded, you can connect to any Derby
database by passing the embedded connection URL with the appropriate attributes to the
DriverManager.getConnection method.

For example:

Connection conn = DriverManager.getConnection("jdbc:derby:sample");

Copyright

25

Deploying Derby applications
Typically, once you have developed a Derby application and database, you package up
the application, the Derby libraries, and the database in some means for distribution to
your users. This process is called deployment.

This section discusses issues for deploying Derby applications and databases.

Deployment issues
This section discusses deployment options and details.

Embedded deployment application overview

In an embedded environment, Derby runs in the same JVM as the application.

The application can be a single-user application or a multi-user application server. In the
latter case, Derby runs embedded in the user-provided server framework, and any client
applications use user-provided connectivity or allow the application server to handle all
database interaction.

Figure1. Derby embedded in a single-user Java application

Figure1. Derby embedded in a multi-user Java application server

When a Derby database is embedded in a Java application, the database is dedicated to
that single application. If you deploy more than one copy of the application, each
application has its own copy of the database and Derby software. A Derby server
framework can work in multi-threaded, multi-connection mode and can even connect to
more than one database at a time. A server framework, such as the Derby Network
Server, can be used to manage multiple connections and handle network capabilities.
Some server framework solutions, such as WebSphere Application Server, provide
additional features such as web services and connection pooling. However, only one

Copyright

26

server framework at a time can operate against a Derby database.

The Derby application accesses an embedded Derby database through the JDBC API.
To connect, an application makes a call to the local Derby JDBC driver. Accessing the
JDBC driver automatically starts the embedded Derby software. The calling application is
responsible for shutting down the embedded Derby database software.

Deploying Derby in an embedded environment

You can "embed" Derby in any Java application (single- or multi-user) by deploying the
following package:

• the Derby library (derby.jar)
• the application's libraries

You have the option of storing these libraries in the database. (See Loading classes
from a database .)

• the database or databases used by the application, in the context of their system
directory (see Embedded systems and properties)

Figure1. Deploying an application, embedded Derby software, and the database.
Storing the application in the database and setting properties as database-wide
properties simplify deployment.

Embedded systems and properties

Database-wide properties are stored in the database and are simpler for deployment,
while system-wide parameters might be easier for development.

• If you are setting any system-wide properties, see if they can be set as

Copyright

27

database-wide properties instead.
• Are any properties being set in the derby.properties file? Some properties can only

be set on a system-wide basis. If so, deploy the entire system directory along with
the properties file. Deploy only those databases that you wish to include. Setting
properties programmatically can simplify this step- you will not have to worry about
deploying the system directory/properties file.

Before deploying your application, read Recommended practices .

Extra steps are required for deploying an application and an embedded database on
read-only media. See Creating Derby databases for read-only use .

Creating Derby databases for read-only use
You can create Derby databases for use on read-only media such as CD-ROMs.

Derby databases in zip or jar files are also read-only databases. Typically, read-only
databases are deployed with an application in an embedded environment.

Creating and preparing the database for read-only use

To create databases for use on read-only media:

1. Create and populate the database on read-write media.
2. Commit all transactions and shut down Derby in the prescribed manner (see

Shutting down Derby or an individual database). If you do not shut down Derby in
the prescribed manner, Derby will need to perform recovery the next time the
system boots. Derby cannot perform recovery on read-only media.

3. Delete the tmp directory if one was created within your database directory. If you
include this directory, Derby will attempt to delete it and will return errors when
attempting to boot a database on read-only media.

4. For the read-only database, set the property derby.storage.tempDirectory to a
writable location.

Derby needs to write to temporary files for large sorts required by such SQL
statements as ORDER BY, UNION, DISTINCT, and GROUP BY. For more
information about this property, see Tuning Derby .

derby.storage.tempDirectory=c:/temp/mytemp

5. Configure the database to send error messages to a writable file or to an output
stream.

For information, see Tuning Derby .

derby.stream.error.file=c:/temp/mylog.LOG

Be sure to set these properties so that they are deployed with the database. For more
information, see Embedded systems and properties .

Deploying the database on the read-only media

1. Move the database directory to the read-only media, including the necessary
subdirectory directories (log and seg0) and the file service.properties .

2. Use the database as usual, except that you will not be able to insert or update any
data in the database or create or drop dictionary objects.

Transferring read-only databases to archive (jar or zip) files

Copyright

28

Once a database has been created in Derby, it can be stored in a jar or zip file and
continue to be accessed by Derby in read-only mode. This allows a read-only database
to be distributed as a single file instead of as multiple files within a directory and to be
compressed. In fact, a jar or zip file can contain any number of Derby databases and can
also contain other information not related to Derby, such as application data or code.

You cannot store the derby.properties file in a jar or zip file.

To create a jar or zip file containing one or more Derby databases:
1. Follow the instructions for creating a database for use on read-only media. See

Creating and preparing the database for read-only use .
2. From the directory that contains the database folder, archive the database directory

and its contents. For example, for the database sales that lives in the system
directory C:\london, issue the command from london. Do not issue the command
from inside the database directory itself.

For example, archive the database folder and its contents using the JAR program from
the JDK. You can use any zip or jar tool to generate the archive.

This command archives the database directory sales and its contents into a compressed
jar file called dbs.jar.

cd C:\london
jar cMf C:\dbs.jar sales

You can add multiple databases with jar. For example, this command puts the sales
databases and the boiledfood database (in the subdirectory products) into the archive.

cd C:\london
jar cMf C:\dbs.jar sales products\boiledfood

The relative paths of the database in the jar need not match their original relative paths.
You can do this by allowing your archive tool to change the path, or by moving the
original databases before archiving them.

The archive can be compressed or uncompressed, or individual databases can be
uncompressed or compressed if your archive tool allows it. Compressed databases take
up a smaller amount of space on disk, depending on the data loaded, but are slower to
access.

Once the database is archived into the jar or zip file, it has no relationship to the original
database. The original database can continue to be modified if desired.

Accessing a read-only database in a zip/jar file

To access a database in a zip/jar, you specify the jar in the subsubprotocol:

jdbc:derby:jar:(pathToArchive)databasePathWithinArchive

The pathToArchive is the absolute path to the archive file. The
databasePathWithinArchive is the relative path to the database within the archive. For
example:

jdbc:derby:jar:(C:/dbs.jar)products/boiledfood
jdbc:derby:jar:(C:/dbs.jar)sales

If you have trouble finding a database within an archive, check the contents of the archive

Copyright

29

using your archive tool. The databasePathWithinArchive must match the one in the
archive. You might find that the path in the archive has a leading slash, and thus the URL
would be:

jdbc:derby:jar:(C:/dbs.jar)/products/boiledfood

Databases in a jar or zip file are always opened read-only and there is currently no
support to allow updates of any type.

Databases in a jar or zip file are not booted automatically when Derby is started, unless
they are explicitly listed as derby.service properties.

Accessing databases within a jar file using the classpath

Once an archive containing one or more Derby databases has been created it can be
placed in the classpath. This allows access to a database from within an application
without the application's knowing the path of the archive. When jar or zip files are part of
the classpath, you do not have to specify the jar subsubprotocol to connect to them.

To access a database in a zip or jar file in the classpath:

1. Set the classpath to include the jar or zip file before starting up Derby:

CLASSPATH="C:\dbs.jar;%CLASSPATH%"

2. Connect to a database within the jar or zip file with one of the following connection
URLs:

Standard syntax:
jdbc:derby:/databasePathWithinArchive

Syntax with subsubprotocol:
jdbc:derby:classpath:/databasePathWithinArchive

For example:

jdbc:derby:/products/boiledfood
jdbc:derby:classpath:/products/boiledfood

Connecting to databases with ambiguous paths to databases in the file system

Use the basic connection URL syntax only if the database path specified does not also
point to a Derby database in the file system. If this is the case, the connection attempt
might fail or connect to the wrong database. Use the form of the syntax with the
subsubprotocol to distinguish between the databases.

For example:

jdbc:derby:classpath:/products/boiledfood

Connecting to databases when the path is ambiguous because of databases in the
classpath

To connect to a database in the file system when the connection URL that you would use
would be ambiguous with a database in the classpath, use the following form of the
connection URL:

Copyright

30

jdbc:derby:directory:databasePathInFileSystem

For example,

jdbc:derby:directory:/products/boiledfood

Apart from the connection URL, databases in archives in the classpath behave just like
databases in archives accessed through the file system. However, databases in archives
are read-only.

Databases on read-only media and DatabaseMetaData

Databases on read-only media return true for DatabaseMetaData.isReadOnly.

Loading classes from a database
You can store application logic in a database and then load classes from the database.
Application logic, which can be used by SQL functions and procedures, includes Java
class files and other resources. Storing application code simplifies application
deployment, since it reduces the potential for problems with a user's classpath.

In an embedded environment, when application logic is stored in the database, Derby
can access classes loaded by the Derby class loader from stored jar files.

Class loading overview

You store application classes and resources by storing one or more jar files in the
database. Then your application can access classes loaded by Derby from the jar file and
does not need to be coded in a particular way. The only difference is the way in which
you invoke the application.

Here are the basic steps:

1. Create jar files for your application
2. Add the jar file or files to the database
3. Enable database class loading with a property
4. Code your applications

Note: If you are interested in making changes to jar files stored in the database or
changing the database jar "classpath" of your application without having to re-boot, read
Dynamic changes to jar files or to the database jar classpath .
Signed jar files

For information about how Derby handles signed jar files, see Signed jar files

Create jar files for your application

Include any Java classes in a jar file intended for Derby class loading except:

• the standard Java packages (java.*, javax.*)

Derby does not prevent you from storing such a jar file in the database, but these
classes are never loaded from the jar file.

• those supplied with your Java environment (for example, sun.*)

A running Derby system can load classes from any number of jar files from any number
of schemas and databases.

Create jar files intended for Derby database class loading the same way you create a jar

Copyright

31

file for inclusion in a user's classpath. For example, consider an application targeted at
travel agencies:

jar cf travelagent.jar travelagent/*.class.

Various IDEs have tools to generate a list of contents for a jar file based on your
application. If your application requires classes from other jar files, you have a choice:

• Extract the required third-party classes from their jar file and include only those in
your jar file.

Best if you need only a small subset of the classes in the third-party jar file.

• Store the third-party jar file in the database.

Best if you need most or all of the classes in the third-party jar file, since your
application and third-party logic can be upgraded separately.

• Deploy the third-party jar file in the user's class path.

Best if the classes are often already installed on a user's machine (for example,
Objectspace's JGL classes).

Include the class files and resources needed for your application.

Add the jar file or files to the database

Use a set of procedures to install, replace, and remove jar files in a database. When you
install a jar file in a database, you give it a Derby jar name, which is an
SQL92Identifier .

Note: Once a jar file has been installed, you cannot modify any of the individual classes
or resources within the jar file. Instead, you must replace the entire jar file.
Jar file examples

See the Derby Tools and Utilities Guide for reference information about the utility and
complete syntax.

Installing jar files:

-- SQL statement
CALL sqlj.install_jar(

'tours.jar', 'APP.Sample1', 0)

-- SQL statement
-- using a quoted identifier for the
-- Derby jar name
CALL sqlj.install_jar(

'tours.jar', 'APP."Sample2"', 0)

Removing jar files:

-- SQL statement
CALL sqlj.remove_jar(

'APP.Sample1', 0)

Replacing jar files:

-- SQL statement
CALL sqlj.replace_jar(

'c:\myjarfiles\newtours.jar', 'APP.Sample1')

Copyright

32

Enable database class loading with a property

Once you have added one or more jar files to a database, you must set the database jar
"classpath" by including the jar file or files in the derby.database.classpath property to
enable Derby to load classes from the jar files. This property, which behaves like a class
path, specifies the jar files to be searched for classes and resources and the order in
which they are searched. If Derby does not find a needed class stored in the database, it
can retrieve the class from the user's classpath. (Derby first looks in the user's classpath
before looking in the database.)

• Separate jar files with a colon (:).
• Use two-part names for the jar files (schema name and jar name). Set the property

as a database-level property for the database. The first time you set the property,
you must reboot to load the classes.

Example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.classpath',
'APP.ToursLogic:APP.ACCOUNTINGLOGIC')

See "derby.database.classpath" in Tuning Derby for more information about the property.

Note: Derby's class loader looks first in the user's classpath for any needed classes, and
then in the database. To ensure class loading with the database class loader, remove
classes from the classpath.

Code your applications

In your applications, you cause classes to be loaded the way you normally would:

• Indirectly referencing them in the code
• Directly using java.lang.Class.forName

In your applications, you load resources the way you normally would, using the standard
java.lang.Class.getResourceAsStream, a mechanism that allows an application to access
resources defined in the classpath without knowing where or how they are stored.

You do not need to make any changes to the way code interacts with Derby and its JDBC
driver. An application can safely attempt to boot Derby, even though it is already running,
without any errors. Applications connect to Derby in the usual manner.

Note: The method getResource is not supported.

Dynamic changes to jar files or to the database jar classpath

When you store jar files in a single database and make those jar files available to that
database, it is possible to make changes to jar files or to change the database jar
"classpath" dynamically (without having to reboot).

That is, when you install or replace a jar file within an SQL statement or change the
database jar "classpath" (the derby.database.classpath property), Derby is able to
load the new classes right away without your having to reboot.

Requirements for dynamic changes

Certain conditions must be met for Derby to be able to load the new classes right away
without you having to reboot:

• You originally configured database-level class loading for the database correctly.
Turning on the database-level class loading property requires setting the
derby.database.classpath property with valid two-part names, then

Copyright

33

rebooting.
• If changes to the derby.database.classpath property are needed to reflect new jar

files, you change the property to a valid value.

If these requirements are not met, you will have to reboot to see the changes.

Notes

When you are changing the derby.database.classpath property, all classes loaded from
database jar files are reloaded, even for a jar file that has not changed.

Remember that the user's classpath is searched first.

Any existing prepared statements will use the previously loaded classes unless they
require class loading, in which case they will fail with a ClassNotFound error.

Cached objects do not match objects created with newly loaded classes. For example, an
in-memory Customer object will not match a new Customer object if the Customer
class has been reloaded, and it will raise a ClassCastException.

Copyright

34

Derby server-side programming
This section discusses special programming for Derby.

These features include such programming as database-side JDBC procedures and
triggers.

Programming database-side JDBC procedures
Methods invoked within an application are called application-side methods. Methods
invoked within Derby are called database-side procedures.

An application-side method can be exactly the same as a database-side procedure. The
only difference is where you invoke them. You write the method only once. Where you
invoke the method-within the application or within an SQL statement-determines whether
it is an "application-side" or a "database-side" method.

Database-side JDBC procedures and nested connections

Most database-side JDBC Procedures need to share the same transaction space as the
statements that called them for the following reasons:

• to avoid blocking and deadlocks
• to ensure that any updates done from within the method are atomic with the outer

transaction

In order to use the same transaction, the procedure must use the same connection as the
parent SQL statement in which the method was executed. Connections re-used in this
way are called nested connections.

Use the connection URL jdbc:default:connection to re-use the current Connection

The Database Connection URL jdbc:default:connection allows a Java method to get the
Connection of the SQL statement that called it. This is the standard (SQL standard, Part
13 SQL Routines and Java) mechanism to obtain the nested connection object. The
method would get a Connection :

Connection conn = DriverManager.getConnection(
"jdbc:default:connection");

Loading a JDBC driver in a database-side routine is not required.

Requirements for database-side JDBC procedures using nested connections
In order to preserve transactional atomicity, database-side JDBC procedures that use
nested connections:

• cannot issue a commit or rollback, unless called within a CALL statement.
• cannot change connection attributes such as auto-commit.
• cannot modify the data in a table used by the parent statement that called the

procedure, using INSERT, UPDATE, or DELETE. For example, if a SELECT
statement using the T table calls the changeTables procedure, changeTables
cannot modify data in the T table.

• cannot drop a table used by the statement that called the procedure.
• cannot be in a class whose static initializer executes DDL statements.

In addition, the Connection object that represents the nested connection always has its
auto-commit mode set to false.

Database-side JDBC procedures using non-nested connections

Copyright

35

A database-side JDBC procedure can create a new connection instead of using a nested
connection. Statements executed in the procedure will be part of a different transaction,
and so can issue commits and rollbacks.

Such procedures can connect to a database different from the one to which the parent
SQL statement that called it is connected. The procedure does not use the same
transaction or Connection. It establishes a new Connection and transaction.

