[vertical list of authors]
© Copyright .

[cover art/text goes here]

Copyright

Contents

Copyright
Apache Software FoundationDerby Reference ManualApache Derby

Copyright

Copyright

Copyright 1997, 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://ww. apache. org/|icenses/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby .

Purpose of this document

This book, the Derby Reference Manual , provides reference information about Derby. It
covers Derby's SQL language, the Derby implementation of JDBC, Derby system
catalogs, Derby error messages, Derby properties, and SQL keywords.

Audience

This book is a reference for Derby users, typically application developers. Derby users
who are not familiar with the SQL standard or the Java programming language will
benefit from consulting books on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Derby Developer's Guide .

How this guide is organized
This guide includes the following sections:
¢ SQL language reference

Reference information about Derby's SQL language, including manual pages for
statements, functions, and other syntax elements.

¢ SQL reserved words
SQL keywords beyond the standard SQL-92 keywords.
« Derby support for SQL-92 features
A list of SQL-92 features that Derby does and does not support.
* Derby System Tables
Reference information about the Derby system catalogs.
« Derby exception messages and SQL states
Information about Derby exception messages.
* JDBC Reference

Information about Derby's implementation of the JDBC interface include support for
JDBC 2.0 features.

e Setting attributes for the database connection URL

Information about the supported attributes to Derby's JDBC database connection
URL.

« J2EE Compliance: Java Transaction APl and javax.sql Extensions

Information about the supported attributes to Derby's support for the Java
Transaction API.

¢ Derby API
Notes about proprietary APls for Derby.

Copyright

SQL language reference

Derby implements an SQL-92 core subset, as well as some SQL-99 features.

This section provides an overview of the current SQL language by describing the
statements, built-in functions, data types, expressions, and special characters it contains.

Capitalization and special characters

Using the classes and methods of JDBC, you submit SQL statements to Derby as
strings. The character set permitted for strings containing SQL statements is Unicode.
Within these strings, the following rules apply:

Double quotation marks delimit special identifiers referred to in SQL-92 as delimited
identifiers.

Single quotation marks delimit character strings.

Within a character string, to represent a single quotation mark or apostrophe, use
two single quotation marks. (In other words, a single quotation mark is the escape
character for a single quotation mark.)

A double quotation mark does not need an escape character. To represent a double
guotation mark, simply use a double quotation mark. However, note that in a Java
program, a double quotation mark requires the backslash escape character.

Example:

-- a single quotation mark is the escape character
-- for a single quotation mark

VALUES ' Joe''s unbrella')
--in ij, you don't need to escape the double quotation marks
VALUES " He said, "hello!l"'

n = stnt.execut eUpdat egt])
"UPDATE aTabl e setStringcol = 'He said, \"hello!\""");

SQL keywords are case-insensitive. For example, you can type the keyword
SELECT as SELECT, Select, select, or SELECT.

SQL-92-style identifiers are case-insensitive (see SQL92ldentifier), unless they are
delimited.

Java-style identifiers are always case-sensitive.

* is a wildcard within a SelectExpression . See The * wildcard . It can also be the
multiplication operator. In all other cases, it is a syntactical metasymbol that flags
items you can repeat O or more times.

% and _ are character wildcards when used within character strings following a
LIKE operator (except when escaped with an escape character). See Boolean
expression .

Two dashes (--) and a newline character delimit a comment, as per the SQL-92
standard. The two dashes start the comment and the newline character ends the
comment.

SQL identifiers

An identifier is the representation within the language of items created by the user, as
opposed to language keywords or commands. Some identifiers stand for dictionary
objects, which are the objects you create- such as tables, views, indexes, columns, and
constraints- that are stored in a database. They are called dictionary objects because
Derby stores information about them in the system tables, sometimes known as a data
dictionary. SQL also defines ways to alias these objects within certain statements.

Each kind of identifier must conform to a different set of rules. Identifiers representing

5

Copyright

dictionary objects must conform to SQL-92 identifier rules and are thus called
SQL92ldentifier s.

Rules for SQL92 identifiers

Ordinary identifiers are identifiers not surrounded by double quotation marks. Delimited
identifiers are identifiers surrounded by double quotation marks.

An ordinary identifier must begin with a letter and contain only letters, underscore
characters (), and digits. The permitted letters and digits include all Unicode letters and
digits, but Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

A delimited identifier can contain any characters within the double quotation marks. The
enclosing double quotation marks are not part of the identifier; they serve only to mark its
beginning and end. Spaces at the end of a delimited identifier are insignificant
(truncated). Derby translates two consecutive double quotation marks within a delimited
identifier as one double quotation mark-that is, the "translated" double quotation mark
becomes a character in the delimited identifier.

Periods within delimited identifiers are not separators but are part of the identifier (the
name of the dictionary object being represented).

So, in the following example:

"A B"

is a dictionary object, while
"A"."B"

is a dictionary object qualified by another dictionary object (such as a column named "B"
within the table "A").

SQL92ldentifier

An SQL92Identifier is a dictionary object identifier that conforms to the rules of SQL-92.
SQL-92 states that identifiers for dictionary objects are limited to 128 characters and are
case-insensitive (unless delimited by double quotes), because they are automatically
translated into uppercase by the system. You cannot use reserved words as identifiers
for dictionary objects unless they are delimited. If you attempt to use a name longer than
128 characters, SQLException X0X11 is raised.

Derby defines keywords beyond those specified by the SQL-92 standard (see SQL
reserved words).

Example

-- the view name is stored in the

-- system cat al ogs as AN DENTI FI ER

CREATE VI EW Anl dentifier (RECEIVED) AS VALUES 1

-- the view nane is stored in the system

-- catalogs with case intact o

CREATE VI "ACaseSensitiveldentifier" (RECEIVED) AS VALUES 1

This section describes the rules for using SQL92ldentifiers to represent the following
dictionary objects.

Copyright
Qualifying dictionary objects
Since some dictionary objects can be contained within other objects, you can qualify
those dictionary object names. Each component is separated from the next by a period.

An SQL92Identifier is "dot-separated.” You qualify a dictionary object name in order to
avoid ambiguity.

column-Name

In many places in the SQL syntax, you can represent the name of a column by qualifying
it with a table-Name or correlation-Name.

In some situations, you cannot qualify a column-Name with a table-Name or a
correlation-Name, but must use a Simple-column-Name instead. Those situations are:

e creating a table (CREATE TABLE statement)

¢ specifying updatable columns in a cursor

¢ ina column's correlation name in a SELECT expression (see SelectExpression)

e in a column's correlation name in a TableExpression (see TableExpression)
You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT c11 AS col 1, c12 AS col2, c13 FROMt1 FOR UPDATE of c11,c13

In this example, the correlation-Name col 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

[{
t abl e- Nane

correl ati on- Nane

Pl
SQL92I denti fi er

Example

-- C.Country is a colum-Nane qualified with a

correl ati on- Nane

SELECT C. Country
FROM APP. Countries C

correlation-Name
A correlation-Name is given to a table expression in a FROM clause as a new name or
alias for that table. You do not qualify a correlation-Name with a schema-Name.

You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT cl11 AS col 1, cl1l2 AS col 2, cl13 FROMt1l FOR UPDATE of cl1,cl3

Copyright

In this example, the correlation-Name col 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

SQL92I denti fier

Example

-- Cis a correl ati on-Nanme
SELECT C. NAME
FROM SAMP. STAFF C

new-table-Name

A new-table-Name represents a renamed table. You cannot qualify a new-table-Name
with a schema-Name.

Syntax

SQL92I denti fier

Example

-- FlightBooks is a newtabl e-Nane that does not include a schenma- Name
RENAME TABLE FLI GHT AVAI LABI LI TY TO FLI GHTAVAI LABLE

schemaName

A schemaName represents a schema. Schemas contain other dictionary objects, such as
tables and indexes. Schemas provide a way to name a subset of tables and other
dictionary objects within a database.

You can explicitly create or drop a schema. The default user schema is the APP schema
(if no user name is specified at connection time). You cannot create objects in schemas
starting with SYS.

Thus, you can qualify references to tables with the schema name. When a schemaName
is not specified, the default schema name is implicitly inserted. System tables are placed
in the SYS schema. You must qualify all references to system tables with the SYS

schema identifier. For more information about system tables, see Derby System Tables .

A schema is hierarchically the highest level of dictionary object, so you cannot qualify a
schemaName.

Copyright

Syntax

SQL92I denti fi er

Example

MP. EMPLOYEE i s a tabl e- Nane guallfled by a schemaNane
SELECT COUNT(*) FROM SAMP. EMPLOY

ou nmust qualify system catal og names with their schema, SYS
SELECT COUNT(*) F YS. SysCol utms

Simple-column-Name

A Simple-column-Name is used to represent a column when it cannot be qualified by a
table-Name or correlation-Name. This is the case when the qualification is fixed, as it is in
a column definition within a CREATE TABLE statement.

Syntax

SQL92l denti fier

Example

-- country is a Si nEI e- col um
CREATE TABLE CONTI NENT (CQU NTRY VARCHARl(_QZG) NOT NULL PRI MARY KEY,
COUNTRY_| SO CODE CHAR(2), REG ON VARCHA

synonym-Name

table-Name

A synonym-Name represents a synonym for a table or a view. You can qualify a
synonym-Name with a schema-Name.

Syntax

[

schemaNanme

SQL92l denti fier

A table-Name represents a table. You can qualify a table-Name with a schemaName.

Syntax

[

sc]herraNarre

Copyright

view-Name

index-Name

SQL92I denti fier

Example

-- SAMP. PRQJECT is a tabl e-Nane that includes a schemaNane
SELECT COUNT(*) FROM SAMP. PRQIECT

A view-Name represents a table or a view. You can qualify a view-Name with a
schema-Name.

Syntax

[

schenmaNane

SQL92I denti fier

Example

-- This is a View gualified by a schenma- Name
SELECT COUNT(*) F SAMP. EMP” RESUMVE

An index-Name represents an index. Indexes live in schemas, so you can qualify their
names with schema-Names. Indexes on system tables are in the SYS schema.

Syntax

[

schemaNane

]
SQL92I denti fier

Example

DROP | NDEX APP. ORI Gl NDEX;
-- Oiglndex is an index-Nane wit
CREATE | NDEX ORI G NDEX ON FLI GHTS

constraint-Name

You cannot qualify constraint-names.

Syntax

Copyright

SQL92I denti fier

Example

-- country fk2 is a constrai nt nane
CREATE TABLE DETAI LED MAPS %OQJNTRY | SO CODE CHAR(2)
CONSTRAI NT country_fkZ REFERENCES COUNTRI ES)

cursor-Name

A cursor-Name refers to a cursor. No SQL language command exists to assign a name to
a cursor. Instead, you use the JDBC API to assign hames to cursors or to retrieve
system-generated names. For more information, see the Derby Developer's Guide . If
you assign a name to a cursor, you can refer to that name from within SQL statements.

You cannot qualify a cursor-Name.

Syntax

SQ.92l dentifier

Example

stnt. executeUpdate ' UPDATE SAMP. STAFF SET COWM =
"COWM + 20 ° "WHERE CURRENT OF " + Resul t Set. getQJrsorNane())

TriggerName
A TriggerName refers to a trigger created by a user.

Syntax

[

schenmaNane

]
SQ.92I dentifier

Example

DROP TRI GGER TRI GL

Authorizationldentifier

11

Copyright

User names within the Derby system are known as authorization identifiers. The
authorization identifier represents the name of the user, if one has been provided in the
connection request. The default schema for a user is equal to its authorization identifier.
User names can be case-sensitive within the authentication system, but they are always
case-insensitive within Derby's authorization system unless they are delimited. For more
information, see the Derby Developer's Guide .

Syntax

SQL92l dentifier

Example

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by dat abase. ful | AccessUsers', ' Anmber, FRED)

Statements

This section provides manual pages for both high-level language constructs and parts
thereof. For example, the CREATE INDEX statement is a high-level statement that you
can execute directly via the JDBC interface. This section also includes clauses, which are
not high-level statements and which you cannot execute directly but only as part of a
high-level statement. The ORDER BY and WHERE clauses are examples of this kind of
clause. Finally, this section also includes some syntactically complex portions of
statements called expressions, for example SelectExpression and TableSubquery .
These clauses and expressions receive their own manual pages for ease of reference.

Unless it is explicitly stated otherwise, you can execute or prepare and then execute all
the high-level statements, which are all marked with the word statement, via the
interfaces provided by JDBC. This manual indicates whether an expression can be
executed as a high-level statement.

The sections provide general information about statement use, and descriptions of the
specific statements.

Interaction with the dependency system

Derby internally tracks the dependencies of prepared statements, which are SQL
statements that are precompiled before being executed. Typically they are prepared
(precompiled) once and executed multiple times.

Prepared statements depend on the dictionary objects and statements they reference.
(Dictionary objects include tables, columns, constraints, indexes, views, and triggers.)
Removing or modifying the dictionary objects or statements on which they depend
invalidates them internally, which means that Derby will automatically try to recompile the
statement when you execute it. If the statement fails to recompile, the execution request
fails. However, if you take some action to restore the broken dependency (such as
restoring the missing table), you can execute the same prepared statement, because
Derby will recompile it automatically at the next execute request.

Statements depend on one another-an UPDATE WHERE CURRENT statement depends
on the statement it references. Removing the statement on which it depends invalidates

12

Copyright

the UPDATE WHERE CURRENT statement.

In addition, prepared statements prevent execution of certain DDL statements if there are
open results sets on them.

Manual pages for each statement detail what actions would invalidate that statement, if
prepared.

Here is an example using the Derby tool ij:

ij> CREATE TABLE nyt abl e (rrycol I NT) ;

0 rovvs nserted/updat ed/del ed

ij> INSERT | NTO nyt abl e V. LUES(l), (2), (3);
3 rows i nsert ed/ updat ed/ de ed

- this exanple uses the Ij com”rand pr epar e,
- - whi ch prepares a statenent
Ij> ;irepare pl AS 'I NSERT | NTO MyTabl e VALUES (4)'
depends on nyt abl e;
ij> execute pl;
1 row i nsert ed/ updat ed/ del et ed
r executes it wthout reconpiling
ij> CREATE I NDEX i1 ON rrytable(rryco)
0 rows_ inserted/ updated/del e
-- pl is tenporarily invali dat ed because of new i ndex
ij> execute pl;
1 row i nsert ed/ updat ed/ del et ed
-- Derb aut ona |caIIy reconpil es pl and executes it
j> TABLE nyt abl e;
0 rows inserted/ updated/del et ed
- Derby permits you to drop table
- because result set of pl is closed
- however, the statenent pl is te orarily invalidated
j> CREATE TABLE nyt abl e (nycol n'g)
rows i nsert ed/ updat ed/ del et ed
> | NSERT | NTO nyt abl e VALUES(l) (2), (3);
rows inserted/updated/del eted
> execute pl;
row i nsert ed/ updat ed/ del et ed]))
- Because pl is |nvaI|d, Derby tries to reconpile it
- before executin
-- I't is successful and executes.
j> DR(]3 TABLE nyt abl e;
0 rows inserted/ updat ed/ del et ed
- statenment pl is now invalid,
- and this tine the attenPt to reconpile it
-- upon execution w |l i
i]> execute pl,; .
ROR 42X05: Tabl e ' M\YTABLE' does not exi st.

0
L)

i]

i
i
3
1
i

ALTER TABLE statement

The ALTER TABLE statement allows you to:
¢ add a column to a table
¢ add a constraint to a table
e drop an existing constraint from a table
¢ increase the width of a VARCHAR, CHAR VARYING, and CHARACTER VARYING
column
< override row-level locking for the table (or drop the override)

Syntax

ALTER TABLE
t abl e- Nanme

t ADD COLUWN

col um-definition

IADD

13

Copyright
CONSTRAI NT cl ause

| DROP { PRI MARY KEY | FOREI GN KEY constrai nt-nane UNI QUE

_ constraint-name | CHECK constrai nt-nane | TRAI'NT
constrai nt-nane }
ALTER

colum-al teration

| Loxs ZE { RON| TABLE }

column-definition

Si npl e- col utm- Nane
I[Dat aType

Col umm- | evel - constrai nt

*
[][W TH] DEFAULT {Constant Expression | NULL }]

column-alteration

col um- Nane SET DATA TYPE VARCHAR(i nt eger% |
col um-nanme SET | NCREMENT BY i nt eger - const ant

In the column-alteration, SET INCREMENT BY integer-constant, specifies the interval
between consecutive values of the identity column. The next value to be generated for
the identity column will be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY attribute.

ALTER TABLE does not affect any view that references the table being altered. This
includes views that have an ™" in their SELECT list. You must drop and re-create those
views if you wish them to return the new columns.

Adding columns

The syntax for the column-definition for a new column is the same as for a column in a
CREATE TABLE statement. This means that a column constraint can be placed on the
new column within the ALTER TABLE ADD COLUMN statement. However, a column
with a NOT NULL constraint can be added to an existing table if you give a default value;
otherwise, an exception is thrown when the ALTER TABLE statement is executed.

Just as in CREATE TABLE, if the column definition includes a unique or primary key
constraint, the column cannot contain null values, so the NOT NULL attribute must also
be specified (SQLSTATE 42831).

Note: If a table has an UPDATE trigger without an explicit column list, adding a column to
that table in effect adds that column to the implicit update column list upon which the
trigger is defined, and all references to transition variables are invalidated so that they
pick up the new column.

Adding constraints
ALTER TABLE ADD CONSTRAINT adds a table-level constraint to an existing table. Any
supported table-level constraint type can be added via ALTER TABLE. The following
limitations exist on adding a constraint to an existing table:

* When adding a foreign key or check constraint to an existing table, Derby checks

14

Copyright

the table to make sure existing rows satisfy the constraint. If any row is invalid,
Derby throws a statement exception and the constraint is not added.
¢ All columns included in a primary key must contain non null data and be unique.

ALTER TABLE ADD UNIQUE or PRIMARY KEY provide a shorthand method of
defining a primary key composed of a single column. If PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the PRIMARY KEY(C)
clause were specified as a separate clause. The column cannot contain null values,
so the NOT NULL attribute must also be specified.

For information on the syntax of constraints, see CONSTRAINT clause . Use the syntax
for table-level constraint when adding a constraint with the ADD TABLE ADD
CONSTRAINT syntax.

Dropping constraints

ALTER TABLE DROP CONSTRAINT drops a constraint on an existing table. To drop an
unnamed constraint, you must specify the generated constraint name stored in
SYS.SYSCONSTRAINTS as a delimited identifier.

Dropping a primary key, unigue, or foreign key constraint drops the physical index that
enforces the constraint (also known as a backing index).

Modifying columns
The column-alteration allows you to alter the named column in the following ways:
¢ Increasing the length of an existing VARCHAR column. CHARACTER VARYING or
CHAR VARYING can be used as synonyms for the VARCHAR keyword.

To increase the width of a column of these types, specify the data type and new
size after the column name.

You are not allowed to decrease the width or to change the data type. You are not
allowed to increase the width of a column that is part of a primary or unique key
referenced by a foreign key constraint or that is part of a foreign key constraint.

« Specifying the interval between consecutive values of the identity column.

To set an interval between consecutive values of the identity column, specify the
integer-constant. You must previously define the column with the IDENTITY
attribute (SQLSTATE 42837). If there are existing rows in the table, the values in
the column for which the SET INCREMENT default was added do not change.

Setting defaults

You can specify a default value for a new column. A default value is the value that is
inserted into a column if no other value is specified. If not explicitly specified, the default
value of a column is NULL. If you add a default to a new column, existing rows in the
table gain the default value in the new column.

For more information about defaults, see CREATE TABLE statement .

Changing the lock granularity for the table

The LOCKSIZE clause allows you to override row-level locking for the specific table, if
your system uses the default setting of row-level locking. (If your system is set for
table-level locking, you cannot change the locking granularity to row-level locking,
although Derby allows you to use the LOCKSIZE clause in such a situation without
throwing an exception.) To override row-level locking for the specific table, set locking for
the table to TABLE. If you created the table with table-level locking granularity, you can
change locking back to ROW with the LOCKSIZE clause in the ALTER TABLE
STATEMENT. For information about why this is sometimes useful, see Tuning Derby .

15

Copyright

Examples

-- Add a new colum with a colum-1|evel constraint
-- to an existing table

-- An exception will be
-- contains any rows o
-- since the newcol will be initialized to NULL

in all existing rows in the table

ALTER TABLE CITIE A COL M\I EGI(]\IVARCI-lA’\lgj_I_?\l
CONSTRAI NT NEW_CONSTRAI NT CHECK (REG ON ULL) ;

-- Add a new uni que constraint to an existi nE tabl e

An exception will be thrown if duplicate keys are found
ALTER TABLE SAMP. DEPARTMENT
ADD CONSTRAI NT NEW UNI QUE UNI QUE (DEPTNO);

-- add a new foreign key constraint to the

-- Cities table. Each rowin Cties is checked

-- to nake sure it satisfied the constraints.

-- if any rows don't satisfy the constraint, the

-- _constraint is not added

ALTER TABLE CI TI ES ADD CONSTRAI NT COUNTRY

Forei gn Key (COUNTRY) REFERENCES COUNTRI ES (OOJNTRY)

-- Add a primary key constraint to a table
-- First, create a new table

thrown if the table

CREATE TABLE ACTI VI TI ES (CITY ID I NT NOT NULL
SEASON CHAR(2), ACTIVITY VARCHAR(32) NOT NULLE
-~ You will not be able to add this constraint if the

-- colums you are including in the primary key have
-- null data or duplicate val ues o
ALTER TABLE Activities ADD PRI MARY KEY (city_id, activity);

-- Drop a primary key constraint fromthe CITIES table

ALTER TABLE Citi es DROP CONSTRAINT Cities PK;

Drop a foreign key constraint fromthe™ CITIEStabIe
ALTER ABLE Cities CONSTRAI NT COUNTRI ES F

add a DEPTNO colum with a default val ue of 1
ALTER TABLE SAMP. EMP_ACT ADD CO_UI\/N DEPTNO | NT DEFAULT 1;

ease the wi dth of VARCHAR col u

ALTER TABLE SANP EMP PHOTO ALTER PHOTO FO?MAT SET DATA TYPE VARCHAR(30);
-- change the |l ock granularity of a table
ALTER TABLE SAMP. SALES LOCKSI ZE TABLE;

Results

An ALTER TABLE statement causes all statements that are dependent on the table
being altered to be recompiled before their next execution. ALTER TABLE is not allowed
if there are any open cursors that reference the table being altered.

CREATE statements

Use the Create statements with functions, indexes, procedures, schemas, synonyms,
tables, triggers, and views.

CREATE FUNCTION statement

The CREATE FUNCTION statement allows you to create Java functions, which you can
then use in an expression.

Syntax

CREATE FUNCTI ON

functi on- nane

([, .
Funct i onPar anet er

Funct i onPar anet er
] *) RETURNS Dat aType [
unct i onEl enent

] *

~

16

Copyright
function-Name

[

schemaNanme

SQL92l dentifier

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

FunctionParameter

[paraneter-Nane]| DataType

PararameterName must be unique within a function.

The syntax of DataType is described in Data types .

Note: Long data-types such as LONG VARCHAR, LONG VARCHAR FOR BIT DATA,
CLOB, and BLOB are not allowed as parameters in a CREATE FUNCTION statement.

FunctionElement

t LANGUAGE JAVA }
EXTERNAL ME strin
PARAVETER STYLE JAV

{ RETUSNSI NULL O\I NULL Il\IPREADS

CALLED O\l %\IULL I NPUT }

LANGUAGE
JAVA- the database manager will call the function as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the function is executed, and takes
the following form:

cl ass_nane. met hod_nane

The External Name cannot have any extraneous spaces.

PARAMETER STYLE

JAVA - The function will use a parameter-passing convention that conforms to the Java
language and SQL Routines specification. INOUT and OUT parameters will be passed as
single entry arrays to facilitate returning values. Result sets are returned through
additional parameters to the Java method of type java.sql.ResultSet[] that are passed
single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the function issues any SQL statements and, if so, what type.

17

Copyright

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a
different error.

NO SQL
Indicates that the function cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included in
the function. Statements that are not supported in any stored function return a
different error. This is the default value.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

Specifies whether the function is called if any of the input arguments is null. The result is

the null value.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked if any of the input arguments is null. The
result is the null value.

CALLED ON NULL INPUT
Specifies that the function is invoked if any or all input arguments are null. This
specification means that the function must be coded to test for null argument values.
The function can return a null or non-null value. This is the default setting.

The function elements may appear in any order, but each type of element can only
appear once. A function definition must contain these elements:

¢ LANGUAGE

« PARAMETER STYLE

» EXTERNAL NAME

Example

CREATE FUNCTI ON TO DEGREES(RADI ANS DOJBLE) RETURNS DOUBLE
PARAMETER STYLE JAVA NO S LANGUAGE JAVA
EXTERNAL NAME ' | ava. | ang. Mat h. t oDegr ees'

CREATE INDEX statement

A CREATE INDEX statement creates an index on a table. Indexes can be on one or
more columns in the table.

Syntax
CREATE [UNI QUE] | NDEX
i ndex- Nanme

ON
t abl e- Nane

(

Si npl e- col utm- Nane
[A[SC| DESC]

Si npl e- col uMm- Nane
[ASC| DESC]] *)

The maximum number of columns for an index key in Derby is 16.

An index name cannot exceed 128 characters.

18

Copyright

A column must not be named more than once in a single CREATE INDEX statement.
Different indexes can name the same column, however.

Derby can use indexes to improve the performance of data manipulation statements (see
Tuning Derby). In addition, UNIQUE indexes provide a form of data integrity checking.

Index names are unique within a schema. (Some database systems allow different tables
in a single schema to have indexes of the same name, but Derby does not.) Both index
and table are assumed to be in the same schema if a schema name is specified for one
of the names, but not the other. If schema names are specified for both index and table,
an exception will be thrown if the schema names are not the same. If no schema name is
specified for either table or index, the current schema is used.

By default, Derby uses the ascending order of each column to create the index.
Specifying ASC after the column name does not alter the default behavior. The DESC
keyword after the column name causes Derby to use descending order for the column to
create the index. Using the descending order for a column can help improve the
performance of queries that require the results in mixed sort order or descending order
and for queries that select the minimum or maximum value of an indexed column.

If a qualified index name is specified, the schema name cannot begin with SYS.

Indexes and constraints

Unique, primary key, and foreign key constraints generate indexes that enforce or "back"
the constraint (and are thus sometimes called backing indexes). If a column or set of
columns has a UNIQUE or PRIMARY KEY constraint on it, you can not create an index
on those columns. Derby has already created it for you with a system-generated name.
System-generated names for indexes that back up constraints are easy to find by
guerying the system tables if you name your constraint. For example, to find out the
name of the index that backs a constraint called FLIGHTS_PK:

SELECT CO\IGLG\/ERATENANE FROM SYS. SYSCONGLOVERATES,
SYS. SYSCONSTRAI NTS VWHERE

SYS. SYSCONGLOVERATES. TABLEI D = SYSCCNSTRAI NTS. TABLEI D
AND CONSTRAI NTNAMVE = ' FLI GATS_P

CREATE | NDEX OlPIndex ON Flights(ori alrfort)

-- noney is usually ordered from grea est to |east,

-- so create the index usin he escendi nE or der

CREATE | NDEX PAY_DESC ON SAl MPLOYEE (SALARY) ;

--”use a |l arger page size for’ the i ndex

ca

SYSCS UTI L. SYSCS SET_DATABASE PRODERTYE der by. st or age. pageSi ze' , ' 8192");
CREATE NDEX | XSALE ON SAMP. SALES (SALES);

al |
SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(' der by. st or age. pageSi ze', NULL) ;

Page size and key size

Note: The size of the key columns in an index must be equal to or smaller than half the
page size. If the length of the key columns in an existing row in a table is larger than half
the page size of the index, creating an index on those key columns for the table will fail.
This error only occurs when creating an index if an existing row in the table fails the
criteria. After an index is created, inserts may fail if the size of their associated key
exceeds the criteria.

Statement dependency system
Prepared statements that involve SELECT, INSERT, UPDATE, UPDATE WHERE

19

Copyright

CURRENT, DELETE, and DELETE WHERE CURRENT on the table referenced by the
CREATE INDEX statement are invalidated when the index is created. Open cursors on
the table are not affected.

CREATE PROCEDURE statement

The CREATE PROCEDURE statement allows you to create Java stored procedures,
which you can then call using the CALL PROCEDURE statement.

Syntax

CREATE PROCEDURE
pr ocedur e- Nane

P$ oE:edur ePar anet er

Pr ocedur ePar anet er

*

]rogedur eEl enent

procedure-Name

[

sc]hemaNan*e

SQL92I denti fier

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

ProcedureParameter

[{ IN] OQUT | INOQUT }] [paraneter-Nane]| DataType

The default value for a parameter is IN. ParameterName must be unique within a
procedure.

The syntax of DataType is described in Data types .