Note: If database-side JDBC procedures do not use nested connections, this means that
they are operating outside of the normal DBMS transaction control, so it is not good
practice to use them indiscriminately.
Invoking a procedure using the CALL command

If a procedure uses only IN parameters, Derby can execute the procedure by using the
SQL CALL command. A stored procedure with IN, OUT, or INOUT parameters can be
invoked from a client application by using the CallableStatement method. You can invoke
the procedure in an SQL statement such as the following:

CALL MYPROC()

Note: You cannot roll back this statement, because commits occur within the procedure
itself. Procedures that use nested connections, on the other hand, are not permitted to
commit or roll back and can therefore be rolled back after the calling statement.

You can also use the CALL command to execute a procedure that does return a value,
but you will not be able to access the value.

Database-side JDBC procedures and SQLExceptions

It is possible to code database-side procedures, like application-side methods, to catch
SQLExceptions. SQLExceptions that are caught within a procedure are hidden from
the calling application code. When such SQLExceptions are of transaction severity
(such as deadlocks), this "hiding" of the exception causes unexpected problems.

This is because errors of transaction severity roll back work already done by a
transaction (not just the piece executed by the called method) and silently begin a new
transaction. When the method execution is complete, Derby detects that the outer
statement was invalidated by a deadlock and rolls back any work done in the new
transaction as well. This is the expected behavior, because all the statements in between
explicit commits should be treated atomically; the new transaction implicitly begun by
Derby's rollback was not intended by the application designer.

However, this is not the same behavior that would happen if the method were invoked in
the application. In that situation, Derby would roll back the work done by the transaction
and silently begin a new transaction. Work in the new transaction would not be rolled
back when the method returned. However, coding the application in that way means that
the transaction did not end where you expected it to and is probably a programming
mistake. Coding in this manner is not recommended.

A method that catches a deadlock exception and then continues is probably making a
mistake. Errors of transaction severity should be caught not by nested code, but only by
the outermost application code. That is the only way to ensure that transactions begin
and end where you expect them to.

Not all database vendors handle nested deadlocks the same way. For this and other
reasons, it is not possible to write portable SQL-invoking methods. However, it is possible
to write SQL-invoking methods that behave identically regardless of whether you invoke
them in the application or as a procedure in the database.

Copyright

36

In order to ensure identical application- and database-side handling of nested errors,
code try-catch blocks to check for the severity of exceptions as follows:

try {
preparedStatement.execute();

} catch (SQLException se) {
String SQLState = se.getSQLState();

if (SQLState.equals("23505"))
{ correctDuplicateKey(); }

else if (SQLState.equals("22003")) {
correctArithmeticOverflow(); }

else { throw se; }
}

Of course, users also have the choice of not wrapping SQL statements in try-catch blocks
within methods. In that case, SQLExceptions are caught higher up in their applications,
which is the desired behavior.

User-defined SQLExceptions

When the execution of a database-side method raises an error, Derby wraps that
exception in an SQLException with an SQLState of 38000. You can avoid having Derby
wrap the exception if:

• The exception is an SQLException
• The range of the SQLState is 38001-38999

(This conforms to the SQL99 standard.)

Programming trigger actions
Derby allows you to create triggers. When you create a trigger, you define an action or
set of actions that are executed when a database event occurs on a specified table. A
database event is a delete, insert, or update operation. For example, if you define a
trigger for a delete on a particular table, the trigger action is executed whenever someone
deletes a row or rows from the table.

The CREATE TRIGGER statement in the Derby Reference Manual goes into detail of the
complete CREATE TRIGGER syntax. This section provides information on defining the
trigger action itself, which is only one aspect of creating triggers.

This section refers to the CREATE TRIGGER statement as the trigger actions.

Trigger action overview

A trigger action is a simple SQL statement. For example:

CREATE TRIGGER . . .
DELETE FROM flightavailability

WHERE flight_id IN (SELECT flight_id FROM flightavailability
WHERE YEAR(flight_date) < 2005);)

A trigger action does have some limitations, though; for example, it cannot contain
dynamic parameters or alter the table on which the trigger is defined. See "TriggerAction"
in the Derby Reference Manual for details.

Performing referential actions

Derby provides referential actions. Examples in this section are included to illustrate how
to write triggers. You can choose to use standard SQL referential integrity to obtain this

Copyright

37

functionality, rather than writing triggers. See the Derby Reference Manual for more
information on referential integrity.

Accessing before and after rows

Many trigger actions need to access the values of the rows being changed. Such trigger
actions need to know one or both of the following:

• the "before" values of the rows being changed (their values before the database
event that caused the trigger to fire)

• the "after" values of the rows being changed (the values to which the database
event is setting them)

Derby provides transition variables and transition tables for a trigger action to access
these values. See"Referencing Old and New Values: The Referencing Clause" in the
Derby Reference Manual .

Examples

The following trigger action copies a row from the flights table into the flight_history table
whenever any row gets inserted into flights and adds the comment "inserted from trig1" in
the status column of theflight_history table.

CREATE TRIGGER trig1
AFTER UPDATE ON flights
REFERENCING OLD AS UPDATEDROW
FOR EACH ROW MODE DB2SQL
INSERT INTO flights_history
VALUES (UPDATEDROW.FLIGHT_ID, UPDATEDROW.SEGMENT_NUMBER,
UPDATEDROW.ORIG_AIRPORT, UPDATEDROW.DEPART_TIME,
UPDATED ROW.DEST_AIRPORT, UPDATEDROW.ARRIVE_TIME,
UPDATEDROW.MEAL, UPDATEDROW.FLYING_TIME, UPDATEDROW.MILES,
UPDATEDROW.AIRCRAFT,'INSERTED FROM trig1');

Triggers and exceptions

Exceptions raised by triggers have a statement severity; they roll back the statement that
caused the trigger to fire.

This rule applies to nested triggers (triggers that are fired by other triggers). If a trigger
action raises an exception (and it is not caught), the transaction on the current connection
is rolled back to the point before the triggering event. For example, suppose Trigger A
causes Trigger B to fire. If Trigger B throws an exception, the current connection is rolled
back to the point before to the statement in Trigger A that caused Trigger B to fire.
Trigger A is then free to catch the exception thrown by Trigger B and continue with its
work. If Trigger A does not throw an exception, the statement that caused Trigger A, as
well as any work done in Trigger A, continues until the transaction in the current
connection is either committed or rolled back. However, if Trigger A does not catch the
exception from Trigger B, it is as if Trigger A had thrown the exception. In that case, the
statement that caused Trigger A to fire is rolled back, along with any work done by both
of the triggers.

Aborting statements and transactions

You might want a trigger action to be able to abort the triggering statement or even the
entire transaction. Triggers that use the current connection are not permitted to commit or
roll back the connection, so how do you do that? The answer is: have the trigger throw an
exception, which is by default a statement-level exception (which rolls back the
statement). The application-side code that contains the statement that caused the trigger
to fire can then roll back the entire connection if desired. Programming triggers in this
respect is no different from programming any database-side JDBC method.

Copyright

38

Copyright

39

Controlling Derby application behavior
This section looks at some advanced Derby application concepts.

The JDBC Connection and Transaction Model
Session and transaction capabilities for SQL are handled through JDBC procedures, not
by SQL commands.

JDBC defines a system session and transaction model for database access. A session is
the duration of one connection to the database and is handled by a JDBC Connection
object.

Connections

A Connection object represents a connection with a database. Within the scope of one
Connection , you access only a single Derby database. (Database-side JDBC
procedures can allow you to access more than one database in some circumstances.) A
single application might allow one or more Connections to Derby, either to a single
database or to many different databases, provided that all the databases are within the
same system (see Derby system).

With DriverManager, you use the connection URL as an argument to get the
getConnection method to specify which database to connect to and other details (see
Derby JDBC database connection URL).

The following example shows an application establishing three separate connections to
two different databases in the current system.

Connection conn = DriverManager.getConnection(
"jdbc:derby:sample");

System.out.println("Connected to database sample");
conn.setAutoCommit(false);
Connection conn2 = DriverManager.getConnection(

"jdbc:derby:newDB;create=true");
System.out.println("Created AND connected to newDB");
conn2.setAutoCommit(false);
Connection conn3 = DriverManager.getConnection(

"jdbc:derby:newDB");
System.out.println("Got second connection to newDB");
conn3.setAutoCommit(false);

A Connection object has no association with any specific thread; during its lifetime, any
number of threads might have access to it, as controlled by the application.

Statements

To execute SQL statements against a database, an application uses Statements (
java.sql.Statement) and PreparedStatements (
java.sql.PreparedStatement), or CallableStatements (
java.sql.CallableStatement) for stored procedures. Because
PreparedStatement extends Statement and CallableStatement extends
PreparedStatement, this section refers to both as Statements. Statements are obtained
from and are associated with a particular Connection.

ResultSets and Cursors

Executing a Statement that returns values gives a ResultSet (
java.sql.ResultSet), allowing the application to obtain the results of the statement.
Only one ResultSet can be open for a particular Statement at any time, as per the
JDBC specification.

Copyright

40

Thus, executing a Statement automatically closes any open ResultSet generated by
an earlier execution of that Statement .

For this reason, you must use a different Statement to update a cursor (a named
ResultSet) from the one used to generate the cursor.

The names of open cursors must be unique within a Connection. For more information
about how to use cursors and ResultSets , see SQL and JDBC ResultSet/Cursor
mechanisms .

Nested connections

SQL statements can include routine invocations. If these routines interact with the
database, they must use a Connection.

For more information, see Programming database-side JDBC procedures .

Transactions

A transaction is a set of one or more SQL statements that make up a logical unit of work
that you can either commit or roll back and that will be recovered in the event of a system
failure. All the statements in the transaction are atomic. A transaction is associated with a
single Connection object (and database). A transaction cannot span Connections (or
databases).

Derby permits schema and data manipulation statements (DML) to be intermixed within a
single transaction. If you create a table in one transaction, you can also insert into it in
that same transaction. A schema manipulation statement (DDL) is not automatically
committed when it is performed, but participates in the transaction within which it is
issued. Because DDL requires exclusive locks on system tables, keep transactions that
involve DDL short.

Transactions when auto-commit is disabled

When auto-commit is disabled (see Using auto-commit), you use a Connection object's
commit and rollback methods to commit or roll back a transaction. The commit
method makes permanent the changes resulting from the transaction and releases locks.
The rollback method undoes all the changes resulting from the transaction and
releases locks. A transaction encompasses all the SQL statements executed against a
single Connection object since the last commit or rollback .

You do not need to explicitly begin a transaction. You implicitly end one transaction and
begin a new one after disabling auto-commit, changing the isolation level, or after calling
commit or rollback .

Committing a transaction also closes all ResultSet objects excluding the ResultSet
objects associated with cursors with holdability true. The default holdability of the
cursors is true and ResultSet objects associated with them need to be closed
explicitly. A commit will not close such ResultSet objects. (See Holdable cursors for
more information.) It also releases any database locks currently held by the Connection
, whether or not these objects were created in different threads.

Using auto-commit

A new connection to a Derby database is in auto-commit mode by default, as specified by
the JDBC standard. Auto-commit mode means that when a statement is completed, the
method commit is called on that statement automatically. Auto-commit in effect makes
every SQL statement a transaction. The commit occurs when the statement completes or
the next statement is executed, whichever comes first. In the case of a statement
returning a ResultSet , the statement completes when the last row of the ResultSet
has been retrieved or the ResultSet has been closed explicitly.

Copyright

41

Some applications might prefer to work with Derby in auto-commit mode; some might
prefer to work with auto-commit turned off. You should be aware of the implications of
using either model.

You should be aware of the following when you use auto-commit:

• Cursors

You cannot use auto-commit if you do any positioned updates or deletes (that is, an
update or delete statement with a "WHERE CURRENT OF" clause) on cursors
which have the close cursors on commit option set.

Auto-commit automatically closes cursors, which are explicitly opened with the
close on commit option, when you do any in-place updates or deletes. For more
information about cursors, see SQL and JDBC ResultSet/Cursor mechanisms .

A cursor declared to be held across commit can execute updates and issue multiple
commits before closing the cursor, but the cursor must be repositioned before any
statement following the commit. If this is attempted with auto-commit on, an error is
generated.

• Database-side JDBC Procedures (procedures using nested connections)

You cannot execute procedures within SQL statements if those procedures perform
a commit or rollback on the current connection. Since in the auto-commit mode all
SQL statements are implicitly committed, Derby turns off auto-commit during
execution of database-side procedures and turns it back on when the method
completes.

Procedures that use nested connections are not permitted to turn auto-commit on or
off or to commit or roll back.

• Table-level locking and the SERIALIZABLE isolation level

When an application uses table-level locking and the SERIALIZABLE isolation level,
all statements that access tables hold at least shared table locks. Shared locks
prevent other transactions that update data from accessing the table. A transaction
holds a lock on a table until the transaction commits. So even a SELECT statement
holds a shared lock on a table until its connection commits and a new transaction
begins.

Table1. Summary of Application Behavior with Auto-Commit On or Off

Topic Auto-Commit On Auto-Commit Off

Transactions Each statement is a
separate transaction.

Commit() or rollback()
begins a transaction.

Database-side JDBC procedures (routines using
nested connections)

Auto-commit is turned
off.

Works (no explicit
commits or rollbacks are
allowed).

Updatable cursors Does not work. Works.

Multiple connections accessing the same data Works. Works. Lower
concurrency when
applications use
SERIALIZABLE isolation
mode and table-level
locking.

Updatable ResultSets Works. Works. Not required by
the JDBC program.

Copyright

42

Turning Off Auto-Commit

You can disable auto-commit with the Connection class's setAutoCommit method:

conn.setAutoCommit(false);

Explicitly closing Statements, ResultSets, and Connections

You should explicitly close Statements, ResultSets, and Connections when you no
longer need them. Connections to Derby are resources external to an application, and
the garbage collector will not close them automatically.

For example, close a Statement object using its close method; close a Connection
object using its close method. If auto-commit is disabled, active transactions need to be
explicitly committed or rolled back before closing the connection

Statement versus transaction runtime rollback

When an SQL statement generates an exception, this exception results in a runtime
rollback. A runtime rollback is a system-generated rollback of a statement or transaction
by Derby, as opposed to an explicit rollback call from your application.

Extremely severe exceptions, such as disk-full errors, shut down the system, and the
transaction is rolled back when the database is next booted. Severe exceptions, such as
deadlock, cause transaction rollback; Derby rolls back all changes since the beginning of
the transaction and implicitly begins a new transaction. Less severe exceptions, such as
syntax errors, result in statement rollback; Derby rolls back only changes made by the
statement that caused the error. The application developer can insert code to explicitly
roll back the entire transaction if desired.

Derby supports partial rollback through the use of savepoints. See the Derby Reference
Manual for more information.

SQL and JDBC ResultSet/Cursor mechanisms
A cursor provides you with the ability to step through and process the rows in a ResultSet
one by one. A java.sql.ResultSet object constitutes a cursor. You do not need to
use a language construct, such as SQL-92's DECLARE CURSOR, to work with cursors
in a Java application. In Derby, any SELECT statement generates a cursor.

Simple non-updatable ResultSets

Here is an excerpt from a sample JDBC application that generates a ResultSet with a
simple SELECT statement and then processes the rows.

Connection conn = DriverManager.getConnection(
"jdbc:derby:sample");

Statement s = conn.createStatement();
s.execute("set schema 'SAMP'");
//note that autocommit is on--it is on by default in JDBC
ResultSet rs = s.executeQuery(

"SELECT empno, firstnme, lastname, salary, bonus, comm "
+ "FROM samp.employee");

/** a standard JDBC ResultSet. It maintains a
* cursor that points to the current row of data. The cursor
* moves down one row each time the method next() is called.
* You can scroll one way only--forward--with the next()
* method. When auto-commit is on, after you reach the
* last row the statement is considered completed
* and the transaction is committed.
*/

System.out.println("last name" + "," + "first name" + ": earnings");
/* here we are scrolling through the result set
with the next() method.*/
while (rs.next()) {

Copyright

43

// processing the rows
String firstnme = rs.getString("FIRSTNME");
String lastName = rs.getString("LASTNAME");
BigDecimal salary = rs.getBigDecimal("SALARY");
BigDecimal bonus = rs.getBigDecimal("BONUS");
BigDecimal comm = rs.getBigDecimal("COMM");
System.out.println(lastName + ", " + firstnme + ": "

+ (salary.add(bonus.add(comm))));
}
rs.close();
// once we've iterated through the last row,
// the transaction commits automatically and releases
//shared locks
s.close();

Updatable cursors

Cursors are read-only by default. For a cursor to be updatable, you must specify SELECT
. . . FOR UPDATE. Use FOR UPDATE only when you will be modifying rows to avoid
excessive locking of tables.