Note: Long data-types such as LONG VARCHAR, LONG VARCHAR FOR BIT DATA,
CLOB, and BLOB are not allowed as parameters in a CREATE PROCEDURE statement.

ProcedureElement

|{[DYNAM C] RESULT SETS

I NTEGER
LANGUAGE JAVA
hA st I’ in

BARANETER STVLE JAUR
{ NO SQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }

20

Copyright

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure. Default is
no (zero) dynamic result sets.

LANGUAGE

JAVA- the database manager will call the procedure as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the procedure is executed, and takes
the following form:

cl ass_nane. net hod_nane

The External Name cannot have any extraneous spaces.

PARAMETER STYLE

JAVA - The procedure will use a parameter-passing convention that conforms to the
Java language and SQL Routines specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values. Result sets are returned
through additional parameters to the Java method of type java.sql.ResultSet [] that are
passed single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA
Indicates whether the stored procedure issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the stored procedure. Statements that are not supported in any stored
procedure return a different error. MODIFIES SQL DATA is the default value.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included in
the stored procedure. Statements that are not supported in any stored procedure
return a different error.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement except
statements that are not supported in stored procedures.

The procedure elements may appear in any order, but each type of element can only
appear once. A procedure definition must contain these elements:

¢ LANGUAGE

¢ PARAMETER STYLE

» EXTERNAL NAME

Example

IN S YEAR | NTEGER, OUT TOTAL DECI MAL l%Ga)_)
PARAVETER STYLE JAVA READS SQ. DATA LAl JAGE JAVA EXTERNAL NAME
' com acne. sal es. cal cul at eRevenueByMont h'

CREATE SCHEMA statement

CREATE PROCEDURE SALES. TOTAL REVENUEEI N S_MONTH | NTEGER,

A schema is a way to logically group objects in a single collection and provide a unique

21

Copyright

namespace for objects.

Syntax

CREATE SCHENA
schenmaNane

The CREATE SCHEMA statement is used to create a schema. A schema name cannot
exceed 128 characters. Schema names must be unique within the database.

-- Create a schema for enpl oyee-rel ated tables
CREATE SCHEMA EMP;
-- Create a schem for airline-related tables
CREATE SCHEMA Fl i ghts)
-- Create a table called "Availability" in each schema
CREATE TABLE FLI GHTS. AVAI LABI LI TY
|(:FLI GHT | D CHAR(6 NOI NULL SEGVENT _NUMBER | NT NOT NULL,
LI GHT DATE DAT ECONOW SEATS TAKEN | NT,
BUSI NESS SEATS TAKEN I NT " FIRSTCLASS_SEATS TAKEN | NT,
CONSTRAI NT FLT _AVAI L_PK
PRI MARY KEY (FLCI GHT_TD, SEGVENT_NUMBER, FLI GHT_DATE));

CREATE TABLE EMP. AVAI LABI LI TY
. (HOTEL_I D I NT NOT NULL, BOOKI NG DATE DATE NOT NULL, ROOVS_TAKEN

CONSTRAI NT HOTELAVAI L_PK PRI MARY KEY (HOTEL_I D, BOOKI NG DATE));
CREATE SYNONYM statement

Use the CREATE SYNONYM statement to provide an alternate name for a table or a
view that is present in the same schema or another schema. You can also create
synonyms for other synonyms, resulting in nested synonyms. A synonym can be used
instead of the original qualified table or view name in SELECT, INSERT, UPDATE,
DELETE or LOCK TABLE statements. You can create a synonym for a table or a view
that doesn't exist, but the target table or view must be present before the synonym can
be used.

Synonyms share the same namespace as tables or views. You cannot create a synonym
with the same name as a table that already exists in the same schema. Similarly, you
cannot create a table or view with a name that matches a synonym already present.

A synonym can be defined for a table/view that does not exist when you create the
synonym. If the table or view doesn't exist, you will receive a warning message
(SQLSTATE 01522). The referenced object must be present when you use a synonym in
a DML statement.

You can create a nested synonym (a synonym for another synonym), but any attempt to
create a synonym that results in a circular reference will return an error message
(SQLSTATE 42916).

Synonyms cannot be defined in system schemas. All schemas starting with 'SYS' are
considered system schemas and are reserved by Derby.

A synonym cannot be defined on a temporary table. Attempting to define a synonym on a
temporary table will return an error message (SQLSTATE XCL51).

Syntax

22

Copyright

CREATE SYNONYM
s'gnon m Nane
OR

viI ew Nane
t?bl e- Nane

The synonym-Name in the statement represents the synonym name you are giving the
target table or view, while the view-Name or table-Name represents the original name of
the target table or view.

Example
CREATE SYNONYM SAMP.T1 FOR SAMP. TABLEWITHLONGNAME
CREATE TABLE statement

A CREATE TABLE statement creates a table. Tables contain columns and constraints,
rules to which data must conform. Table-level constraints specify a column or columns.
Columns have a data type and can specify column constraints (column-level constraints).

For information about constraints, see CONSTRAINT clause .

You can specify a default value for a column. A default value is the value to be inserted
into a column if no other value is specified. If not explicitly specified, the default value of a
column is NULL. See Column default .

You can specify storage properties such as page size for a table by calling the
SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY system procedure.

If a qualified table name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TABLE
t abl e- Nane

({

col umm-definition

Tabl e-1 evel constraint

} [

col um-definition

Tabl e-1 evel constraint
N

Example

CREATE TABLE HOTELAVAI LABI LI TY
(HOTEL 1D I NT NOT NULL, BOCKI NG DATE DATE NOT NULL,
ROOVS_TAKEN | NT DEFAULT 0, PRI MARY KEY (HOTEL ID, BOOKI NG DATE));
-- the table-Tevel primary key d_efl nition allows you fo
-- include two colums in the primary key definition
PRI MARY KEY (hotel _id, booking_dat e)é/
-- assign an identity colum aftribute to an | NTEGER
-- colum, and al so define a primary key constraint
-- on the col um
CREATE TABLE PEOPLE
PERSON | D | NT NOT NULL GENERATED ALWAYS AS | DENTI TY
TRATNT PECPLE PK PRI MARY KEY, PERSON VARCHAR(26));

23

Copyright

-- assign an identity colum attribute to a SMALLINT
-- colum with an initial value of 5 and an increnent val ue

of 5.
CREATE TABLE GROUPS
GROUP_| D SMALLI NT _NOT NULL GENERATED ALWAYS AS | DENTI TY

START W TH 5, | NCREMENT BY 5), ADDRESS VARCHAR(100), PHONE
VARCHAR(15)) :

Note: For more examples of CREATE TABLE statements using the various constraints,
see CONSTRAINT clause .
column-definition:

Si npl e- col uMm- Nane
Dat a[Type

Col umm-| evel -constrai nt

*
] [[|WTH] DEFAULT { Constant Expression | NULL }

gener at ed- col um- spec

b

Col umm- | evel -constrai nt

]*

The syntax of Data-Type is described in Data types .

The syntaxes of Column-level-constraint and Table-level constraint are described in
CONSTRAINT clause .

Column default

For the definition of a default value, a ConstantExpression is an expression that does not
refer to any table. It can include constants, date-time special registers, current schemas,
users, and null.

generated-column-spec:

(START W TH I nt egerConst ant

GENERATED {r ALVWAYS | BY DEFAULT } AS | DENTITY
NCREMENT BY | ntegerConstant]) 1] 1

Identity column attributes

For SMALLINT, INT, and BIGINT columns with identity attributes, Derby automatically
assigns increasing integer values to the column. Identity column attributes behave like
other defaults in that when an insert statement does not specify a value for the column,
Derby automatically provides the value. However, the value is not a constant; Derby
automatically increments the default value at insertion time.

The IDENTITY keyword can only be specified if the data type associated with the column
is one of the following exact integer types.

e SMALLINT

« INT

e BIGINT

There are two kinds of identity columns in Derby: those which are GENERATED

24

Copyright

ALWAYS and those which are GENERATED BY DEFAULT.

GENERATED ALWAYS
An identity column that is GENERATED ALWAYS will increment the default value on
every insertion and will store the incremented value into the column. Unlike other
defaults, you cannot insert a value directly into or update an identity column that is
GENERATED ALWAYS. Instead, either specify the DEFAULT keyword when
inserting into the identity column, or leave the identity column out of the insertion
column list altogether. For example:

create table greetings))

. (i int generated always as identit ch char(50));
insert into greetings values (DEFAULT, 'he lo');

insert into greetings(ch) values ('bonjour');

Automatically generated values in a GENERATED ALWAYS identity column are
unique. Creating an identity column does not create an index on the column.
GENERATED BY DEFAULT

An identity column that is GENERATED BY DEFAULT will only increment and use
the default value on insertions when no explicit value is given. Unlike GENERATED
ALWAYS columns, you can specify a particular value in an insertion statement to be
used instead of the generated default value.

To use the generated default, either specify the DEFAULT keyword when inserting
into the identity column, or just leave the identity column out of the insertion column
list. To specify a value, included it in the insertion statement. For example:

create table ?reetl ngs) .
(i int generated by default as identity, ch char(50));
-- speci val ue "1":)
insert into greeti n?s values (1, 'hi');
-- use generated default
insert into greetings val ues (DEFAULT, 'salut');
-- use generated default)
insert into greetings(ch) values ('bonjour');

Note that unlike a GENERATED ALWAYS column, a GENERATED BY DEFAULT
column does not guarantee uniqueness. Thus, in the above example, the hi and
sal ut rows will both have an identity value of "1", because the generated column
starts at "1" and the user-specified value was also "1". To prevent duplication,
especially when loading or importing data, create the table using the START WITH
value which corresponds to the first identity value that the system should assign. To
check for this condition and disallow it, you can use a primary key or unique
constraint on the GENERATED BY DEFAULT identity column.

By default, the initial value of an identity column is 1, and the amount of the increment is
1. You can specify non-default values for both the initial value and the interval amount
when you define the column with the key words STARTS WITH and INCREMENT BY.
And if you specify a negative number for the increment value, Derby decrements the
value with each insert. If this value is 0, or positive, Derby increments the value with each
insert.

The maximum and minimum values allowed in identity columns are determined by the
data type of the column. Attempting to insert a value outside the range of values
supported by the data type raises an exception.

Tablel. Maximum and Minimum Values for Columns with Generated Column Specs

Data type Maximum Value Minimum Value

SMALLINT 32767 (java.lang.Short. MAX_VALUE) -32768 (java.lang.Short. MIN_VALUE)

INT 2147483647 -2147483648
(java.lang.Integer.MAX_VALUE) (java.lang.Integer.MIN_VALUE)

BIGINT 9223372036854775807 -9223372036854775808
(java.lang.Long.MAX_VALUE) (java.lang.Long.MIN_VALUE)

25

Copyright

Automatically generated values in an identity column are unique. Use a primary key or
unigue constraint on a column to guarantee uniqueness. Creating an identity column
does not create an index on the column.

The | DENTI TY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value for an identity column. See IDENTITY_VAL LOCAL for more
information.

Note: Specify the schema, table, and column name using the same case as those names
are stored in the system tables--that is, all upper case unless you used delimited
identifiers when creating those database objects.

Derby keeps track of the last increment value for a column in a cache. It also stores the
value of what the next increment value will be for the column on disk in the
AUTOINCREMENTVALUE column of the SYS.SYSCOLUMNS system table. Rolling
back a transaction does not undo this value, and thus rolled-back transactions can leave
"gaps" in the values automatically inserted into an identity column. Derby behaves this
way to avoid locking a row in SYS.SYSCOLUMNS for the duration of a transaction and
keeping concurrency high.

When an insert happens within a triggered-SQL-statement, the value inserted by the
triggered-SQL-statement into the identity column is available from Connectioninfo only
within the trigger code. The trigger code is also able to see the value inserted by the
statement that caused the trigger to fire. However, the statement that caused the trigger
to fire is not able to see the value inserted by the triggered-SQL-statement into the
identity column. Likewise, triggers can be nested (or recursive). An SQL statement can
cause trigger T1 to fire. T1 in turn executes an SQL statement that causes trigger T2 to
fire. If both T1 and T2 insert rows into a table that cause Derby to insert into an identity
column, trigger T1 cannot see the value caused by T2's insert, but T2 can see the value
caused by T1's insert. Each nesting level can see increment values generated by itself
and previous nesting levels, all the way to the top-level SQL statement that initiated the
recursive triggers. You can only have 16 levels of trigger recursion.

Example

create table greetings . .
(i int generated by default as identity (START WTH 2, | NCREMENT BY 1),
ch chargso)?;
-- spec!f%/ val ue "1":]
insert |nogreet|nPs values (1, 'hi');
-- use generated default
insert into greeti n?s val ues (DEFAULT, 'salut');
-- use generated default)
insert into greetings(ch) values ('bonjour');

CREATE TRIGGER statement

A trigger defines a set of actions that are executed when a database event occurs on a
specified table. A database event is a delete, insert, or update operation. For example, if
you define a trigger for a delete on a particular table, the trigger's action occurs whenever
someone deletes a row or rows from the table.

Along with constraints, triggers can help enforce data integrity rules with actions such as
cascading deletes or updates. Triggers can also perform a variety of functions such as
issuing alerts, updating other tables, sending e-mail, and other useful actions.

You can define any number of triggers for a single table, including multiple triggers on the
same table for the same event.

You can create a trigger in any schema except one that starts with SYS. The trigger need
not reside in the same schema as the table on which it is defined.

26

Copyright

If a qualified trigger name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TRI GGER
Tri gger Nane

{ AFTER | NO CASCADE BEFORE }
I NSERT | DELETE | UPDATE } [OF col urm- Nane [,

col unm- Nane
H\l]

t abl e- Nane

[

Ref er enci ngC ause
Fl]? EACH { ROW| STATEMENT } MODE DB2SQL

Tri gger ed- SQL- st at enent

Before or after: when triggers fire
Triggers are defined as either Before or After triggers.

« Before triggers fire before the statement's changes are applied and before any
constraints have been applied. Before triggers can be either row or statement
triggers (see Statement versus row triggers).

« After triggers fire after all constraints have been satisfied and after the changes
have been applied to the target table. After triggers can be either row or statement
triggers (see Statement versus row triggers).

Insert, delete, or update: what causes the trigger to fire
A trigger is fired by one of the following database events, depending on how you define it
(see Syntax above):

¢ INSERT

« UPDATE

« DELETE

You can define any number of triggers for a given event on a given table. For update, you
can specify columns.

Referencing old and new values: the referencing clause

Many triggered-SQL-statements need to refer to data that is currently being changed by
the database event that caused them to fire. The triggered-SQL-statement might need to
refer to the new (post-change or "after") values.

Derby provides you with a number of ways to refer to data that is currently being changed
by the database event that caused the trigger to fire. Changed data can be referred to in
the triggered-SQL-statement using transition variables or transition tables. The
referencing clause allows you to provide a correlation name or alias for these transition
variables by specifying OLD/NEW AS correlation-Name .

For example, if you add the following clause to the trigger definition:

REFERENCI NG OLD AS DELETEDROW

27

Copyright

you can then refer to this correlation name in the triggered-SQL-statement:

DELETE FROM Hot el Avai | ability WHERE hotel _id = DELETEDROW hotel _id

The OLD and NEW transition variables map to a java.sgl.ResultSet with a single row.
Note: Only row triggers (see Statement versus row triggers) can use the transition
variables. INSERT row triggers cannot reference an OLD row. DELETE row triggers
cannot reference a NEW row.

For statement triggers, transition tables serve as a table identifier for the
triggered-SQL-statement or the trigger qualification. The referencing clause allows you to
provide a correlation name or alias for these transition tables by specifying
OLD_TABLE/NEW_TABLE AS correlation-Name

For example:

REFERENCI NG OLD_TABLE AS Del et edHot el s

allows you to use that new identifier (DeletedHotels) in the triggered-SQL-statement:

DELETE FROM Hot el Avai | ability WHERE hotel _id IN
(SELECT hotel _i d FROM Del et edHot el s)

The old and new transition tables map to a java.sql.ResultSet with cardinality equivalent
to the number of rows affected by the triggering event.

Note: Only statement triggers (see Statement versus row triggers) can use the transition
tables. INSERT statement triggers cannot reference an OLD table. DELETE statement
triggers cannot reference a NEW table.

The referencing clause can designate only one new correlation or identifier and only one
old correlation or identifier. Row triggers cannot designate an identifier for a transition
table and statement triggers cannot designate a correlation for transition variables.

Statement versus row triggers
You must specify whether a trigger is a statement trigger or a row trigger:
e statement triggers

A statement trigger fires once per triggering event and regardless of whether any
rows are modified by the insert, update, or delete event.

e row triggers

A row trigger fires once for each row affected by the triggering event. If no rows are
affected, the trigger does not fire.

Note: An update that sets a column value to the value that it originally contained (for
example, UPDATE T SET C = C) causes a row trigger to fire, even though the value of
the column is the same as it was prior to the triggering event.

Triggered-SQL-statement
The action defined by the trigger is called the triggered-SQL-statement (in Syntax above,
see the last line). It has the following limitations:
¢ It must not contain any dynamic parameters (?).
« It must not create, alter, or drop the table upon which the trigger is defined.
¢ It must not add an index to or remove an index from the table on which the trigger is
defined.
e It must not add a trigger to or drop a trigger from the table upon which the trigger is
defined.
e It must not commit or roll back the current transaction or change the isolation level.

28

Copyright

¢ [t must not execute a CALL statement.
« Before triggers cannot have INSERT, UPDATE or DELETE statements as their
action.

The triggered-SQL-statement can reference database objects other than the table upon
which the trigger is declared. If any of these database objects is dropped, the trigger is
invalidated. If the trigger cannot be successfully recompiled upon the next execution, the
invocation throws an exception and the statement that caused it to fire will be rolled back.

For more information on triggered-SQL-statements, see the Derby Developer's Guide .

Order of execution
When a database event occurs that fires a trigger, Derby performs actions in this order:
« It fires No Cascade Before triggers.
« |t performs constraint checking (primary key, unique key, foreign key, check).
¢ |t performs the insert, update, or delete.
« |t fires After triggers.

When multiple triggers are defined for the same database event for the same table for the
same trigger time (before or after), triggers are fired in the order in which they were
created.

-- Statements and triggers:

CREATE TRI GGER t 1 NO CASCADE BEFORE UPDATE ON X
FOR EACH ROW MODE_DB2S .
val ues app.noti fyEmail (" Jerry', 'Table x is about to be updated');

CREATE TRI GGER FLI| GHTSDELETE
AFTER DELETE ON FLI GATS
REFERENCI NG OLD TABLE AS DELETEDFLI GHTS
FOR _EACH STATEMENT MODE DB2S
DELETE FROM FLI GATAVAI LABI LI WHERE FLIGHT_ID I N
(SELECT FLI GHT_I D FROM DELETEDFLI GHTS) ;

CREATE TRI GCER FLI| GHTSDELETE3
AFTER DELETE ON FLI GHTS
REFERENCI NG OLD AS O.D
FOR_EACH ROW MODE DB2SQL
DELETE FROM FLI GHTAVAI LABI LI TY WHERE FLI GHT_I D = OLD. FLI GHT_I D

Note: You can find more examples in the Derby Developer's Guide .
Trigger recursion

The maximum trigger recursion depth is 16.

Related information
Special system functions that return information about the current time or current user are
evaluated when the trigger fires, not when it is created. Such functions include:

¢ CURRENT_DATE

¢ CURRENT_TIME

¢ CURRENT_TIMESTAMP

e CURRENT_USER

e SESSION_USER

« USER

ReferencingClause:

REFERENCI NG
i\la[ASl correlation-Name [{ OLD | NEW} [AS]
correlatlon o
D _TABLE | NEWTABLE} [AS] Identifier [{ OLD TABLE | NEWTABLE }

29

Copyright
£AS] Identifier]

CREATE VIEW statement

Views are virtual tables formed by a query. A view is a dictionary object that you can use
until you drop it.

Views are not updatable.
If a qualified view name is specified, the schema name cannot begin with SYS.

Syntax

CREATE VI EW

vi ew Nane

[(

Si npl e- col uMm- Nane

[,

Si npl e- col unm- Nane
) !
Query

A view definition can contain an optional view column list to explicitly name the columns
in the view. If there is no column list, the view inherits the column names from the
underlying query. All columns in a view must be uniquely named.

CREATE VI EWSANP V1 :CD_ SUM COL_ DI FF)
AS S ONUS, COWM -
FRO\/I SAI\/P EI\/PLOYEE

CREATE VI EW SAMP. VEMP_RES (RESUVE)
o AS VALUES 'DelTores M Qintana', 'Heather A N cholls', 'Bruce
anmson' ;

CREATE VI EW SAMP. PRQJ COMBO
PRQINO,__ PRENDATE, PRSTAFF, NMAJPRQJ)
S SELECT PRQINO,_ PRENDATE, PRSTAFF, MAJPRQJ
FROM SAMP. PROJECT UNI ON_ALL
SELECT PROINO,_ EMSTDATE, EMPTI ME, EMPNO
FROM SAVP. EMP_ACT
WHERE EMPNO |'S NOT NULL;

BONUS

Statement dependency system

View definitions are dependent on the tables and views referenced within the view
definition. DML (data manipulation language) statements that contain view references
depend on those views, as well as the objects in the view definitions that the views are
dependent on. Statements that reference the view depend on indexes the view uses;
which index a view uses can change from statement to statement based on how the
guery is optimized. For example, given:

CREATE TABLE T1 (Cl DOUBLE PRECI S| ON);
CREATE FUNCTI ON SI N (DATA DOUBLE
RETURNS DOUBLE EXTERNAL ME 'java. |l ang. vat h. sin'
LANGUAGE JAVA PARAMETER STYLE JAVA;

CREATE VI EW V1 (Cl) AS SELECT SIN(Cl) FROM T1;

30

Copyright
the following SELECT:

SELECT * FROM V1

is dependent on view V1, table T1, and external scalar function SIN.

DROP Statements

Use Drop statements with functions, indexes, procedures, schemas, synonyms, tables,
triggers, and views.

DROP FUNCTION statement
Syntax

DROP FUNCTI ON functi on- nane

Identifies the particular function to be dropped, and is valid only if there is exactly one
function instance with the function-name in the schema. The identified function can have
any number of parameters defined for it. If no function with the indicated name in the
named or implied schema, an error (SQLSTATE 42704) will occur. An error will also
occur if there is more than one specific instance of the function in the named or implied
schema.

DROP INDEX statement
DROP INDEX removes the specified index.

Syntax

DROP | NDEX
i ndex- Nanme

DROP | NDEX Ori gl ndex
DROP | NDEX Dest | ndex

Statement dependency system

If there is an open cursor on the table from which the index is dropped, the DROP INDEX
statement generates an error and does not drop the index. Otherwise, statements that
depend on the index's table are invalidated.

DROP PROCEDURE statement
Syntax

DROP PROCEDURE

pr ocedur e- Nane

Identifies the particular procedure to be dropped, and is valid only if there is exactly one

31

Copyright

procedure instance with the procedure-name in the schema. The identified procedure can
have any number of parameters defined for it. If no procedure with the indicated name in
the named or implied schema, an error (SQLSTATE 42704) will occur. An error will also
occur if there is more than one specific instance of the procedure in the named or implied
schema.

DROP SCHEMA statement

The DROP SCHEMA statement drops a schema. The target schema must be empty for
the drop to succeed.

Neither the APP schema (the default user schema) nor the SYS schema can be dropped.

Syntax

DROP SCHEMA
schemaNane
RESTRI CT

The RESTRICT keyword enforces the rule that no objects can be defined in the specified
schema for the schema to be deleted from the database. The RESTRICT keyword is
required

-- Drop the SAMP schema
-- The SAMP schema may only be deleted fromthe database
-- if no objects are defined in the SAWP schena.

DROP SCHEMA SAMP RESTRI CT
DROP SYNONYM statement

Drops the specified synonym from a table or view.

Syntax

DROP SYNONYM
synonym Nane

DROP TABLE statement
DROP TABLE removes the specified table.

Syntax

DROP TABLE
t abl e- Nane

Statement dependency system

Triggers, constraints (primary, unique, check and references from the table being
dropped) and indexes on the table are silently dropped. The existence of an open cursor
that references table being dropped cause the DROP TABLE statement to generate an
error, and the table is not dropped.

32

Copyright

Dropping a table invalidates statements that depend on the table. (Invalidating a
statement causes it to be recompiled upon the next execution. See Interaction with the
dependency system .)

DROP TRIGGER statement
DROP TRIGGER removes the specified trigger.

Syntax

DROP TRI GGER
Tri gger Nane

DROP TRI GGER TRI GL

Statement dependency system

When a table is dropped, all triggers on that table are automatically dropped. (You don't
have to drop a table's triggers before dropping the table.)

DROP VIEW statement
Drops the specified view.

Syntax

DROP VI EW
vi ew Name

DROP VI EW Anl dentifi er

Statement dependency system

Any statements referencing the view are invalidated on a DROP VIEW statement. DROP
VIEW is disallowed if there are any views or open cursors dependent on the view. The
view must be dropped before any objects that it is dependent on can be dropped.

RENAME statements

Use the Rename statements with indexes and tables.
RENAME INDEX statement

This statement allows you to rename an index in the current schema. Users cannot
rename indexes in the SYS schema.

Syntax

RENAME | NDEX i ndex- Nane TO new- i ndex- Nanme

RENAME | NDEX DESTI NDEX TO ARRI VALI NDEX

33

Copyright

Statement dependency system

RENAME INDEX is not allowed if there are any open cursors that reference the index
being renamed.

RENAME TABLE statement

RENAME TABLE allows you to rename an existing table in any schema (except the
schema SYS).

Syntax

RENAME TABLE t abl e- Nane TO
new Tabl e- Nane

If there is a view or foreign key that references the table, attempts to rename it will
generate an error. In addition, if there are any check constraints or triggers on the table,
attempts to rename it will also generate an error.

RENAME TABLE SAWP. EMP_ACT TO EMPLOYEE_ACT

Also see ALTER TABLE statement for more information.

Statement dependency system
If there is an index defined on the table, the table can be renamed.

RENAME TABLE is not allowed if there are any open cursors that reference the table
being altered.

SET statements

Use the Set statements with schemas and to set the current isolation level.

SET SCHEMA statement

The SET SCHEMA statement sets the default schema for a connection's session to the
designated schema. The default schema is used as the target schema for all statements
issued from the connection that do not explicitly specify a schema name.

The target schema must exist for the SET SCHEMA statement to succeed. If the schema
doesn't exist an error is returned. See CREATE SCHEMA statement .

The SET SCHEMA statement is not transactional: If the SET SCHEMA statement is part
of a transaction that is rolled back, the schema change remains in effect.

Syntax
{SET [CURRENT] SCHEMA [=]
schemaNane

PSER| ? | '<string-constant>'" } | SET CURRENT SQLID [=]

34

Copyright

schemaNane
| USER | ? | '<string-constant>' }

schemaName is an identifier with a maximum length of 128. It is case insensitive unless
enclosed in double quotes. (For example, SYS is equivalent to sYs, SYs, sys, etcetera.)

USER is the current user. If no current user is defined, the current schema defaults the
APP schema. (If a user name was specified upon connection, the user's name is the
default schema for the connection, if a schema with that name exists.)

? is a dynamic parameter specification that can be used in prepared statements. The
SET SCHEMA statement can be prepared once and then executed with different schema
values. The schema values are treated as string constants so they are case sensitive.
For example, to designate the APP schema, use the string "APP" rather than "app".

-- the following are all egui val ent and will work
-- _assuning a schema call ed HOT
ET SCHEMA™ HOTEL

SET SCHEMA hot el

SET CURRENT SCHEMA hot el

SET CURRENT SQLI D hot el

SET SCHEMA = hot el

SET CURRENT SCHEMA = hot el

SET CURRENT SQLI D = hot el) o

SET SCHEMA " EL" -- quoted identifier

SET SCHEMA ' HOTEL' -- quoted string

--Thi s exanpl e produces an error because

--lower case hotel won't be found

SET_SCHEMA = ' hotel’ .
--This exanpl e produces an error because SQ.ID is not
--all owed w t hout CURRENT

SET SQLI D hot el]

-- This sets the schema to the current user id

SET CURRENT SCHEMA USER]

// Here's an exanpl e of usi ng set schema in an Java ﬁrogram
Pr epar edSt at ement ps = conn. Prepar eSt at enent ("set schena ?");
ps.setString(1," EL");

ps. execut eUpdat e() ;

... do sone work

ps.setString(1,"APP");

ps. execut eUpdat e() ;

ps.setStri ngfll, Lgp%%d//error - string is case sensitive

/'l no apP Wi]
ps.setNul | (1, Types.VARCHAR); //error - null is not allowed

SET CURRENT ISOLATION statement

The SET CURRENT ISOLATION LEVEL statement allows a user to change the isolation
level for the user's connection. Valid levels are SERIALIZABLE, REPEATABLE READ,
READ COMMITTED, and READ UNCOMMITTED.

Issuing this command commits the current transaction, which is consistent with the
java.sgl.Connection.setTransactionLevel method.