Requirements for updatable cursors

Only specific SELECT statements- simple accesses of a single table-allow you to update
or delete rows as you step through them.

For more information, see "SELECT statement" and "FOR UPDATE clause" in the Derby
Reference Manual .

Naming or accessing the name of a cursor

There is no SQL language command to assign a name to a cursor. You can use the
JDBC setCursorName method to assign a name to a ResultSet that allows
positioned updates and deletes. You assign a name to a ResultSet with the
setCursorName method of the Statement interface. You assign the name to a cursor
before executing the Statement that will generate it.

Statement s3 = conn.createStatement();
// name the statement so we can reference the result set
// it generates
s3.setCursorName("UPDATABLESTATEMENT");
// we will be able to use the following statement later
// to access the current row of the cursor
// a result set needs to be obtained prior to using the
// WHERE CURRENT syntax
ResultSet rs = s3.executeQuery("select * from

FlightBookings FOR UPDATE of number_seats");
PreparedStatement ps2 = conn.prepareStatement(

"UPDATE FlightBookings SET number_seats = ? " +
"WHERE CURRENT OF UPDATABLESTATEMENT");

Typically, you do not assign a name to the cursor, but let the system generate one for
you automatically. You can determine the system-generated cursor name of a ResultSet
generated by a SELECT statement using the ResultSet class's getCursorName
method.

PreparedStatement ps2 = conn.prepareStatement(
"UPDATE employee SET bonus = ? WHERE CURRENT OF "+

Updatable.getCursorName());

Extended updatable cursor example

String URL = "jdbc:derby:sample";
// autocommit must be turned off for updatable cursors
conn.setAutoCommit(false);
Statement s3 = conn.createStatement();
// name the statement so we can reference the result set
// it generates
s3.setCursorName("UPDATABLESTATEMENT");
// Updatable statements have some requirements
// for example, select must be on a single table
ResultSet Updatable = s3.executeQuery(

Copyright

44

"SELECT firstnme, lastname, workdept, bonus" +
"FROM employee FOR UPDATE of bonus");

// we need a separate statement to do the
// update PreparedStatement
PreparedStatement ps2 = conn.prepareStatement("UPDATE employee " +
// we could use the cursor name known by the system,
// as the following line shows
//"SET bonus = ? WHERE CURRENT OF " + Updatable.getCursorName());
// but we already know the cursor name
"SET bonus = ? WHERE CURRENT OF UPDATABLESTATEMENT");
String theDept="E21";
while (Updatable.next()) {

String firstnme = Updatable.getString("FIRSTNME");
String lastName = Updatable.getString("LASTNAME");
String workDept = Updatable.getString("WORKDEPT");
BigDecimal bonus = Updatable.getBigDecimal("BONUS");
if (workDept.equals(theDept)) {
// if the current row meets our criteria,
// update the updatable column in the row

ps2.setBigDecimal(1, bonus.add(new BigDecimal(250)));
ps2.executeUpdate();
System.out.println("Updating bonus in employee" +
" table for employee " + firstnme +
", department " + theDept);

}
}

Updatable.close();
s3.close();
ps2.close();
conn.commit();

ResultSets and auto-commit

Except for the result sets associated with holdable cursors (see Holdable cursors for
more information), issuing a commit will cause all result sets on your connection to be
closed.

The JDBC program is not required to have auto-commit off when using updatable
ResultSets.

Scrolling insensitive ResultSets

JDBC 2.0 adds a new kind of ResultSet , one that allows you to scroll in either
direction or to move the cursor to a particular row. Derby implements scrolling insensitive
ResultSets . When you use a scroll insensitive ResultSets cursor to facilitate the
insensitive scrolling action, Derby materializes in memory all rows from the first one in the
result set up to the one with the biggest row number.

//autocommit does not have to be off because even if
//we accidentally scroll past the last row, the implicit commit
//on the the statement will not close the result set because result sets
//are held over commit by default
conn.setAutoCommit(false);
Statement s4 = conn.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
s4.execute("set schema 'SAMP'");
ResultSet scroller=s4.executeQuery(

"SELECT sales_person, region, sales FROM sales " +
"WHERE sales > 8 ORDER BY sales DESC");

if (scroller.first())
System.out.println("The sales rep who sold the highest number

of sales is " +
scroller.getString("SALES_PERSON"));

else
System.out.println("There are no rows.");

scroller.beforeFirst();
scroller.afterLast();
scroller.absolute(3);
if (!scroller.isAfterLast())

System.out.println("The employee with the third highest number
of sales is " +

scroller.getString("SALES_PERSON") + ", with " +
scroller.getInt("SALES") + " sales");

if (scroller.isLast())
System.out.println("There are only three rows.");

if (scroller.last())

Copyright

45

System.out.println("The least highest number
of sales of the top three sales is: " +

scroller.getInt("SALES"));
scroller.close();
s4.close();
conn.commit()
conn.close();
System.out.println("Closed connection");

Holdable cursors

Note: Non-holdable cursors are only available in Java 2 Platform, Standard Edition, v 1.4
(J2SE) environments.

The holdable cursor feature permits an application to keep cursors open after implicit or
explicit commits. By default, the cursors are held open after a commit. Starting with Java
2 Platform, Standard Edition, v 1.4 (J2SE), cursors can be created with close when a
commit occurs option. Such cursors will be automatically closed when a commit happens.
Cursors are automatically closed when a transaction aborts, whether or not they have
been specified to be held open.

Note: Holdable cursors do not work with XA transactions, in Derby Version 10.1,
therefore cursors should be opened with holdability false when working with XA
transactions.

To specify whether a cursor should be held open after a commit takes place, supply one
of the following ResultSet parameters to the Connection method createStatement
, prepareStatement , or prepareCall :

• CLOSE_CURSORS_AT_COMMIT

Cursors are closed when an implicit or explicit commit is performed.

• HOLD_CURSORS_OVER_COMMIT

Cursors are held open when a commit is performed, implicitly or explicitly. This is
the default behavior.

The method Statement.getResultSetHoldability() indicates whether a cursor generated by
the Statement object stays open or closes, upon commit. See the Derby Reference
Manual for more information.

When an implicit or explicit commit occurs, ResultSets that hold cursors open behave as
follows:

• Open ResultSets remain open. The cursor is positioned before the next logical row
of the result set.

• When the session is terminated, the ResultSet is closed and destroyed.
• All locks are released, except locks protecting the current cursor position of open

cursors specified to stay open after commits.
• Immediately following a commit, the only valid operations that can be performed on

the ResultSet are:
• positioning the ResultSet to the next valid row in the result with

ResultSet.next() .
• closing the ResultSet with ResultSet.close() .

When a rollback occurs either explicitly or implicitly, the following behavior applies:

• All open ResultSets are closed.
• All locks acquired during the unit of work are released.

Holdable cursors and autocommit

Copyright

46

When autocommit is on, positioned updates and deletes are not supported for ResultSet
objects that hold cursors open. If you attempt an update or delete, an exception is
thrown.

Non-holdable cursor example

The following example uses Connection.createStatement to return a ResultSet that
will close after a commit is performed:

Connection conn = ds.getConnection(user, passwd);
Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY,
ResultSet.CLOSE_CURSORS_AT_COMMIT);

Locking, concurrency, and isolation
This section discusses topics pertinent to multi-user systems, in which concurrency is
important. Derby is configured by default to work well for multi-user systems. For
single-user systems, you might want to tune your system so that it uses fewer resources;
see Lock granularity .

Isolation levels and concurrency

Derby provides four transaction isolation levels. Setting the transaction isolation level for
a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions. For example, it allows you to specify whether transaction
A is allowed to make changes to data that have been viewed by transaction B before
transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with a
way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setIsolationLevel method or the
SQL SET ISOLATION statement. The names of the isolation levels are different,
depending on whether you use a JDBC method or SQL statement. Mapping of JDBC
transaction isolation levels to Derby isolation levels shows the equivalent names for
isolation levels whether they are set through the JDBC method or an SQL statement.

Table1. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation levels for JDBC Isolation levels for SQL

Connection.TRANSACTION_READ_ UNCOMMITTED
(ANSI level 0)

UR, DIRTY READ, READ
UNCOMMITTED

Connection.TRANSACTION_READ_COMMITTED (ANSI
level 1)

CS, CURSOR STABILITY, READ
COMMITTED

Connection.TRANSACTION_REPEATABLE_READ (ANSI
level 2)

RS

Connection.TRANSACTION_SERIALIZABLE (ANSI level 3) RR, REPEATABLE READ,
SERIALIZABLE

Copyright

47

These levels allow you to avoid particular kinds of transaction anomalies, which are
described in Transaction Anomalies .

Table1. Transaction Anomalies

Anomaly Example

Dirty Reads

A dirty read happens when a transaction reads
data that is being modified by another transaction
that has not yet committed.

Transaction A begins.

UPDATE employee SET salary = 31650
WHERE empno = '000090'

Transaction B begins.

SELECT * FROM employee

(Transaction B sees data updated by transaction A.
Those updates have not yet been committed.)

Non-Repeatable Reads

Non-repeatable reads happen when a query
returns data that would be different if the query
were repeated within the same transaction.
Non-repeatable reads can occur when other
transactions are modifying data that a transaction
is reading.

Transaction A begins.

SELECT * FROM employee
WHERE empno = '000090'

Transaction B begins.

UPDATE employee SET salary = 30100
WHERE empno = '000090'

(Transaction B updates rows viewed by transaction
A before transaction A commits.) If Transaction A
issues the same SELECT statement, the results will
be different.

Phantom Reads

Records that appear in a set being read by
another transaction. Phantom reads can occur
when other transactions insert rows that would
satisfy the WHERE clause of another
transaction's statement.

Transaction A begins.

SELECT * FROM employee
WHERE salary > 30000

Transaction B begins.

INSERT INTO employee
(empno, firstnme, midinit,
lastname, job,
salary) VALUES ('000350', 'NICK',
'A','GREEN','LEGAL COUNSEL',35000)

Transaction B inserts a row that would satisfy the
query in Transaction A if it were issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

When Transaction Anomalies Are Possible shows which anomalies are possible under
the various locking schemas and isolation levels.

Table1. When Transaction Anomalies Are Possible

Isolation Level
Table-Level
Locking Row-Level Locking

TRANSACTION_READ_UNCOMMITTED Dirty reads,
nonrepeatable
reads, and phantom

Dirty reads,
nonrepeatable reads,
and phantom reads

Copyright

48

Isolation Level
Table-Level
Locking Row-Level Locking

reads possible possible

TRANSACTION_READ_COMMITTED Nonrepeatable
reads and phantom
reads possible

Nonrepeatable reads
and phantom reads
possible

TRANSACTION_REPEATABLE_READ Phantom reads not
possible because
entire table is
locked

Phantom reads
possible

TRANSACTION_SERIALIZABLE None None

The following java.sql.Connection isolation levels are supported:

• TRANSACTION_SERIALIZABLE

RR, SERIALIZABLE, or REPEATABLE READ from SQL.

TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues
locks to prevent all the transaction anomalies listed in Transaction Anomalies from
occurring. The type of lock it issues is sometimes called a range lock. For more
information about range locks, see Scope of locks .

• TRANSACTION_REPEATABLE_READ

RS from SQL.

TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent
only dirty reads and non-repeatable reads, but not phantoms. It does not issue
range locks for selects.

• TRANSACTION_READ_COMMITTED

CS or CURSOR STABILITY from SQL.

TRANSACTION_READ_COMMITTED means that Derby issues locks to prevent
only dirty reads, not all the transaction anomalies listed in Transaction Anomalies .

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.

• TRANSACTION_READ_UNCOMMITTED

UR, DIRTY READ, or READ UNCOMMITTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

• Any row that is read during the unit of work to be changed by other application
processes.

• Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels

If a connection does not specify its isolation level, it inherits the default isolation level for

Copyright

49

the Derby system, The default value is CS. When set to CS, the connection inherits the
TRANSACTION_READ_COMMITTED isolation level. When set to RR, the connection
inherits the TRANSACTION_SERIALIZABLE isolation level, when set to RS, the
connection inherits the TRANSACTION_REPEATABLE_READ isolation level, and when
set to UR, the connection inherits the TRANSACTION_READ_UNCOMMITTED isolation
level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an SQL
statement. For more information, see "SET ISOLATION statement" in the Derby
Reference Manual . You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the"WITH clause," see
the "SELECT statement"in the Derby Reference Manual .

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction.

Note: For information about how to choose a particular isolation level, see Tuning Derby .

Lock granularity

Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning off
row-level locking, see "derby.storage.rowLocking" in Tuning Derby . For more information
about automatic lock escalation, see "About the System's Selection of Lock Granularity"
and "Transaction-Based Lock Escalation" in Tuning Derby . For more information on
tuning your Derby system, see "Tuning Databases and Applications".

Types and scope of locks in Derby systems

There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.

Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data. This lock remains in place until the
transaction holding the lock issues a commit or rollback. Table-level locking lowers
concurrency in a multi-user system.

Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data. Another transaction that tries to read the same data is permitted
to read, but a transaction that tries to update the data will be prevented from doing so
until the shared lock is released. How long this shared lock is held depends on the
isolation level of the transaction holding the lock. Transactions using the
TRANSACTION_READ_COMMITTED isolation level release the lock when the
transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ isolation

Copyright

50

level hold the lock until the transaction is committed, so even a SELECT can prevent
updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.

Update locks

When a user-defined update cursor (created with the FOR UPDATE clause) reads data,
its transaction obtains an update lock on the data. If the user-defined update cursor
updates the data, the update lock is converted to an exclusive lock. If the cursor does not
update the row, when the transaction steps through to the next row, transactions using
the TRANSACTION_READ_COMMITTED isolation level release the lock. (For update
locks, the TRANSACTION_READ_UNCOMMITTED isolation level acts the same way as
TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.

Lock compatibility

Lock Compatibility Matrix lists compatibility between lock types. + means compatible, -
means incompatible.

Table1. Lock Compatibility Matrix

' Shared Update Exclusive

Shared
+ + -

Update
+ - -

Exclusive
- - -

Scope of locks

The amount of data locked by a statement can vary.

• table locks

A statement can lock the entire table.

Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a
statement cannot use an index. For example, UPDATES that cannot use an index
lock the entire table.

Row-level locking systems can lock entire tables if a high number of single-row
locks would be less efficient than a single table-level lock. Choosing table-level
locking instead of row-level locking for performance reasons is called lock
escalation. (For more information about this topic, see "About the System's
Selection of Lock Granularity" and "Transaction-Based Lock Escalation" in Tuning
Derby .)

• single-row locks

A statement can lock only a single row at a time.

This section applies only to row-level locking systems.

For TRANSACTION_READ_COMMITTED or
TRANSACTION_REPEATABLE_READ isolation, Derby treats rows as cursors for

Copyright

51

SELECT statements. It locks rows only as the application steps through the rows in
the result. The current row is locked. The row lock is released when the application
goes to the next row. (For TRANSACTION_SERIALIZABLE isolation, however,
Derby locks the whole set before the application begins stepping through.) For
TRANSACTION_READ_UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the
transaction is committed. (If there is an index associated with the table, the previous
key is also locked.)

• range locks

A statement can lock a range of rows (range lock).

This section applies only to row-level locking systems.

For any isolation level, Derby locks all the rows in the result plus an entire range of
rows for updates or deletes.

For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows in
the result plus an entire range of rows in the table for SELECTs to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where
the salary is BETWEEN two values, the system can lock more than just the actual
rows it returns in the result. It also must lock the entire range of rows between those
two values to prevent another transaction from inserting, deleting, or updating a row
within that range.

An index must be available for a range lock. If one is not available, Derby locks the
entire table.

Table1. Possible Types and Scopes of Locking

Transaction Isolation Level Table-Level Locking Row-Level Locking

Connection.
TRANSACTION_
READ_UNCOMMITED (SQL:
UR)

For SELECT
statements, table-level
locking is never
requested using this
isolation level. For other
statements, same as for
TRANSACTION_
READ_ COMMITTED.

SELECT statements get no locks. For other
statements, same as for TRANSACTION_
READ_COMMITTED.

Connection.
TRANSACTION_
READ_COMMITTED (SQL:
CS)

SELECT statements get
a shared lock on the
entire table. The locks
are released when the
user closes the
ResultSet. Other
statements get exclusive
locks on the entire table,
which are released
when the transaction
commits.

SELECTs lock and release single rows as the
user steps through the ResultSet. UPDATEs
and DELETEs get exclusive locks on a range
of rows. INSERT statements get exclusive
locks on single rows (and sometimes on the
preceding rows).

Connection.
TRANSACTION_
REPEATABLE_READ (SQL:
RS)

Same as for
TRANSACTION_
SERIALIZABLE

SELECT statements get shared locks on the
rows that satisfy the WHERE clause (but do
not prevent inserts into this range). UPDATEs
and DELETEs get exclusive locks on a range
of rows. INSERT statements get exclusive

Copyright

52

Transaction Isolation Level Table-Level Locking Row-Level Locking

locks on single rows (and sometimes on the
preceding rows).

Connection.
TRANSACTION_
SERIALIZABLE (SQL: RR)

SELECT statements get
a shared lock on the
entire table. Other
statements get exclusive
locks on the entire table,
which are released
when the transaction
commits.

SELECT statements get shared locks on a
range of rows. UPDATE and DELETE
statements get exclusive locks on a range of
rows. INSERT statements get exclusive locks
on single rows (and sometimes on the
preceding rows).

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance
reasons.

Deadlocks

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the lock
on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions.

Figure1. A deadlock.

Avoiding Deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation

Copyright

53

level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible. Derby application developers can avoid deadlocks
by using consistent application logic; for example, transactions that access Accounts and
Orders should always access the tables in the same order. That way, in the scenario
described above, Transaction B simply waits for transaction A to release the lock on
Orders before it begins. When transaction A releases the lock on Orders, Transaction B
can proceed freely.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt to
lock a table in exclusive mode when it starts to prevent other transactions from getting
shared locks on a table. For more information, see "LOCK TABLE statement" in the
Derby Reference Manual .

Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.
When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLState of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

ERROR 40001: A lock could not be obtained due to a deadlock,
cycle of locks & waiters is:
Lock : ROW, DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update department set location='Boise'

where deptno='E21'
Granted XID : {758, X} Lock : ROW, EMPLOYEE, (2,8)
Waiting XID : {758, U} , APP, update employee set bonus=150 where
salary=23840
Granted XID : {752, X} The selected victim is XID : 752

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts .

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization
primitives are not detected by Derby.
Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs. In such a situation, you might not want a transaction
to wait indefinitely. Instead, you might want the waiting transaction to abort, or time out,
after a reasonable amount of time, called a lock wait timeout. (For information about
configuring the lock wait timeout, see Configuring deadlock detection and lock wait
timeouts .)

Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property. You configure the amount of
time a transaction waits before timing out with the derby.locks.waitTimeout
property. When configuring your database or system, you should consider these
properties together. For example, in order for any deadlock checking to occur, the
derby.locks.deadlockTimeout property must be set to a value lower than the

Copyright

54

derby.locks.waitTimeout property. If it is set to a value equal to or higher than the
derby.locks.waitTimeout , the transaction times out before Derby does any
deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait
timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

Figure1. One possible configuration: deadlock checking occurs when a transaction
has waited 30 seconds; no lock wait timeouts occur.

Figure1. Another typical configuration: deadlock checking occurs after a
transaction has waited 60 seconds for a lock; after 90 seconds, the transaction
times out and is rolled back.

Copyright

55

Figure1. A configuration in which no deadlock checking occurs: transactions time
out after they have waited 50 seconds. No deadlock checking occurs.

Debugging Deadlocks

Copyright

56

If deadlocks occur frequently in your multi-user system with a particular application, you
might need to do some debugging. Derby provides a class to help you in this situation,
org.apache.derby.diag.LockTable. You can also set the property
derby.locks.deadlockTrace to dump additional information to the Derby.log file about any
deadlocks that occur on your system. See the Tuning Guide for more information on this
property. For information, see the Derby Server and Administration Guide .

Programming applications to handle deadlocks

When you configure your system for deadlock and lockwait timeouts and an application
could be chosen as a victim when the transaction times out, you should program your
application to handle this. To do this, test for SQLExceptions with SQLStates of 40001
(deadlock timeout) or 40XL1 or 40XL2 (lockwait timeout).

In the case of a deadlock you might want to re-try the transaction that was chosen as a
victim. In the case of a lock wait timeout, you probably do not want to do this right away.

The following code is one example of how to handle a deadlock timeout.

/// if this code might encounter a deadlock,
// put the whole thing in a try/catch block
// then try again if the deadlock victim exception
// was thrown
try {

s6.executeUpdate(
"UPDATE employee " +
"SET bonus = 625 "
"WHERE empno='000150'");

s6.executeUpdate("UPDATE project " +
"SET respemp = '000150' " +
"WHERE projno='IF1000'");

}
// note: do not catch such exceptions in database-side methods;
// catch such exceptions only at the outermost level of
// application code.
// See
Database-side JDBC procedures and SQLExceptions
.
catch (SQLException se) {

if (se.getSQLState().equals("40001")) {
// it was chosen as a victim of a deadlock.
// try again at least once at this point.
System.out.println("Will try the transaction again.");
s6.executeUpdate("UPDATE employee " +
"SET bonus = 625 " +
"WHERE empno='000150'");
s6.executeUpdate("UPDATE project " +
"SET respemp = 000150 " +
"WHERE projno='IF1000'");

}
else throw se;

}

Working with multiple connections to a single database
This section discusses deploying Derby so that many connections can exist to a single
database.

Deployment options and threading and connection modes

A database can be available to multiple connections in the following situations:

• Multiple applications access a single database (possible only when Derby is running
inside a server framework).

• A single application has more than one Connection to the same database.

The way you deploy Derby affects the ways applications can use multi-threading
and connections, as shown in Threading and Connection Modes .

Copyright

57

Table1. Threading and Connection Modes

Connection mode Embedded Server

Multi-Threaded

From an application, using a single
Connection to a Derby database
and issuing requests against that
connection in multiple threads.

Supply a single Connection object to
separate threads. Derby ensures that
only one operation is applied at a
time for consistency. Server
frameworks automatically manage
multi-threaded operations. For more
information, see Transactions .

Server frameworks can
automatically multi-thread
operations. Remote client
applications can
multi-thread if desired.

Multi-Connection

From an application, using multiple
connections to a Derby database
and issuing requests against those
connections on multiple threads.

Create individual connections within
a single application and use the
appropriate connection for each
JDBC request. The connections can
all be to the same database, or can
be to different databases in the same
Derby system.

Remote client applications
can establish the multiple
connections desired.

Multi-User

Multiple applications (or JVMs)
accessing the same Derby
database. Each user application has
its own connection or connections to
the database.

Not possible. Only one application
can access a database at a time, and
only one application can access a
specific system at a time. When
using a pre-1.4 JVM, Derby might not
prevent multiple applications from
concurrently accessing the same
Derby system, but do not allow this
because such access can corrupt the
databases involved.

Only one server should
access a database at a
time. Multiple remote client
applications can access
the same server, and thus
can access the same
database at the same time
through that server.

Multi-user database access

Multi-user database access is possible if Derby is running inside a server framework.

If more than one client application tries to modify the same data, the connection that gets
the table first gets the lock on the data (either specific rows or the entire table). The
second connection has to wait until the first connection commits or rolls back the
transaction in order to access the data. If two connections are only querying and not
modifying data, they can both access the same data at the same time because they can
each get a shared lock. For more information, see Locking, concurrency, and isolation .

Multiple connections from a single application

A single application can work with multiple Connections to the same database and assign
them to different threads. The application programmer can avoid concurrency and
deadlock problems in several ways:

• Use the TRANSACTION_READ_COMMITTED isolation level and turn on row-level
locking (the defaults).

• Beware of deadlocks caused by using more than one Connection in a single thread
(the most obvious case). For example, if the thread tries to update the same table
from two different Connections , a deadlock can occur.

• Assign Connections to threads that handle discrete tasks. For example, do not have
two threads update the Hotels table. Have one thread update the Hotels table and a
different one update the Groups table.

• If threads access the same tables, commit transactions often.
• Multi-threaded Java applications have the ability to self-deadlock without even

accessing a database, so beware of that too.

Copyright

58

• Use nested connections to share the same lock space.

Working with multiple threads sharing a single connection
JDBC allows you to share a single Connection among multiple threads.

Pitfalls of sharing a connection among threads

Here is a review of the potential pitfalls of sharing a single Connection among multiple
threads:

• Committing or rolling back a transaction closes all open ResultSet objects and
currently executing Statements, unless you are using held cursors.

If one thread commits, it closes the Statements and ResultSets of all other threads
using the same connection.

• Executing a Statement automatically closes any existing open ResultSet generated
by an earlier execution of that Statement.

If threads share Statements, one thread could close another's ResultSet.

In many cases, it is easier to assign each thread to a distinct Connection. If thread A
does database work that is not transactionally related to thread B, assign them to
different Connections. For example, if thread A is associated with a user input window
that allows users to delete hotels and thread B is associated with a user window that
allows users to view city information, assign those threads to different Connections. That
way, when thread A commits, it does not affect any ResultSets or Statements of thread
B.

Another strategy is to have one thread do queries and another thread do updates.
Queries hold shared locks until the transaction commits in SERIALIZABLE isolation
mode; use READ_COMMITTED instead.

Yet another strategy is to have only one thread do database access. Have other threads
get information from the database access thread.

Multiple threads are permitted to share a Connection, Statement, or ResultSet. However,
the application programmer must ensure that one thread does not affect the behavior of
the others.

Recommended Practices

Here are some tips for avoiding unexpected behavior:

• Avoid sharing Statements (and their ResultSets) among threads.
• Each time a thread executes a Statement, it should process the results before

relinquishing the Connection .
• Each time a thread accesses the Connection, it should consistently commit or not,

depending on application protocol.
• Have one thread be the "managing" database Connection thread that should handle

the higher-level tasks, such as establishing the Connection , committing, rolling
back, changing Connection properties such as auto-commit, closing the
Connection , shutting down the database (in an embedded environment), and so
on.

• Close ResultSets and Statements that are no longer needed in order to release
resources.

Multi-thread programming tips

Some programmers might share a Connection among multiple threads because they
have experienced poor concurrency using separate transactions. Here are some tips for

Copyright

59

increasing concurrency:

• Use row-level locking.
• Use the TRANSACTION_READ_COMMITTED isolation level.
• Avoid queries that cannot use indexes; they require locking of all the rows in the

table (if only very briefly) and might block an update.

In addition, some programmers might share a statement among multiple threads to avoid
the overhead of each thread's having its own. Using the single statement cache, threads
can share the same statement from different connections. For more information, see in
Tuning Derby .

Example of threads sharing a statement

This example shows what can happen if two threads try to share a single Statement.

PreparedStatement ps = conn.prepareStatement(
"UPDATE account SET balance = balance + ? WHERE id = ?");

/* now assume two threads T1,T2 are given this
java.sql.PreparedStatement object and that the following events
happen in the order shown (pseudojava code)*/
T1 - ps.setBigDecimal(1, 100.00);
T1 - ps.setLong(2, 1234);
T2 - ps.setBigDecimal(1, -500.00);
// *** At this point the prepared statement has the parameters
// -500.00 and 1234
// T1 thinks it is adding 100.00 to account 1234 but actually
// it is subtracting 500.00
T1 - ps.executeUpdate();
T2 - ps.setLong(2, 5678);
// T2 executes the correct update
T2 - ps.executeUpdate();
/* Also, the auto-commit mode of the connection can lead
to some strange behavior.*/

If it is absolutely necessary, the application can get around this problem with Java
synchronization.

If the threads each obtain their own PreparedStatement (with identical text), their setXXX
calls do not interfere with each other. Moreover, Derby is able to share the same
compiled query plan between the two statements; it needs to maintain only separate
state information. However, there is the potential for confusion in regard to the timing of
the commit, since a single commit commits all the statements in a transaction.

Working with database threads in an embedded environment
Do not use interrupt calls to notify threads that are accessing a database, because
Derby will catch the interrupt call and close the connection to the database. Use
wait and notify calls instead.

This will not happen in a client/server environment, but if you want your application to
work in either environment it is good practice to follow this rule.

There are special considerations when working with more than one database thread in an
application. See Working with multiple connections to a single database and Working
with multiple threads sharing a single connection .

Working with Derby SQLExceptions in an Application
JDBC generates exceptions of the type java.sql.SQLException. To see the exceptions
generated by Derby, retrieve and process the SQLExceptions in a catch block.

Copyright

60

Information provided in SQLExceptions

Derby provides the message, SQLState values, and error codes. Use the getSQLState
and getMessage methods to view the SQLState and error messages. Use
getErrorCode to see the error code. The error code defines the severity of the error
and is not unique to each exception. The severity levels are described in
org.apache.derby.types.ExceptionSeverity .

Applications should also check for and process java.sql.SQLWarnings, which are
processed in a similar way. Derby issues an SQLWarning if the create=true attribute
is specified and the database already exists.

Example of processing SQLExceptions

In addition, a single error can generate more than one SQLException. Use a loop and the
getNextException method to process all SQLExceptions in the chain. In many
cases, the second exception in the chain is the pertinent one.

The following is an example:

catch (Throwable e) {
System.out.println("exception thrown:");
errorPrint(e);

}
static void errorPrint(Throwable e) {

if (e instanceof SQLException)
SQLExceptionPrint((SQLException)e);

else
System.out.println("A non-SQL error: " + e.toString());

}
static void SQLExceptionPrint(SQLException sqle) {

while (sqle != null) {
System.out.println("\n---SQLException Caught---\n");
System.out.println("SQLState: " + (sqle).getSQLState());
System.out.println("Severity: " + (sqle).getErrorCode());
System.out.println("Message: " + (sqle).getMessage());
sqle.printStackTrace();
sqle = sqle.getNextException();

}
}

See also "Derby Exception Messages and SQL States", in the Derby Reference Manual .

Copyright

61

Using Derby as a J2EE resource manager
J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE), J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such, it is one
part of a larger system that includes, among other things, a JNDI server, a connection
pool module, a transaction manager, a resource manager, and user applications. Within
this system, Derby can serve as the resource manager.

For more information on J2EE and how to work in this environment, see the J2EE
specification available at http://java.sun.com/j2ee/docs.html .

Note: This chapter does not show you how to use Derby as a Resource Manager.
Instead, it provides details specific to Derby that are not covered in the specification. This
information is useful to programmers developing other modules in a distributed J2EE
system, not to end-user application developers.

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support. These three areas of support involve implementation of APIS and are
described in "J2EE Compliance: Java Transaction API and javax.sql Extensions" in the
Derby Reference Manual .

This chapter describes the Derby classes that implement the APIs and provides some
implementation-specific details.

Note: All of the classes described in this chapter require a Java 2 Platform, Standard
Edition, v 1.2 (J2SE) or higher environment.

Classes that pertain to resource managers

See the javadoc for each class for more information.

• org.apache.derby.jdbc.EmbeddedDataSource

Implements javax.sql.DataSource interface, which a JNDI server can reference.
Typically this is the object that you work with as a DataSource .

• org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource

Implements javax.sql.ConnectionPoolDataSource. A factory for
PooledConnection objects.

• org.apache.derby.jdbc.EmbeddedXADataSource

Derby's implementation of a javax.sql.XADataSource.

Getting a DataSource
Normally, you can simply work with the interfaces for javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource , and javax.sql.XADataSource , as
shown in the following examples.

import org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource;
import org.apache.derby.jdbc.EmbeddedDataSource;
import org.apache.derby.jdbc.EmbeddedXADataSource;

Copyright

62

javax.sql.ConnectionPoolDataSource cpds = new
EmbeddedConnectionPoolDataSource();
javax.sql.DataSource ds = new EmbeddedDataSource();
javax.sql.XADataSource xads = new EmbeddedXADataSource();

Derby provides six properties for a DataSource. These properties are in
org.apache.derby.jdbc.EmbeddedDataSource. They are:

• DatabaseName

This mandatory property must be set. It identifies which database to access. If a
database named wombat located at /local1/db/wombat is to be accessed, then one
should call setDatabaseName("/local1/db/wombat") on the data source object.