For information about isolation levels, see "Locking, Concurrency, and Isolation" in the
Derby Developer's Guide .

Syntax

SET [CURRENT | | SOLATION [=]

R | DLRTY READ | READ UNCOWM TTED
CS | READ COW TTED | CURSOR STABI LI TY

RS
RR | REPEATABLE READ | SERI ALI ZABLE
RESET

35

Copyright

set isolation serializable;

CALL (PROCEDURE)

The CALL (PROCEDURE) statement is used to call procedures. A call to a procedure
does not return any value.

Syntax

CALL
pE o[cedur e- Name

2071 1)
Example

CREATE _PROCEDURE SALES. TOTAL_REVENUE(| N S _MONTH | NTEGER,
IN S YEAR | NTEGER, OUT TOTAL DECI MAL(10, 22)

PARAVETER STYLE JAVA READS SQL DATA LAl GE JAVA EXTERNAL NAME
com acne. sal es. cal cul at eRevenueByl\/bnt h'

CALL SALES. TOTAL_REVENUE(?, ?, ?);

CONSTRAINT clause

A CONSTRAINT clause is an optional part of a CREATE TABLE statement or ALTER
TABLE statement . A constraint is a rule to which data must conform. Constraint names
are optional.

A CONSTRAINT can be one of the following:
¢ a column-level constraint

Column-level constraints refer to a single column in the table and do not specify a
column name (except check constraints). They refer to the column that they follow.

* atable-level constraint

Table-level constraints refer to one or more columns in the table. Table-level
constraints specify the names of the columns to which they apply. Table-level
CHECK constraints can refer to 0 or more columns in the table.

Column constraints include:
« NOT NULL

Specifies that this column cannot hold NULL values (constraints of this type are not
nameable).

* PRIMARY KEY

Specifies the column that uniquely identifies a row in the table. The identified
columns must be defined as NOT NULL.

Note: If you attempt to add a primary key using ALTER TABLE and any of the
columns included in the primary key contain null values, an error will be generated
and the primary key will not be added. See ALTER TABLE statement for more
information.

* UNIQUE

Specifies that values in the column must be unique. NULL values are not allowed.

36

Copyright
« FOREIGN KEY

Specifies that the values in the column must correspond to values in a referenced
primary key or unique key column or that they are NULL.

« CHECK
Specifies rules for values in the column.
Table constraints include:
* PRIMARY KEY

Specifies the column or columns that uniquely identify a row in the table. NULL
values are not allowed.

« UNIQUE

Specifies that values in the columns must be unique. The identified columns must
be defined as NOT NULL.

*« FOREIGN KEY

Specifies that the values in the columns must correspond to values in referenced
primary key or unique columns or that they are NULL.

Note: If the foreign key consists of multiple columns, and any column is NULL, the
whole key is considered NULL. The insert is permitted no matter what is on the
non-null columns.

*« CHECK

Specifies a wide range of rules for values in the table.

Column constraints and table constraints have the same function; the difference is in
where you specify them. Table constraints allow you to specify more than one column in
a PRIMARY KEY, UNIQUE, CHECK, or FOREIGN KEY constraint definition.
Column-level constraints (except for check constraints) refer to only one column.

Syntax
Primary key and unique constraints
A primary key defines the set of columns that uniquely identifies rows in a table.

When you create a primary key constraint, none of the columns included in the primary
key can have NULL constraints; that is, they must not permit NULL values.

ALTER TABLE ADD PRIMARY KEY allows you to include existing columns in a primary
key if they were first defined as NOT NULL. NULL values are not allowed. If the
column(s) contain NULL values, the system will not add the primary key constraint. See
ALTER TABLE statement for more information.

A table can have at most one PRIMARY KEY constraint, but can have multiple UNIQUE
constraints.

Foreign key constraints

Foreign keys provide a way to enforce the referential integrity of a database. A foreign
key is a column or group of columns within a table that references a key in some other
table (or sometimes, though rarely, the same table). The foreign key must always include
the columns of which the types exactly match those in the referenced primary key or
unigque constraint.

For a table-level foreign key constraint in which you specify the columns in the table that
make up the constraint, you cannot use the same column more than once.

37

Copyright

If there is a column list in the ReferencesSpecification (a list of columns in the referenced
table), it must correspond either to a unique constraint or to a primary key constraint in
the referenced table. The ReferencesSpecification can omit the column list for the
referenced table if that table has a declared primary key.

If there is no column list in the ReferencesSpecification and the referenced table has no
primary key, a statement exception is thrown. (This means that if the referenced table
has only unique keys, you must include a column list in the ReferencesSpecification.)

A foreign key constraint is satisfied if there is a matching value in the referenced unique
or primary key column. If the foreign key consists of multiple columns, the foreign key
value is considered NULL if any of its columns contains a NULL.

Note: It is possible for a foreign key consisting of multiple columns to allow one of the
columns to contain a value for which there is no matching value in the referenced
columns, per the SQL-92 standard. To avoid this situation, create NOT NULL constraints
on all of the foreign key's columns.

Foreign key constraints and DML

When you insert into or update a table with an enabled foreign key constraint, Derby
checks that the row does not violate the foreign key constraint by looking up the
corresponding referenced key in the referenced table. If the constraint is not satisfied,
Derby rejects the insert or update with a statement exception.

When you update or delete a row in a table with a referenced key (a primary or unique
constraint referenced by a foreign key), Derby checks every foreign key constraint that
references the key to make sure that the removal or modification of the row does not
cause a constraint violation. If removal or modification of the row would cause a
constraint violation, the update or delete is not permitted and Derby throws a statement
exception.

Derby performs constraint checks at the time the statement is executed, not when the
transaction commits.

Backing indexes

UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints generate indexes that enforce
or "back" the constraint (and are sometimes called backing indexes). UNIQUE and
PRIMARY KEY constraints generate unigue indexes. FOREIGN KEY constraints
generate non-unique indexes. Therefore, if a column or set of columns has a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint on it, you do not need to create an index on
those columns for performance. Derby has already created it for you. See Indexes and
constraints .

These indexes are available to the optimizer for query optimization (see CREATE INDEX
statement) and have system-generated names.

You cannot drop backing indexes with a DROP INDEX statement; you must drop the
constraint or the table.

Check constraints

A check constraint can be used to specify a wide range of rules for the contents of a
table. A search condition (which is a boolean expression) is specified for a check
constraint. This search condition must be satisfied for all rows in the table. The search
condition is applied to each row that is modified on an INSERT or UPDATE at the time of
the row modification. The entire statement is aborted if any check constraint is violated.

Requirements for search condition

38

Copyright

If a check constraint is specified as part of a column-definition, a column reference can
only be made to the same column. Check constraints specified as part of a table
definition can have column references identifying columns previously defined in the
CREATE TABLE statement.

The search condition must always return the same value if applied to the same values.
Thus, it cannot contain any of the following:
* Dynamic parameters (?)
» Date/Time Functions (CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP)
e Subqueries
¢ User Functions (such as USER, SESSION_USER, CURRENT_USER)

Referential actions

You can specify an ON DELETE clause and/or an ON UPDATE clause, followed by the
appropriate action (CASCADE, RESTRICT, SET NULL, or NO ACTION) when defining
foreign keys. These clauses specify whether Derby should modify corresponding foreign
key values or disallow the operation, to keep foreign key relationships intact when a
primary key value is updated or deleted from a table.

You specify the update and delete rule of a referential constraint when you define the
referential constraint.

The update rule applies when a row of either the parent or dependent table is updated.
The choices are NO ACTION and RESTRICT.

When a value in a column of the parent table's primary key is updated and the update
rule has been specified as RESTRICT, Derby checks dependent tables for foreign key
constraints. If any row in a dependent table violates a foreign key constraint, the
transaction is rolled back.

If the update rule is NO ACTION, Derby checks the dependent tables for foreign key
constraints after all deletes have been executed but before triggers have been executed.
If any row in a dependent table violates a foreign key constraint, the statement is
rejected.

When a value in a column of the dependent table is updated, and that value is part of a
foreign key, NO ACTION is the implicit update rule. NO ACTION means that if a foreign
key is updated with a non-null value, the update value must match a value in the parent
table's primary key when the update statement is completed. If the update does not
match a value in the parent table's primary key, the statement is rejected.

The delete rule applies when a row of the parent table is deleted and that row has
dependents in the dependent table of the referential constraint. If rows of the dependent
table are deleted, the delete operation on the parent table is said to be propagated to the
dependent table. If the dependent table is also a parent table, the action specified
applies, in turn, to its dependents.

The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values.

If the delete rule is:
NO ACTION, Derby checks the dependent tables for foreign key constraints after all
deletes have been executed but before triggers have been executed. If any row in a

dependent table violates a foreign key constraint, the statement is rejected.

RESTRICT, Derby checks dependent tables for foreign key constraints. If any row in a

39

Copyright

dependent table violates a foreign key constraint, the transaction is rolled back.

CASCADE, the delete operation is propagated to the dependent table (and that table's
dependents, if applicable).

SET NULL, each nullable column of the dependent table's foreign key is set to null.
(Again, if the dependent table also has dependent tables, nullable columns in those
tables' foreign keys are also set to null.)

Each referential constraint in which a table is a parent has its own delete rule; all
applicable delete rules are used to determine the result of a delete operation. Thus, a row
cannot be deleted if it has dependents in a referential constraint with a delete rule of
RESTRICT or NO ACTION. Similarly, a row cannot be deleted if the deletion cascades to
any of its descendants that are dependents in a referential constraint with the delete rule
of RESTRICT or NO ACTION.

Deleting a row from the parent table involves other tables. Any table involved in a delete
operation on the parent table is said to be delete-connected to the parent table. The
delete can affect rows of these tables in the following ways:
¢ If the delete rule is RESTRICT or NO ACTION, a dependent table is involved in the
operation but is not affected by the operation. (That is, Derby checks the values
within the table, but does not delete any values.)
¢ If the delete rule is SET NULL, a dependent table's rows can be updated when a
row of the parent table is the object of a delete or propagated delete operation.
« If the delete rule is CASCADE, a dependent table's rows can be deleted when a
parent table is the object of a delete.
« If the dependent table is also a parent table, the actions described in this list apply,
in turn, to its dependents.

Examples

- - cqunn-IeveINBrinar¥ key constraint named OUT_TRAY_PK:
CREATE TABLE SAMP. QUT_TRA

TI MESTAMP,
DESTINATICN CHAR(NBT
SUBJECT CHAq ! NULL CONSTRAI NT OUT_TRAY_PK PRI MARY KEY,
NOTE_TEXT VA R(3000)

-- the table | evel primary key definition allows you to
clude two colums in"the primary key definition:
CREATE TABLE SAMP. SCHED

ELASS CODE CHAR g?h NOT NULL,
DAY SNALLINT

STARTI NG TI ME

ENDI NG Tl ME,

|
fRINARY KEY' (CLASS CODE, DAY)

-- Use a colum-1|evel constraint for an arithnmetic check
-- Use a table-level constraint
-- to nake sure that a enpl oyee's taxes does not
- _exceed the bonus
CREATE TABLE SAMP. EMP
VMPNO CHAR ‘ ?Q NULL CONSTRAI NT EMP_PK PRI MARY KEY,
FI RSTNVE 12) NOT NULL
M DI NI T VAl E{)SNO NULL
LASTNAMVE VARCHAR(15)

NULL,
SALARY DECINAL%9 2) CONSTRAI'NT SAL_CK CHECK (SALARY >= 10000),
BONUS DECINAL(

TAX DECI MVA

CCNSTRAINT CN . CK CHECK (BONUS > TAX)

-- use a check constraint to allow only appropriate
-- abbreviations for the nmeals
CREATE TABLE FLI GHTS

LI GHT_I D CHAR(6) NOT NULL ,

40

Copyright

SEGVENT _NUMBER | NTEGER NOT NULL ,
ORI G_Al RPORT _CHAR(3),
DEPART Tl NE_TI ME,
DEST ATRPORT CHAR(3),
ARRI VE_TI NE TI ME,
L CRAR(T) OCNSTRAI NT, MEAL CONSTRAI NT

VA FLt Gl N
;DRI MARY KEY (FL GHT I D, SEG\/ENT NUMBER)

CREATE TABLE METROPCLI TAN

EL_I D [NT NOT NULL CO\ISTRAI NT HOTELS PK PRI MARY KEY,
HOTEL _NAME VARCHA%A“% NULL,
CI TY_TD I NT CONST METRO_FK REFERENCES CI Tl ES

-- create a table with a table-Ievel Prln'ary key constraint
-- and a tabl e-|evel fore gn key constraint
CREATE TABLE FLTAVAI L

LI GHT | D CHAR(6) NOT NULL,

SEGVENT _NUMBER' | NT NOT NULL

FLI GHT_DATE _DATE NOT NULL,

E SEATS TAKEN | NT,

BUSI NESS_SEATS TAKEN. | NT,

FIRSTCLASS SEATS TAKEN N

CONSTRAI NT FLTAVAI L_PK PRI MARY KEY (FLI GHT | D, SEGVENT NUMBER),
CONSTRAI NI FLTS Ph-—

FOREI G KEY (FLTGHT | D SEGVENT NUVBER)

REFERENCES Fl i ght's (FLIGHT_I' D, SEGVENT_NUVBER)

-- add a’ unique constraint to a col um
ALTER TABLE SAMP. PRQJECT
ADD CONSTRAI NT P_UC UNI QUE (PRQINAME) ;

-- create a table whose city_id columm references the
-- prlmary ke?/lnthe C|t|e tabl e
u

- - _usi ngll rm | evel foreign key constraint
CREATE TABLE
DO I D | NT NOT NULL CONSTRAI NT hotel s_PK PRI MARY KEY,
CONDO_NAME VARCHAR 40 NOT NULL
CITY TD | NT CONST city forei

REFERENCES Cities ON DELET CASCA%E_O\ly UPDATE RESTRI CT

Statement dependency system

INSERT and UPDATE statements depend on all constraints on the target table.
DELETEs depend on unique, primary key, and foreign key constraints. These statements
are invalidated if a constraint is added to or dropped from the target table.

Column-level-constraint

NOT NULL |
[[CONSTRAI NT

const rai nt - Name

]

¢ CHECK (

sear chCondi ti on

) |
PRI MARY KEY |
UNI QUE |

REFERENCES cl ause

) }

Table-level constraint

41

Copyright

[CONSTRAI NT

const rai nt - Nane

% CHECK (
searchCondi tion

) |

¢ PRI MARY KEY (

Si npl e- col uMm- Nane

[
Si npl e- col uMm- Nane
o UNI QUE (

Si npl e- col um- Nane

[

Si npl e- col utm- Nane
1*) |
FOREI GN KEY (
Si npl e- col uMm- Nane

[

Si npl e- col uMm- Nane
1*)
REFERENCES cl ause

) }

References specification

REFERENCES
t abl e- Nane

[(

Si npl e- col utm- Nane

[

Si npl e- col utm- Nane

]G\P D]ELI:_I'E NO ACTI ON RESTRI Cr ETCASCADE | SET NULL}]

[ON UPDATE {NO ACTI RESTRI
ON UPDATE &\INO ACTION | RESTRICT }] [ON DELETE
{NO ACTI RESTRI CT | CASCA ET NULL}]

searchCondition

A searchCondition is any Boolean expression that meets the requirements specified in
Requirements for search condition .

If a constraint-Name is not specified, Derby generates a unique constraint name (for
either column or table constraints).

DECLARE GLOBAL TEMPORARY TABLE statement

42

Copyright

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for
the current connection. These tables do not reside in the system catalogs and are not
persistent. Temporary tables exist only during the connection that declared them and
cannot be referenced outside of that connection. When the connection closes, the rows
of the table are deleted, and the in-memaory description of the temporary table is dropped.

Temporary tables are useful when:
 the table structure is not known before using an application.
« other users do not need the same table structure.
e data in the temporary table is needed while using the application.
« the table can be declared and dropped without holding the locks on the system
catalog.

Syntax

DECLARE GLOBAL TEMPORARY TABLE
t abl e- Nane

{ col um-definition [E , _colum-definition] * }
ON ' COW T &%ELEI’E| PR SERVE} RONS]
LOGGED [ROLLBACK DELETE ROWS]

table-Name

Names the temporary table. If a schema-Name other than SESSION is specified, an error
will occur (SQLSTATE 428EK). If the schema-Name is not specified, SESSION is
assigned. Multiple connections can define declared global temporary tables with the
same name because each connection has its own unique table descriptor for it.

Using SESSION as the schema name of a physical table will not cause an error, but is
discouraged. The SESSION schema name should be reserved for the temporary table
schema.

column-definition

See column-definition for CREATE TABLE for more information on
col um-definition. DECLARE GLOBAL TEMPORARY TABLE does not allow
gener at ed- col um- spec in the col um-defi ni tion.

Data-type

Supported data-types are:
e BIGINT

CHAR

DATE

DECIMAL

DOUBLE PRECISION

FLOAT

INTEGER

NUMERIC

REAL

SMALLINT

TIME

TIMESTAMP

VARCHAR

ON COMMIT
Specifies the action taken on the global temporary table when a COMMIT operation is

43

Copyright

performed.

DELETE ROWS

All rows of the table will be deleted if no hold-able cursor is open on the table. This is the
default value for ON COMMIT. If you specify ON ROLLBACK DELETE ROWS, this will
delete all the rows in the table only if the temporary table was used. ON COMMIT
DELETE ROWS will delete the rows in the table even if the table was not used (if the
table does not have hold-able cursors open on it).

PRESERVE ROWS

The rows of the table will be preserved.

NOT LOGGED

Specifies the action taken on the global temporary table when a rollback operation is
performed. When a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed, if the table was created in the unit of work (or savepoint), the table will be
dropped. If the table was dropped in the unit of work (or savepoint), the table will be
restored with no rows.

ON ROLLBACK DELETE ROWS

This is the default value for NOT LOGGED. NOT LOGGED [ON ROLLBACK DELETE
ROWS]] specifies the action that is to be taken on the global temporary table when a
ROLLBACK or (ROLLBACK TO SAVEPOINT) operation is performed. If the table data
has been changed, all the rows will be deleted.

Examples

set schema nyapp;
create table t1(cll int, cl2 date);

decl are gl obal tenP_orary table SESSION. t1(cll int) not | ogged;
-- The SESSI ON qualification is redundant here because tenporary
-- tables can only exist in the SESSI ON schena.

decl are gl obal tenporary table t2(c21 int) not | og%ed;

¥ The tenporary table is not qualified here wi th SESSI ON because
enpor ar

-- tabl e)s/ can only exist in the SESSI ON schena.

insert into SESSION.t1 val ues (1);)
-- SESSION qualification is mandatory here if you want to use
-- the tenporary table, because the current schema is "nyapp."

select * fromti;
-- This select stat emsln

is referencing the "nyapp.t1l" physical
-- table since the tab '?i Eggl(]\l. A

t
e was not qualified by

Note that temporary tables can only be declared in the SESSION schema. You should
never declare a physical schema with the SESSION name.

The following is a list of DB2 UDB DECLARE GLOBAL TEMPORARY TABLE functions
that are not supported by Derby:

¢ IDENTITY column-options

¢ IDENTITY attribute in copy-options

e AS (fullselect) DEFINITION ONLY

* NOT LOGGED ON ROLLBACK PRESERVE ROWS

¢ IN tablespace-name

¢« PARTITIONING KEY

* WITH REPLACE

Restrictions on Declared Global Temporary Tables

44

Copyright

Temporary tables cannot be specified in the following statements:
* ALTER TABLE

CREATE SYNONYM

CREATE TRIGGER

CREATE VIEW

LOCK

RENAME

Temporary tables cannot be specified in referential constraints.

There is no check constraints support for columns.

The following data types cannot be used with Declared Global Temporary Tables:
* BLOB
« CLOB
¢ LONG VARCHAR

Temporary tables cannot be referenced in a triggered-SQL-statement.

If a statement performing an insert, update, or delete to the temporary table encounters
an error, all the rows of the table are deleted.

Restrictions Specific to Derby
Derby does not support the following on temporary tables:

¢ index support

¢ synonyms, triggers and views on SESSION schema tables (including physical
tables and temporary tables)

LOCK TABLE

constraints and primary keys

generated-column-spec

importing into temporary tables

Any statements referencing SESSION schema tables and views will not be cached.

DELETE statement

Syntax

DELEEI'E FROM t abl e- Nane
VWHERE cl ause
I DELETE FROM t abl e- Nane

WHERE CURRENT OF
}

The first syntactical form, called a searched delete, removes all rows identified by the
table name and WHERE clause.

The second syntactical form, called a positioned delete, deletes the current row of an
open, updatable cursor. If there is no current row or if it no longer satisfies the cursor's
guery, an exception is raised. For more information about updatable cursors, see
SELECT statement .

Examples

45

Copyright

DELETE FROM SAMP. | N_TRAY;

st nt . execut eUpdat e(" DELETE FROM SAVP. | N_TRAY WHERE CURRENT OF " +
resul t Set . get Cur sor Name())

A searched delete statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), and any other table named in
the WHERE clause. A CREATE or DROP INDEX statement for the target table of a
prepared searched delete statement invalidates the prepared searched delete statement.

The positioned delete statement depends on the cursor and any tables the cursor
references. You can compile a positioned delete even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned delete.

A CREATE or DROP INDEX statement for the target table of a prepared positioned
delete invalidates the prepared positioned delete statement.

FOR UPDATE clause

The FOR UPDATE clause is an optional part of a SELECT statement . The FOR
UPDATE clause specifies whether the ResultSet of a simple SELECT statement that
meets the requirements for a cursor is updatable or not. For more information about
updatability, see Requirements for Updatable Cursors .

Syntax

FOR

READ ONLY | FETCH ONLY |
UPDATE |

Si npl e- col uMm- Nane

[

Si npl e- col uMm- Nane
I

Simple-column-Name refers to the names visible for the table specified in the FROM
clause of the underlying query.

Cursors are read-only by default. For a cursor to be updatable, you must specify FOR
UPDATE.

The optimizer is able to use an index even if the column in the index is being updated.
For more information about how indexes affect cursors, see Tuning Derby .

SELECT RECEI VED, SOURCE, SUBJECT, NOTE_TEXT FROM SAMP. | N _TRAY FOR UPDATE;

FROM clause

The FROM clause is a mandatory clause in a SelectExpression . It specifies the tables (
TableExpression) from which the other clauses of the query can access columns for use

46

Copyright

in expressions.

Syntax

FROM Tabl eExpression [, Tabl eExpression] *

SELECT Cities.city id

FROM Cities

WHERE city_id < 5

-- other Ees of Tabl eExpr essi ons

SELECT TAB | SI NDEX

FROM SYS. SYSTABLES T, SYS SYSOO\IGLOVERATES C
VWHERE T. TABLEI D = C. TABLE

ORDER BY TABLENAME, | Sl NDEX

- - force the join order

SELECT *

FROM Fl i ghts, FlightAvailability.

VWHERE Fl ight Availability.flight id = Flrghts flight _id

AND Fl i ght Avai | ability.segnment nunber I'i ghts. Segment _nunber
AND Fllghts flight _id < 11%'

-- a Tabl eExpressi on can be a joi nOperati on. Therefore

-- you can have nultiple Jorn ogera ions in a FROM cl a

SELECT COUNTRI ES. COUNTRY, C TI ES. CI TY_NAMVE, FLI GHTS DEST Al RPORT

ES”
ON COUNTRI ES. COUNTRY | SO C(I)E = CITI ES. COUNTRY_| SO_CODE
LEFT QUTER JO N FLI GHATS
ON Cities. AlRPORT = FLI GHTS. DEST_AI RPORT;

GROUP BY clause

A GROUP BY clause, part of a SelectExpression , groups a result into subsets that have
matching values for one or more columns. In each group, no two rows have the same
value for the grouping column or columns. NULLSs are considered equivalent for grouping
purposes.

You typically use a GROUP BY clause in conjunction with an aggregate expression.

Syntax

GROUP BY
col umm- Nane

[

col umm- Nane
] *

column-Name must be a column from the current scope of the query; there can be no
columns from a query block outside the current scope. For example, if a GROUP BY
clause is in a subquery, it cannot refer to columns in the outer query.

Selectltems in the SelectExpression with a GROUP BY clause must contain only
aggregates or grouping columns.

-- find t{re average flying tinmes of flights grouped by
--_airpor

SELECTpAVG (fI ying_tine), orig_airport

FROM Fl i ght

GROUP BY orrg ai rport

SELECT MAX(city), region

FROM Cities, Countries)
VWHERE Giti es. count ry_1SO code = Countries.country_| SO code

47

Copyright

GROUP BY reg| on

- - rou‘o an a snmal |int
SELECT | D, AV%SALARY)

FROM SA

GROUP BY iD)

-- Cet the AVGSALARY and EMPCOUNT col umtms, and the DEPTNO col umm usi ng

t he AS cl ause
%T t he WORKDEPT col utmm using the correl ati on nane OTHERS
SELECT HE S KDEPT AS DEPTNO,
AV orl HERS SALARY) AS AVGSALARY,
g S EMP INT
FRO\/I Al EI\/PLOYEE OTHERS
GROUP BY OTHERS. WORKDEPT;

HAVING clause

INNER JOIN

A HAVING clause restricts the results of a GROUP BY in a SelectExpression . The
HAVING clause is applied to each group of the grouped table, much as a WHERE clause
is applied to a select list. If there is no GROUP BY clause, the HAVING clause is applied
to the entire result as a single group. The SELECT clause cannot refer directly to any
column that does not have a GROUP BY clause. It can, however, refer to constants,
aggregates, and special registers.

Syntax

HAVI NG sear chCondi ti on

The searchCondition, which is a specialized booleanExpression, can contain only
grouping columns (see GROUP BY clause), columns that are part of aggregate
expressions, and columns that are part of a subquery. For example, the following query is
illegal, because the column SALARY is not a grouping column, it does not appear within
an aggregate, and it is not within a subquery:

-- SELECT OOUNTE\ L
- FROVISAVP. STAF
-- GROP B

11 FAVING SALARY > 15000;

Aggregates in the HAVING clause do not need to appear in the SELECT list. If the
HAVING clause contains a subquery, the subquery can refer to the outer query block if
and only if it refers to a grouping column.

-- Find the total nunber of econony seats taken on a flight,
-- grouped by airline,

-- only V\.hen the group has at |east 2 records.

SELECT SU SEATS TAKEN), Al RLI NE_FULL

FROM FLI AVAI LABI'LI TY, Al RLI NES

VHERE SUBST%FLI GHTAVAI LABI LITY. FLIGHT_ID, 1, 2) = AIRLINE
GROUP _BY Al INE FUL

HAVI NG COUNT(*)

An INNER JOIN is a JOIN operations that allows you to specify an explicit join clause.

Syntax

48

Copyright
Tabl eExpr essi on

[INNER] JON
Tabl eExpr essi on
{ ON bool eanExpressi on }

You can specify the join clause by specifying ON with a boolean expression.

The scope of expressions in the ON clause includes the current tables and any tables in
outer query blocks to the current SELECT. In the following example, the ON clause refers
to the current tables:

SELECT *
FROM SAVP. EMPLOYEE | NNER JO N SANMP. STAFF
ON EMPLOYEE. SALARY < STAFF. SALARY;

The ON clause can reference tables not being joined and does not have to reference
either of the tables being joined (though typically it does).

-- Join the EMP_ACT and EMPLOYEE t abl es
-- select all the colums fromthe EMP ACT table and
-- add the enpl o¥ee s surname (LASTNAMVE) from the EMPLOYEE tabl e
-- to each row o the resul
SELECT SAMP. EMP_ACT. *, LASTNAI\/E

FROM SAVP. EMP_ACT JO N SAMP. EMPLOYEE

ON EMP_ACT. EMPNO = EMPLOYEE. EMPNG,
-- Join the EMPLOYEE and DEPARTMENT t abl es,
-- select the enpl oyee nurrber (EMPNO) ,
- - enpl o%/ee sur name” (LASTNA)r

ment nunber (WORKDEPT in the EMPLOYEE table and DEPTNO i n the
-- DE ARTMVENT t abl e)
-- and departnent nane (DEPTNAME)
of all enpl oyees who were born EEI RTHDATE) earlier than 1930.

SELECT ENPNO LASTNAME, WORKDEPT,

FROM SAMP. EMPLOYEE JO N SAMP. DEPARTI\/ENT

ON WORKDEPT = DEPTNO

AND YEAR(BI RTHDATE) < 1930;

-- Anot her exanple of "generating" new data val ues,

-- using a query which Selects froma VALUES cl ause (which is an
-- alternate formof a fullselect).

-- This query shows how a table can be derived called "X"

- - havi Qg colums "R1" and "R2" and 1 row of data

FROM (VALUES E3 4), C&l 5), (2, 6))
AS VALUESTABLEL(C1
JON (VAL (

&\l ?_b AS VALUESTABLE2£

VALUESTABLEL. c1 = UESTAB E2. c1;

This results in:
c1 c2

-- List every departnent with the enpl oyee nunber and
-- last name” of the nanager

SELECT DEPTNO,_ DEPTNAME, EMPNO, LASTNAME
FROM _DEPARTMENT | NNER JO N EMPLOYEE
ON MGRNO = EMPNOG,

-- L| st every enmpl oyee nunber and | ast nane

t he enpl oyee nunber and | ast name of their nmanager
SELECT E EMPNO, E. LASTNANE M EMDNO M LASTNAME

FROM EMPLOYEE E I NNER JO N

DEPARTMENT | NNER JO N EMPLOYEE M

ON MERNO = M EMPNO

ON E. WORKDEPT = DEPTNO

INSERT statement

49

Copyright

An INSERT statement creates a row or rows and stores them in the named table. The
number of values assigned in an INSERT statement must be the same as the number of
specified or implied columns.

Syntax

| NSEFT(I NTO t abl e- Nane

Si npl e- col um- Nane

[

Si npl e- col utm- Nane
1*) 1 Query
Query can be:
e a SelectExpression
* aVALUES list
« a multiple-row VALUES expression

Single-row and multiple-row lists can include the keyword DEFAULT. Specifying
DEFAULT for a column inserts the column's default value into the column. Another
way to insert the default value into the column is to omit the column from the column
list and only insert values into other columns in the table. For more information see
VALUES Expression .

¢ UNION expressions

For more information about Query, see Query .

I NSERT | NTO COUNTRI ES]
VALUES (' Taiwan', 'TW, 'Asia');

-- Insert a new department into the DEPARTMENT tabl e,

-- but do not assi R/E a rrana_c?_er to the new depart nent

I NSERT | NTO DEPARTVENT (DEPTNO_ DEPTNAME, Al PT)
VALUES (' E31' ARCHI TECT URE' , ' EO1');

-- Insert two neW deRn_rtn"ents usi ng one staterrent

-- into the DEPARTMENT table as in the previous exanple,

-- but do not assign a manag?_er to the new departnent.

I NSERT | NTO DEPART! (DEP NO DEPTNAI\/E ADR/RDEPT)

VALUES (' Bl11',

' E41' DATABASE ADI\/I NI STRATI O\I "E01);
-- Create a tenporary table MA EMP_ACT with the
-- sanme colums as the EMP_ACT table.
-- Load MA EI\/P ACT with the rows fromthe EMP_ACT
-- table with proj ect nunmber (PRQINO
-- startin V\Ath the letters ' MA'
CREA(TE TABLE MA_EMP_ACT

EMPNO CHAR 6)
PRQINO_ CHA| fl\l)l'
ACTNO SMVALL
EMPTI ME _DEC(5,
EMSTDATE DA E
EMENDATE DATE

|—
==
Ui

DE

I NSERT | NTO MA EMP_ACT
SELECT * EMP_ACT
WHERE SUBSTR(PRQINO, 1, 2 " MA
-- Insert the DEFAULT value for the LOCATIO\I col umm
I NSERT | NTO DEPARTNMENT
VALUES (' E31', 'ARCH TECTURE , '00390', 'EO1', DEFAULT);

Statement dependency system

The INSERT statement depends on the table being inserted into, all of the conglomerates

50

Copyright

(units of storage such as heaps or indexes) for that table, and any other table named in
the query. Any statement that creates or drops an index or a constraint for the target
table of a prepared INSERT statement invalidates the prepared INSERT statement.

JOIN operation

The JOIN operations, which are among the possible TableExpression s in a FROM
clause , perform joins between two tables. (You can also perform a join between two
tables using an explicit equality test in a WHERE clause, such as "WHERE tl.coll =
t2.col2".)

Syntax

JO N Operation
The JOIN operations are:
¢ INNER JOIN
Specifies a join between two tables with an explicit join clause. See INNER JOIN .
* LEFT OUTER JOIN

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the first table. See LEFT OUTER JOIN .

¢ RIGHT OUTER JOIN

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the second table. See RIGHT OUTER JOIN .

In all cases, you can specify additional restrictions on one or both of the tables being
joined in outer join clauses or in the WHERE clause .

JOIN expressions and query optimization

For information on which types of joins are optimized, see Tuning Derby .

LEFT OUTER JOIN
A LEFT OUTER JOIN is one of the JOIN operations s that allow you to specify a join
clause. It preserves the unmatched rows from the first (left) table, joining them with a

NULL row in the shape of the second (right) table.

Syntax

Tabl eExpr essi on
LEFT [QUTER] JON

Tabl eExpr essi on

{

}g\l bool eanExpr essi on

The scope of expressions in either the ON clause includes the current tables and any
tables in query blocks outer to the current SELECT. The ON clause can reference tables

51

Copyright

not being joined and does not have to reference either of the tables being joined (though
typically it does).

Example 1

--match cities to countries in Asia

SELECT CI Tl ES. COUNTRY, CITIES. Cl TY_NAME, REG ON

FROM Countri es

LEFT QUTER JON Cities

ON CI Tl ES. COUNTRY_| SO CODE = COUNTRI ES. COUNTRY_| SO _CODE
WHERE REG ON = ' Asi a'

-- use the synonynous syntax, LEFT JON, to achieve exactly
-- the sane results as in the exanple above

SELECT = COUNTRI ES. COUNTRY, CI TI ES. Cl TY_NAME, REG ON
FROM COUNTRI ES

LEFT J(] N C TI ES

ON _CI Tl ES. C(lJNTR 1 SO_CODE = COUNTRI ES. COUNTRY_I SO_CODE
WHERE REG ON = "Asia';

Example 2

-- Join the EMPLOYEE and DEPARTMENT t abl es,

- - sel ect t he enpl oyee nurrber (EMPNO

%/ee sur nane” (LASTNAI)I_

-- depar nment nunber (WORKDEPT in the EMPLOYEE table

-- and DEPTNO i n the PARTNVENT t abl e)

-- and departnent nane (DEPTNAME

-- of all enployees Wno were born (Bl RTHDATE) earlier than 1930

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM SA I\/P EI\/PLOYEE LEFT QUTER JO'N SAVP. DEPARTMENT
ON_WORKDE DEPTNO

AND YEAR(BI RTHDATE) < 1930;
-- List every de{:)artrrent with the enpl oyee nunber and
-- last nanme’ o he manager,
-- including departments w thout a manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMENT LEFT QUTER JO N EMPLOYEE
ON MGRNO = EMPI

]

LOCK TABLE statement

Allows a user to explicitly acquire a shared or exclusive table lock on the specified table.
The table lock lasts until the end of the current transaction.

Explicitly locking a table is useful for:
« avoiding the overhead of multiple row locks on a table (in other words, user-initiated
lock escalation)
¢ avoiding deadlocks

You cannot lock system tables with this statement.

Syntax

LOCK TABLE
t abl e- Nane
IN { SHARE | EXCLUSI VE } MXDE

Once a table is locked in either mode, a transaction does not acquire any subsequent

row-level locks on a table. Replace line 13 with this: For example, if a transaction locks
the entire Flights table in share mode in order to read data, a particular statement might

52

Copyright

need to lock a particular row in exclusive mode in order to update the row. However, the
previous table-level lock on Hotels forces the exclusive lock to be table-level as well.

If the specified lock cannot be acquired because another connection already holds a lock
on the table, a statement-level exception is raised (SQLState X0X02) after the deadlock
timeout period.

-- lock the entire table in share node to avoid
-- . a IarEe nunmber of row | ocks

LOCK TABLE Flights I N SHARE MODE;

SELECT

FROM Fllghts

VWHERE or i alr ort > 'QOOO ;

-- lock the ire table in exclusive node

-- for transactlon that will update many

-- but \Alnere no single statenment will ﬁdate enough rows
-- acquire an exclusive table | ock on the table.

-- In a rowlevel |ocking syste that transacti on woul d
-- require a |arge nunber of |ocks or mEht deadl ock.

LOCK TABLE Hotel Availability I N EXCLUSI VI

UPDATE Hot el Aval lability

SET roons_t aken = grooms taken + 2)

WHERE hotel _id = 194 AND booki ng_date = DATE(' 1998-04-10');

UPDATE Hot el Avai | abi | i
SET roons_taken = (ro

o] taken + 2)
VWHERE hotel _id = 194 AND booki ng_date = DATE(' 1998-04-11');
UPDATE Hot el Avai l ability
SET roons_t aken : roons_taken + 2)
VWHERE hot €l _id = 194 AND booki ng_date = DATE(' 1998-04-12");
UPDATE Hot el Avai I ability
SET roons_taken = (roons_taken + 2)
VWHERE hot el _id = 194 AND booki ng_date = DATE(' 1998-04-12");
-- if a transaction needs to | ook at a table before
-- updating it, acquire an exclusive |ock before
-- selecti ng to avoi d_deadl ocks
LOCK TABLE Peopl e | N EXCLUSI VE MODE;
SELECT M’-\Xf Ene_rson id) + 1 FROM PECPLE;
-- | NSERT O PEOPLE . . .

ORDER BY clause

The ORDER BY clause is an optional element of a SELECT statement . An ORDER BY
clause allows you to specify the order in which rows appear in the ResultSet.

Syntax

ORDER BY {
col umm- Nane

| Col umPosition }
ASC | DESC]

col umm- Nane

| Col umPosition
[ASC| DESC]] *

ColumnPosition is an integer that identifies the number of the column in the Selectltem in
the underlying Query of the SELECT statement . ColumnPosition must be greater than 0

and not greater than the number of columns in the result table. In other words, if you want
to order by a column, that column must be in the select list.

column-Name refers to the names visible from the Selectltems in the underlying query of
the SELECT statement . An order by column does not need to be in the select list.

53

Copyright

Query

ASC specifies that the results should be returned in ascending order; DESC specifies
that the results should be returned in descending order. If the order is not specified, ASC
is the default.

An ORDER BY clause prevents a SELECT statement from being an updatable cursor.
(For more information, see Requirements for updatable cursors and updatable
ResultSets .)

For example, if an INTEGER column contains integers, NULL is considered greater than
1 for purposes of sorting. In other words, NULL values are sorted high.

-- order by the correl ation nanme NATI ON
-- order by the correl ati on nane NATI ON
SELECT CI TY NAME, COUNTRY AS NATI ON
FROM CI Tl ES

ORDER BY NATI ON,;

A query creates a virtual table based on existing tables or constants built into tables.

Syntax

ery EXCEPT] ery |

Sty Y ek

er ERSECT [ALL | DI STI NCT er

3 A B ST, Sy |
ery UNTON [ALL | DI STINCT] Query" |

Sel ect Expr essi on

I
VALUES Expression

}

You can arbitrarily put parentheses around queries, or use the parentheses to control the
order of evaluation of the INTERSECT, EXCEPT, or UNION operations. These
operations are evaluated from left to right when no parentheses are present, with the
exception of INTERSECT operations, which would be evaluated before any UNION or
EXCEPT operations.

Duplicates in UNION, INTERSECT, and EXCEPT ALL results

The ALL and DISTINCT keywords determine whether duplicates are eliminated from the
result of the operation. If you specify the DISTINCT keyword, then the result will have no
duplicate rows. If you specify the ALL keyword, then there may be duplicates in the
result, depending on whether there were duplicates in the input. DISTINCT is the default,
so if you don't specify ALL or DISTINCT, the duplicates will be eliminated. For example,
UNION builds an intermediate ResultSet with all of the rows from both queries and
eliminates the duplicate rows before returning the remaining rows. UNION ALL returns all
rows from both queries as the result.

Depending on which operation is specified, if the number of copies of a row in the left
table is L and the number of copies of that row in the right table is R, then the number of
duplicates of that particular row that the output table contains (assuming the ALL keyword
is specified) is:

e UNION: (L+R).

e EXCEPT: the maximum of (L — R) and O (zero).

54

Copyright

¢ INTERSECT: the minimum of L and R.

Examples

- - Sel ect expression
SEI LECT
FROM ORG,

-S- a subquery

FROM (SELECT CLASS_CODE FROM CL_SCHED) AS Cs;

e a su?query

FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS (CLASS_CODE) ;

-- a UNI ON
-- retgrgls all rows from col ums DEPTNUMB and MANAGER
--inta

-- and F\ll 2) andeS A(QI_
-- DEPTNUMB and R are smal lint col ums
SELECT DEPTNUMB, MANAGE

O ONCAL
VALUES (1 2), (3,4);

-- a val ues expre55| on
VALUES (1
2o Li st the errpl oyee nunmbers (EMPNO) of all enployees in the EMPLOYEE
abl e
-- whose departnment number (W!]?KDEPT?1 elther begl ns Wlth "E or
-- who are assngned to projects in the
- - V\lnose Ngec nunber (PROINO) equals I\/A2100' MA2110', or 'MA2112'
SELECT El
FROM EMPLOYEE
WHERE WORKDEPT LI KE ' E%
UNI ON
SELECT EMPNO
FROM EMP_ACT
VWHERE PRQINO | N(' MA2100', ' MA2110', 'MA2112');
-- Make the same query as in t he previous exanpl e
-- and "tag" the rows fromthe EMPLOYEE table Wlth "enp’ and
-- the rows fromthe EMP_ACT table with 'enp_act'
-- Unlike the result fromthe previous exanple
-- this query may return the same EMPNO nore than once,
|dent|f ng which table it came from by the associ ated "tag"

LOYE
VWHERE WORKDEPT LI KE ' E%

UNI ON
SELECT EMPNO, ' enp act' FROM EMP_ACT
VWHERE PRQIJNO | N[" MA2100', ' MAZ110', 'MA2112');
-- Make the sane query as in the previous exanpl e,
-- only use UNION'ALL so that no duplicate rows are elininated
SELECT__EMPNO
FROM EMPLOYEE
VWHERE WORKDEPT LI KE ' E%
UNI ON ALL
SELECT EMPNO
FROM EMP_ACT
VWHERE PRQINO | N(' MA2100', ' MA2110', 'MA2112');
-- Make the same query as in t he previ ous exanpl e,)
-- only include an additional two enpl oyees currently not in any table

- these rows as "new'
SELE EMPNO, ' enp'

FROM EMPLOYEE

VWHERE WORKDEPT LI KE ' E%

UNI ON
SELECT EMPNO, 'enp_act'
FROM EMP_ACT
WHERE PROINO | N(' MA2100', ' MA2110', 'MA2112')

UNI ON
VALUES (' NEWAAA' | neW), (' NEWBBB' , 'new);

RIGHT OUTER JOIN

A RIGHT OUTER JOIN is one of the JOIN operations s that allow you to specify a JOIN
clause. It preserves the unmatched rows from the second (right) table, joining them with a

55

Copyright

NULL in the shape of the first (left) table. A LEFT OUTER JOIN B is equivalent to B
RIGHT OUTER JOIN A, with the columns in a different order.

Syntax

Tabl eExpr essi on
RIGHT [QUTER] JON
Tabl eExpr essi on

{

ON bool eanExpr essi on

The scope of expressions in the ON clause includes the current tables and any tables in
guery blocks outer to the current SELECT. The ON clause can reference tables not being
joined and does not have to reference either of the tables being joined (though typically it
does).

Example 1

-- get all countries and corresponding cities, including
-- countries without any cities

SELECT COUNTRI ES. COUNTRY, CI Tl ES. Cl TY_NAME

FROM CI Tl ES

Rl GAT_OUTER JO N COUNTRI ES

ON CI Tl ES. COUNTRY_| SO CODE = COUNTRI ES. COUNTRY_| SO_CODE;

-- get all countries in Africa and corresponding cities, including
-- countries without any cities

SELECT COUNTRI ES. COUNTRY, CI TI ES. Cl TY_NAME

FROM CI Tl ES

RI GHT OUTER JO N COUNTRI ES

ON_CI TI ES. COUNTRY_I SO CODE = COUNTRI ES. COUNTRY_| SO_CODE
WHERE Countries.region = 'Africa';

-- use the synonynous syntax, RIGHT JO N, to achi eve exactly
-- the sane results as in the exanpl e above

SELECT COUNTRI ES. COUNTRY, CI TI ES. Cl TY_NAME

FROM CI Tl ES

RI GHT JO N COUNTRI ES

ON _CI TI ES. COUNTRY_I SO CODE = COUNTRI ES. COUNTRY_| SO_CODE
WHERE Countries.region = 'Africa';

Example 2

-- a Tabl eExpressi on can be a joinOperation. Therefore

-- {_ou can have nultiple join operations in a FROM cl ause
-- List every enployee nunber and | ast nane .

-- with the enpl oyee nunber and | ast nanme of their nanager

SELECT E. EMPNO, E. LASTNAVE, M EVMPNO, M LASTNANME
FROM EMPLOYEE E Rl GAT OUTER JO N
DEPARTMVENT RI GHT OQUTER JO N EMPLOYEE M
ON MGRNO = M EMPNO
ON E. WORKDEPT = DEPTNG,

ScalarSubquery

You can place a ScalarSubquery anywhere an Expression is permitted. A
ScalarSubquery turns a SelectExpression result into a scalar value because it returns
only a single row and column value.

56

Copyright
The query must evaluate to a single row with a single column.
Sometimes also called an expression subquery.

Syntax

Query

-- avg al wags returns a single value, so the subquery is
a Scal ar Subquery

E ,
FROM STAFE
WHERE EXI STS
(SELECT AVG(BONUS + 800)
FROM ENMPLOYEE
WHERE COWM < 5000
AND EMPLOYEE. LASTNAME = UPPER(STAFF. NAVE)

) .

-- Introduce a way of "generating" new data val ues,]]

-- using a query which selects froma VALUES cl ause (which is an
alternate formof a fullselect). .)
-- This query shows how a table can be derived called "X" having
2 colums "R1" and "R2" and 1 row of data.

SELECT R1

R
FROM (VALUES(' GROUP 1',' GROUP 2')) AS X(RL, R2);

SelectExpression

A SelectExpression is the basic SELECT-FROM-WHERE construct used to build a table
value based on filtering and projecting values from other tables.

Syntax

SELECT [DISTINCT | ALL] Selectltem[, Selectltem]*

FROM cl ause

[
WHERE cl ause

1

GROUP BY cl ause

[]

HAVI NG cl ause
]

Selectltem:

*
{
t abl e- Nane

57

Copyright

correl ati on- Nane

Poor
Expression [AS

Si npl e- col uMm- Nane

1

The SELECT clause contains a list of expressions and an optional quantifier that is
applied to the results of the FROM clause and the WHERE clause . If DISTINCT is
specified, only one copy of any row value is included in the result. Nulls are considered
duplicates of one another for the purposes of DISTINCT. If no quantifier, or ALL, is
specified, no rows are removed from the result in applying the SELECT clause (ALL is
the default).

A Selectltem projects one or more result column values for a table result being
constructed in a SelectExpression.

The result of the FROM clause is the cross product of the FROM items. The WHERE
clause can further qualify this result.

The WHERE clause causes rows to be filtered from the result based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result.

The GROUP BY clause groups rows in the result into subsets that have matching values
for one or more columns. GROUP BY clauses are typically used with aggregates.

If there is a GROUP BY clause, the SELECT clause must contain only aggregates or
grouping columns. If you want to include a non-grouped column in the SELECT clause,
include the column in an aggregate expression. For example:

-- List head count of each departnent,
-- the departnent nunber (DEPT), and the average departnental salary
(SALARY) ,
-- for all departnents in the EMPLOYEE tabl e.
--IArrange the result table in ascending order by average depart nent al
sal ary.
SELEC¥' WORKDEPT, AVE SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY 1;

If there is no GROUP BY clause, but a Selectltem contains an aggregate not in a
subquery, the query is implicitly grouped. The entire table is the single group.

The HAVING clause restricts a grouped table, specifying a search condition (much like a
WHERE clause) that can refer only to grouping columns or aggregates from the current
scope. The HAVING clause is applied to each group of the grouped table. If the HAVING
clause evaluates to TRUE, the row is retained for further processing. If the HAVING
clause evaluates to FALSE or NULL, the row is discarded. If there is a HAVING clause
but no GROUP BY, the table is implicitly grouped into one group for the entire table.

Derby processes a SelectExpression in the following order:
« FROM clause
« WHERE clause
*« GROUP BY (or implicit GROUP BY)
¢ HAVING clause
e SELECT clause

The result of a SelectExpression is always a table.

58

Copyright

When a query does not have a FROM clause (when you are constructing a value, not
getting data out of a table), you use a VALUES statement, not a SelectExpression. For
example:

VALUES CURRENT_TI MESTAMP

See VALUES Expression .

The * wildcard

* expands to all columns in the tables in the associated FROM clause.

table-Name .* and correlation-Name .* expand to all columns in the identified table. That
table must be listed in the associated FROM clause.

Naming columns

You can name a Selectltem column using the AS clause. When the SelectExpression
appears in a UNION, INTERSECT, or EXCEPT operator, the names from the first
SelectExpression are taken as the names for the columns in the result of the operation. If
a column of a Selectltem is not a simple ColumnReference expression or named with an
AS clause, it is given a generated unique name.

These column names are useful in several cases:
¢ They are made available on the JDBC ResultSetMetaData.
« They are used as the names of the columns in the resulting table when the
SelectExpression is used as a table subquery in a FROM clause.
¢ They are used in the ORDER BY clause as the column names available for sorting.

-- this exanpl e shows SELECT- FROM WHERE
-- with an R BY cl ause
-- and correl ati on-Nanes for the tables
SELECT CONSTRAI NTNAME, COLUVNNANME
FROM SYS. SYSTABLES t, SYS. SYSCOLUWNS c
SYS. SYSCONSTRAI NTS cons SYS. SYS! CHECKS checks
VWHERE t. TABLENAME = ' FLI GHTS' AND t. TABLEID = col .
REFERENCEI D AND t . TABLEI D = cons. TABLEID
AND cons. CONSTRAI NTI D = checks. CONSTRAI NTI D
ORDER BY CONSTRAI NTNANME
-- This exarrRllcglz_ shows the use of the DI STINCT cl ause
SELECT DI STI ACTNO
FROM EMP_ACT;
-- This exanpl e shows how to rename an expression
-- Using the EMPLOYEE table, |ist the department nunmber (WORKDEPT) and
- - maxi mm departrrent al salary (SALARY) renaned as BGCSS
-- for all Partments whose maxi mum salary is |less than the
-- average salary in all other departnents.
SELECT KDEPT AS DPT, MAX(SALARY) AS BGCSS
ROM_EMPLOYEE EMP
GROJ BY WORKDEPT
HAVI NG MAX(SALARY) < (SELECT AVG(SALARY)
FROM EMPLOYEE
VWHERE NOT WORKDEPT = EMP_COR. WORKDEPT)
ORDER BY BCSS;

SELECT statement

A SELECT statement consists of a query with an optional ORDER BY clause and an
optional FOR UPDATE clause . The SELECT statement is so hamed because the typical
first word of the query construct is SELECT. (Query includes the VALUES expression
and UNION, INTERSECT, and EXCEPT expressions as well as SELECT expressions).

The ORDER BY clause guarantees the ordering of the ResultSet. The FOR UPDATE
clause makes the result an updatable cursor. The SELECT statement supports the FOR

59

Copyright

FETCH ONLY clause. The FOR FETCH ONLY clause is synonymous with the FOR
READ ONLY clause.

Remember: In order to get an updatable ResultSet, you must include a FOR UPDATE
clause with the SELECT clause.

Syntax

Query

[
ORDER BY cl ause

1

FOR UPDATE cl ause
L\ITH {RR| RS| CS| UR}

You can set the isolation level in a SELECT statement using the WITH {RR|RS|CS|UR}
syntax.

-- lists the names of the expressi on SAL+BONUS+COW as TOTAL_PAY and
-- orders by the new nane TOTAL PAY
SELECT FI RSTNVE, SALARY+BONUS+COWM AS TOTAL_PAY
FROM EMPLOYEE
ORDER BY TOTAL_PAY;
-- creating an updatable cursor with a FOR UPDATE cl aus
-- to update the start date E)PRSTDATE) and the end date (PRENDATE)
-- colums in the PROJE
SELECT PRQJINO, PRSTDATE PRENDATE
FROM PRQIJECT

FOR UPDATE OF PRSTDATE, PRENDATE;
-- set the isolation level to RR for this statenment only
SELECT *
FROM Fl i ght
VWHERE f | i ght id BETVWEEN ' AA1111' AND ' AA1112'
WTH RR;

A SELECT statement returns a ResultSet. A cursor is a pointer to a specific row in
ResultSet. In Java applications, all ResultSets are cursors. A cursor is updatable; that is,
you can update or delete rows as you step through the ResultSet if the SELECT
statement that generated it and its underlying query meet cursor updatability
requirements, as detailed below. You use a FOR UPDATE clause when you want to
generate an updatable cursor.

Note: The ORDER BY clause allows you to order the results of the SELECT. Without the
ORDER BY clause, the results are returned in random order.

If a SELECT statement meets the requirements listed below, cursors are updatable only
if you specify FOR UPDATE in the FOR clause (see FOR UPDATE clause).

Requirements for updatable cursors and updatable ResultSets
Only simple, single-table SELECT cursors and FORWARD_ONLY ResultSets can be
updatable. The SELECT statement for updatable ResultSets has the same syntax as the
SELECT statement for updatable cursors. To generate updatable cursors:
e The SELECT statement must not include an ORDER BY clause.
e The underlying Query must be a SelectExpression .
¢ The SelectExpression in the underlying Query must not include:
* DISTINCT
* Aggregates
« GROUP BY clause

60

Copyright

¢ HAVING clause
¢ The FROM clause in the underlying Query must not have:
* more than one table in its FROM clause
¢ anything other than one table name
e SelectExpression s
e subqueries

There is no SQL language statement to assign a hame to a cursor. Instead, you use the
JDBC API to assign names to cursors or retrieve system-generated names. For more
information, see "Naming or Accessing the Name of a Cursor" in Chapter 5 of the Derby
Developer's Guide .

Cursors are read-only by default. For a cursor to be updatable, you must specify FOR
UPDATE in the FOR clause (see FOR UPDATE clause).

Statement dependency system

The SELECT depends on all the tables and views named in the query and the
conglomerates (units of storage such as heaps and indexes) chosen for access paths on
those tables. CREATE INDEX does not invalidate a prepared SELECT statement. A
DROP INDEX statement invalidates a prepared SELECT statement if the index is an
access path in the statement. If the SELECT includes views, it also depends on the
dictionary objects on which the view itself depends (see CREATE VIEW statement).

Any prepared UPDATE WHERE CURRENT or DELETE WHERE CURRENT statement
against a cursor of a SELECT depends on the SELECT. Removing a SELECT through a
java.sgl.Statement.close request invalidates the UPDATE WHERE CURRENT or
DELETE WHERE CURRENT.

The SELECT depends on all aliases used in the query. Dropping an alias invalidates a
prepared SELECT statement if the statement uses the alias.

TableExpression

A TableExpression specifies a table or view in a FROM clause . It is the source from
which a SelectExpression selects a result.

A correlation name can be applied to a table in a TableExpression so that its columns
can be qualified with that name. If you do not supply a correlation name, the table name
gualifies the column name. When you give a table a correlation name, you cannot use
the table name to qualify columns. You must use the correlation name when qualifying
column names.

No two items in the FROM clause can have the same correlation name, and no
correlation name can be the same as an unqualified table name specified in that FROM
clause.

In addition, you can give the columns of the table new names in the AS clause. Some
situations in which this is useful:
¢ When a VALUES expression is used as a TableSubquery , since there is no other
way to name the columns of a VALUES expression .
¢ When column names would otherwise be the same as those of columns in other
tables; renaming them means you don't have to qualify them.

The Query in a TableSubquery appearing in a Fromltem can contain multiple columns
and return multiple rows. See TableSubquery .

For information about the optimizer overrides you can specify, see Tuning Derby .

61

Copyright

Syntax

i’abl eOr Vi ewkExpression | JO N operation

-- SELECT from a Joi n_expression
SELECT E. EMPNO, E. LASTNAMVE, M EMPNO, M LASTNAME
FROM EMPLOYEE E LEFT OQUTER JO N
DEPARTMENT | NNER JO N EMPLOYEE M
ON MGRNO = M EMPNO
ON E. WORKDEPT = DEPTNO

TableOrViewExpression

{
t abl e- Nanme

vi ew Nane

} [[AS]

correl ati on- Nane

[(

Si npl e- col um- Nane

[

Si npl e- col um- Nane

1) 111

TableSubquery

A TableSubquery is a subquery that returns multiple rows.

Unlike a ScalarSubquery , a TableSubquery is allowed only:

¢ as a TableExpression in a FROM clause

« with EXISTS, IN, or quantified comparisons.
When used as a TableExpression in a FROM clause , it can return multiple columns.
When used with EXISTS, it returns multiple columns only if you use * to return the
multiple columns.
When used with IN or quantified comparisons, it must return a single column.

Syntax

Query

62

Copyright

- - subquery used as Tabl e Presm on in a FROM cl ause
EELECT Virtual Fli ghtTabI e fligh

SELECT fH ght _ID, orig_airport, dest_airport
Ignts . .