• CreateDatabase

Optional. Sets a property to create a database the next time the
XADataSource.getXAConection() method is called. The string createString is
always "create" (or possibly null). (Use the method setDatabaseName() to
define the name of the database.)

• ShutdownDatabase

Optional. Sets a property to shut down a database. The string shutDownString is
always "shutdown" (or possibly null). Shuts down the database the next time
XADataSource.getXAConnection().getConnection() method is called.

• DataSourceName

Optional. Name for ConnectionPooledDataSource or XADataSource. Not used by
the data source object. Used for informational purpose only.

• Description

Optional. Description of the data source. Not used by the data source object. Used
for informational purpose only.

• connectionAttributes

Optional. Connection attributes specific to Derby. See the Derby Reference Manual
for a more information about the attributes.

Shutting down or creating a database
If you need to shut down or create a database, it is easiest just to work with the
Derby-specific implementations of interfaces, as shown in the following examples.

javax.sql.XADataSource xads = makeXADataSource(mydb, true);

// example of setting property directory using
//
Derby 's XADataSource object
import org.apache.derby.jdbc.EmbeddedXADataSource;
import javax.sql.XADataSource;
// dbname is the database name
// if create is true, create the database if not already created
XADataSource makeXADataSource (String dbname, boolean create)
{

EmbeddedXADataSource xads = new EmbeddedXADataSource();
// use Derby 's setDatabaseName call
xads.setDatabaseName(dbname);
if (create)

xads.setCreateDatabase("create");
return xads;

}

Setting the property does not create or shut down the database. The database is not
actually created or shut down until the next connection request.

Copyright

63

Copyright

64

Derby and Security
Derby can be deployed in a number of ways and in a number of different environments.
The security needs of the Derby system are also diverse. Derby supplies or supports the
following optional security mechanisms:

• User authentication

Derby verifies user names and passwords before permitting them access to the
Derby system. See Working with user authentication .

• User authorization

A means of granting specific users permission to read a database or to write to a
database. See User authorization .

• Disk encryption

A means of encrypting Derby data stored on disk. See Encrypting databases on
disk .

• Validation of Certificate for Signed Jar Files

In a Java 2 environment, Derby validates certificates for classes loaded from signed
jar files. See Signed jar files .

Figure1. Some of the Derby security mechanisms at work in a client/server
environment

Copyright

65

Figure1. Another Derby security mechanism, disk encryption, protects data when
the recipient might not know how to protect data. It is useful for databases
deployed in an embedded environment.

Configuring security for your environment
In most cases, you enable Derby's security features through the use of properties. It is
important to understand the best way of setting properties for your environment.

Configuring security

Derby does not come with a built-in superuser. For that reason, be careful when
configuring Derby for user authentication and user authorization.

1. When first working with security, work with system-level properties only so that you
can easily override them if you make a mistake.

2. Be sure to create at least one valid user, and grant that user full (read-write) access.
For example, you might always want to create a user called sa with the password
derby while you are developing.

3. Test the authentication system while it is still configured at the system level. Be
absolutely certain that you have configured the system correctly before setting the
properties as database-level properties.

4. Before disabling system-level properties (by setting derby.database.propertiesOnly
to true), test that at least one database-level read-write user (such as sa) is valid. If
you do not have at least one valid user that the system can authenticate, you will
not be able to access your database.

Configuring security in a client/server environment

This procedure requires a system with multiple databases and some administrative
resources. For systems that have a single database and for which there are no
administrative resources, follow the instructions in Configuring security in an embedded
environment .

1. Configure security features as system properties. See Tuning Derby .
2. Provide administrative-level protection for the derby.properties file and Derby

databases. For example, you can protect these files and directories with operating
system permissions and firewalls.

3. Turn on user authentication for your system. All users must provide valid user IDs
and passwords to access the Derby system. See Working with user authentication
for information. If you are using Derby's built-in users, configure users for the
system in the derby.properties file. Provide the protection for this file.

4. Configure user authorization for sensitive databases in your system. Only
designated users will be able to access sensitive databases. You typically configure

Copyright

66

user authorization with database-level properties. See User authorization for
information. It is also possible to configure user authorization with system-level
properties. This is useful when you are developing systems or when all databases
have the same level of sensitivity.

Configuring security in an embedded environment

In an embedded environment, typically there is only one database per system and there
are no administrative resources to protect databases.

1. Encrypt the database when you create it.
2. Configure all security features as database-level properties. These properties are

stored in the database (which is encrypted). See Tuning Derby .
3. Turn on protection for database-level properties so that they cannot be overridden

by system properties by setting the derby.database.propertiesOnly property to
TRUE.

4. To prevent unauthorized users from accessing databases once they are booted,
turn on user authentication for the database and configure user authorization for the
database. See Working with user authentication and User authorization for more
information.

5. If you are using Derby's built-in users, configure each user as a database-level
property so that user names and passwords can be encrypted.

Working with user authentication
Derby provides support for user authentication. User authentication means that Derby
authenticates a user's name and password before allowing that user access to the
system.

When user authentication is enabled (which it is not by default), the user requesting a
connection must provide a valid name and password, which Derby verifies against the
repository of users defined for the system. Once Derby authenticates the user, it grants
the user access to the Derby system but not necessarily access to the database made in
the connection request. In the Derby system, access to a database is determined by user
authorization. For information, see User authorization .

Derby allows you to provide a repository of users in a number of different ways. For
example, you can hook Derby up to an external directory service elsewhere in your
enterprise, create your own, use Derby's simple mechanism for creating a built-in
repository of users.

You can define a repository of users for a particular database or for an entire system,
depending on whether you use system-wide or database-wide properties. See
Configuring security for your environment for more information.

When Derby user authentication is enabled and Derby uses an external directory service,
the architecture looks something like that shown in the Figure below:

Figure1. Derby user authentication using an external service. The application can
be a single-user application with an embedded Derby engine or a multi-user
application server.

Copyright

67

Derby always runs embedded in another Java application, whether that application is a
single-user application or a multiple-user application server or connectivity framework. A
database can be accessed by only one JVM at a time, so it is possible to deploy a
system in which the application in which Derby is embedded, not Derby, handles the user
authentication by connecting to an external directory service.

Figure1. The application provides the user authentication using an external
service. The application can be a single-user application with an embedded Derby
engine or a multi-user application server.

Enabling user authentication

Copyright

68

To enable user authentication, set the derby.connection.requireAuthentication property to
true. Otherwise, Derby does not require a user name and password. You can set this
property as a system-wide property or as a database-wide property.

For a multi-user product, you would typically set it for the system in the derby.properties
file for your server, since it is in a trusted environment.

Note: If you start a Derby system with user authentication enabled but without defining at
least one user, you will not be able to shut down the system gracefully. When Derby is
running in a connectivity server and user authentication is turned on, stopping the server
requires a user name and password. You will need to alter shutdown scripts accordingly.

Defining users

Derby provides several ways to define the repository of users and passwords. To specify
which of these services to use with your Derby system, set the property
derby.authentication.provider to the appropriate value as discussed in the appropriate
section listed below.

Setting the property as a system-wide property creates system-wide users. Setting the
property as a database-wide property creates users for a single database only.

• External directory service : LDAP directory service . This includes Windows NT
domain user authentication through the Netscape NT Synchronization Service.

• User-defined class
• Built-in Derby users

Note: Shutting down the Derby system (for example, using the shutdown=true form of the
connection URL without specifying a particular database) when user authentication is
turned on requires that you define at least one user as a system-wide user.

External directory service

A directory service stores names and attributes of those names. A typical use for a
directory service is to store user names and passwords for a computer system. Derby
uses the Java naming and directory interface (JNDI) to interact with external directory
services that can provide authentication of users' names and passwords.

LDAP directory service

You can allow Derby to authenticate users against an existing LDAP directory service
within your enterprise. LDAP (lightweight directory access protocol) provides an open
directory access protocol running over TCP/IP. An LDAP directory service can quickly
authenticate a user's name and password.

To use an LDAP directory service, set derby.authentication.provider to LDAP.

Examples of LDAP service providers are:

• Netscape Directory Server

Netscape Directory Server is an LDAP directory server. In addition, the Netscape
Directory Synchronization Service synchronizes entries in a Windows NT directory
with the entries in Netscape's Directory Server. It allows you to use the Windows NT
directory as a repository for Derby users.

• UMich slapd (freeware for the UNIX platform from the University of Michigan)
• AE SLAPD for Windows NT, from AEInc

Libraries for LDAP user authentication:

To use an LDAP directory service with Derby, you need the following libraries in your
classpath:

Copyright

69

• jndi.jar

JNDI classes

• ldap.jar

LDAP provider from Sun

• providerutil.jar

JNDI classes for a provider

Derby does not provide these libraries; they are available from Sun on the JNDI page.
Use the 1.1.x versions of these libraries, not the 1.2.x versions. You might need to do two
separate downloads to obtain all the required libraries.

Setting up Derby to use your LDAP directory service:

When specifying LDAP as your authentication service, you must specify the location of
the server and its port number.

• derby.authentication.server

Set the property derby.authentication.server to the location and port number of the
LDAP server. For example:

derby.authentication.server=godfrey:389

Guest access to search for DNs:

In an LDAP system, users are hierarchically organized in the directory as a set of entries.
An entry is a set of name-attribute pairs identified by a unique name, called a DN
(distinguished name). An entry is unambiguously identified by a DN, which is the
concatenation of selected attributes from each entry in the tree along a path leading from
the root down to the named entry, ordered from right to left. For example, a DN for a user
might look like this:

cn=mary,ou=People,o=FlyTours.com

uid=mary,ou=People,o=FlyTours.com

The allowable entries for the name are defined by the entry's objectClass.

An LDAP client can bind to the directory (successfully log in) if it provides a user ID and
password. The user ID must be a DN, the fully qualified list of names and attributes. This
means that the user must provide a very long name.

Typically, the user knows only a simple user name (e.g., the first part of the DN above,
mary). With Derby, you do not need the full DN, because an LDAP client (Derby) can go
to the directory first as a guest or even an anonymous user, search for the full DN, then
rebind to the directory using the full DN (and thus authenticate the user).

Derby typically initiates a search for a full DN before binding to the directory using the full
DN for user authentication. Derby does not initiate a search in the following cases:

• You have set derby.authentication.ldap.searchFilter to derby.user.
• A user DN has been cached locally for the specific user with the

derby.user.UserName property.

For more information, see derby.authentication.ldap.searchFilter in Tuning Derby .

Some systems permit anonymous searches; other require a user DN and password. You
can specify a user's DN and password for the search with the properties listed below. In
addition, you can limit the scope of the search by specifying a filter (definition of the

Copyright

70

object class for the user) and a base (directory from which to begin the search) with the
properties listed below.

• derby.authentication.ldap.searchAuthDN (optional)

Specifies the DN with which to bind (authenticate) to the server when searching for
user DNs. This parameter is optional if anonymous access is supported by your
server. If specified, this value must be a DN recognized by the directory service,
and it must also have the authority to search for the entries.

If not set, it defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property. For example:

uid=guest,o=FlyTours.com

• derby.authentication.ldap.searchAuthPW (optional)

Specifies the password to use for the guest user configured above to bind to the
directory service when looking up the DN. If not set, it defaults to an anonymous
search using the root DN specified by the derby.authentication.ldap.searchBase
property.

myPassword

• derby.authentication.ldap.searchBase (optional)

Specifies the root DN of the point in your hierarchy from which to begin a guest
search for the user's DN. For example:

ou=people,o=FlyTours.com

When using Netscape Directory Server, set this property to the root DN, the special
entry to which access control does not apply (optional).

To narrow the search, you can specify a user's objectClass.

• derby.authentication.ldap.searchFilter (optional)

Set derby.authentication.ldap.searchFilter to a logical expression that specifies what
constitutes a user for your LDAP directory service. The default value of this property
is objectClass=inetOrgPerson . For example:

objectClass=person

LDAP performance issues:

For performance reasons, the LDAP directory server should be in the same LAN as
Derby. Derby does not cache the user's credential information locally and thus must
connect to the directory server every time a user connects.

Connection requests that provide the full DN are faster than those that must search for
the full DN.

Considerations when using Windows NT with LDAP:

Netscape provides LDAP functionality for Windows NT systems with its Netscape
Directory Synchronization service, which synchronizes the Windows NT users with the
Netscape Directory Server. SSL is recommended in this configuration.

LDAP restrictions:

Derby does not support LDAP groups.

JNDI-specific properties for external directory services

Copyright

71

Derby allows you to set a few advanced JNDI properties, which you can set in any of the
supported ways of setting Derby properties. Typically you would set these at the same
level (database or system) for which you configured the external authentication service.

The list of supported properties can be found in Appendix A: JNDI Context Environment
in the Java Naming and Direction API at
http://java.sun.com/products/jndi/reference/api/index.html . The external directory service
must support the property.

Each JNDI provider has its set of properties that you can set within the Derby system.

For example, you can set the property java.naming.security.authentication to allow user
credentials to be encrypted on the network if the provider supports it. You can also
specify that SSL be used with LDAP (LDAPS).

User-defined class

Set derby.authentication.provider to the full name of a class that implements the public
interface org.apache.derby.authentication.UserAuthenticator.

By writing your own class that fulfills some minimal requirements, you can hook Derby up
to an external authentication service other than LDAP. To do so, specify an external
authentication service by setting the property derby.authentication.provider to
a class name that you want Derby to load at startup.

The class that provides the external authentication service must implement the public
interface org.apache.derby.authentication.UserAuthenticator and throw exceptions of the
type java.sql.SQLException where appropriate.

Using a user-defined class makes Derby adaptable to various naming and directory
services.

Example of setting a user-defined class:

A very simple example of a class that implements the org.apache.derby.authentication
interface:

import org.apache.derby.authentication.UserAuthenticator;
import java.io.FileInputStream;
import java.util.Properties;
import java.sql.SQLException;
/**

* A simple example of a specialized Authentication scheme.
* The system property 'derby.connection.requireAuthentication'
* must be set
* to true and 'derby.connection.specificAuthentication' must
* contain the full class name of the overriden authentication
* scheme, i.e., the name of this class.
*
* @see org.apache.derby.authentication.UserAuthenticator
*/

public class MyAuthenticationSchemeImpl implements
UserAuthenticator {

private static final String USERS_CONFIG_FILE = "myUsers.cfg";
private static Properties usersConfig;

// Constructor
// We get passed some Users properties if the
//authentication service could not set them as
//part of System properties.
//
public MyAuthenticationSchemeImpl() {
}
/* static block where we load the users definition from a

users configuration file.*/

static {
/* load users config file as Java properties

Copyright

72

File must be in the same directory where
Derby gets started.
(otherwise full path must be specified) */
FileInputStream in = null;
usersConfig = new Properties();
try {

in = new FileInputStream(USERS_CONFIG_FILE);
usersConfig.load(in);
in.close();

} catch (java.io.IOException ie) {
// No Config file. Raise error message
System.err.println(

"WARNING: Error during Users Config file
retrieval");

System.err.println("Exception: " + ie);
}

}
/**
* Authenticate the passed-in user's credentials.
* A more complex class could make calls
* to any external users directory.
*
* @param userName The user's name
* @param userPassword The user's password
* @param databaseName The database
* @param infoAdditional jdbc connection info.
* @exception SQLException on failure
*/
public boolean authenticateUser(String userName,
String userPassword,
String databaseName,
Properties info)

throws SQLException
{

/* Specific Authentication scheme logic.
If user has been authenticated, then simply return.
If user name and/or password are invalid,
then raise the appropriate exception.

This example allows only users defined in the
users config properties object.

Check if the passed-in user has been defined for the system.
We expect to find and match the property corresponding to
the credentials passed in. */
if (userName == null)

// We do not tolerate 'guest' user for now.
return false;

//
// Check if user exists in our users config (file)
// properties set.
// If we did not find the user in the users config set, then
// try to find if the user is defined as a System property.
//
String actualUserPassword;
actualUserPassword = usersConfig.getProperty(userName);
if (actualUserPassword == null)

actualUserPassword = System.getProperty(userName);
if (actualUserPassword == null)

// no such passed-in user found
return false;
// check if the password matches

if (!actualUserPassword.equals(userPassword))
return false;
// Now, check if the user is a valid user of the database
if (databaseName != null)
{

/* if database users restriction lists present, then check
if there is one for this database and if so,
check if the user is a valid one of that database.
For this example, the only user we authorize in database
DarkSide is user 'DarthVader'. This is the only database
users restriction list we have for this example.
We authorize any valid (login) user to access the
OTHER databases in the system.
Note that database users ACLs could be set in the same
properties file or a separate one and implemented as you
wish. */

//
if (databaseName.equals("DarkSide")) {

// check if user is a valid one.
if (!userName.equals("DarthVader"))

// This user is not a valid one of the passed-in
return false;

}
}
// The user is a valid one in this database
return true;

Copyright

73

}
}

Built-in Derby users

Derby provides a simple, built-in repository of user names and passwords.