V\HER r| alrloort = 'SFO OR dest_airport = '"SCL'))
AS Vi rtual i ght Tabl e))
-- a sub fval ues expression) used as a Tabl eExpression
--in a ause
SELECT nycol 1
FROM

(VALUES (1, 2) (3, 4%
AS rTyt abl e (nycol 1 coI
- - subquery used wi STS
SELECT
FROM Fl i ght s
WHERE EXI'STS
gSELECT * FROM Fl i ght s WHERE dest _ai rport = ' SFO
ND orig_airport ="'GRU
- - sbquer used with IN

SELECT fI| segment _nunber
FROM Fl i g
V\HEREfIlg_I_tldIN

SELECT flight ID

ROM Fl i ght S V\FI RE orig_airport = 'SFO

OR dest _airport = "'SCL") o)
-- a subquery used with a quantified conparison
SELECT ME, © COW
FROM STAFF

WWHERE COWM >
(SELECT AVG(BONUS + 800)
FROM EMPLOYEE

WWHERE COMM < 5000) ;

UPDATE statement
An UPDATE statement sets the value in a column.

You can update the current row of an open, updatable cursor. If there is no current row,
or if the current row no longer satisfies the cursor's query, an exception is raised.

Syntax

t UPDATE

t abl e- Nane

SET

col unm- Nane

Val ue

[,

col umm- Nane

Val ue

}] [

WHERE cl ause

I UPDATE

t abl e- Nane

SET
col umm- Nane

63

Copyright

Val ue

[

col umm- Nane

Val ue
] *
VWHERE CURRENT OF

}

The first syntactical form is called a searched update. The second syntactical form is
called a positioned update.

For searched updates, you update all rows of the table for which the WHERE clause
evaluates to TRUE.

For positioned updates, you can update only columns that were included in the FOR
UPDATE clause of the SELECT statement that created the cursor. If the SELECT
statement did not include a FOR UPDATE clause, the cursor is read-only and cannot be
used to update.

Specifying DEFAULT for the update value sets the value of the column to the default
defined for that table.

e Al'l the enpl oyees except the manager of departnent (WORKDEPT) 'E21'
ave
been tenporarily reassigned. o)
-- Indicate this by changl nP their job (,](13% to NULL and their pay
SALARY, BONUS, ues to zero in the EMPLOYEE tabl e.
UP TE EMPLOYEE
SET JOB=NULL, SALARY—O, BO\IUS—O COVM:O
WHERE WORKDEPT E21" AND JOB <> ' MANAGER

PROMOTE theEJ ob (JOB) of certain enpl oyees to MANAGER
UPDATE EMPLOY!
SET JOB = ' MANAGER
VHERE CURRENT OF CURS

-- Increase the ject staffl ng PRSTAFF% IY— 1.5 for all projects
s}:)rFr{tSTgéEcuteU da UPDATE PRQJ SET PRSTAFF =
5 7

" WHERE CURRENT OF" + Resul t Set . get Cur sor Narre()) ;
e the ob (JOB) of enployee nunber (EMP ' 000290' in the
ENPLOYE% J (JOB) mpl oy (EMPNO)

-- to its DEFAULT val ue which is NULL
UPDATE EMPLOYEE

SET JOB = DEFAULT

VWHERE EMPNO = ' 000290' ;

Statement dependency system

A searched update statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), all of its constraints, and any
other table named in the WHERE clause or SET expressions. A CREATE or DROP
INDEX statement or an ALTER TABLE statement for the target table of a prepared
searched update statement invalidates the prepared searched update statement.

The positioned update statement depends on the cursor and any tables the cursor
references. You can compile a positioned update even if the cursor has not been opened

64

Copyright

yet. However, removing the open cursor with the JDBC close method invalidates the
positioned update.

A CREATE or DROP INDEX statement or an ALTER TABLE statement for the target
table of a prepared positioned update invalidates the prepared positioned update
statement.

Dropping an alias invalidates a prepared update statement if the latter statement uses the
alias.

Dropping or adding triggers on the target table of the update invalidates the update
statement.

Value

Expression | DEFAULT

VALUES expression

The VALUES expression allows construction of a row or a table from other values. You
use a VALUES statement when you do not have a FROM clause. This construct can be
used in all the places where a query can, and thus can be used as a statement that
returns a ResultSet, within expressions and statements wherever subqueries are
permitted, and as the source of values for an INSERT statement.

Syntax

L VaLtes (

Val ue

{.

Val ue
P
Val ue

{.

Val ue

RIS

Val ue

[

Val ue
I
The first form constructs multi-column rows. The second form constructs single-column

rows, each expression being the value of the column of the row.

The DEFAULT keyword is allowed only if the VALUES expression is in an INSERT
statement. Specifying DEFAULT for a column inserts the column's default value into the
column. Another way to insert the default value into the column is to omit the column from
the column list and only insert values into other columns in the table.

65

Copyright

3 of
VAL%JES (1), ; 2

VAL%ES 1 2
VALUES (1 2,

3 of
VALUES (1 21)
-- constructin
VALUES (! orange!
(' banana', 'yello]
-- Insert two new departnents using one statement into the DEPARTMENT

t abl e,
-- pbut do not assign a mana er to the new departnent.
| NSERT | NTO DEPARTIVENT S DEPTNAIVE, DEPT)
VALUES ('B11', 'PU SING "' B01' ,
(' E417, "DATABASE ADM NI STRATI "EO01")
-- insert arowwth a DEFAULT val ue for the MAJPRQJ col um
| NSERT | NTO PRQJECT (PRﬁUNO PROQINAVE, DEPTNO, RESPEMP, PRSTDATE,

PRQJ
VALUES% PL2101', ' ENSURE COWPAT PLAN , 'BO01', '000020', CURRENT_ DATE,
DEFAULT) ;

@"\ wo- -
——W
<(.0

, 23%
d table
3) ange'), ('apple', 'red),

-- using a built-in function

VALUES RRENT_DATE

- - % ng t he val ue of an arbitrary expression
VAL ES (3%¥29, 26.0E0/3

-- getting a value returned by a built-in function
val ues char (1)

Value

Expr essi on
| DEFAULT

WHERE clause

A WHERE clause is an optional part of a SelectExpression , DELETE statement , or
UPDATE statement . The WHERE clause lets you select rows based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result, or, in the case of a DELETE statement, deleted, or, in the case of an UPDATE
statement, updated.

Syntax

WHERE

Bool ean expression

Boolean expressions are allowed in the WHERE clause. Most of the general expressions
listed in Table of Expressions , can result in a boolean value.

In addition, there are the more common boolean expressions. Specific boolean operators
listed in Table 10, take one or more operands; the expressions return a boolean value.

-- find the flights where no busi ness-cl ass seats have

- - been booked

SELECT *

FROM Fl i ght Avai | abi | i %y
a

WHERE busSi ness_seat s ken |'S NULL

66

Copyright

OR busi ness_seats_taken = 0
-- Join the EMP_ACT and EMPLOYEE t abl es
-- select all tﬁe colums fromthe EVMP ACT table and
-- add the enpl ¥ee s surnanme (LASTNAME) from t he EMPLOYEE tabl e
-- to each row of the result.
SELECT SAI\/P EMP * LASTNAME

FROM SAMP. EMP_ ACT SAVP. EMPLOYEE

V\HERE EI\/P ACT_EMPNO = EMPLOYEE. EMPNO,
-- Deternine the enployee number and salary of sales representatives
-- along wi th t he average sal ary and head count of their_ departnents.
I Thi s query nust first create a new col um-nane specified in the AS
cl ause
-- which is outside the fullselect (DI NFQ
-- |n order to get the AVGSALARY and EMP NT col ums,

wel | as the DEPTNO colum that is used in the WHERE cl ause

SELECT THI S EMP. EMPNO, THI' S_EMP. SALARY, DI NFO. AVGSALARY, DI NFO. EMPCOUNT
FROM EMPLOYEE TH' S_ENP,

(SELECT OTHERS. WORKDEPT AS DEPTNO,

AV (0]} HERS SALARY) AS AVGSALARY,
E S EMPCOUNT
FROM EI\/PLOYE OTHE RS
GROUP BY OTHERS. WORKDEPT
AS DI NFO
RE THI S EMP. JOB = ' SALESREP'
AND THI S_EMP. WORKDEPT = DI NFO. DEPTNQG,

WHERE CURRENT OF clause
The WHERE CURRENT OF clause is a clause in some UPDATE and DELETE
statements. It allows you to perform positioned updates and deletes on updatable
cursors. For more information about updatable cursors, see SELECT statement .

Syntax

WHERE CURRENT OF

cur sor - Name

Statenent s = conn. createStatenment ();

s. set Cursor Name("AirlinesResul ts");

Resul tSet rs = conn. execut eQuery(
"SELECT Airline, basic rate " +

"FROM Airlines FOR UPDATE OF basic_rate");

Statenment s2 = conn. createSt at enent)

s2. execut eUpdat (" UPDATE Airlines S "basic_rate = basi c_rate " +
"+ .25 ERE CURRENT OF AirlinesResults™);

Built-in functions

A built-in function is an expression in which an SQL keyword or special operator executes
some operation. Built-in functions use keywords or special built-in operators. Built-ins are
SQL92Identifiers and are case-insensitive. Note that escaped functions like
TIMESTAMPADD and TIMESTAMPDIFF are only accessible using the JDBC escape
function syntax, and can be found in JDBC escape syntax .

Standard built-in functions

« ABS or ABSVAL

* BIGINT

e CAST

« CHAR

* Concatenation

¢ NULLIF and CASE expressions
¢ CURRENT_DATE

67

Copyright

CURRENT ISOLATION
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
DATE

DAY

DOUBLE

HOUR
IDENTITY_VAL_LOCAL
INTEGER

LENGTH

LOCATE
LCASE or LOWER
LTRIM

MINUTE

MOD

MONTH

RTRIM

SECOND
SESSION_USER
SMALLINT

SQRT

SUBSTR

TIME

TIMESTAMP
UCASE or UPPER
USER

VARCHAR

YEAR

Aggregates (set functions)

This section describes aggregates (also described as set functions in ANSI SQL-92 and
as column functions in some database literature). They provide a means of evaluating an
expression over a set of rows. Whereas the other built-in functions operate on a single
expression, aggregates operate on a set of values and reduce them to a single scalar
value. Built-in aggregates can calculate the minimum, maximum, sum, count, and
average of an expression over a set of values as well as count rows. You can also create
your own aggregates to perform other set functions such as calculating the standard
deviation.

The built-in aggregates can operate on the data types shown in Permitted Data Types for
Built-in Aggregates .
Tablel. Permitted Data Types for Built-in Aggregates

' All Types Numeric Built-in Data Types
COUNT X X
MIN ' X
MAX ' X
AVG ' X
SUM ' X

Aggregates are permitted only in the following:
¢ A Selectltem in a SelectExpression .
¢« A HAVING clause .

68

Copyright

« An ORDER BY clause (using an alias name) if the aggregate appears in the result
of the relevant query block. That is, an alias for an aggregate is permitted in an
ORDER BY clause if and only if the aggregate appears in a Selectltem in a
SelectExpression .

All expressions in Selectltems in the SelectExpression must be either aggregates or
grouped columns (see GROUP BY clause). (The same is true if there is a HAVING
clause without a GROUP BY clause.) This is because the ResultSet of a
SelectExpression must be either a scalar (single value) or a vector (multiple values), but
not a mixture of both. (Aggregates evaluate to a scalar value, and the reference to a
column can evaluate to a vector.) For example, the following query mixes scalar and
vector values and thus is not valid:

-S-ELECEI'\KlllNi(fI ing_tine), flight_id
| Ine), | I

Aggregates are not allowed on outer references (correlations). This means that if a
subquery contains an aggregate, that aggregate cannot evaluate an expression that
includes a reference to a column in the outer query block. For example, the following
guery is not valid because SUM operates on a column from the outer query:

SELECT c1

ROM t 2
WHERE t2.y = SUMt1.c3))

A cursor declared on a ResultSet that includes an aggregate in the outer query block is
not updatable.

This section includes the following aggregates:
¢ AVG

COUNT

MAX

MIN

SUM

ABS or ABSVAL

AVG

ABS or ABSVAL returns the absolute value of a numeric expression. The return type is
the type of parameter. All built-in numeric types are supported (DECIMAL , DOUBLE
PRECISION , FLOAT , INTEGER , BIGINT , NUMERIC , REAL , and SMALLINT).

Syntax

ABS(Nurrer i cExpr essi on)

-- returns 3
VALUES ABS(-3)

69

Copyright

BIGINT

AVG is an aggregate function that evaluates the average of an expression over a set of
rows (see Aggregates (set functions)). AVG is allowed only on expressions that evaluate
to numeric data types.

Syntax

AVG ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL is
the default value if neither ALL nor DISTINCT is specified. For example, if a column
contains the values 1.0, 1.0, 1.0, 1.0, and 2.0, AVG(col) returns a smaller value than
AVG(DISTINCT caol).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not valid:

SELECT AVG(DISTINCT flying_time), SUM (DI STINCT m | es)
FROM Fl i ght

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to an SQL-92 numeric data type.
You can therefore call methods that evaluate to SQL-92 data types. If an expression
evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it will never
overflow). The following query, for example, returns the INTEGER 1, which might not be
what you would expect:

SELECT AVGE cl)
PROM (VALUES (1), (1), (1), (1), (2)) AS nyTable (c1)

CAST the expression to another data type if you want more precision:

SELECT AVG(CAST (c1 AS DOUBLE PRECI S| ON))
FROM (VALUES (1), (1), (1), (1), (2)) AS nyTable (cl)

The BIGINT function returns a 64-bit integer representation of a number or character
string in the form of an integer constant.

Syntax

Bl G NT (Charact er Expression | Nuneri cExpression)

CharacterExpression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer
constant. The character string cannot be a long string. If the argument is a
CharacterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a big integer column or variable.
NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a NumericExpression, the result is the same number that would occur if the argument
were assigned to a big integer column or variable. If the whole part of the argument is
not within the range of integers, an error occurs. The decimal part of the argument is

70

Copyright

CAST

truncated if present.

The result of the function is a big integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Using the EMPLOYEE table, select the EMPNO column in big integer form for further
processing in the application:

SELECT Bl G NT (EMPNO) FROM EMPLOYEE

CAST converts a value from one data type to another and provides a data type to a
dynamic parameter (?) or a NULL value.

CAST expressions are permitted anywhere expressions are permitted.

Syntax

CASTAg Eath(i{);Sg)si on | NULL | ?]

The data type to which you are casting an expression is the target type. The data type of
the expression from which you are casting is the source type.

CAST conversions among SQL-92 data types

The following table shows valid explicit conversions between source types and target
types for SQL data types.

Tablel. Explicit conversions between source types and target types for SQL data
types

This table shows which explicit conversions between data types are valid. The first
column on the table lists the source types, while the first row lists the target types. A "Y"
indicates that the source to the target is a valid conversion.

71

Copyright

F—=SWnkF<=0

F—Suw

O<<HwWw

nJ10m

O-10m

-40Z20 ><<xroIg<x uLooxe m-—*H

O<<HE<<

Y |[Y |Y

>SICXOICK Lo m—F O<CFE<

Y

OI<Xxx LOX m—F QA<kF<

140Z20 ><xoIgo

>SCrXroOoIgqx

OI<CX

L10<H

Y |Y

NODm-auw

Y

Y

X w<g 4

Y

Y

AWO —=< -

n-—0—Z+

—ZFFWLOouWr

Y |Y |Y

N=2C1 1 —2Z2HF

Y [Y [Y Y Y Y |Y [|Y

Y [Y [Y Y Y Y |Y [|Y
Y [Y [Y Y Y Y |Y [|Y

Y

Y |[Y [Y Y Y Y |Y
Y |[Y [Y Y Y Y |Y
Y |[Y [Y |Y
Y |[Y [Y |Y
Y |Y |Y [|Y

Types

SMALLINT
INTEGER

BIGINT

DECIMAL
REAL

DOUBLE
FLOAT
CHAR

VARCHAR
LONG

VARCHAR

CHAR FOR BIT

DATA

VARCHAR FOR
BIT DATA
LONG

VARCHAR FOR
BIT DATA
CLOB

BLOB

DATE

TIME

TIME STAMP

72

Copyright

CHAR

If a conversion is valid, CASTs are allowed. Size incompatibilities between the source
and target types might cause runtime errors.

Notes
In this discussion, the Derby SQL-92 data types are categorized as follows:
* numeric
e exact numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC)
e approximate numeric (FLOAT, REAL, DOUBLE PRECISION)
e string
e character string (CLOB, CHAR, VARCHAR, LONG VARCHAR)
 hit string (BLOB, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, LONG
VARCHAR FOR BIT DATA)
« date/time
« DATE
¢ TIME
¢ TIMESTAMP

Conversions from numeric types

A numeric type can be converted to any other numeric type. If the target type cannot
represent the non-fractional component without truncation, an exception is raised. If the
target numeric cannot represent the fractional component (scale) of the source numeric,
then the source is silently truncated to fit into the target. For example, casting 763.1234
as INTEGER vyields 763.

Conversions from and to bit strings

Bit strings can be converted to other bit strings, but not character strings. Strings that are
converted to bit strings are padded with trailing zeros to fit the size of the target bit string.
The BLOB type is more limited and requires explicit casting. In most cases the BLOB
type cannot be casted to and from other types.

Conversions of date/time values

A date/time value can always be converted to and from a TIMESTAMP. If a DATE is
converted to a TIMESTAMP, the TIME component of the resulting TIMESTAMP is always
00:00:00. If a TIME data value is converted to a TIMESTAMP, the DATE component is
set to the value of CURRENT_DATE at the time the CAST is executed. If a TIMESTAMP
is converted to a DATE, the TIME component is silently truncated. If a TIMESTAMP is
converted to a TIME, the DATE component is silently truncated.

SELECT CAST (m | es AS | NT)

FROM Fl i ght s

- - convert timestanps to text

I NSERT | NTO nyt abl e text col umm)

VALUES (CASTn}/OJRRE IVESTANP AS VARCHAR(100)))
-- you must cast NULL as a data type to use it
SELECT airline

FROM A| rI i nes

UNI ON AL
VALUES (CAST E)NULL AS CHAR(2))
le as a ci ma
SELECT OAST (FLYI NG _TI NE AS DECI MAL(5, 2))
FROM FLI GHTS
-- cast a SVMALLINT to a BIGQ NT
VALUES CAST (CAST (12 as SMALLI NT) as BI G NT)

The CHAR function returns a fixed-length character string representation of:
¢ a character string, if the first argument is any type of character string.
« adatetime value, if the first argument is a date, time, or timestamp.

73

Copyright

« adecimal number, if the first argument is a decimal number.
« a double-precision floating-point number, if the first argument is a DOUBLE or
REAL.
« an integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT.
The first argument must be of a built-in data type. The result of the function is a
fixed-length character string. If the first argument can be null, the result can be null. If the
first argument is null, the result is the null value.

Character to character syntax

CHAR (CharacterExpression [, integer])

CharacterExpression
An expression that returns a value that is CHAR, VARCHAR, LONG VARCHAR, or
CLOB data type.

integer
The length attribute for the resulting fixed length character string. The value must be
between 0 and 254.

If the length of the character-expression is less than the length attribute of the result, the
result is padded with blanks up to the length of the result. If the length of the
character-expression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the truncated characters were all blanks and the
character-expression was not a long string (LONG VARCHAR or CLOB).

Integer to character syntax

CHAR (I nt eger Expressi on)

IntegerExpression
An expression that returns a value that is an integer data type (either SMALLINT,
INTEGER or BIGINT).

The result is the character string representation of the argument in the form of an SQL
integer constant. The result consists of n characters that are the significant digits that
represent the value of the argument with a preceding minus sign if the argument is
negative. It is left justified.

« If the first argument is a small integer: The length of the result is 6. If the number of
characters in the result is less than 6, then the result is padded on the right with
blanks to length 6.

« If the first argument is a large integer: The length of the result is 11. If the number of
characters in the result is less than 11, then the result is padded on the right with
blanks to length 11.

« If the first argument is a big integer: The length of the result is 20. If the number of
characters in the result is less than 20, then the result is padded on the right with
blanks to length 20.

Datetime to character syntax

CHAR (Dat et i meExpr essi on)

DatetimeExpression
An expression that is one of the following three data types:

< date: The result is the character representation of the date. The length of the
result is 10.

e time: The result is the character representation of the time. The length of the
result is 8.

» timestamp: The result is the character string representation of the timestamp.
The length of the result is 26.

Decimal to character

74

Copyright

LENGTH

CHAR (Deci nal Expressi on)

DecimalExpression
An expression that returns a value that is a decimal data type. If a different precision
and scale is desired, the DECIMAL scalar function can be used first to make the
change.

Floating point to character syntax

CHAR (Fl oati ngPoi nt Expressi on)

FloatingPointExpression
An expression that returns a value that is a floating-point data type (DOUBLE or
REAL).

Use the CHAR function to return the values for EDLEVEL (defined as smallint) as a fixed
length character string:

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by four
blanks).

LENGTH is applied to either a character string expression or a bit string expression and
returns the number of characters in the result.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

LENGTH ({ CharacterExpression | BitExpression })

-- returns 20
VALUES LENGTH(supercalifragilistic')

VALUES LENGTH(X FF')
VALUES LENGI'H(1234567890)

Concatenation

The concatenation operator, ||, concatenates its right operand to the end of its left
operand. It operates on a character or bit expression.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

Char act erExpressn on lEx CharacterExpreSS| on } |
Bi t Expr essi on Bi t EXpressi on

75

Copyright

For character strings, if both the left and right operands are of type CHAR, the resulting
type is CHAR; otherwise, it is VARCHAR. The normal blank padding/trimming rules for
CHAR and VARCHAR apply to the result of this operator.

The length of the resulting string is the sum of the lengths of both operands.

For bit strings, if both the left and the right operands are of type CHAR FOR BIT DATA,
the resulting type is CHAR FOR BIT DATA; otherwise, it is VARCHAR FOR BIT DATA.

--returns 'supercalifragilisticexbealidocious(sp?)’

VALUES 'supercalifragilistic' || 'exbealidocious' || '(sp?)’
-- returns NULL .

VALUES CAST (null AS VARCHAR(7))]|| 'AString'

-- returns '130asdf’

VALUES ' 130' || 'asdf’

NULLIF and CASE expressions

COUNT

Use the CASE and NULLIF expressions for conditional expressions in Derby.

NULLIF expression syntax

NULLI F(L, R)
The NULLIF expression is very similar to the CASE expression. For example:

NULLI F(V1, V2)

is equivalent to the following CASE expression:

CASE WHEN V1=V2 THEN NULL ELSE V1 END

CASE expression syntax

You can place a CASE expression anywhere an expression is allowed. It chooses an
expression to evaluate based on a boolean test.

CASE WHEN Bool eanExpressi on THEN t henExpressi on ELSE el seExpr essi on END

ThenExpression and ElseExpression are both expressions that must be type-compatible.
For built-in types, this means that the types must be the same or a built-in broadening
conversion must exist between the types.

You do not need to use the CASE expression for avoiding NullPointerExceptions when a
nullable column becomes a method receiver.

-- returns 3
VALUES CASE WHEN 1=1 THEN 3 ELSE 4 END;

If the value of the instance specified in an instance method invocation is null, the result of
the invocation is null (SQL NULL). However, you still might need to use the CASE
expression for when a nullable column is a primitive method parameter.

COUNT is an aggregate function that counts the number of rows accessed in an

76

Copyright

COUNT(*)

expression (see Aggregates (set functions)). COUNT is allowed on all types of
expressions.

Syntax

COUNT ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL is
assumed if neither ALL nor DISTINCT is specified. For example, if a column contains the
values 1, 1, 1, 1, and 2, COUNT(col) returns a greater value than COUNT(DISTINCT
col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not allowed:

-- query not allowed)])
SELECT ZIIJNT (DI STINCT flying_time), SUM (DI STINCT nil es)
FROM Fl i ght's

An Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. If an Expression evaluates to NULL, the
aggregate is not processed for that value.

The resulting data type of COUNT is BIGINT .

-- Count the nunber of countries in each region,
-- show only regions that have at |east 2
SELECT COUNT (country), region

FROM Countri es

GROUP _BY region

HAVI NG COUNT (country) > 1

COUNT(*) is an aggregate function that counts the number of rows accessed. No NULLs
or duplicates are eliminated. COUNT(*) does not operate on an expression.

Syntax
COUNT(*)

The resulting data type is BIGINT .

-- Count the nunber of rows in the Flights table
SELECT COUNT(*)
FROM Fl i ght s

CURRENT DATE

CURRENT DATE is a synonym for CURRENT_DATE .

CURRENT_DATE

77

Copyright

CURRENT _DATE returns the current date; the value returned does not change if it is
executed more than once in a single statement. This means the value is fixed even if
there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_DATE

or, alternately

CURRENT DATE

-- find available future flights: .
SELECT * FROM Flightavailability where flight_date > CURRENT_DATE;

CURRENT ISOLATION

CURRENT ISOLATION returns the current isolation level as a char(2) value of either
"(blank), "UR", "CS", "RS", or "RR".

Syntax

CURRENT | SCLATI ON

VALUES CURRENT | SCLATI ON

CURRENT SCHEMA

CURRENT SCHEMA returns the schema name used to qualify unqualified database
object references.

Note: CURRENT SCHEMA and CURRENT SQLID are synonyms.

These functions return a string of up to 128 characters.

Syntax

CURRENT SCHEMA
-- or, alternately:
CURRENT SQLI D

-- Set the nane colum default to the current schema:

CREATE TABLE nyt abl e FI d int, name VARCHAR(128) DEFAULT CURRENT SQ.I D)
-- Inserts default value of current schenma value into the table:

I NSE myt abl e(i _d% VALUES (1

-- Returns the rows with the same nane as the current schena:

SELECT nanme FROM nyt abl e WHERE nane = CURRENT SCHEMA

CURRENT TIME

78

Copyright

CURRENT TIME is a synonym for CURRENT_TIME .

CURRENT_TIME
CURRENT_TIME returns the current time; the value returned does not change if it is
executed more than once in a single statement. This means the value is fixed even if
there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_TI ME

or, alternately

CURRENT TI ME

VALUES CURRENT Tl ME
-- or, alternafely:

VALUES CURRENT TI ME

CURRENT TIMESTAMP

CURRENT TIMESTAMP is a synonym for CURRENT_TIMESTAMP .

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP returns the current timestamp; the value returned does not
change if it is executed more than once in a single statement. This means the value is
fixed even if there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_TI MESTAMP

or, alternately

CURRENT TI MESTAMP

VALUES CURRENT Tl MESTAMP
-- or, alternafely:

VALUES CURRENT TI MESTAMP

CURRENT _USER
CURRENT _USER returns the authorization identifier of the current user (the name of the
user passed in when the user connected to the database). If there is no current user, it
returns APP.
USER and SESSION_USER are synonyms.

79

Copyright

DATE

DAY

These functions return a string of up to 128 characters.

Syntax

CURRENT_USER

VALUES CURRENT_USER

The DATE function returns a date from a value. The argument must be a date,
timestamp, a positive number less than or equal to 3,652,059, a valid string
representation of a date or timestamp, or a string of length 7 that is not a CLOB or LONG
VARCHAR. If the argument is a string of length 7, it must represent a valid date in the
form yyyynnn, where yyyy are digits denoting a year, and nnn are digits between 001 and
366, denoting a day of that year. The result of the function is a date. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
¢ If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the date part of the value.
« [f the argument is a number: The result is the date that is n-1 days after January 1,
0001, where n is the integral part of the number.
¢ If the argument is a string with a length of 7: The result is the date represented by
the string.

Syntax
DATE (expression)

This example results in an internal representation of '1988-12-25'.

VALUES DATE(' 1988-12-25")

The DAY function returns the day part of a value. The argument must be a date,
timestamp, or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR. The result of the function is a large integer. If the
argument can be null, the result can be null; if the argument is null, the result is the null
value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the day part of the value, which is an integer between 1
and 31.
¢ If the argument is a time duration or timestamp duration: The result is the day part
of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

DAY (expression)

80

Copyright

DOUBLE

HOUR

val ues day(' 2005-08-02");

The resulting value is 2.

The DOUBLE function returns a floating-point number corresponding to a:
e number if the argument is a numeric expression.
« character string representation of a number if the argument is a string expression.

Numeric to double

DOUBLE [PRECI SI ON] (Nuneri cExpression)

NumericExpression
The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a double-precision floating-point number. If the argument can
be null, the result can be null; if the argument is null, the result is the null value. The
result is the same number that would occur if the argument were assigned to a
double-precision floating-point column or variable.

Character string to double

DOUBLE (StringExpression)

StringExpression
The argument can be of type CHAR or VARCHAR in the form of a numeric constant.
Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value. The result is the same number that
would occur if the string was considered a constant and assigned to a double-precision
floating-point column or variable.

The HOUR function returns the hour part of a value. The argument must be a time,
timestamp, or a valid character string representation of a time or timestamp that is neither
a CLOB nor a LONG VARCHAR. The result of the function is a large integer. If the
argument can be null, the result can be null; if the argument is null, the result is the null
value.