To use the built-in repository, set derby.authentication.provider to BUILTIN. Using built-in
users is an alternative to using an external directory service such as LDAP.

derby.authentication.provider=BUILTIN

You can create user names and passwords for Derby users by specifying them with the
derby.user.UserName property.

Note: These user names are case-sensitive for user authorization. User names are
SQL92Identifiers. Delimited identifiers are allowed:

derby.user."FRed"=java

For more information on user names and SQL92Identifiers, see Users and authorization
identifiers .

Note: For passwords, it is a good idea not to use words that would be easily guessed,
such as a login name or simple words or numbers. A password should be a mix of
numbers and upper- and lowercase letters.
Database-level properties

When you create users with database-level properties, those users are available to the
specified database only.

You set the property once for each user. To delete a user, set that user's password to
null.

-- adding the user sa with password 'derbypass'
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(

'derby.user.sa', 'derbypass')
-- adding the user mary with password 'little7xylamb'
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(

'derby.user.mary', 'little7xylamb')
-- removing mary by setting password to null
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(

'derby.user.mary', null)

System-level properties

When you create users with system-level properties, those users are available to all
databases in the system.

You set the value of this system-wide property once for each user, so you can set it
several times. To delete a user, remove that user from the file.

You can define this property in the usual ways- typically in the derby.properties file. For
more information about setting properties, see Tuning Derby .

Here is a sample excerpt from the derby.properties file:

Users definition
#
derby.user.sa=derbypass
derby.user.mary=little7xylamb

List of user-authentication properties

Copyright

74

User Authentication Properties summarizes the various properties related to user
authentication.

Table1. User Authentication Properties

Property Name Use

derby.connection.requireAuthentication Turns on user authentication.

derby.authentication.provider Specifies the kind of user authentication to
use.

derby.authentication.server For LDAP user authentication, specifies the
location of the server.

derby.authentication.ldap.searchAuthDN,
derby.authentication.ldap.searchAuthPW,
Derby.authentication.ldap.searchFilter, and
Derby.authentication. ldap.searchBase

Configures the way DN searches are
performed.

derby.user.UserName Creates a user name and password for
Derby's built-in user repository.

javax.naming.* JNDI properties

Programming applications for Derby user authentication

This section discusses programming user authentication into applications for use with
Derby.

Programming the application to provide the user and password

In the DriverManager.getConnection call, an application can provide the user name and
password:

• Separately as arguments to the following signature of the method:
getConnection(String url, String user, String password)

Connection conn = DriverManager.getConnection(
"jdbc:derby:myDB", "mary", "little7xylamb");

• As attributes to the database connection URL

Connection conn = DriverManager.getConnection(
"jdbc:derby:myDB;user=mary;password=little7xylamb");

• By setting the user and password properties in a Properties object as with other
connection URL attributes

Properties p = new Properties();
p.put("user", "mary");
p.put("password", "little7xylamb");
Connection conn = DriverManager.getConnection(

"jdbc:derby:myDB", p);

Note: The password is not encrypted. When you are using Derby in the context of a
server framework, the framework should be responsible for encrypting the password
across the network. If your framework does not encrypt the password, consider using
SSL.

For information about the treatment of user names within the Derby system, see Users
and authorization identifiers .

Login failure exceptions with user authentication

Copyright

75

If user authentication is turned on and a valid user name and password are not provided,
SQLException 08004 is raised.

ERROR 08004: Connection refused : Invalid authentication.

Users and authorization identifiers
User names within the Derby system are known as authorization identifiers. The
authorization identifier is a string that represents the name of the user, if one was
provided in the connection request. For example, the built-in function CURRENT_USER
returns the authorization identifier for the current user.

Once the authorization identifier is passed to the Derby system, it becomes an
SQL92Identifier. SQL92Identifiers -the kind of identifiers that represent database
objects such as tables and columns-are case-insensitive (they are converted to all caps)
unless delimited with double quotes, are limited to 128 characters, and have other
limitations.

User names must be valid authorization identifiers even if user authentication is turned
off, and even if all users are allowed access to all databases.

For more information about SQL92Identifiers, see the Derby Reference Manual .

Authorization identifiers, user authentication, and user authorization

When working with both user authentication and user authorization, you need to
understand how user names are treated by each system. If an external authentication
system is used, the conversion of the user's name to an authorization identifier does not
happen until after authentication has occurred but before user authorization (see User
authorization). Imagine, for example, a user named Fred.

• Within the user authentication system, Fred is known as FRed. Your external user
authorization service is case-sensitive, so Fred must always type his name that
way.

Connection conn = DriverManager.getConnection(
"jdbc:derby:myDB", "FRed", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-insensitive
authorization identifier. Fred is known as FRED.

• When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, FRED (which you can type as FRED,
FREd, or fred, since the system automatically converts it to all-uppercase).

derby.fullAccessUsers=sa,FRED,mary

Let's take a second example, where Fred has a slightly different name within the user
authentication system.

• Within the user authentication system, Fred is known as Fred!. You must now put
double quotes around the name, because it is not a valid SQL92Identifier .
(Derby knows to remove the double quotes when passing the name to the external
authentication system.)

Connection conn = DriverManager.getConnection(
"jdbc:derby:myDB", "\"Fred!\"", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-sensitive
authorization identifier. Fred is known as Fred!.

Copyright

76

• When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, "Fred!" (which you must always delimit
with double quotation marks).

derby.fullAccessUsers=sa,"Fred!",manager

As shown in the first example, your external authentication system may be
case-sensitive, whereas the authorization identifier within Derby may not be. If your
authentication system allows two distinct users whose names differ by case, delimit all
user names within the connection request to make all user names case-sensitive within
the Derby system. In addition, you must also delimit user names that do not conform to
SQL92Identifier rules with double quotes.

User names and schemas

User names can affect a user's default schema. For information about user names and
schemas, see "SET SCHEMA statement" in the Derby Reference Manual .

Exceptions when using authorization identifiers

Specifying an invalid authorization identifier in a database user authorization property
raises an exception. Specifying an invalid authorization identifier in a connection request
raises an exception.

User authorization
Derby provides user authorization, which is a means of granting users permission to
access a database (or system). Derby allows you to distinguish between full (read-write)
access and read-only access. (Derby Version 10.1 does not support the SQL GRANT
and REVOKE features, which allow you to set permissions to specific database objects
or specific SQL actions.)

Setting user authorization

Typically, you configure user authorization for a particular database. However, Derby also
allows you to configure user authorization for the system, which is useful during
development and for specifying a secure default access for all databases in the system.

To control access to a particular database, set database-level properties that specify
which users have full (read-write) access to the database and which users have
read-only access to the database. Users not specified by either property inherit the
default access for the database (none, read-only, or full read-write access). When not
explicitly set, the default access for a database is full (read-write) access.

Setting the default access mode

To specify the default access mode for the database, use the
derby.database.defaultConnectionMode property. You can set the property to the
following values:

• noAccess
• readOnlyAccess
• fullAccess (the default)

Derby validates the authorization configuration properties when users set them. It raises
an exception if a user attempts to set the properties to invalid values (see User
authorization exceptions).

Setting the access mode for particular users

Copyright

77

To specify which particular users have full (read-write) access to a database, use the
derby.database.fullAccessUsers property. For example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.fullAccessUsers', 'sa,mary')

To specify which particular users have read-only access to a database, use the
derby.database.readOnlyAccessUsers property. For example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.readOnlyAccessUsers', 'guest,"Fred!"')

For these properties, you specify users as a comma-separated list (no spaces between
the comma and the next user).

For users not specified with either property the access is specified by the
derby.database.defaultConnectionMode property.

Note: It is possible to configure a database so that it cannot be changed (or even
accessed) using the derby.database.defaultConnectionMode property. If you set this
property to noAccess or readOnlyAccess , be sure to allow at least one user full
access.

See the Javadoc for the utility or Examples of user authorization for more details.

Notes on user authorization

All the authorization properties are set for a connection when it is created. Changing any
of the authorization properties does not affect existing connections. However, all future
connections are affected by the change.

For more information about authorization identifiers, see Users and authorization
identifiers .

User authorization exceptions

If a user is not authorized to connect to the database specified in the connection request,
SQLException 04501 is raised.

If a user with readOnlyAccess attempts to write to a database, SQLException 08004 -
connection refused is raised.

Read-only and full access permissions

Permissions for Read-Only and Full-Access Users shows which actions read-only and
full-access users are permitted to perform on regular or source databases and on target
databases.

Table1. Permissions for Read-Only and Full-Access Users

Action Read-Only Users Full-Access Users

Executing SELECT statements X X

Reading database properties X X

Loading database classes from jar files X X

Executing INSERT, UPDATE, or
DELETE statements

' X

Executing DDL statements ' X

Copyright

78

Action Read-Only Users Full-Access Users

Adding or replacing jar files ' X

Setting database properties ' X

Examples of user authorization

This example shows the property settings to configure a database to support:

• Full access for a single user named "sa"
• Read-only access for anyone else who connects to the database

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.defaultConnectionMode',
'readOnlyAccess')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.fullAccessUsers', 'sa')

The following example shows the settings to configure a database to support:

• Full access for a single user named "Fred!" (case-sensitive) with full (read-write)
access

• Read-only access for mary and guest
• No access for other users

The example also demonstrates the use of delimited identifiers for user names.

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.defaultConnectionMode',
'noAccess')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.fullAccessUsers', '"Fred!"')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.readOnlyAccessUsers', 'mary,guest')

Encrypting databases on disk
Derby provides a way for you to encrypt your data on disk.

Typically, database systems encrypt and decrypt data in transport over the network,
using industry-standard systems. This system works well for client/server databases; the
server is assumed to be in a trusted, safe environment, managed by a system
administrator. In addition, the recipient of the data is trusted and should be capable of
protecting the data. The only risk comes when transporting data over the wire, and data
encryption happens during network transport only.

However, Derby databases are platform-independent files that are designed to be easily
shared in a number of ways, including transport over the Internet. Recipients of the data
might not know how, or might not have the means, to properly protect the data.

This data encryption feature provides the ability to store user data in an encrypted form.
The user who boots the database must provide a boot password.

Note: Jar files stored in the database are not encrypted.

Requirements for Derby encryption

Copyright

79

Derby supports disk encryption, but you must supply the following:

• An implementation of the Java Cryptographic Extension (JCE) package version
1.2.1 or higher.

Derby does not support earlier, non-exportable, versions of JCE (such as JCE 1.2).
More information on JCE 1.2.1, including a product download, can be found at:
http://java.sun.com/products/jce/index.html .

Any attempt to create or access an encrypted database without the libraries for an
implementation of JCE of the proper version, or without Java 2 Platform, Standard
Edition, v 1.2 (J2SE) or higher, raises an exception; you will not be able to create or
boot the database.

Note: The JCE installation documentation describes configuring (registering) the
JCE software. You do not need to do this; Derby registers JCE dynamically.

• The encryption provider

An encryption provider implements the Java cryptography concepts. The JRE for
J2SE 1.4 or J2EE 1.4 includes JCE and one or more default encryption providers.

Working with encryption

This section describes using encryption in Derby.

Encrypting databases on creation

Derby allows you to configure a database for encryption when you create it. To do so,
you specify dataEncryption=true on the connection URL.

The Java Runtime Environment (JRE) determines the default encryption provider, as
follows:

• For J2SE/J2EE 1.4 or higher, the JRE's provider is the default.
• For an IBM Corp J2SE/J2EE 1.3 JRE, the default provider is

com.ibm.crypto.provider.
• For a Sun Microsystem J2SE/J2EE 1.3 JRE, the default provider is

com.sun.crypto.provider.SunJCE.
• For any other J2SE/J2EE 1.3 JRE, a provider must be specified.

You have the option of specifying an alternate encryption provider; see Specifying an
alternate encryption provider . The default encryption algorithm is DES, but you have the
option of specifying an alternate algorithm; see Specifying an alternate encryption
algorithm .

Creating the boot password

When you encrypt a database you must also specify a boot password, which is an
alpha-numeric string used to generate the encryption key. The length of the encryption
key depends on the algorithm used:

• AES (128, 192, and 256 bits)
• DES (the default) (56 bits)
• DESede (168 bits)
• All other algorithms (128 bits)

Note: The boot password should have at least as many characters as number of bytes in
the encryption key (56 bits=8 bytes, 168 bits=24 bytes, 128 bits=16 bytes). The minimum
number of characters for the boot password allowed by Derby is eight.

It is a good idea not to use words that would be easily guessed, such as a login name or
simple words or numbers. A bootPassword, like any password, should be a mix of
numbers and upper- and lowercase letters.

You turn on and configure encryption and specify the corresponding boot password on

Copyright

80

the connection URL for a database when you create it:

jdbc:derby:encryptionDB1;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe

Note: If you lose the bootPassword and the database is not currently booted, you will not
be able to connect to the database anymore. (If you know the current bootPassword, you
can change it. See Changing the boot password .)
Specifying an alternate encryption provider:

You can specify an alternate provider when you create the database with the
encryptionProvider=providerName attribute.

You must specify the full package and class name of the provider, and you must also add
the libraries to the application's classpath.

-- using the the provider library jce_jdk13-10b4.zip|
-- available from www.bouncycastle.org
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=org.bouncycastle.jce.provider.BouncyCastleProvider;
encryptionAlgorithm=DES/CBC/NoPadding

-- using a provider
-- available from
-- http://jcewww.iaik.tu-graz.ac.at/download.html
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=iaik.security.provider.IAIK;encryptionAlgorithm=
DES/CBC/NoPadding

Specifying an alternate encryption algorithm:

Derby supports the following encryption algorithms:

• DES (the default)
• DESede (also known as triple DES)
• Any encryption algorithm that fulfills the following requirements:

• It is symmetric
• It is a block cipher, with a block size of 8 bytes
• It uses the NoPadding padding scheme
• Its secret key can be represented as an arbitrary byte array
• It requires exactly one initialization parameter, an initialization vector of type

javax.crypto.spec.IvParameterSpec
• It can use javax.crypto.spec.SecretKeySpec to represent its key

For example, the algorithm Blowfish implemented in the Sun JCE package fulfills
these requirements.

By Java convention, an encryption algorithm is specified like this:

algorithmName/feedbackMode/padding

The only feedback modes allowed are:

• CBC
• CFB
• ECB
• OFB

By default, Derby uses the DES algorithm of DES/CBC/NoPadding.

Specify an alternate encryption algorithm when you create a database with the

Copyright

81

encryptionAlgorithm=algorithm attribute. If the algorithm you specify is not supported by
the provider you have specified, Derby throws an exception.

Booting an encrypted database

Once you have created an encrypted database, you must supply the boot password to
reboot it. Encrypted databases cannot be booted automatically along with all other
system databases on system startup (see "derby.system.bootAll" in Tuning Derby).
Instead, you boot encrypted databases when you first connect to them.

For example, to access an encrypted database called wombat, created with the boot
password clo760uds2caPe, you would use the following connection URL:

jdbc:derby:wombat;bootPassword=clo760uds2caPe

Once the database is booted, all connections can access the database without the boot
password. Only a connection that boots the database requires the key.

For example, the following connections would boot the database and thus require the
boot password:

• The first connection to the database in the JVM session
• The first connection to the database after the database has been explicitly shut

down
• The first connection to the database after the system has been shut down and then

rebooted
Note: The boot password is not meant to prevent unauthorized connections to the
database once it has been booted. To protect a database once it has been booted, turn
on user authentication (see Working with user authentication).
Changing the boot password

You can change the boot password for the current database.

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'bootPassword', 'oldbpw , newbpw');

where oldbpw is the current boot password and newbpw is the new boot password. This
call commits immediately; it is not transactional.

Note: PropertyInfo.getDatabaseProperty("bootPassword") , or VALUES
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('bootPassword'), will not return
the boot password.

Signed jar files
In a Java 2 environment, Derby can detect digital signatures on jar files. When attempting
to load a class from a signed jar file stored in the database, Derby will verify the validity of
the signature.

Note: The Derby class loader only validates the integrity of the signed jar file and that the
certificate has not expired. Derby cannot ascertain whether the validity/identity of
declared signer is correct. To validate identity, use a Security Manager (i.e., an
implementation of java.lang.SecurityManager).

When loading classes from an application jar file in a Java 2 environment, Derby behaves
as follows:

• If the class is signed, Derby will:
• Verify that the jar was signed using a X.509 certificate (i.e., can be

represented by the class java.security.cert.X509Certificate). If not, throw an
exception.

• Verify that the digital signature matches the contents of the file. If not, throw an

Copyright

82

exception.
• Check that the set of signing certificates are all valid for the current date and

time. If any certificate has expired or is not yet valid, throw an exception.
• Pass the array of certificates to the setSigners() method of

java.lang.ClassLoader . This allows security managers to obtain the list
of signers for a class (using java.lang.Class.getSigners) and then
validate the identity of the signers using the services of a Public Key
Infrastructure (PKI).

Note: Derby does not provide a security manager.

For more information about signed jar files, see the Java 2 specifications at
http://java.sun.com .

For more information about Java 2 security, go to http://java.sun.com/security/ .

Notes on the Derby security features
Because Derby does not support traditional grant and revoke features, the security model
has some basic limitations. For both embedded and client/server systems, it assumes
that users are trusted. You must trust your full-access users not to perform undesirable
actions. You lock out non full-access users with database properties, which are stored in
the database (and in an encrypted database these properties are also encrypted). Note,
however, for a distributed/embedded system that a sophisticated user with the database
encryption key might be able to physically change those properties in the database files.

In addition, in the Derby system, it is not necessary to have a specific connection (or
permission to access a particular database) to shut down the system. Any authenticated
user can shut down the system.

Other security holes to think about are:

• JVM subversion, running the application under a home-grown JVM.
• Trolling for objects
• Class substitution, locating a class that has access to sensitive data and replacing it

with one that passes on information

User authentication and authorization examples
This section provides examples on using user authentication and authorization in Derby
in either a client/server environment or in an embedded environment.

User authentication example in a client/server environment

In this example, Derby is running in a user-designed application server. Derby provides
the user authentication, not the application server. The server is running in a secure
environment, the application server encrypts the passwords, and a database
administrator is available. The administrator configures security using system-level
properties in the derby.properties file and has protected this file with operating system
tools. Derby connects to an existing LDAP directory service within the enterprise to
authenticate users.

The default access mode for all databases is set to fullAccess (the default).

The derby.properties file for the server includes the following entries:

turn on user authentication

Copyright

83

derby.connection.requireAuthentication=true
set the authentication provider to an external LDAP server
derby.authentication.provider=LDAP
the host name and port number of the LDAP server
derby.authentication.server=godfrey:389
the search base for user names
derby.authentication.ldap.searchBase=o=oakland.mycompany.com
explicitly show the access mode for databases (this is default)
derby.database.defaultAccessMode=fullAccess

With these settings, all users must be authenticated by the LDAP server in order to
access any Derby databases.

The database administrator has determined that one database, accountingDB, has
additional security needs. Within a connection to that database, the database
administrator uses database-wide properties (which override properties set in the
derby.properties file) to limit access to this database. Only the users prez, cfo, and
numberCruncher have full (read-write) access to this database, and only clerk1 and
clerk2 have read-only access to this database. No other users can access the database.

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.defaultAccessMode', 'noAccess')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.fullAccessUsers',
'prez,cfo,numberCruncher')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.readAccessUsers', 'clerk1,clerk2')

The database administrator then requires all current users to disconnect and re-connect.
These property changes do not go into effect for current connections. The database
administrator can force current users to reconnect by shutting down the database

User authentication example in a single-user, embedded environment

In this example, Derby is embedded in a single-user application that is deployed in a
number of different and potentially insecure ways. For that reason, the application
developer has decided to encrypt the database and to turn on user authentication using
Derby's built-in user authentication, which will not require connections to an LDAP server.
The end-user must know the bootPassword to boot the database and the user name and
password to connect to the database. Even if the database ended up in an e-mail, only
the intended recipient would be able to access data in the database. The application
developer has decided not to use any user authorization features, since each database
will accept only a single user. In that situation, the default full-access connection mode is
acceptable.

When creating the database, the application developer encrypts the database by using
the following connection URL:

jdbc:derby:wombat;create=true;dataEncryption=true;
bootPassword=sxy90W348HHn

Before deploying the database, the application developer turns on user authentication,
sets the authentication provider to BUILTIN, creates a single user and password, and
disallows system-wide properties to protect the database-wide security property settings:

Copyright

84

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.connection.requireAuthentication', 'true')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.authentication.provider', 'BUILTIN')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.user.enduser', 'red29PlaNe')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.database.propertiesOnly', true')

When the user connects (and boots) the database, the user has to provide the
bootPassword, the user name, and the password. The following example shows how to
provide those in a connection URL, although the application programmer would probably
provide GUI windows to allow the end user to type those in:

jdbc:derby:wombat;bootPassword=sxy90W348HHn;
user=enduser;password=red29PlaNe

User authentication and authorization extended examples

The following two examples from the sample database show how to turn on and turn off
user authentication using Derby's built-in user authentication and user authorization.

/**
* Turn on built-in user authentication and user authorization.
*
* @param conn a connection to the database.
*/

public static void turnOnBuiltInUsers(Connection conn) throws
SQLException {

System.out.println("Turning on authentication.");
Statement s = conn.createStatement();

// Setting and Confirming requireAuthentication
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.connection.requireAuthentication',

'true')");
ResultSet rs = s.executeQuery(

"VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY("
+

"'derby.connection.requireAuthentication')");
rs.next();
System.out.println(rs.getString(1));
// Setting authentication scheme to Derby
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.authentication.provider', 'BUILTIN')");

// Creating some sample users
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.user.sa', 'ajaxj3x9')");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.user.guest', 'java5w6x')");
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.user.mary', 'little7xylamb')");

// Setting default connection mode to no access
// (user authorization)
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.database.defaultConnectionMode',

'noAccess')");
// Confirming default connection mode
rs = s.executeQuery (

"VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY("
+

"'derby.database.defaultConnectionMode')");

Copyright

85

rs.next();
System.out.println(rs.getString(1));

// Defining read-write users
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.database.fullAccessUsers', 'sa,mary')");

// Defining read-only users
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.database.readOnlyAccessUsers',

'guest')");

// Confirming full-access users
rs = s.executeQuery(

"VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY("
+

"'derby.database.fullAccessUsers')");
rs.next();
System.out.println(rs.getString(1));

// Confirming read-only users
rs = s.executeQuery(

"VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY("
+

"'derby.database.readOnlyAccessUsers')");
rs.next();
System.out.println(rs.getString(1));

//we would set the following property to TRUE only
//when we were ready to deploy.
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.database.propertiesOnly', 'false')");

s.close();
}

/**
* Turn off built-in user authentication and user authorization.
*
* @param conn a connection to the database.
*/

public static void turnOffBuiltInUsers(Connection conn) throws
SQLException {

Statement s = conn.createStatement();
System.out.println("Turning off authentication.");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.connection.requireAuthentication',
'false')");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.authentication.provider', null)");
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.user.sa', null)");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.user.guest', null)");
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.user.mary', null)");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.database.defaultConnectionMode',
'fullAccess')");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.database.fullAccessUsers', null)");
s.executeUpdate("CALL

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
"'derby.database.readOnlyAccessUsers', null)");

s.executeUpdate("CALL
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +

"'derby.database.propertiesOnly', 'false')");

// Confirming requireAuthentication
ResultSet rs = s.executeQuery(

"VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY("
+

"'derby.connection.requireAuthentication')");
rs.next();

Copyright

86

System.out.println(rs.getString(1));

// Confirming default connection mode
rs = s.executeQuery(

"VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY("
+

"'derby.database.defaultConnectionMode')");
rs.next();
System.out.println(rs.getString(1));
System.out.println("Turned off all the user-related

properties.");
s.close();

}
}

Running Derby under a security manager
When running within an application or application server with a Java 2 Security Manager
enabled, Derby must be granted certain permissions to execute and access database
files.

For more information about permissions and examples of creating permission objects
and granting permissions, see the Security Architecture specification at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html .

Granting permissions to Derby

This section discusses which permissions should be granted to Derby (the code base
derby.jar).

See Default Policy Implementation and Policy File Syntax at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html for more information
about creating policy files.

Mandatory permissions
permission java.lang.RuntimePermission createClassLoader

Mandatory. It allows Derby to execute SQL queries and supports loading class files
from jar files stored in the database.

permission java.util.PropertyPermission "derby.*", read
Allows Derby to read individual Derby properties set in the JVM's system set. If the
action is denied, properties in the JVM's system set are ignored.

Database access permissions
permission java.io.FilePermission "directory${/}/-", "read,write,delete"

Allows Derby to manage files within the database that maps to the directory specified.
For read-only databases, only the "read" action needs to be granted.

Optional permissions
permission java.io.FilePermission "${derby.system.home}", "read,write"

Allows Derby to determine the system directory when set by db2j.system.home and
create it if needed. If the system directory already exists then only the "read"
permission needs to be granted.

permission java.util.PropertyPermission "user.dir", "read"
Permits access to the system directory value if derby.system.home is not set or no
permission has been granted to read the derby.system.home property.

permission java.io.FilePermission
"${derby.system.home}${/}derby.properties", "read"

Allows Derby to read the system properties file from the system directory.
permission java.io.FilePermission "${derby.system.home}${/}derby.log",
"read,write,delete"
permission java.io.FilePermission "${user.dir}${/}derby.log",
"read,write,delete"

Copyright

87

Only one of these permissions is needed. Permits the application to read, write, and
delete to the Derby log file, unless the log has been re-directed. (See the
derby.stream.error properties in Tuning Derby for more information.) If one of the
requested valid actions is denied, the Derby log will be java.lang.System.err .

Combining permissions
You might grant one FilePermission that encompasses several or all of the permissions
instead of separately granting a number of the more specific permissions. For example:

permission java.io.FilePermission "${derby.system.home}/-",
"read,write,delete"

This allows the Derby engine complete access to the system directory and any
databases contained in the system directory.

Examples of Java 2 security policy files for embedded Derby
Java 2 security policy file example 1

/* Grants permission to run Derby and access all */
/* databases under the Derby system home */
/* when it is specified by the system property */
/* Derby.system.home */

/* Note Derby.system.home must be an absolute pathname */

grant codeBase "file://f:/derby/lib/derby.jar" {

permission java.lang.RuntimePermission "createClassLoader";
permission java.util.PropertyPermission "derby.*", "read";
permission.java.io.FilePermission "${derby.system.home}","read";
permission java.io.FilePermission "${derby.system.home}${/}

-", "read,write,delete";
};

Java 2 security policy file example 2

/* Grants permission to run Derby and access all */
/* databases under the Derby system home */
/* when it defaults to the current directory */

grant codeBase "file://f:/derby/lib/derby.jar" {
permission java.lang.RuntimePermission "createClassLoader";
permission java.util.PropertyPermission "derby.*", "read";
permission java.util.PropertyPermission "user.dir", "read";
permission java.io.FilePermission "${derby.system.home}","read";
permission java.io.FilePermission "${user.dir}${/}-",

"read,write,delete";

};

Java 2 security policy file example 3

/* Grants permission to run Derby and access a single */
/* database (salesdb) under the Derby system home */

/* Note Derby.system.home must be an absolute pathname */

grant codeBase "file://f:/derby/lib/derby.jar" {

permission java.lang.RuntimePermission "createClassLoader";
permission java.util.PropertyPermission "derby.*", "read";
permission java.io.FilePermission "${derby.system.home}","read";
permission java.io.FilePermission "${derby.system.home}${/}*",

"read,write,delete";
permission java.io.FilePermission "${derby.system.home}${/}

salesdb${/}
-", "read,write,delete";

};

Copyright

88

Developing Tools and Using Derby with an IDE
Applications such as database tools are designed to work with databases whose
schemas and contents are unknown in advance. This section discusses a few topics
useful for such applications.

Offering Connection Choices to the User
JDBC's java.sql.Driver.getPropertyInfo method allows a generic GUI tool to determine the
properties for which it should prompt a user in order to get enough information to connect
to a database. Depending on the values the user has supplied so far, additional values
might become necessary. It might be necessary to iterate though several calls to
getPropertyInfo . If no more properties are necessary, the call returns an array of
zero length.

In a Derby system, do not use the method against an instance of
org.apache.derby.jdbc.EmbeddedDriver. Instead, request the JDBC driver from the driver
manager:

java.sql.DriverManager.getDriver(
"jdbc:derby:").getPropertyInfo(URL, Prop)

In a Derby system, the properties returned in the DriverPropertyInfo object are
connection URL attributes, including a list of booted databases in a system (the
databaseName attribute).

Databases in a system are not automatically booted until you connect with them. You can
configure your system to retain the former behavior, in which case the steps described in
this section will continue to work. See "derby.system.bootAll" in Tuning Derby .

getPropertyInfo requires a connection URL and a Properties object as parameters.
Typically, what you pass are values that you will use in a future call to
java.sql.DriverManager.getConnection when you actually connect to the
database. For information about setting attributes in calls to
java.sql.DriverManager.getConnection , see Database connection examples .

A call to getPropertyInfo with parameters that contain sufficient information to connect
successfully returns an array of zero length. (Receiving this zero-length array does not
guarantee that the getConnection call will succeed, because something else could go
wrong.)

Repeat calls to getPropertyInfo until it returns a zero-length array or none of the
properties remaining are desired.

The DriverPropertyInfo Array

When a non-zero-length array is returned by getPropertyInfo, each element is a
DriverPropertyInfo object representing a connection URL attribute that has not
already been specified. Only those that make sense in the current context are returned.

This DriverPropertyInfo object contains:

• name of the attribute
• description
• current value

Copyright

89

If an attribute has a default value, this is set in the value field of DriverPropertyInfo,
even if the attribute has not been set in the connection URL or the Properties
object. If the attribute does not have a default value and it is not set in the URL or
the Properties object, its value will be null.

• list of choices
• whether required for a connection request

Several fields in a DriverPropertyInfo object are allowed to be null.

DriverPropertyInfo array example

Here is some example code:

import java.sql.*;
import java.util.Properties;
// start with the least amount of information
// to see the full list of choices
// we could also enter with a URL and Properties
// provided by a user.
String url = "jdbc:derby:";
Properties info = new Properties();
Driver cDriver = DriverManager.getDriver(url);
for (;;)

{
DriverPropertyInfo[] attributes = cDriver.getPropertyInfo(

url, info);
// zero length means a connection attempt can be made

if (attributes.length == 0)
break;
// insert code here to process the array, e.g.,
// display all options in a GUI and allow the user to
// pick and then set the attributes in info or URL.
}

// try the connection
Connection conn = DriverManager.getConnection(url, info);

Using Derby with IDEs
When you use an integrated development environment (IDE) to develop an embedded
Derby application, you might need to run Derby within a server framework. This is
because an IDE might try connecting to the database from two different JVMs, whereas
only a single JVM instance should connect to a Derby database at one time, as described
in One Derby instance for each Java Virtual Machine (multiple connections from the
same JVM are allowed).

An "embedded Derby application" is one which runs in the same JVM as the application.
Such an application uses the embedded Derby driver
(org.apache.derby.jdbc.EmbeddedDriver; see Embedded Derby JDBC driver) and
connection URL (jdbc:derby:databaseName ; see Embedded Derby JDBC
database connection URL). If you use this driver name or connection URL from the IDE,
when the IDE tries to open a second connection to the same database with the
embedded Derby, the attempt fails. Two JVMs cannot connect to the same database in
embedded mode.

IDEs and multiple JVMs

When you use an integrated development environment (IDE) to build a Java application,
you can launch the application from within the IDE at any point in the development
process. Typically, the IDE launches a JVM dedicated to the application. When the
application completes, the JVM exits. Any database connections established by the
application are closed.

During the development of a database application, most IDEs allow you to test individual
database connections and queries without running the entire application. When you test

Copyright

90

an individual database connection or query (which requires a database connection), the
IDE might launch a JVM that runs in a specialized testing environment. In this case, when
a test completes, the JVM remains active and available for further testing, and the
database connection established during the test remains open.

Because of the behaviors of the IDE described above, if you use the embedded Derby
JDBC driver, you may encounter errors connecting in the following situations:

• You test an individual query or database connection and then try to run an
application that uses the same database as the tested feature.