The other rules depend on the data type of the argument specified:
e If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the hour part of the value, which is an integer between 0
and 24.
< If the argument is a time duration or timestamp duration: The result is the hour part
of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax
HOUR (expression)

Select all the classes that start in the afternoon from a table called TABLEL.

81

Copyright

SELECT * FROM TABLEl
WHERE HOUR(STARTI NG BETWEEN 12 AND 17

IDENTITY_VAL_LOCAL

Derby supports the IDENTITY_VAL_LOCAL function.

Syntax:

| DENTI TY_VAL_LOCAL ()

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value of an identity column for a connection, where the assignment
occurred as a result of a single row INSERT statement using a VALUES clause.

The IDENTITY_VAL_LOCAL function has no input parameters. The result is a DECIMAL
(31,0), regardless of the actual data type of the corresponding identity column.

The value returned by the IDENTITY_VAL_LOCAL function, for a connection, is the value
assigned to the identity column of the table identified in the most recent single row
INSERT statement. The INSERT statement must contain a VALUES clause on a table
containing an identity column. The assigned value is an identity value generated by
Derby. The function returns a null value when a single row INSERT statement with a
VALUES clause has not been issued for a table containing an identity column.

The result of the function is not affected by the following:
¢ Asingle row INSERT statement with a VALUES clause for a table without an
identity column
¢ A multiple row INSERT statement with a VALUES clause
* An INSERT statement with a fullselect

If a table with an identity column has an INSERT trigger defined that inserts into another
table with another identity column, then the IDENTITY_VAL_LOCAL() function will return
the generated value for the statement table, and not for the table modified by the trigger.

Examples:

create tab
Ws inserte
insert int
w i nserted uP

val ues | DENTI TY_VAL_LCCAl

gengrated always as identity, c2 int);
ete

e 8);

¢ d()

—~m

I
d
0
/

VTIVTV
o _oO

| ect ed
ct I DENTITY_VAL_LOCAL() +1 .

D @

w sel ecte
insert in
w i nserte

sel ect *

o _oO
i Sl)8

ows sel ected
val ues | DENTI TY_VAL_LOCAL();

\Van'

82

Copyright

INTEGER

1
2
1 row sel ected
ij>insert into t1(c2) val ues (8) (9);
2 rows inserted/ updated/ del et ed
|{1> -- multi-values insert, return value of the function should not
chan
\ial ugs | DENTI TY_VAL_LQOCAL() ;
2
1 row sel ected
ij> select * fromti1;
1 | C2
1 8
2 1
3 8
4 9
4 rows sel ected
ij>insert into t1(c2) select cl fromt1;
4 rows inserted/ ugdat ed/ del ete
-- insert with sub-select, return value should not change
|11 > val ues | DENTI TY_VAL_L L();
2
1 row sel ected
ij> select * fromtl;
1 | C2
1 8
2 1
3 8
4 9
5 1
6 2
7 3
8 4
8 rows sel ected

The INTEGER function returns an integer representation of a number, character string,
date, or time in the form of an integer constant.

Syntax

I NT[EGER] (Numeri cExpression | Character Expression)

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numeric-expression, the result is the same number that would occur if the argument
were assigned to a large integer column or variable. If the whole part of the argument
is not within the range of integers, an error occurs. The decimal part of the argument
is truncated if present.

CharacterExpression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer
constant. The character string cannot be a long string. If the argument is a
character-expression, the result is the same number that would occur if the
corresponding integer constant were assigned to a large integer column or variable.

The result of the function is a large integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list should also
contain the values used in the calculation and employee number (EMPNO). The list
should be in descending order of the calculated value:

83

Copyright

LOCATE

SELECT | NTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

If a specified substring is found within a specified search string, LOCATE returns the
index at which the substring is found within the search string. If the substring is not found,
LOCATE returns 0.

Syntax

LOCATE(Char act er Expr essi on, Character Expression [, StartPosition])

The second CharacterExpression is the search string and is searched from the
beginning, unless startPosition is specified, in which case the search begins from position
there; the index starts with 1. It returns 0 if the string is not found.

The return type for LOCATE is an integer.

-- returns 2
VALUES LOCATE(' I ove', 'clover')

LCASE or LOWER

LTRIM

LCASE or LOWER takes a character expression as a parameter and returns a string in
which all alpha characters have been converted to lowercase.

Syntax

LCASE or LOWNER (Charact er Expressi on)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type or any
built-in type that is implicitly converted to a string (except a bit expression).

If the parameter type is CHAR or LONG VARCHAR, the return type is CHAR or LONG
VARCHAR. Otherwise, the return type is VARCHAR.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

If the CharacterExpression evaluates to null, this function returns null.

-- returns 'asdl#w
VALUES LOWER(' aSD1#wW)

SELECT LOWER(flight_id) FROM Flights

84

Copyright

MAX

LTRIM removes blanks from the beginning of a character string expression.

Syntax

LTRI M Char act er Expr essi on)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

LTRIM returns NULL if CharacterExpression evaluates to null.

-- returns 'asdf
VALUES LTRIM"' asdf ')

MAX is an aggregate function that evaluates the maximum of the expression over a set of
values (see Aggregates (set functions)). MAX is allowed only on expressions that
evaluate to built-in data types (including CHAR, VARCHAR, DATE, TIME, CHAR FOR
BIT DATA, etc.).

Syntax

MAX ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. These
qualifiers have no effect in a MAX expression. Only one DISTINCT aggregate expression
per SelectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DI STINCT flying_tine), MAX (DI STINCT miles)
FROM Fl i ghts

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

For CHAR, VARCHAR, and LONG VARCHAR , the number of blank spaces at the end of
the value can affect how MAX is evaluated. For example, if the values 'z' and 'z * are both
stored in a column, you cannot control which one will be returned as the maximum,
because a blank space has no value.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

-- find the |atest date in the FlightAvailability table

SELECT MAX (flight_date) FROM Flig tAvallablllt

-- find the | ongest flight OFIPI nating from eac rport

-- but only when the | ongest flight is over 10 hour
_tine), orig_airport

GROUP _BY 0r|? _airport
HAVI NG MAX(fTying_tinme) > 10

85

Copyright

MIN

MINUTE

MIN is an aggregate expression that evaluates the minimum of an expression over a set
of rows (see Aggregates (set functions)). MIN is allowed only on expressions that
evaluate to built-in data types (including CHAR, VARCHAR, DATE, TIME, etc.).

Syntax

MN ([DISTINCT | ALL | Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates, but these qualifiers have
no effect in a MIN expression. Only one DISTINCT aggregate expression per
SelectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DI STINCT flying_time), MN (DI STINCT niles)
FROM Fl i ghts

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

The type's comparison rules determine the maximum value. For CHAR, VARCHAR, and
LONG VARCHAR , the number of blank spaces at the end of the value can affect the
result.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

-- NOT valid:))

SELEClT (Ié)lSTINCTfIymg time, MN(DISTINCT mles) fromFlights

SELECT COUNT(DI STINCT flying_time), MN(D STINCT niles) fromFlights
find the earliest date

SELECT M N (flight _date) FRO\/I FlightAvailability;

The MINUTE function returns the minute part of a value. The argument must be a time,
timestamp, or a valid character string representation of a time or timestamp that is neither
a CLOB nor a LONG VARCHAR. The result of the function is a large integer. If the
argument can be null, the result can be null; if the argument is null, the result is the null
value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the minute part of the value, which is an integer between 0
and 59.
¢ If the argument is a time duration or timestamp duration: The result is the minute
part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

86

Copyright

MOD

MONTH

RTRIM

M NUTE (expression)

at do not end on a full hour:

-- Select all c t h .
WHERE M NUTE(endi ng) < 60;

| a S
SELECT * FROM t ab

sse
| el

MOD returns the remainder (modulus) of argument 1 divided by argument 2. The result is
negative only if argument 1 is negative.

Syntax

nmod(i nt eger _type, integer_type)

The result of the function is:
e SMALLINT if both arguments are SMALLINT.
¢ INTEGER if one argument is INTEGER and the other is INTEGER or SMALLINT.
« BIGINT if one integer is BIGINT and the other argument is BIGINT, INTEGER, or
SMALLINT.

The result can be null; if any argument is null, the result is the null value.

The MONTH function returns the month part of a value. The argument must be a date,
timestamp, or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR. The result of the function is a large integer. If the
argument can be null, the result can be null; if the argument is null, the result is the null
value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the month part of the value, which is an integer between 1
and 12.
« If the argument is a date duration or timestamp duration: The result is the month
part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax
MONTH (expression)

Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE) in
DECEMBER.

SELECT * FROM EMPLOYEE
VWHERE MONTH(Bl RTHDATE) = 12

RTRIM removes blanks from the end of a character string expression.

87

Copyright

SECOND

Syntax

RTRI M Char act er Expr essi on)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

RTRIM returns NULL if CharacterExpression evaluates to null.

-- returns ' asdf'
VALUES RTRIM ' asdf ')
-- returns 'asdf’
VALUES RTRI M "asdf ')

The SECOND function returns the seconds part of a value. The argument must be a
time, timestamp, or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR. The result of the function is a large integer. If
the argument can be null, the result can be null; if the argument is null, the result is the
null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the seconds part of the value, which is an integer between
0 and 59.
< If the argument is a time duration or timestamp duration: The result is the seconds
part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax
SECOND (expression)

Assume that the column RECEIVED (timestamp) has an internal value equivalent to
1988-12-25-17.12.30.000000.

SECOND(RECEI VED)

Returns the value 30.

SESSION_USER

SESSION_USER returns the authorization identifier or name of the current user. If there
is no current user, it returns APP.

USER , CURRENT_USER , and SESSION_USER are synonyms.

Syntax

SESSI ON_USER

88

Copyright

SMALLINT

SQRT

SUBSTR

VALUES SESSI ON_USER

The SMALLINT function returns a small integer representation of a number or character
string in the form of a small integer constant.

Syntax

SMALLI NT (Nurmeri cExpression | Character Expression)

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a NumericExpression, the result is the same number that would occur if the argument
were assigned to a small integer column or variable. If the whole part of the argument
is not within the range of small integers, an error occurs. The decimal part of the
argument is truncated if present.

CharacterExpression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer
constant. However, the value of the constant must be in the range of small integers.
The character string cannot be a long string. If the argument is a
CharacterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a small integer column or variable.

The result of the function is a small integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Returns the square root of a floating point number; only the built-in types REAL , FLOAT ,
and DOUBLE PRECISION are supported. The return type for SQRT is the type of the
parameter.

Note: To execute SQRT on other data types, you must cast them to floating point types.
Syntax

SQRT(Fl oat i ngPoi nt Expr essi on)

throws an exception if any row stores a negative nunber:
VALUES SQRT(3421E+09)

-- returns the square root of an INTEGER after casting it as a
-- floating point data type
SELECT SQ?%(myDoubl eCol umm) FROM MyTabl e

VALUES SQRT (CAST(25 AS FLOAT));

The SUBSTR function acts on a character string expression or a bit string expression.
The type of the result is a VARCHAR in the first case and VARCHAR FOR BIT DATA in
the second case. The length of the result is the maximum length of the source type.

Syntax

89

Copyright

SUM

SUBSTR(% Char act er ExEr essi onsi,]
StartPosition [engthOfString])

startPosition and the optional lengthOfString are both integer expressions. (The first
character or bit has a startPosition of 1; if you specify 0, Derby assumes that you mean
1)

A characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type or any
built-in type that is implicitly converted to a string (except a bit expression).

For character expressions, both startPosition and lengthOfString refer to characters. For
bit expressions, both startPosition and lengthOfString refer to bits.

SUBSTR returns NULL if lengthOfString is specified and it is less than zero.

If startPosition is positive, it refers to position from the start of the source expression
(counting the first character as 1). If startPosition is negative, it is the position from the
end of the source.

If lengthOfString is not specified, SUBSTR returns the substring of the expression from
the startPosition to the end of the source expression. If lengthOfString is specified,
SUBSTR returns a VARCHAR or VARBIT of length lengthOfString starting at the
startPosition.

SUM is an aggregate expression that evaluates the sum of the expression over a set of
rows (see Aggregates (set functions)). SUM is allowed only on expressions that evaluate
to numeric data types.

Syntax

SUM ([DISTINCT | ALL] Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates. ALL is assumed if
neither ALL nor DISTINCT is specified. For example, if a column contains the values 1, 1,
1, 1, and 2, SUM(col) returns a greater value than SUM(DISTINCT col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not allowed:

SELECT AVG (DI STINCT flying_time), SUM (DI STINCT nil es)
FROM Fl i ght's

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in numeric data type. If
an expression evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it might
overflow).

-- find all econony seats avail able;
SELECT SUM (econony_seats) FROM Airli nes;

-- use SUMon multiple colum references
-- (find the total nunmber of all seats purchased):

90

Copyright

TIME

TIMESTAMP

SELECT SUM (econony_seats_taken + busi ness_seats_taken +
firstclass_seats taken
as seats_taken FROM FLI GHTAVAI LABI LI TY;

The TIME function returns a time from a value. The argument must be a time, timestamp,
or a valid string representation of a time or timestamp that is not a CLOB or LONG
VARCHAR. The result of the function is a time. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
e If the argument is a time: The result is that time.
e If the argument is a timestamp: The result is the time part of the timestamp.
« If the argument is a string: The result is the time represented by the string.

Syntax

TI ME (expression)

val ues time(current _tinestanp)

If the current time is 5:03 PM, the value returned is 17: 03: 00.

The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified:

¢ If only one argument is specified: It must be a timestamp, a valid string
representation of a timestamp, or a string of length 14 that is not a CLOB or LONG
VARCHAR. A string of length 14 must be a string of digits that represents a valid
date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is the
month, dd is the day, hh is the hour, mm is the minute, and ss is the seconds.

« If both arguments are specified: The first argument must be a date or a valid string
representation of a date and the second argument must be a time or a valid string
representation of a time.

The other rules depend on whether the second argument is specified:

e If both arguments are specified: The result is a timestamp with the date specified by
the first argument and the time specified by the second argument. The microsecond
part of the timestamp is zero.

« If only one argument is specified and it is a timestamp: The result is that timestamp.

« If only one argument is specified and it is a string: The result is the timestamp
represented by that string. If the argument is a string of length 14, the timestamp
has a microsecond part of zero.

Syntax
TI MESTAMP (expression [, expression])

Assume the column START_DATE (date) has a value equivalent to 1988-12-25, and the
column START_TIME (time) has a value equivalent to 17.12.30.

TI MESTAMP(START_DATE, START_TI ME)

91

Copyright

Returns the value '1988-12-25-17.12.30.000000'.

UCASE or UPPER

UCASE or UPPER takes a character expression as a parameter and returns a string in
which all alpha characters have been converted to uppercase.

Format

UCASE or UPPER (Charact er Expression)

If the parameter type is CHAR , the return type is CHAR. Otherwise, the return type is
VARCHAR.

Note: UPPER and LOWER follow the database locale. See territory=Il_CC for more
information about specifying locale.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

-- returns ' ASDL#W
VALUES UPPER(' aSD1#wW)

USER

USER returns the authorization identifier or name of the current user. If there is no
current user, it returns APP.

USER, CURRENT_USER , and SESSION_USER are synonyms.

Syntax

USER

VALUES USER

VARCHAR

The VARCHAR function returns a varying-length character string representation of a
character string.

Character to varchar syntax

VARCHAR (Char acter Stri ngExpression)

CharacterStringExpression
An expression whose value must be of a character-string data type with a maximum
length of 32,672 bytes.

Datetime to varchar syntax

VARCHAR (Dat et i neExpr essi on)

DatetimeExpression
An expression whose value must be of a date, time, or timestamp data type.

92

Copyright

YEAR

Using the EMPLOYEE table, select the job description (JOB defined as CHAR(8)) for
Dolores Quintana as a VARCHAR equivelant:

SELECT VARCHAR(JGB)
FROM EMPLOY!
WHERE LASTNAI\/E = ' QUI NTANA

The YEAR function returns the year part of a value. The argument must be a date,
timestamp, or a valid character string representation of a date or timestamp. The result of
the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the year part of the value, which is an integer between 1
and 9 999.
« If the argument is a date duration or timestamp duration: The result is the year part
of the value, which is an integer between -9 999 and 9 999. A nonzero result has
the same sign as the argument.

Syntax
YEAR (expression)

Select all the projects in the PROJECT table that are scheduled to start (PRSTDATE)
and end (PRENDATE) in the same calendar year.

SELECT * FROM PROJE
WHERE YEAR(PRSTDATB = YEAR(PRENDATE)

Built-in system functions

This section describes the different built-in system functions available with Derby.

SYSCS_UTIL.SYSCS_CHECK_TABLE

The SYSCS_UTI L. SYSCS_CHECK_ TABLE function checks the specified table, ensuring
that all of its indexes are consistent with the base table. When tables are consistent, the
method returns a SMALLINT with value 1. If the tables are inconsistent, the function will
throw an exception.

Syntax

SMALLI NT SYSCS UTI L. SYSCS_CHECK_TABLE(| N SCHEMANAVE VARCHAR(128),
I'N TABLENAME VARCHAR(128) Y

An error will occur if either SCHEMANAME or TABLENAME are null.

Example

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(' SALES' , ' ORDERS');

SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS

93

Copyright

The SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS function returns a
VARCHAR(32762) value representing the query execution plan and run time statistics for
a java.sql.ResultSet. A query execution plan is a tree of execution nodes. There are a
number of possible node types. Statistics are accumulated during execution at each
node. The types of statistics include the amount of time spent in specific operations, the
number of rows passed to the node by its children, and the number of rows returned by
the node to its parent. (The exact statistics are specific to each node type.)

SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS is most meaningful for DML
statements such as SELECT, INSERT, DELETE and UPDATE.

Syntax

VARCHAR(32762) SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS()

Example

VALUES SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS()

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY

The SYSCS_UTI L. SYSCS_CGET_DATABASE_PROPERTY function fetches the value of a
property specified by KEY of the database on the current connection.
Syntax

VARCHAR(32762) SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(| N KEY
VARCHAR(128))

An error will be returned if KEY is null.

Example

VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(' key_val ue_string');

Built-in system procedures

Some built-in procedures are not compatible with SQL syntax used by other relational
databases. These procedures can only be used with Derby.

SYSCS_UTIL.SYSCS_COMPRESS_TABLE

Use the SYSCS_UTI L. SYSCS_COVPRESS_TABLE system procedure to reclaim unused,
allocated space in a table and its indexes. Typically, unused allocated space exists when
a large amount of data is deleted from a table, or indexes are updated. By default, Derby
does not return unused space to the operating system. For example, once a page has
been allocated to a table or index, it is not automatically returned to the operating system
until the table or index is destroyed. SYSCS_UTI L. SYSCS_COWPRESS_TABLE allows you
to return unused space to the operating system.

Syntax
SYSCS _UTI L. SYSCS COVPRESS TABLE SJN SCHEMANAME VARCHAR(128) ,
I N TABLENAME VARCHAR(128), | N SEQUENTI AL SMALLI NT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

94

Copyright

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred’. Passing a null will result in an
error.

SEQUENTIAL
A non-zero input argument of type SMALLINT will force the operation to run in
sequential mode, while an argument of O will force the operation not to run in
sequential mode. Passing a null will result in an error.

SQL example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

cal | SYSCS_UTI L. SYSCS_COWRESS TABLE(' US', 'CUSTOMVER , 1)

Java example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

Cal | abl eSt at enent c¢cs = conn. prepareCal |

(" CALL SYSCS UTI L. SYSCS _COWPRESS TABLE(?, ?, ?2)");
cs.setString(1, " US)I_

cs.setString(2, "CUSTOVER');

cs.setShort (3, (short) 1);

cs. execute();

If the SEQUENTIAL parameter is not specified, Derby rebuilds all indexes concurrently
with the base table. If you do not specify the SEQUENTIAL argument, this procedure can
be memory-intensive and use a lot of temporary disk space (an amount equal to
approximately two times the used space plus the unused, allocated space). This is
because Derby compresses the table by copying active rows to newly allocated space
(as opposed to shuffling and truncating the existing space). The extra space used is
returned to the operating system on COMMIT.

When SEQUENTIAL is specified, Derby compresses the base table and then
compresses each index sequentially. Using SEQUENTIAL uses less memory and disk
space, but is more time-intensive. Use the SEQUENTIAL argument to reduce memory
and disk space usage.

SYSCS_UTI L. SYSCS COVPRESS TABLE cannot release any permanent disk space
back to the operating system until a COMMIT is issued. This means that the space
occupied by both the base table and its indexes cannot be released back to the operating
system until a COMMIT is issued. (Only the disk space that is temporarily claimed by an
external sort can be returned to the operating system prior to a COMMIT.) We
recommended you issue the SYSCS_UTI L. SYSCS_COVPRESS_TABLE procedure in
auto-commit mode.

Note: This procedure acquires an exclusive table lock on the table being compressed. All
statement plans dependent on the table or its indexes are invalidated. For information on
identifying unused space, see the Derby Server and Administration Guide .

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE

Use the SYSCS_UTI L. SYSCS | NPLACE_COWPRESS TABLE system procedure to
reclaim unused, allocated space in a table and its indexes. Typically, unused allocated
space exists when a large amount of data is deleted from a table and there has not been
any subsequent inserts to use the space created by the deletes. By default, Derby does

95

Copyright

not return unused space to the operating system. For example, once a page has been
allocated to a table or index, it is not automatically returned to the operating system until
the table or index is destroyed. SYSCS_UTI L. SYSCS_| NPLACE_COVPRESS_TABLE
allows you to return unused space to the operating system.

This system procedure can be used to force three levels of in-place compression of a
SQL table: PURGE_ROWS, DEFRAGVENT _ROWS, and TRUNCATE_END. Unlike
SYSCS_UTI L. SYSCS_COVPRESS_TABLE(), all work is done in place in the existing
table/index.

Syntax

SYSCS_UTI L. SYSCS_| NPLACE COVPRESS TABLE&
TN SCHENMANAME VAR’CHARS- 8),
I N TABLENANVE VARCHAR&TZS)
I N PURGE_ROAS SIVALLI
I N DEFRAGVENT ROAS SMALLI NT,
I'N TRUNCATE_END SMALLI NT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred’. Passing a null will result in an
error.

PURGE_ROWS
If PURGE_ROWS is set to a non-zero value, then a single pass is made through the
table which will purge committed deleted rows from the table. This space is then
available for future inserted rows, but remains allocated to the table. As this option
scans every page of the table, its performance is linearly related to the size of the
table.

DEFRAGMENT_ROWS
If DEFRAGMENT_ROWS is set to a hon-zero value, then a single defragment pass is
made which will move existing rows from the end of the table towards the front of the
table. The goal of defragmentation is to empty a set of pages at the end of the table
which can then be returned to the operating system by the TRUNCATE_END option.
It is recommended to only run DEFRAGMENT_ROWS if also specifying the
TRUNCATE_END option. The DEFRAGMENT_ROWS option scans the whole table
and needs to update index entries for every base table row move, so the execution
time is linearly related to the size of the table.

TRUNCATE_END
If TRUNCATE_END is set to a non-zero value, then all contiguous pages at the end
of the table will be returned to the operating system. Running the PURGE_ROWS
and/or DEFRAGMENT_ROWS options may increase the number of pages affected.
This option by itself performs no scans of the table.

SQL example
To compress a table called CUSTOMER in a schema called US, using all available
compress options:

cal | SYSCS_UTI L. SYSCS_| NPLACE_COMPRESS TABLE(' US', 'CUSTOMER , 1, 1, 1);

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

cal | SYSCS_UTI L. SYSCS_| NPLACE_COMPRESS TABLE(' US', 'CUSTOMER , 0, 0, 1);

Java example

96

Copyright

To compress a table called CUSTOMER in a schema called US, using all available
compress options:

Cal | abl eSt at enent c¢cs = conn. areCal |
(" CALL SYSCS UTIL svscs COWVP s , TABLE(?, 2, 2, 2, ?2)");

cs.setString(1,
cs.setString(2, R")
cs. set Short (3, short ;
cs. set Short (4, short l ;
cs. set Short (5, short 1);
cs. execute();

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

Cal | abl eSt at enent c¢s = conn. ar eCal |
(" CALL SYSCs UTIII'_ gYSCS COwP ES , TABLE(?, 2, 2, 2, 2)");

cs.setString(1l U)l_
cs.setStrin 2 " CUSTOVER") ;
cs. set Short short) 0);
cs. set Short short) 0);
cs. set Short short) 1);

cs. execut e()

It is recommended that the SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE
procedure be issued in autocommit mode.

Note: This procedure acquires an exclusive table lock on the table being compressed. All
statement plans dependent on the table or its indexes are invalidated. For information on
identifying unused space, see the Derby Server and Administration Guide .

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS

The SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS() system procedure turns a
connection's runtime statistics on or off. By default, the runtime statistics are turned off.
When the runti mest ati sti cs attribute is turned on, Derby maintains information
about the execution plan for each statement executed within the connection (except for
COMMIT) until the attribute is turned off. To turn the runt i mest ati sti cs attribute off,
call the procedure with an argument of zero. To turn the r unt i nest ati sti cs on, call
the procedure with any non-zero argument.

For statements that do not return rows, the object is created when all internal processing
has completed before returning to the client program. For statements that return rows,
the object is created when the first next () call returns O rows orifa cl ose() call is
encountered, whichever comes first.

Syntax

SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS(I N SMALLI NT ENABLE)

Example

-- establish a connection

-- turn on RUNTI MESTATI STI C for connecti on:
CALL SYSCS _UTI L. SYSCS_SET_RUNTI MESTATI STI CS(1) ;
-- execut e conpl ex query here

-- step throug the result sets

-- access runtine statistics informa

CALL SYSCS UTI L. SYSCS_SET RUNTINESTATISTICS(O)

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING

Statistics timing is an attribute associated with a connection that you turn on and off by
using the SYSCS_UTI L. SYSCS_SET_STATI STI CS_TI M NG system procedure.
Statistics timing is turned off by default. Turn statistics timing on only when the

97

Copyright

runti mestati stics attribute is already on. Turning statistics timing on when the
runti mestati stics attribute is off has no effect.

Turn statistics timing on by calling this procedure with a non-zero argument. Turn
statistics timing off by calling the procedure with a zero argument.

When statistics timing is turned on, Derby tracks the timings of various aspects of the
execution of a statement. This information is included in the information returned by the
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function. When statistics
timing is turned off, the SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system
function shows all timing values as zero.

Syntax

SYSCS_UTI L. SYSCS_SET_STATI STI CS_TI M NG(I N SMALLI NT ENABLE)

Example
Toturnthe runti nestati sti cs attribute and then the statistics timing attribute on:

CALL SYSCS UTI L. SYSCS SET_RUNTI MESTATI STI @13;
CALL SYSCS_UTI L. SYSCS_SET_STATI STICS_TIM N& 1) :

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY

Use the SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY system procedure to set or
delete the value of a property of the database on the current connection.

If "WVALUE" is not null, then the property with key value "KEY" is set to "VALUE". If
"VALUE" is null, then the property with key value "KEY" is deleted from the database
property set.

Syntax

SYSCS UTIL, SYSCS GET_DATABASE PRCPERTY(I N KEY VARCHAR(128),
I'N VACUE VARCHAR(32672))

This procedure does not return any results.

JDBC example
Set the der by. | ocks. deadl ockTi neout property to a value of 10:

CallabIeStatenent cSs = conn. BAepareCa

(" CALL SYSCs UTI L. SYSCS_SET TABASE_PROPERTY(?, ?)");
cs.setString derby Tocks. deadl ocKkTi neout ") ;

CS. setStrln 2 "10");

CS. execute(

cs. cl ose()

SQL example
Set the der by. | ocks. deadl ockTi neout property to a value of 10:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY
(' derby. | ocks. deadl ockTi neout', '10');

SYSCS_UTIL.SYSCS_FREEZE_DATABASE

98

Copyright

The SYSCS_UTI L. SYSCS_FREEZE DATABASE system procedure temporarily freezes
the database for backup.

Syntax

SYSCS_UTI L. SYSCS_FREEZE_DATABASE()
No result set is returned by this procedure.

Example

String backupdirecto
Cal | abl eSt at enent cs
("CALL SYSCS UTI L. SYS
cs. execute()T
cs.close();)
[] user supplied code to take full backup of backuPdl rectory"
[/ now unfreeze the database once backup has conpl et ed:

Cal | abl eSt at ement c¢s = conn. E E

(" CALL SYSCS UTI L. SYSCS UNFREEZ DATABASE());

cs. execute()T

cs.close();

c /rrybackups/ + JCal endar . get Today() ;

P BATABASE(F

ry
SCS_F

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE

The SYSCS_UTI L. SYSCS_UNFREEZE DATABASE system procedure unfreezes a
database after backup.

Syntax

SYSCS_UTI L. SYSCS_UNFREEZE_DATABASE()
No result set is returned by this procedure.