The database connection established by testing the connection or query stays
open, and prevents the application from establishing a connection to the same
database.

• You run an application, and before it completes (for example, while it waits for user
input), you attempt to run a second application or to test a connection or query that
uses the same database as the first application.

Copyright

91

SQL tips
This section provides some examples of interesting SQL features. It also includes a few
non-SQL tips.

Retrieving the database connection URL
Derby does not have a built-in function that returns the name of the database. However,
you can use DatabaseMetaData to return the connection URL of any local Connection
.

/* in java */
String myURL = conn.getMetaData().getURL();

Supplying a parameter only once
If you want to supply a parameter value once and use it multiple times within a query, put
it in the FROM clause with an appropriate CAST:

SELECT phonebook.*
FROM phonebook, (VALUES (CAST(? AS INT), CAST(? AS

VARCHAR(255))))
AS Choice(choice,

search_string)
WHERE search_string = (case when choice = 1 then firstnme

when choice=2 then lastname
when choice=3 then

phonenumber end);

This query selects what the second parameter will be compared to based on the value in
the first parameter. Putting the parameters in the FROM clause means that they need to
be applied only once to the query, and you can give them names so that you can refer to
them elsewhere in the query. In the example above, the first parameter is given the name
choice, and the second parameter is given the name search_string.

Defining an identity column
An identity column is a column that stores numbers that increment by one with each
insertion. Identity columns are sometimes called autoincrement columns. Derby provides
autoincrement as a built-in feature; see CREATE TABLE statement in the Derby
Reference Manual .

Below is an example that shows how to use an identity column to create the MAP_ID
column of the MAPS table in the toursDB database.

CREATE TABLE MAPS
(
MAP_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1,
INCREMENT BY 1),
MAP_NAME VARCHAR(24) NOT NULL,
REGION VARCHAR(26),
AREA DECIMAL(8,4) NOT NULL,
PHOTO_FORMAT VARCHAR(26) NOT NULL,
PICTURE BLOB(102400),
UNIQUE (MAP_ID, MAP_NAME)
)

Using third-party tools
You can hook into any JDBC tool with just our JDBC Driver class name

Copyright

92

org.apache.derby.jdbc.EmbeddedDriver) and Derby's JDBC connection URL.

Tricks of the VALUES clause

Multiple rows

Derby supports the complete SQL-92 VALUES clause; this is very handy in several
cases. The first useful case is that it can be used to insert multiple rows:

INSERT INTO OneColumnTable VALUES 1,2,3,4,5,6,7,8

INSERT INTO TwoColumnTable VALUES
(1, 'first row'),
(2, 'second row'),
(3, 'third row')

Dynamic parameters reduce the number of times execute requests are sent across:

-- send 5 rows at a time:
PREPARE p1 AS 'INSERT INTO ThreeColumnTable VALUES
(?,?,?), (?,?,?), (?,?,?), (?,?,?), (?,?,?)
EXECUTE p1 USING 'VALUES (''1st'',1,1,''2nd'',2,2''3rd'',
3,3,''4th'',4,4,''5th'',5,5)'

Mapping column values to return values

Multiple-row VALUES tables are useful in mapping column values to desired return
values in queries:

-- get the names of all departments in Ohio
SELECT DeptName
FROM Depts,
(VALUES (1, 'Shoe'),

(2, 'Laces'),
(4, 'Polish'))

AS DeptMap(DeptCode,DeptDesc)
WHERE Depts.DeptCode = DeptMap.DeptCode
AND Depts.DeptLocn LIKE '%Ohio%'

You might also find it useful to store values used often for mapping in a persistent table
and then using that table in the query.

Creating empty queries

Developers using Derby in existing applications might need to create "empty" queries
with the right result shape for filling in bits of functionality Derby does not supply. Empty
queries of the right size and shape can be formed off a single values table and a
"WHERE FALSE" condition:

SELECT *
FROM (VALUES ('',1,"TRUE")) AS ProcedureInfo(ProcedureName,NumParameters,
ProcedureValid)
WHERE 1=0

Copyright

93

Localizing Derby
Derby offers support for locales. The word locale in the Java platform refers to an
instance of a class that identifies a particular combination of language and region. If a
Java class varies its behavior according to locale, it is said to be locale-sensitive. Derby
provides some support for locales for databases and other components such as the tools
and the installer.

It also provides a feature to support databases in many different languages, a feature
which is independent of a particular territory.

When you create or upgrade a database, you can use the territory attribute to associate a
non-default territory with the database. For information about how to use the territory
attribute, see the Derby Reference Manual .

SQL parser support for Unicode
To support users in many different languages, Derby's SQL parser understands all
Unicode characters and allows any Unicode character or number to be used in an
identifier. Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

Other components
Derby also provides locale support for the following:

• Database error messages are in the language of the locale, if support is explicitly
provided for that locale with a special library.

For example, Derby explicitly supports Spanish-language error messages. If a
database's locale is set to one of the Spanish-language locales, Derby returns error
messages in the Spanish language.

• The Derby tools. In the case of the tools, locale support includes locale-specific
interface and error messages and localized data display.

For more information about localization of the Derby tools, see the Derby Tools and
Utilities Guide .

Localized messages require special libraries. See Messages libraries .

The locale of the error messages and of the tools is not determined by the database's
localle set by the locale=ll_CC attribute when the database is created but instead by the
default system locale. This means that it is possible to create a database with a
non-default locale. In such a case, error messages would not be returned in the language
of the database's locale but in the language of the default locale instead.

Note: You can override the default locale for ij with a property on the JVM. For more
information, see the Derby Tools and Utilities Guide .

Messages libraries
For Derby to provide localized messages:

• You must have the locale-specific Derby jar file. Derby provides such jars for only
some locales. You will find the locale jar files in the /lib directory in your Derby
installation.

• The locale-specific Derby jar file must be in the classpath.

The locale-specific Derby jar file is named derbyLocale_ll_CC.jar, where ll is the

Copyright

94

two-letter code for language, and CC is the two-letter code for country. For example, the
name of the jar file for error messages for the German locale is
derbyLocale_de_DE.jar.

Derby supports the following locales:
• derbyLocale_de_DE.jar German
• derbyLocale_es.jar - Spanish
• derbyLocale_fr.jar - French
• derbyLocale_it.jar - Italian
• derbyLocale_ja_JP.jar - Japanese
• derbyLocale_ko_KR.jar - Korean
• derbyLocale_pt_BR.jar - Brazilian Portuguese
• derbyLocale_zh_CN.jar - Simplified Chinese
• derbyLocale_zh_TW.jar - Traditional Chinese

Copyright

95

Derby and standards
Derby adheres to SQL99 standards wherever possible. Below you will find a guide to
those features currently in Derby that are not standard; these features are currently being
evaluated and might be removed in future releases.

This section describes those parts of Derby that are non-standard or not typical for a
database system:

Dynamic SQL
Derby uses JDBC's Prepared Statement, and does not provide SQL commands for
dynamic SQL.

Cursors
Derby uses JDBC's Result Sets, and does not provide SQL for manipulating cursors
except for positioned update and delete. Derby's scrolling insensitive cursors are
provided through JDBC, not through SQL commands.

Information schema
Derby uses its own system catalog that can be accessed using standard JDBC
DatabaseMetadata calls. Derby does not provide the standard Information Schema
views.

Transactions
All operations in Derby are transactional. Derby supports transaction control using JDBC
3.0 Connection methods. This includes support for savepoints and for the four JDBC
transaction isolation levels. The only SQL command provided for transaction control is
SET TRANSACTION ISOLATION.

Stored routines and PSM
Derby supports external procedures using the Java programming language. Procedures
are managed using the CREATE PROCEDURE and DROP PROCEDURE statements.

Calling functions and procedures
Derby supports the CALL (procedure) statement for calling external procedures declared
by the CREATE PROCEDURE statement. Built-in functions and user-defined functions
declared with the CREATE FUNCTION command can be called as part of an SQL select
statement or by using either a VALUES clause or VALUES expression.

Unique constraints and nulls
The SQL standard defines that unique constraints on nullable columns allow any number
of nulls; Derby does not permit unique constraints on nullable columns.

NOT NULL characteristic
The SQL standard says NOT NULL is a constraint, and can be named and viewed in the

Copyright

96

information schema as such. Derby does not provide naming for NOT NULL, nor does it
present it as a constraint in the information schema, only as a characteristic of the
column.

DECIMAL max precision
For Derby, the maximum precision for DECIMAL columns is 31 digits. SQL99 does not
require a specific maximum precision for decimals, but most products have a maximum
precision of 15-32 digits.

CLOB, and BLOB
Derby supports the standard CLOB and BLOB data types. BLOB and CLOB values are
limited to a maximum of 2,147,483,647 characters.

Expressions on LONGs
Derby permits expressions on LONG VARCHAR; however LONG VARCHAR data types
are not allowed in:

• GROUP BY clauses
• ORDER BY clauses
• JOIN operations
• PRIMARY KEY constraints
• Foreign KEY constraints
• UNIQUE key constraints
• MIN aggregate function
• MAX aggregate function
• [NOT] IN predicate
• UNION, INTERSECT, and EXCEPT operators

SQL99 also places some restrictions on expressions on LONG types.

ALTER TABLE
Slightly different ALTER TABLE syntax for altering column defaults. SQL99 uses DROP
and SET, we use DEFAULT.

Copyright

97

Trademarks
The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Copyright

98

	Copyright
	About this guide
	Purpose of this guide
	Audience
	How this guide Is Organized

	Upgrades
	Preparing to upgrade
	Upgrading a database
	Soft upgrade

	JDBC applications and Derby basics
	Application development overview
	Derby embedded basics
	Derby JDBC driver
	Derby JDBC database connection URL
	Derby system
	One Derby instance for each Java Virtual Machine
	Booting databases
	Shutting down the system
	Defining the system directory
	The error log
	derby.properties
	Double-booting system behavior
	Recommended practices

	A Derby database
	The database directory
	Creating, dropping, and backing up databases
	Single database shutdown
	Storage and recovery
	Log on separate device
	Database Pages
	Database-wide properties
	Database limitations

	Connecting to databases
	Standard connections
	Connecting to databases within the system
	Connecting to databases outside the system directory

	Conventions for specifying the database path
	Special database access
	Accessing databases from the classpath
	Accessing databases from a jar or zip file

	Database connection examples

	Working with the database connection URL attributes
	Using the databaseName attribute
	Shutting down Derby or an individual database
	Creating and accessing a database
	Providing a user name and password
	Encrypting a database when you create it
	Booting an encrypted database
	Specifying attributes in a properties object

	After installing
	The installation directory
	Batch files and shell scripts

	Derby and JVMs
	Derby libraries and classpath
	UNIX-specific issues
	Configuring file descriptors
	Scripts

	Derby embedded basics
	Embedded Derby JDBC driver
	Embedded Derby JDBC database connection URL
	Getting a nested connection
	Starting Derby as an embedded database

	Deploying Derby applications
	Deployment issues
	Embedded deployment application overview
	Deploying Derby in an embedded environment
	Embedded systems and properties

	Creating Derby databases for read-only use
	Creating and preparing the database for read-only use
	Deploying the database on the read-only media
	Transferring read-only databases to archive (jar or zip) files
	Accessing a read-only database in a zip/jar file
	Accessing databases within a jar file using the classpath
	Connecting to databases with ambiguous paths to databases in the file
system
	Connecting to databases when the path is ambiguous because of databases
in the classpath

	Databases on read-only media and DatabaseMetaData

	Loading classes from a database
	Class loading overview
	Signed jar files

	Create jar files for your application
	Add the jar file or files to the database
	Jar file examples
	Installing jar files
	Removing jar files
	Replacing jar files

	Enable database class loading with a property
	Code your applications
	Dynamic changes to jar files or to the database jar classpath
	Requirements for dynamic changes
	Notes

	Derby server-side programming
	Programming database-side JDBC procedures
	Database-side JDBC procedures and nested connections
	Requirements for database-side JDBC procedures using nested connections

	Database-side JDBC procedures using non-nested connections
	Invoking a procedure using the CALL command

	Database-side JDBC procedures and SQLExceptions
	User-defined SQLExceptions

	Programming trigger actions
	Trigger action overview
	Performing referential actions
	Accessing before and after rows
	Examples
	Triggers and exceptions
	Aborting statements and transactions

	Controlling Derby application behavior
	The JDBC Connection and Transaction Model
	Connections
	Statements
	ResultSets and Cursors
	Nested connections

	Transactions
	Transactions when auto-commit is disabled
	Using auto-commit
	Turning Off Auto-Commit
	Explicitly closing Statements, ResultSets, and Connections
	Statement versus transaction runtime rollback

	SQL and JDBC ResultSet/Cursor mechanisms
	Simple non-updatable ResultSets
	Updatable cursors
	Requirements for updatable cursors
	Naming or accessing the name of a cursor
	Extended updatable cursor example

	ResultSets and auto-commit
	Scrolling insensitive ResultSets
	Holdable cursors
	Holdable cursors and autocommit
	Non-holdable cursor example

	Locking, concurrency, and isolation
	Isolation levels and concurrency
	Configuring isolation levels
	Lock granularity
	Types and scope of locks in Derby systems
	Exclusive locks
	Shared locks
	Update locks
	Lock compatibility
	Scope of locks
	Notes on locking

	Deadlocks
	Avoiding Deadlocks
	Deadlock detection
	Lock wait timeouts
	Configuring deadlock detection and lock wait timeouts
	Debugging Deadlocks
	Programming applications to handle deadlocks

	Working with multiple connections to a single database
	Deployment options and threading and connection modes
	Multi-user database access
	Multiple connections from a single application

	Working with multiple threads sharing a single connection
	Pitfalls of sharing a connection among threads
	Multi-thread programming tips
	Example of threads sharing a statement

	Working with database threads in an embedded environment
	Working with Derby SQLExceptions in an Application
	Information provided in SQLExceptions
	Example of processing SQLExceptions

	Using Derby as a J2EE resource manager
	Classes that pertain to resource managers
	Getting a DataSource
	Shutting down or creating a database

	Derby and Security
	Configuring security for your environment
	Configuring security in a client/server environment
	Configuring security in an embedded environment

	Working with user authentication
	Enabling user authentication
	Defining users
	External directory service
	LDAP directory service
	Libraries for LDAP user authentication
	Setting up Derby to use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	Considerations when using Windows NT with LDAP
	LDAP restrictions

	JNDI-specific properties for external directory services
	User-defined class
	Example of setting a user-defined class

	Built-in Derby users
	Database-level properties
	System-level properties

	List of user-authentication properties
	Programming applications for Derby user authentication
	Programming the application to provide the user and password
	Login failure exceptions with user authentication

	Users and authorization identifiers
	Authorization identifiers, user authentication, and user authorization
	User names and schemas
	Exceptions when using authorization identifiers

	User authorization
	Setting user authorization
	Setting the default access mode
	Setting the access mode for particular users
	Notes on user authorization
	User authorization exceptions

	Read-only and full access permissions
	Examples of user authorization

	Encrypting databases on disk
	Requirements for Derby encryption
	Working with encryption
	Encrypting databases on creation
	Creating the boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Booting an encrypted database
	Changing the boot password

	Signed jar files
	Notes on the Derby security features
	User authentication and authorization examples
	User authentication example in a client/server environment
	User authentication example in a single-user, embedded environment
	User authentication and authorization extended examples

	Running Derby under a security manager
	Granting permissions to Derby
	Examples of Java 2 security policy files for embedded Derby
	Java 2 security policy file example 1
	Java 2 security policy file example 2
	Java 2 security policy file example 3

	Developing Tools and Using Derby with an IDE
	Offering Connection Choices to the User
	The DriverPropertyInfo Array
	DriverPropertyInfo array example

	Using Derby with IDEs
	IDEs and multiple JVMs

	SQL tips
	Retrieving the database connection URL
	Supplying a parameter only once
	Defining an identity column
	Using third-party tools
	Tricks of the VALUES clause
	Multiple rows
	Mapping column values to return values
	Creating empty queries

	Localizing Derby
	SQL parser support for Unicode
	Other components
	Messages libraries

	Derby and standards
	Dynamic SQL
	Cursors
	Information schema
	Transactions
	Stored routines and PSM
	Calling functions and procedures
	Unique constraints and nulls
	NOT NULL characteristic
	DECIMAL max precision
	CLOB, and BLOB
	Expressions on LONGs
	ALTER TABLE

	Trademarks