Example

String backupdirectory = "c: /rrybackups/ " + JCal endar . get Today() ;
Cal | abl eSt at enment c¢s = conn. BA Cal |

(" CALL SYSCS UTI L. SYSCS_FRE E TABASE() ") ;

Cs. execute()T

cs.cl ose();

user subpl ed code to take full backup of "backupdirectory"
/1 now unfreeze the database once backup has conpl et ed:
Cal | abl eSt at eme CS = conn

nt
("CALL SYSCS _UTI L. $Yscs_ UNFREEZE DA DATABASE())
cs. execute()T
cs.close();

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE

The SYSCS_UTI L. SYSCS_CHECKPO NT_DATABASE system procedure checkpoints the
database by flushing all cached data to disk.

Syntax
SYSCS_UTI L. SYSCS_CHECKPO NT_DATABASE()
No result is returned by this procedure.

JDBC example

Cal | abl eSt at enent c¢cs = conn. O‘oar eCal |

(" CALL SYSCS UTI L. SYSCS_CHE NT_DATABASE() ") ;
cs. execute()T

cs.close();

99

Copyright
SQL Example

CALL SYSCS_UTI L. SYSCS_CHECKPO NT_DATABASE() ;

SYSCS_UTIL.SYSCS_BACKUP_DATABASE

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE system procedure backs up the
database to a specified backup directory.

Syntax

SYSCS_UTI L. SYSCS_BACKUP_DATABASE(| N BACKUPDI R VARCHAR())

No result is returned from the procedure.

backupDir
An input argument of type VARCHAR(32672) that specifies the full system path to the
database directory to be backed up.

JDBC example

The following example backs up the database to the c: / backupdi r directory:

Cal | abl eSt at ement c¢s = conn. areCal |
("CALL SYSCS UTI L. SYSCS BACK P ATABASE(?) ") ;
cs.setString(l, "c:/backupdir"y;

Cs. execut e ?

cs.close();

SQL example

The following example backs up the database to the c: / backupdi r directory:

CALL SYSCS_UTI L. SYSCS_BACKUP_DATABASE(' c: / backupdir');

SYSCS_UTIL.SYSCS _EXPORT_TABLE

The SYSCS_UTI L. SYSCS_EXPORT_TABLE system procedure exports all of the data
from a table to an operating system file in a delimited data file format.

Syntax

SYSCS _UTI L. SYSCS EXPORT TABLE '(:I N_SCHEVANANME VARCHAR(128),
I N TABLENAME VARCHAR %28) | LENAME VARCHAR| 326(7;1-20\

I N COLUVNDELI M TER N CHARACTERDELI M R(1),
I N CODESET VARCHAR(128))

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema name of the
table. Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR(128) that specifies the name of the table/view
from which the data is to be exported. Passing a null will result in an error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the name of the file to
which data is to be exported. If the complete path to the file is not specified, the
export procedure uses the current directory and the default drive as the destination. If
the name of a file that already exists is specified, the export procedure overwrites the
contents of the file; it does not append the information. Passing a null will result in an

100

Copyright
error.
COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).
CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark ().
CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified
code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.
If you create a schema or table name as a non-delimited identifier, you must pass the
name to the export procedure using all upper-case characters. If you created a schema,
table, or column name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Example

The following example shows how to export information from the STAFF table in a
SAMPLE database to the nyfi |l e. del file.

CAH_ SYSIC|S)_UTI L. SYSCS_EXPORT_TABLE (null, 'STAFF , "'nyfile.del', null,
nu nu

For more information on exporting, see the Derby Tools and Utilities Guide .

SYSCS_UTIL.SYSCS_EXPORT_QUERY

The SYSCS_UTI L. SYSCS_EXPORT_QUERY system procedure exports the results of a
SELECT statement to an operating system file in a delimited data file format.

Syntax

SYSCS_UTI L. SYSCS_EXPORT ERYF\II N_SELECTSTATENENT VARCHAR(32672),
[N FI LENAVE VARCHAR(32672 COLUMNDEL| M TER CHAR 3
I N CHARACTERDELI M TER (1), I'N CODESET VARCHAR(128)}

No result is returned from the procedure.

SELECTSTATEMENT
An input argument of type VARCHAR(32672) that specifies the select statement
(query) that will return the data to be exported. Passing a NULL value will result in an
error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the name of the file to
which data is to be exported. If the complete path to the file is not specified, the
export procedure uses the current directory and the default drive as the destination. If
the name of a file that already exists is specified, the export procedure overwrites the
contents of the file; it does not append the information. Passing a null will result in an
error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER

101

Copyright

An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified
code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.

Example

The following example shows how to export the information about employees in
Department 20 from the STAFF table in the SAMPLE database to the nyfi | e. del file.

CALL SYSCS UTI L. SYSCS EXPORT_QUERY(' sel ect * from staff where dept =20
c:/output7awards.del™, nulli null, null);

For more information on exporting, see the Derby Tools and Utilities Guide .

SYSCS_UTIL.SYSCS_IMPORT_TABLE

The SYSCS_UTI L. SYSCS_| MPORT_TABLE system procedure imports data from an input
file into all of the columns of a table. If the table receiving the imported data already
contains data, you can either replace or append to the existing data.

Syntax

SYSCS _UTI L. SYSCS INPCFU'TABLE &IN SCHEVANANVE VARCHAR(128)
I N TABLENAME VARCHAR(i 28) | LENAME VARCHAR| 3267 2

I N COLUVNDELI M TER ? I N CHARACTERDELI M R(1),
I N CODESET VARCHAR(128) N REPLACE SMALLI NT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the table
into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains the
data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark ().

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database

102

Copyright

code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.
REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data. The
table definition and the index definitions are not changed. INSERT mode adds the
imported data to the table without changing the existing table data. Passing a NULL
will result in an error.
If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all upper-case characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Example

The following example imports data into the st af f table from a delimited data file called
nyfil e. del with the percentage character (%) as the string delimiter, and a semicolon
(;) as the column delimiter:

CALL SYSCS UTI L. SYSCS | MPORT_TABLE
(nul'l, "STAFF', 'c:/output/nyfile.del', '";', "%, null,0);

For more information on importing, see the Derby Tools and Utilities Guide .

SYSCS_UTIL.SYSCS_IMPORT_DATA

The SYSCS_UTI L. SYSCS_| MPORT_DATA system procedure imports data to a subset of
columns in a table. You choose the subset of columns by specifying insert columns. This
procedure is also used to import a subset of column data from a file by specifying column
indexes.

Syntax

SYSCS UTI L. SYSCS | MPORT DATA (| N _SCHENANAME VARCHA)7
I N TABLENAME VARCHAR 128) I N | NSERTCOLUMWNS VARCHAR 326 2%
I N COLUMNI NDEXES V, '%P I N FI LENAME V,

I N COLUVNDELI M TER CHAR(? CHARACTERDEL| M TER (1)
I N CODESET VARCHAR(128), 1N REPLACE SVALL) NT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the table
into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

INSERTCOLUMNS
An input argument of type VARCHAR (32762) that specifies the column names
(separated by commas) of the table into which the data is to be imported. Passing a
NULL value will import the data into all of the columns of the table.

COLUMNINDEXES
An input argument of type VARCHAR (32762) that specifies the indexes (humbered
from 1 and separated by commas) of the input data fields to be imported. Passing a
NULL value will use all of the input data fields in the file.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains the
data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

103

Copyright

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).
CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
guotation mark ().
CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.
REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data. The
table definition and the index definitions are not changed. You can only use the
REPLACE mode if the table exists. INSERT mode adds the imported data to the table
without changing the existing table data. Passing a NULL will result in an error.
If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all upper-case characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Example
The following example imports some of the data fields from a delimited data file called
dat a. del into the st af f table:

CALL SYSCS UTI L. SYSCS | MPORT DATA
(NULL, ' STAFF', null,™1,3,47, 'data.del’', null, null, null,O0)

For more information on importing, see the Derby Tools and Utilities Guide .

Data types

This section describes the data types used in Derby.

Built-In type overview

The SQL type system is used by the language compiler to determine the compile-time
type of an expression and by the language execution system to determine the runtime
type of an expression, which can be a subtype or implementation of the compile-time
type.

Each type has associated with it values of that type. In addition, values in the database or
resulting from expressions can be NULL, which means the value is missing or unknown.
Although there are some places where the keyword NULL can be explicitly used, it is not
in itself a value, because it needs to have a type associated with it.

The syntax presented in this section is the syntax you use when specifying a column's
data type in a CREATE TABLE statement.

Numeric types

Numeric types used in Derby.

104

Copyright

Numeric type overview
Numeric types include the following types, which provide storage of varying sizes:
¢ Integer numerics
e SMALLINT (2 bytes)
* INTEGER (4 bytes)
* BIGINT (8 bytes)
« Approximate or floating-point numerics
¢ REAL (4 bytes)
« DOUBLE PRECISION (8 bytes)
e FLOAT (an alias for DOUBLE PRECISION or REAL)
e Exact numeric
« DECIMAL (storage based on precision)
« NUMERIC (an alias for DECIMAL)

Numeric type promotion in expressions

In expressions that use only integer types, Derby promotes the type of the result to at
least INTEGER. In expressions that mix integer with non-integer types, Derby promotes
the result of the expression to the highest type in the expression. Type Promotion in
Expressions shows the promotion of data types in expressions.

Tablel. Type Promotion in Expressions

Largest Type That Appears in Expression Resulting Type of Expression
DOUBLE PRECISION DOUBLE PRECISION

REAL DOUBLE PRECISION
DECIMAL DECIMAL

BIGINT BIGINT

INTEGER INTEGER

SMALLINT INTEGER

For example:

-- returns doubl e precision
VALUES 1 + l
-- returns a deC| mal
VALUES 1 + 1.
an |nt eP
VALUES CAST (1 AS TNT) + CAST (1 AS INT)

Storing values of one numeric data type in columns of another numeric data type

An attempt to put a floating-point type of a larger storage size into a location of a smaller
size fails only if the value cannot be stored in the smaller-size location. For example:

create tabl e rrytable (r REAL, d DOUBLE PRECI SI ON);

0 rows inse te/u dat ed/ del et ed

INSERT INTO rrE) d% val ues ES 4028236E38, 3.4028235E38);
ERROR X0X41: he nu er 4028236E3 is outside the range for
the data type REA

You can store a floating point type in an INTEGER column; the fractional part of the
number is truncated. For example:

I NSERT_ | NTO mnyt abl e(i nt eger _col um) val ues (1.09e0);
row i nserted/ updat ed/ del eted

SELECT i nt eger col um

FROM nyt abl e

105

Copyright

Integer types can always be placed successfully in approximate numeric values, although
with the possible loss of some precision.

Integers can be stored in decimals if the DECIMAL precision is large enough for the
value. For example:

|\) > insert into tabl e gdem mal _col um)
ALUES 8555555555 666666 66625;) .

ERROR X0Y21: The nunber '55555555556666666666' is outside the
range of the target DECH MAL/ NUMERI C(5, 2) dat atype.

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. For example:

I NSERT | NTO nyt abl e
ERROR 22003: The re
data type | NTEGER.

(int_colum) val ues 2147483648;
u

c
sulting value is outside the range for the

Note: When truncating trailing digits from a NUMERIC value, Derby rounds down.
Scale for decimal arithmetic

SQL statements can involve arithmetic expressions that use decimal data types of
different precisions (the total number of digits, both to the left and to the right of the
decimal point) and scales (the number of digits of the fractional component). The
precision and scale of the resulting decimal type depend on the precision and scale of the
operands.

Given an arithmetic expression that involves two decimal operands:
« Ip stands for the precision of the left operand
« rp stands for the precision of the right operand
« |s stands for the scale of the left operand
« rs stands for the scale of the right operand

Use the following formulas to determine the scale of the resulting data type for the
following kinds of arithmetical expressions:
« multiplication

Is+rs

e division
3l-lp+lis-rs

e AVG()
max(max(ls, rs), 4)

« all others

max(ls, rs)

For example, the scale of the resulting data type of the following expression is 27:

11.0/1111. 33
I >

o/
31 3+1-2=27

106

Copyright

Use the following formulas to determine the precision of the resulting data type for the
following kinds of arithmetical expressions:
* multiplication

Ip+rp
 addition
2*(p-s)+s
 division
Ip-Is+rp+max(ls+rp-rs+1,4)
» all others

max(lp - Is, rp - rs) + 1 + max(ls, rs)

Data type assighments and comparison, sorting, and ordering
Tablel. Assignments allowed by Derby
This table displays valid assignments between data types in Derby. A "Y" indicates that
the assignment is valid.

Types
S | BID|IR|{D|F|C|J]V]|]L|]C|V]|]L|C|B|D|T|T
M| N | EIE|O|L|H|A|O|H]A]|]O|]L]|]L]A | |
Al T|G|C|A|U|O|A|R|INJA|JR|N|O|O|T| M| M
L| E | | LIBlJ]A|R|C|G|IR|C|G|B|B]|]E|E|E
L|G|[N|M L| T H H S
| E| T]| A E A|lV|F| ALV T
N| R L RIA|[|O|R|A A
T R|R R M
C F| C P
H| B| O| H
A | R| A
R| T R
B
D | F
Al T] O
T R
Al D
A| B
T |
Al T
D
A
T
A
SMALL INT Y |[Y Y Y |Y |Y |Y |- - - - - - - - - - R
INTEGER Y |[Y |Y |Y Y |Y |Y |- - - - - - - - - - R
BIGINT Y |[Y |Y Y |Y|Y |Y |- - - - - - - - - - -
DECIMAL Y |[Y Y Y |Y |Y |Y |- - - - - - - - - R R
REAL Y |[Y Y Y |Y |Y |Y |- - - - - - - - - - R
DOUBLE Y |[Y |Y |Y Y |Y |Y |- - - - - - - - - - R
FLOAT Y |[Y |Y Y |Y |Y |Y |- - - - - - - - - R R
CHAR - - - - - - - Y |Y |Y |- - - Y |- Y |Y |Y

107

Copyright

Types
S| 1| B|D|IR|D|J]F|C|lV]|]L|]C|lV]L|C|B|D|T]|]T
MIN|]I|E|JEJ]O|L|H|A|O|JH]A]|O|]L|L|A]|I]/I
Al T|G|C|A|J|U|J]O|J]A|JR|N|A|JR|N|O|O|T|M|M
L{E|]Il|]Il|]L|B|J]A|JR|]C|G|R|C|G|B|B|E]|]E]|E
L{G|N|M L|T H H S
| E| T]| A E A|lV|F| ALV T
N| R L RIA|JO| R| A A
T R|R R M
C F| C P
H|B| O| H
A | R| A
R| T R
B
D | F
Al T]O
T R
Al D
A| B
T |
Al T
D
A
T
A
VARCHAR Y |[Y |Y - Y Y |Y |Y
LONG VARCHAR Y |Y |Y - Y
CHAR FOR BIT - - - Y |Y |Y
DATA
VARCHAR FOR - - - Y |[Y |Y
BIT DATA
LONG VARCHAR - - - Y |[Y |Y
FOR BIT DATA
CLOB Y |Y |Y - Y
BLOB - - - - Y
DATE Y |Y |- - Y
TIME Y |Y |- - Y
TIME STAMP Y |Y |- - Y

Tablel. Comparisons allowed by Derby

This table displays valid comparisons between data types in Derby. A "Y" indicates that

the comparison is allowed.

108

Copyright

F—=2WnkE<z=0

F—Suw

O<<HwWw

nmaJ10m

O-10m

14020 ><xoI<x uwLox om-—*F

O<HE<L

SOOI wLox m—F A<kF<

OI<<Kx LOXx m—F A<EL

4020 ><xoIgo

>SXxOI<CXx

OI<X

L 10 <+

OO0 Dmauw

X Ww<g -4

OWO—=< -

D—-0—-Z+

—ZFFWUOouWr

N==<dd1—2ZF

Y Y |Y |Y |Y Y |Y
Y |[Y Y |Y |Y Y |Y
Y |[Y |Y |Y |Y Y |Y
Y Y |Y |Y [Y Y |Y
Y Y Y |Y |Y Y |Y
Y Y Y Y Y [|Y |Y
Y Y Y |Y |Y Y |Y

Types

SMALL INT
INTEGER

BIGINT

DECIMAL
REAL

DOUBLE
FLOAT
CHAR

VARCHAR

LONG VARCHAR
CHAR FOR BIT

DATA

VARCHAR FOR
BIT DATA

LONG VARCHAR
FOR BIT DATA
CLOB

BLOB

DATE

TIME

TIME STAMP

BIGINT

109

Copyright

BLOB

BIGINT provides 8 bytes of storage for integer values.

Syntax

Bl G NT

Corresponding compile-time Java type

java.lang.Long

JDBC metadata type (java.sql.Types)
BIGINT

Minimum value
-9223372036854775808 (java.lang.Long.MIN_VALUE)

Maximum value
9223372036854775807 (java.lang.Long.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions .

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. Integer types can always
successfully be placed in approximate numeric values, although with the possible loss of
some precision. BIGINTs can be stored in DECIMALS if the DECIMAL precision is large
enough for the value.

9223372036854775807

A BLOB (binary large object) is a varying-length binary string that can be up to
2,147,483,647 characters long. Like other binary types, BLOB strings are not associated
with a code page. In addition, BLOB strings do not hold character data.

The length is given in bytes for BLOB unless one of the suffixes K, M, or G is given,
relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.

Note: Length is specified in bytes for BLOB.
Syntax

{ BLOB | BINARY LARGE OBJECT } (length [{K |[M|G}]))
Corresponding compile-time Java type
java.sql.Blob

JDBC metadata type (java.sql.Types)
BLOB

Use the getBlob method on the java.sql.ResultSet to retrieve a BLOB handle to the

110

Copyright

CHAR

underlying data.

Related information

see java.sql.Blob and java.sql.Clob

create table pictures(nane varchar(32) not null primary key, pic
bl ob(16M) : p ((32) p y Yy, P
--find all | ogotype pictures))

sel ect Iength?plc , hame from pictures where nane |ike ' % ogo% ;
--find all image doubl es (bl ob conparsi onsL

sel ect a.nanme as doubl e _one, b.nane as doubl e_two

frompictures as a, pictures as b

where a.nane < b. nane

and a.BIC = b.pic

order by 1, 2;

CHAR provides for fixed-length storage of strings.

Syntax

CHAR[ACTER] [(!ength)]
length is an unsigned integer constant. The default length for a CHAR is 1.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)
CHAR

Derby inserts spaces to pad a string value shorter than the expected length. Derby
truncates spaces from a string value longer than the expected length. Characters other
than spaces cause an exception to be raised. When binary comparison operators are
applied to CHARs, the shorter string is padded with spaces to the length of the longer
string.

When CHARs and VARCHARSs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR.

Implementation-defined aspects

The only limit on the length of CHAR data types is the value
java.lang.Integer.MAX_VALUE.

-- within a string constant use two single quotation marks
-- to reﬁresent a single quotation mark or apostrophe
VALUES 'hello this is Joe''s string'

CHAR FOR BIT DATA

111

Copyright

CLOB

A CHAR FOR BIT DATA type allows you to store byte strings of a specified length. It is
useful for unstructured data where character strings are not appropriate.

Syntax

{ CHAR | CHARACTER }[(length)] FOR BI T DATA
length is an unsigned integer literal designating the length in bytes.

The default length for a CHAR FOR BIT DATA type is 1., and the maximum size of length
is 254 bytes.

JDBC metadata type (java.sql.Types)

BINARY

CHAR FOR BIT DATA stores fixed-length byte strings. If a CHAR FOR BIT DATA value
is smaller than the target CHAR FOR BIT DATA, it is padded with a 0x20 byte value.

Comparisons of CHAR FOR BIT DATA and VARCHAR FOR BIT DATA values are
precise. For two bit strings to be equal, they must be exactly the same length. (This
differs from the way some other DBMSs handle BINARY values but works as specified in
SQL-92))

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

CREATE TABLE t (b CHAR(ZEEF(P Bl T DATA);
| NSERT INTO t VALUES (X DE');

SELECT *

FROM t ; .

i3- yi el ds the fol | owi ng out put

A CLOB (character large object) value can be up to 2,147,483,647 characters long. A
CLOB is used to store unicode character-based data, such as large documents in any
character set.

The length is given in number characters for both CLOB, unless one of the suffixes K, M,
or G is given, relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.

Length is specified in characters (unicode) for CLOB.

Syntax

{CLOB | CHARACTER LARGE OBJECT}(length [{{K |[M|G]))
Corresponding Compile-Time Java Type
java.sqgl.Clob

JDBC Metadata Type (java.sql.Types)

112

Copyright

DATE

CLOB

Corresponding Compile-Time Java Type
java.sql.Clob

JDBC Metadata Type (java.sql.Types)
CLOB

Use the getClob method on the java.sql.ResultSet to retrieve a CLOB handle to the
underlying data.

Related Information

See java.sql.Blob and java.sql.Clob .

i mport java.sql.*;
Fubllc class clob
public statlc void main(String[] args) {

try {
) String url =
"j dbc: der by: cl obberycl ob; create=true";

Cl ass. f or Name(" or g. apache der b%/ j dbc. EnbeddedDri ver") . newl nst ance() ;
Connec | on conn =
Dri ver Manager . get Connect i on(ur |

Statenment s = conn.createStatenent();
S. executeUpdate(CREATE TABLE docurent s (id INT, text CLOB(64

conn. commit ();

[l --- add a file
f||_e

K))"):

java.io.File _=new1ava|oF|Ie(asciifile.txt");
int fileLength (int) file.length();
[l - first, create an input stream
ava. i o. InputStreamf n = nerava io.Fileln utStrear’r(flle)
re ar edSt at enent = con prepareStatemsntEJ
docunents VALUES (2, 7));

ps setlnt(l 1477) ;

/1l - set the value of the |nPut paraneter to the input stream
ps.setAsciiStrean(2, fin, eLengt h)

ps. execute();

conn. commi t (§;

[l --- readi ng t he col ums

ResultSet rs _=_s.executeQuery("SELECT text FROM documents

VWHERE id = 1477");

whi l'e (rs nex%})% {
j ava. sql . aclob = rs.getd ob(1);
Java.io.lnputStreamip = rs.getAsciiStrean(1);

read();

0) {

o}

r

'£0)
em out prlnt((char)c);
ip.read();

O@ﬂ)

g)/stem out.print("\n");

} ca%ch (Excepti on e? E
System out . print "Error! "+e);

DATE provides for storage of a year-month-day in the range supported by java.sql.Date.
Syntax

113

Copyright

DECIMAL

DATE

Corresponding compile-time Java type

java.sql.Date

JDBC metadata type (java.sql.Types)
DATE

Dates, times, and timestamps must not be mixed with one another in expressions.

Any value that is recognized by the java.sqgl.Date method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for DATE:

- mm dd
%%ygd/yyyy
dd. mm yyyy

The first of the three formats above is the java.sgl.Date format.

The year must always be expressed with four digits, while months and days may have
either one or two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES DATE(' 1994- 02-23")
VALUES ' 1993-09-01

DECIMAL provides an exact numeric in which the precision and scale can be arbitrarily
sized. You can specify the precision (the total number of digits, both to the left and the
right of the decimal point) and the scale (the number of digits of the fractional
component). The amount of storage required is based on the precision.

Syntax

{ DECIMAL | DEC } [(precision [, scale])]

The precision must be between 1 and 31. The scale must be less than or equal to the
precision.

If the scale is not specified, the default scale is 0. If the precision is not specified, the
default precision is 5.

An attempt to put a numeric value into a DECIMAL is allowed as long as any
non-fractional precision is not lost. When truncating trailing digits from a DECIMAL value,
Derby rounds down.

For example:

-- this cast loses only fractional greci si on
\1/al ues cast (1.798765 AS decimal (5,2));

114

Copyright

DOUBLE

-- this cast does
\1/al ues cast (1798765 AS deC| mal (5,2));

ERROR 22003: The resulting value i s outside the range
for the data type DECI MAL/ NUMERI C(5, 2) .

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions .

See also Storing values of one numeric data type in columns of another numeric data
type .

When two decimal values are mixed in an expression, the scale and precision of the
resulting value follow the rules shown in Scale for decimal arithmetic .

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata type (java.sql.Types)
DECIMAL

VALUES 123. 456
VALUES 0. 001

Integer constants too big for BIGINT are made DECIMAL constants.

The DOUBLE data type is a synonym for the DOUBLE PRECISION data type.

Syntax

DOUBLE

DOUBLE PRECISION

The DOUBLE PRECISION data type provides 8-byte storage for numbers using IEEE
floating-point notation.

Syntax

DOUBLE PREC!I SI ON

or, alternately

DOUBLE
DOUBLE can be used synonymously with DOUBLE PRECISION.

Limitations

DOUBLE value ranges:

115

Copyright

FLOAT

Smallest DOUBLE value: -1.79769E+308
Largest DOUBLE value: 1.79769E+308
Smallest positive DOUBLE value: 2.225E-307
Largest negative DOUBLE value: -2.225E-307

These limits are different from the j ava. | ang. Doubl eJava type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception.

Numeric floating point constants are limited to a length of 30 characters.
-- this exanple will fail because the constant is too |ong:
val ues 01234567890123456789012345678901€0;

Corresponding compile-time Java type

java.lang.Double

JDBC metadata type (java.sql.Types)
DOUBLE

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions .

See also Storing values of one numeric data type in columns of another numeric data
type .

Examples

3421E+09
425. 43E9

9E-10
4356267544. 32333E+30

The FLOAT data type is an alias for a REAL or DOUBLE PRECISION data type,
depending on the precision you specify.

Syntax

FLOAT [(precision)]

The default precision for FLOAT is 53 and is equivalent to DOUBLE PRECISION. A
precision of 23 or less makes FLOAT equivalent to REAL. A precision of 24 or greater
makes FLOAT equivalent to DOUBLE PRECISION. If you specify a precision of 0, you
get an error. If you specify a negative precision, you get a syntax error.

JDBC metadata type (java.sql.Types)

REAL or DOUBLE

Limitations

If you are using a precision of 24 or greater, the limits of FLOAT are similar to the limits of
DOUBLE.

If you are using a precision of 23 or less, the limits of FLOAT are similar to the limits of

116

Copyright

INTEGER

REAL.

INTEGER provides 4 bytes of storage for integer values.

Syntax

{ INTEGER | INT }

Corresponding Compile-Time Java Type

java.lang.Integer

JDBC Metadata Type (java.sql.Types)
INTEGER

Minimum Value
-2147483648 (java.lang.Integer.MIN_VALUE)

Maximum Value
2147483647 (java.lang.Integer.MAX_ VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions .

See also Storing values of one numeric data type in columns of another numeric data
type .

3453
425

LONG VARCHAR

The LONG VARCHAR type allows storage of character strings with a maximum length of
32,700 characters. It is identical to VARCHAR, except that you do not have to specify a
maximum length when creating columns of this type.

Syntax

LONG VARCHAR

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)
LONGVARCHAR

When you are converting from Java values to SQL values, no Java type corresponds to
LONG VARCHAR.

LONG VARCHAR FOR BIT DATA

117

Copyright

NUMERIC

REAL

The LONG VARCHAR FOR BIT DATA type allows storage of bit strings up to 32,700
bytes. It is identical to VARCHAR FOR BIT DATA , except that you do not have to specify
a maximum length when creating columns of this type.

Syntax

LONG VARCHAR FOR BI T DATA

NUMERIC is a synonym for DECIMAL and behaves the same way. See DECIMAL .

Syntax

NUMERI C [(precision [, scale])]

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata Ttype (java.sql.Types)
NUMERIC

123. 456
.001

The REAL data type provides 4 bytes of storage for numbers using IEEE floating-point
notation.

Syntax

REAL

Corresponding compile-time Java type

java.lang.Float

JDBC metadata type (java.sql.Types)
REAL

Limitations
REAL value ranges:

¢ Smallest REAL value: -3.402E+38
e Largest REAL value: 3.402E+38

¢ Smallest positive REAL value: 1.175E-37
e Largest negative REAL value: -1.175E-37

These limits are different from the j ava. | ang. Fl oat Java type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If

118

Copyright

SMALLINT

TIME

the values are too small, you will receive an exception. The arithmetic operations take
place with double arithmetic in order to detect under flows.

Numeric floating point constants are limited to a length of 30 characters.

-- this exanple will fail because the constant is too |ong:
val ues 01234567890123456789012345678901€0;

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions .

See also Storing values of one numeric data type in columns of another numeric data
type .

Constants always map to DOUBLE PRECISION; use a CAST to convert a constant to a
REAL.

SMALLINT provides 2 bytes of storage.

Syntax

SMVALLI NT

Corresponding compile-time Java type

java.lang.Short

JDBC metadata type (java.sql.Types)
SMALLINT

Minimum value
-32768 (java.lang.Short.MIN_VALUE)

Maximum value
32767 (java.lang.Short. MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions .

See also Storing values of one numeric data type in columns of another numeric data
type .

Constants in the appropriate format always map to INTEGER or BIGINT, depending on
their length.

TIME provides for storage of a time-of-day value.

Syntax

TI ME

119

Copyright

Corresponding compile-time Java type

java.sql.Time

JDBC metadata type (java.sql.Types)
TIME

Dates, times, and timestamps cannot be mixed with one another in expressions except
with a CAST.

Any value that is recognized by the java.sqgl.Time method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for TIME:

hh m ss]
hh[rr'rr] {AM | PM
The first of the three formats above is the java.sql.Time format.

Hours may have one or two digits. Minutes and seconds, if present, must have two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES TI I\/EE) 15: 09: 02")
VALUES ' 15: 09: 02

TIMESTAMP

TIMESTAMP stores a combined DATE and TIME value to be stored. It permits a
fractional-seconds value of up to nine digits.

Syntax

TI MESTAMP

Corresponding compile-time Java type

java.sql.Timestamp

JDBC metadata type (java.sql.Types)
TIMESTAMP

Dates, times, and timestamps cannot be mixed with one another in expressions.
Derby supports the following formats for TIMESTAMP:

mm dd hh nnnnnn
wy}); mm dd- hh[m [nnnnnn]”
The first of the two formats above is the java.sqgl.Timestamp format.

The year must always have four digits. Months, days, and hours may have one or two
digits. Minutes and seconds, if present, must have two digits. Nanoseconds, if present
may have between one and six digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

120

Copyright

VARCHAR

Examples

VALUES ' 1960-01-01 23: 03: 20’
VALUES TI MESTAMP(' 1962-09- 23 03: 23: 34. 234")
VALUES TI MESTAMP(' 1960- 01- 01 23:03: 20")

VARCHAR provides for variable-length storage of strings.

Syntax

{ VARCHAR | CHAR VARYI NG | CHARACTER VARYI NG } (| engt h)

length is an unsigned integer constant, and it must not be greater than the constraint of
the integer used to specify the length, the value java.lang.Integer.MAX_VALUE.

The maximum length for a VARCHAR string is 32,672 characters.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)
VARCHAR

Derby does not pad a VARCHAR value whose length is less than specified. Derby
truncates spaces from a string value when a length greater than the VARCHAR expected
is provided. Characters other than spaces are not truncated, and instead cause an
exception to be raised. When binary comparison operators are applied to VARCHARS,
the lengths of the operands are not altered, and spaces at the end of the values are
ignored.

When CHARs and VARCHARSs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR, not VARCHAR.

VARCHAR FOR BIT DATA

The VARCHAR FOR BIT DATA type allows you to store binary strings less than or equal
to a specified length. It is useful for unstructured data where character strings are not
appropriate (e.g., images).

Syntax

{ VARCHAR | CHAR VARYI NG | CHARACTER VARYING } (length) FOR BI T DATA
length is an unsigned integer literal designating the length in bytes.

Unlike the case for the CHAR FOR BIT DATA type, there is no default length for a
VARCHAR FOR BIT DATA type. The maximum size of the length value is 32,672 bytes.

JDBC metadata type (java.sql.Types)
VARBINARY

121

Copyright

VARCHAR FOR BIT DATA stores variable-length byte strings. Unlike CHAR FOR BIT
DATA values, VARCHAR FOR BIT DATA values are not padded out to the target length.

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

The type of a byte literal is always a VARCHAR FOR BIT DATA, not a CHAR FOR BIT
DATA.

SQL expressions

Syntax for many statements and expressions includes the term Expression, or a term for
a specific kind of expression such as TableSubquery. Expressions are allowed in these
specified places within statements. Some locations allow only a specific type of
expression or one with a specific property. Table of Expressions , lists all the possible
SQL expressions and indicates where they are allowed.

If not otherwise specified, an expression is permitted anywhere the word Expression
appears in the syntax. This includes:

¢ SelectExpression

« UPDATE statement (SET portion)

¢ VALUES Expression

« WHERE clause

Of course, many other statements include these elements as building blocks, and so
allow expressions as part of these elements.
Tablel. Table of Expressions

Expression Type Explanation

Gen

eral

expiessions

Column reference

Allowed in SelectExpression s, UPDATE
statements, and the WHERE clauses of You must qualify the column-Name by the table
data manipulation statements. name or correlation name if it is ambiguous.

A column-Name that references the value of the
column made visible to the expression containing the
Column reference.

The qualifier of a column-Name must be the
correlation name, if a correlation name is given to a
table that is in a FROM clause . The table name is no
longer visible as a column-Name qualifier once it has
been aliased by a correlation name.

Constant

Most built-in data types typically have constants
associated with them (as shown in Data types).

NULL

Allowed in CAST expressions or in INSERT
VALUES lists and UPDATE SET clauses.
Using it in a CAST expression gives it a
specific data type.

NULL is an untyped constant representing the
unknown value.

Dynamic parameter

A dynamic parameter is a parameter to an SQL
statement for which the value is not specified when

122

Copyright

Expression Type

Explanation

Allowed anywhere in an expression where
the data type can be easily deduced. See

Dynamic parameters .

the statement is created. Instead, the statement has
a question mark (?) as a placeholder for each
dynamic parameter. See Dynamic parameters .

Dynamic parameters are permitted only in prepared
statements. You must specify values for them before
the prepared statement is executed. The values
specified must match the types expected.

CAST expression

Lets you specify the type of NULL or of a dynamic
parameter or convert a value to another type. See
CAST .

scalar subquery

Subquery that returns a single row with a single
column. See ScalarSubquery .

table subquery

Allowed as a tableExpression in a FROM
clause and with EXISTS, IN, and quantified

comparisons.

Subquery that returns more than one column and
more than one row. See TableSubquery .

Conditional expression

A conditional expression chooses an expression to
evaluate based on a boolean test.

Boo
exp

Nu
exp

ean
essions
eric

essions

+, -, *, /, unary + and - expressions

+, -, *, /, unary + and -

Evaluate the expected math operation on the
operands. If both operands are the same type, the
result type is not promoted, so the division operator
on integers results in an integer that is the truncation
of the actual numeric result. When types are mixed,
they are promoted as described in Data types .

Unary + is a noop (i.e., +4 is the same as 4). Unary -
is the same as multiplying the value by -1, effectively
changing its sign.

Returns the average of a set of numeric values. AVG

expiessions

AVG

! SUM Returns the sum of a set of numeric values. SUM

' Returns the number of characters in a character or
LENGTH bit string. See LENGTH .
LOWER See LCASE or LOWER .

! Returns the count of a set of values. See COUNT ,
COUNT COUNT(¥) .

Character

A CHAR or VARCHAR value that uses

The wildcards % and _ make a character string a

pattern against which the LIKE operator can look for

123

Copyright

Expression Type

Explanation

wildcards.

Used in a LIKE pattern.

a match.

Concatenation expression

In a concatenation expression, the concatenation
operator, "[|", concatenates its right operand to the
end of its left operand. Operates on character and bit
strings. See Concatenation .

Built-in string functions

The built-in string functions act on a String and return
a string. See LTRIM , LCASE or LOWER , RTRIM
SUBSTR , and UCASE or UPPER

USER functions

User functions return information about the current
user as a String. See CURRENT_USER ,
SESSION_USER, and USER

Datg¢/time
expiessions

CURRENT_DATE

Returns the current date. See CURRENT_DATE .

CURRENT_TIME

Returns the current time. See CURRENT_TIME .

CURRENT_TIMESTAMP

Returns the current timestamp. See
CURRENT_TIMESTAMP .

Expression precedence

Precedence of operations from highest to lowest is:
¢ (), ?, Constant (including sign), NULL, ColumnReference, ScalarSubquery, CAST
e LENGTH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, and

other built-ins

unary + and -

*. 1, || (concatenation)

binary + and -

comparisons, quantified comparisons, EXISTS, IN, IS NULL, LIKE, BETWEEN, IS

NOT
AND
OR

You can explicitly specify precedence by placing expressions within parentheses. An
expression within parentheses is evaluated before any operations outside the

parentheses are applied to it.

Example

£3+4)*9

age < 16 OR age > 65) AND enpl oyed = TRUE

Boolean expression

Boolean expressions are allowed in WHERE clauses and in check constraints. Boolean
expressions in check constraints have limitations not noted here; see CONSTRAINT
clause for more information. Boolean expressions in a WHERE clause have a highly

124

Copyright
liberal syntax; see WHERE clause , for example.

A boolean expression can include a boolean operator or operators. These are listed in
SQL Boolean Operators .

Tablel. SQL Boolean Operators

Operator Explanation and Example Syntax
AND, OR, NOT Evaluate any operand(s) that are boolean
expressions {

Expr essi on
AND

(orig_ai rport ='SFO) OR
? airport = 'GRU)]
-- ret_urn true Expr essi on
Expr essi on
OR
| Expr essi on
NOT
Expr essi on
}
Comparisons <, =, >, <=, >=, <> are applicable to all of the
built-in types.
Expr essi on
DATEE 1998-02-26') <
ATE(' 1998- 03-01") {
-- returns true <
>
<= |
>=
<>
}
Expr essi on
IS NULL, IS NOT NULL | Test whether the result of an expression is null
or not.
Expr essi on
WHERE M ddl eNarme | S NULL I%U LNOT]

LIKE

Attempts to match a character expression to a
character pattern, which is a character string
that includes one or more wildcards.

% matches any number (zero or more) of

Char act er Expr essi on

characters in the corresponding position in first [NOT | LIKE

character expression. Char act er Expr essi on
W thW | dCard

_ matches one character in the corresponding [ESCAPE

position in the character expression.

Any other character matches only that
character in the corresponding position in the
character expression.

city LIKE ' Sant _

To treat % or _ as constant characters, escape

gls,capemar acter

125

Copyright

Operator Explanation and Example Syntax
the character with an optional escape
character, which you specify with the ESCAPE
clause.
SELECT a FROM t abA WHERE a
LIKE ' % ' ESCAPE '='
BETWEEN Tests whether the first operand is between the
second and third operands. The second
operand must be less than the third operand. _
Applicable only to types to which <= and >= EXPrN(eﬁSI on
can be applied. BETWEE
Expr essi on
WHERE booki ng_dat e BETVEEN AND
DA TEE 1998- 02- 26' g AND Expressi on
DATE(' 1998- 03- 01"
IN Operates on table subquery or list of values.
Returns TRUE if the left expression's value is {
in the result of the table subquery or in the list _
of values. Table subquery can return multiple [EXN%EI.ejSS' on
rows but must return a single column. I'N
WHERE booki ng_dat e I N
fSELE.CT B0k, g dat e FROM Tabl eSubquery
El)ot el Booki ngs WHERE roons_avai |l abl e =
I
Expr essi on
i
Expr essi on
Expr Eési on
}
EXISTS Operates on a table subquery. Returns TRUE
if the table subquery returns any rows, and [NOT] EXISTS

FALSE if it returns no rows. Table subquery
can return multiple columns (only if you use *
to denote multiple columns) and rows.

WHERE EXISTS

SELECT *

ROM Fl i ght's.
WHERE dest _ai rport = ' SFO
AND orig_airport = 'GRU)

Tabl eSubquery

Quantified comparison

A quantified comparison is a comparison
operator (<, =, >, <=, >=, <>) with ALL or ANY
or SOME applied.

Operates on table subqueries, which can
return multiple rows but must return a single
column.

If ALL is used, the comparison must be true for
all values returned by the table subquery. If
ANY or SOME is used, the comparison must
be true for at least one value of the table

Expr essi on

Conpar i sonOper at or

ALL
ANY
SOVE

Tabl eSubquery

126

Copyright

Operator

Explanation and Example Syntax

subquery. ANY and SOME are equivalent.

WHERE nornmal _rate < ALL
(SELECT budget /550 FROM Gr oups)

Dynamic parameters

You can prepare statements that are allowed to have parameters for which the value is
not specified when the statement is prepared using PreparedStatement methods in the

JDBC API. These parameters are called dynamic parameters and are represented by a
?.

The JDBC API documents refer to dynamic parameters as IN, INOUT, or OUT
parameters. In SQL, they are always IN parameters.

New: Derby supports the interface ParameterMetaData, new in JDBC 3.0. This interface
describes the number, type, and properties of prepared statement parameters. See the
Derby Developer's Guide for more information.

You must specify values for them before executing the statement. The values specified
must match the types expected.

Dynamic parameters example

Prepar edSt atement ps2 = conn. pre;])_areSt at erment (
PDATE Hot eI Avail abi | it roons_available = " +
groonrs avai |l abl e - QI\E ERE hotel Td =? " +
ND book| ng_date BETWEEN ? AND ?"7:
-- this sanmple code sets the val ues of dynam c parameters
-- to be the val ues of program vari abl es
ps2.setInt (1, nunber %
ps2.setlnt(2, theHoteI ho elld);
ps2. set Dat e(3, arrlval)
ps2. set Date 4 departure):
updat eCount ps2. execut eUpdat e() ;

Where dynamic parameters are allowed

You can use dynamic parameters anywhere in an expression where their data type can
be easily deduced.

1. Use as the first operand of BETWEEN is allowed if one of the second and third
operands is not also a dynamic parameter. The type of the first operand is assumed
to be the type of the non-dynamic parameter, or the union result of their types if
both are not dynamic parameters.

WHERE ? BETWEEN DATEE) 1996- 01 01') AND ?
-- types assuned to be DATES

2. Use as the second or third operand of BETWEEN is allowed. Type is assumed to
be the type of the left operand.

WHERE DATE(' 1996- 01- 01" %) BI:_I'V\EEN ? AND ?
-- types assuned to be DATE

3. Use as the left operand of an IN list is allowed if at least one item in the list is not
itself a dynamic parameter. Type for the left operand is assumed to be the union
result of the types of the non-dynamic parameters in the list.

127

Copyright

VWHERE ? NOT I N (?, ' Santi ago')
-- types assuned to be CHAR

Use in the values list in an IN predicate is allowed if the first operand is not a
dynamic parameter or its type was determined in the previous rule. Type of the
dynamic parameters appearing in the values list is assumed to be the type of the
left operand.

WHERE

Fl oat Col um
IN(?, 2, 2

-- types assuned to be FLOAT

For the binary operators +, -, *, /, AND, OR, <, >, =, <>, <=, and >=, use of a
dynamic parameter as one operand but not both is permitted. Its type is taken from
the other side.

VWHERE ? < CURRENT_TI| MESTAMP
-- type assuned to be a TI MESTAVP

Use in a CAST is always permitted. This gives the dynamic parameter a type.

CALL val ueOf (CAST (? AS VARCHAR(10)))

Use on either or both sides of LIKE operator is permitted. When used on the left, the
type of the dynamic parameter is set to the type of the right operand, but with the
maximum allowed length for the type. When used on the right, the type is assumed
to be of the same length and type as the left operand. (LIKE is permitted on CHAR
and VARCHAR types; see Concatenation for more information.)

VWHERE ? LIKE ' Santi %
type assumed to be CHAR with a | ength of
java.l ang. | nt eger. MAX_VALUE

A ? parameter is allowed by itself on only one side of the || operator. That is, "? || ?"
is not allowed. The type of a ? parameter on one side of a || operator is determined
by the type of the expression on the other side of the || operator. If the expression
on the other side is a CHAR or VARCHAR, the type of the parameter is VARCHAR
with the maximum allowed length for the type. If the expression on the other side is
a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA type, the type of the
parameter is VARCHAR FOR BIT DATA with the maximum allowed length for the

type.

SELECT BI Tcol um || ?

FROM User Tabl e o

éiTTy e assuned to be CHAR FOR BI T DATA of length specified for
co

In a conditional expression, which uses a ?, use of a dynamic parameter (which is
also represented as a ?) is allowed. The type of a dynamic parameter as the first
operand is assumed to be boolean. Only one of the second and third operands can
be a dynamic parameter, and its type will be assumed to be the same as that of the
other (that is, the third and second operand, respectively).

SELECT c1 IS NULL ? ?: cl)]
-- allows you to speC|fy a default vaI ue at executlon time
-- dynam ¢’ paraneter assunmed to be the tyB

-- y?utﬁannot have dynami ¢ parameters on oth Si des

-- 0 e :

128

Copyright

10.

11.

12.

13.
14.

15.

16.

17.

A dynamic parameter is allowed as an item in the values list or select list of an
INSERT statement. The type of the dynamic parameter is assumed to be the type of
the target column. A ? parameter is not allowed by itself in any select list, including
the select list of a subquery, unless there is a corresponding column in a UNION,
INTERSECT, or EXCEPT (see no. 16 , below) that is not dynamic.

INSERT INTO t VALUES (?)

-- d¥nam c paranmeter assuned to be the type
-- of the only colum in table t

| NSERT I NTO t~ SELECT ?

t2
-- not all owed

A ? parameter in a comparison with a subquery takes its type from the expression
being selected by the subquery. For example:

SELECT *
FROM t abl
WHERE ? = (SELECT x FROM t ab2)

SELECT *

FROM t abl

WHERE ? = ANY (SELECT x FROM tab?2) _)
-- In both cases, the type of the dynam c parameter is
-- assunmed to be the sane as the type of tab2.x.

A dynamic parameter is allowed as the value in an UPDATE statement. The type of
the dynamic parameter is assumed to be the type of the column in the target table.

UPDATE t2 SET c2 =? -- type is assuned to be type of c2

A dynamic parameter is not allowed as the operand of the unary operators - or +.
LENGTH allow a dynamic parameter. The type is assumed to be a maximum length
VARCHAR type.

SELECT LENGTH(?)

Qualified comparisons.

? = SOVE (SELECT 1 FROM t)
- is valid. D%nam CR?J?/Ir amet er assumed to be | NTEGER type
= SOVE (SELECT ? F t

- is valid. Dynam c paranmeter assuned to be | NTEGER type.

[Ny}

A dynamic parameter is allowed to represent a column if it appears in a UNION,
INTERSECT, or EXCEPT expression; Derby can infer the data type from the
corresponding column in the expression.

SELECT ?

FROM t

UNI ON SELECT 1

FROMt

- - %namc araneter assuned to be | NT
VALUES

1 UNI ON VALUES ?
-- dynam c paraneter assuned to be INT

A dynamic parameter is allowed as the left operand of an IS expression and is
assumed to be a boolean.

Once the type of a dynamic parameter is determined based on the expression it is in, that
expression is allowed anywhere it would normally be allowed if it did not include a
dynamic parameter. For example, above we said that a dynamic parameter cannot be

129

Copyright
used as the operand of a unary -. It can, however, appear within an expression that is the
operand of a unary minus, such as:

- (1+?)

The dynamic parameter is assumed to be an INTEGER (because the binary operator +'s
other operand is of the type INT). Because we know its type, it is allowed as the operand
of a unary -.

130

Copyright

SQL reserved words

This section lists all the Derby reserved words, including those in the SQL-92 standard.
Derby will return an error if you use any of these keywords as an identifier name unless
you surround the identifier name with quotes (). See Rules for SQL92 identifiers .
ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BIT
BOOLEAN
BOTH
BY
CALL
CASCADE
CASCADED
CASE
CAST
CHAR
CHARACTER
CHECK
CLOSE
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
COUNT
CREATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
CURSOR
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFERRABLE

131

Copyright

DEFERRED
DELETE
DESC
DESCRIBE
DIAGNOSTICS
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE

END
ENDEXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXPLAIN
EXTERNAL
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FOUND
FROM
FULL
FUNCTION
GET
GET_CURRENT_CONNECTION
GLOBAL
GO

GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IMMEDIATE
IN
INDICATOR
INITIALLY
INNER
INOUT
INPUT
INSENSITIVE
INSERT
INT
INTEGER
INTERSECT
INTO

IS
ISOLATION
JOIN

KEY

LAST

LEFT

132

Copyright

LIKE
LONGINT
LOWER
LTRIM
MATCH
MAX

MIN
MINUTE
NATIONAL
NATURAL
NCHAR
NVARCHAR
NEXT

NO

NOT

NULL
NULLIF
NUMERIC
OF

ON

ONLY
OPEN
OPTION
OR
ORDER
ouT
OUTER
OUTPUT
OVERLAPS
PAD
PARTIAL
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
READ
REAL
REFERENCES
RELATIVE
RESTRICT
REVOKE
RIGHT
ROLLBACK
ROWS
RTRIM
SCHEMA
SCROLL
SECOND
SELECT
SESSION_USER
SET
SMALLINT
SOME
SPACE
SQL
SQLCODE

133

Copyright

SQLERROR
SQLSTATE
SUBSTR
SUBSTRING
SUM
SYSTEM_USER
TABLE
TEMPORARY

TIMEZONE_HOUR
TIMEZONE_MINUTE

TO
TRAILING
TRANSACTION
TRANSLATE
TRANSLATION
TRUE

UNION
UNIQUE
UNKNOWN
UPDATE
UPPER

USER

USING
VALUES
VARCHAR
VARYING
VIEW
WHENEVER
WHERE

WITH

WORK

WRITE

XML
XMLEXISTS
XMLPARSE
XMLSERIALIZE
YEAR

134

Copyright

Derby support for SQL-92 features

There are four levels of SQL-92 support:
* SQL92E

Entry
e SQL92T
Transitional, a level defined by NIST in a publication called FIPS 127-2
e SQL92I
Intermediate
* SQL92F
Full
Tablel. Support for SQL-92 Features: Basic types

Feature Source Derby
SMALLINT SQL92E yes
INTEGER SQL92E yes
DECIMAL(p,s) SQL92E yes
NUMERIC(p,s) SQL92E yes
REAL SQL92E yes
FLOAT(p) SQL92E yes
DOUBLE PRECISION SQL92E yes
CHAR(n) SQL92E yes

Tablel. Support for SQL-92 Features: Basic math operations

Feature Source Derby

+,% -, /, unary +, unary - SQL92E yes

Tablel. Support for SQL-92 Features: Basic comparisons

Feature Source Derby

<, >, <= >=, <> = SQL92E yes

Tablel. Support for SQL-92 Features: Basic predicates

Feature Source Derby

BETWEEN, LIKE, NULL SQL92E yes

Tablel. Support for SQL-92 Features: Quantified predicates

Feature Source Derby

IN, ALL/SOME, EXISTS SQL92E yes

Tablel. Support for SQL-92 Features: schema definition

135

Copyright

Feature Source Derby
tables SQL92E yes
views SQL92E yes
privileges SQL92E yes
Tablel. Support for SQL-92 Features: column attributes
Feature Source Derby
default values SQL92E yes
nullability SQL92E yes
Tablel. Support for SQL-92 Features: constraints (non-deferrable)
Feature Source Derby
NOT NULL SQL92E yes (not stored in
SYSCONSTRAINTS)
UNIQUE/PRIMARY KEY SQL92E yes
FOREIGN KEY SQL92E yes
CHECK SQL92E yes
View WITH CHECK OPTION SQL92E no, since views are not updatable

Tablel. Support for SQL-92 Features: Cursors

Feature Source Derby
DECLARE, OPEN, FETCH, SQL92E done through JDBC
CLOSE
UPDATE, DELETE CURRENT SQL92E yes

Tablel. Support for SQL-92 Features: Dynamic SQL 1

Feature Source Derby
ALLOCATE / DEALLOCATE / SQL92T done through JDBC
GET / SET DESCRIPTOR
PREPARE / EXECUTE / SQL92T done through JDBC
EXECUTE IMMEDIATE
DECLARE, OPEN, FETCH, SQL92T done through JDBC
CLOSE, UPDATE, DELETE
dynamic cursor
DESCRIBE output SQL92T done through JDBC

Tablel. Support for SQL-92 Features: Basic inform

ation schema

Feature Source Derby
TABLES SQL92T SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS
VIEWS SQL92T SYS.SYSTABLES,

136

Copyright

Feature

Source

Derby

SYS.SYSVIEWS,
SYS.SYSCOLUMNS

COLUMNS

SQL92T

SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS

Tablel. Support for SQL-92 Features: Basic schema manipulation

Feature Source Derby
CREATE / DROP TABLE SQL92T yes
CREATE / DROP VIEW SQL92T yes
GRANT / REVOKE SQL92T no
ALTER TABLE ADD COLUMN SQL92T yes
ALTER TABLE DROP COLUMN | SQL92T no

Tablel. Support for SQL-92 Features: Joined table

Feature Source Derby
INNER JOIN SQL92T yes
natural join SQL92T no
LEFT, RIGHT OUTER JOIN SQL92T yes
join condition SQLO2T yes
named columns join SQL92T yes

Tablel. Support for SQL-92 Features: Joined table

Feature Source Derby
simple DATE, TIME, SQL92T yes, not INTERVAL
TIMESTAMP, INTERVAL
datetime constants SQL92T yes
datetime math SQL92T can do with Java methods
datetime comparisons SQL92T yes
predicates: OVERLAPS SQL92T can do with Java methods

Tablel. Support for SQL-92 Features: VARCHAR

Feature Source Derby
LENGTH SQLO2T yes
concatenation (||) SQL92T yes

Tablel. Support for SQL-92 Features: Transaction isolation

Feature Source Derby

READ WRITE / READ ONLY SQL92T through JDBC, database
properties, and storage media.

RU, RC, RR, SER SQL92T yes

137

Copyright

Tablel. Support for SQL-92 Features: Multiple schemas per user

Feature Source Derby
SCHEMATA view SQL92T SYS.SYSSCHEMAS
Tablel. Support for SQL-92 Features: Privilege tables
Feature Source Derby
TABLE_PRIVILEGES SQL92T no
COLUMNS_PRIVILEGES SQLO2T no
USAGE_PRIVILEGES SQL92T no
Tablel. Support for SQL-92 Features: Table operations
Feature Source Derby
UNION relaxations SQL92I yes
EXCEPT SQL92| yes
INTERSECT SQL92| yes
CORRESPONDING SQL92I no

Tablel. Support for SQL-92 Features: Schema defi

nition statement

Feature Source Derby

CREATE SCHEMA SQL92I yes, partially
Tablel. Support for SQL-92 Features: User authorization

Feature Source Derby
SET SESSION SQL92I use set schema
AUTHORIZATION
CURRENT_USER SQL92I yes
SESSION_USER SQL92I yes
SYSTEM_USER SQL92I no

Tablel. Support for SQL-92 Features: Constraint tables

Feature Source Derby
TABLE CONSTRAINTS SQL92I SYS.SYSCONSTRAINTS
REFERENTIAL CONSTRAINTS | SQL92I SYS.SYSFOREIGNKEYS
CHECK CONSTRAINTS SQL92I SYS.SYSCHECKS

Tablel. Support for SQL-92 Features: Documentation schema

Feature Source Derby
SQL_FEATURES SQL92I/FIPS 127-2 use JDBC DatabaseMetaData
SQL_SIZING SQL92I/FIPS 127-2 use JDBC DatabaseMetaData

138

Copyright

Tablel. Support for SQL-92 Features: Full DATETIME

Feature Source Derby
precision for TIME and SQL92F yes
TIMESTAMP
Tablel. Support for SQL-92 Features: Full character functions
Feature Source Derby
POSITION expression SQL92F use Java methods or LOCATE
UPPER/LOWER functions SQL92F yes

Tablel. Support for SQL-92 Features: Miscellaneous

Feature Source Derby

Delimited identifiers SQL92E yes

Correlated subqueries SQL92E yes

Insert, Update, Delete statements| SQL92E yes

Joins SQL92E yes

Where qualifications SQL92E yes

Group by SQL92E yes

Having SQL92E yes

Aggregate functions SQL92E yes

Order by SQL92E yes

Select expressions SQL92E yes

Select * SQL92E yes

SQLCODE SQL92E no, deprecated in SQL-92

SQLSTATE SQL92E yes

UNION, INTERSECT, and SQL92T yes

EXCEPT in views

Implicit numeric casting SQL92T yes

Implicit character casting SQL92T yes

Get diagnostics SQL92T use JDBC SQLExceptions

Grouped operations SQL92T yes

Quialified * in select list SQL92T yes

Lowercase identifiers SQL92T yes

nullable PRIMARY KEYs SQL92T no

Multiple module support SQL92T no (not required and not part of
JDBC)

Referential delete actions SQL92T CASCADE, SET NULL,
RESTRICT, and NO ACTION.

CAST functions SQL92T yes

INSERT expressions SQLI2T yes

Explicit defaults SQL92T yes

Keyword relaxations SQL92T yes

139

Copyright

Feature Source Derby

Domain definition SQL92I no

CASE expression SQL92| partial support

Compound character string SQL92I use concatenation

constants

LIKE enhancements SQL92I yes

UNIQUE predicate SQL92| no

Usage tables SQL92| SYS.SYSDEPENDS

Intermediate information schema | SQL92I use JDBC DatabaseMetaData
and Derby system tables

Subprogram support SQL92I not relevant to JDBC, which is
much richer

Intermediate SQL Flagging SQL92| no

Schema manipulation SQL92| yes

Long identifiers SQL92I yes

Full outer join SQL92I no

Time zone specification SQL92| no

Scrolled cursors SQL92| partial (scrolling insensitive result
sets through JDBC 2.0)

Intermediate set function support | SQL92I partial

Character set definition SQL92| supports Java locales

Named character sets SQL92| supports Java locales

Scalar subquery values SQL92I yes

Expanded null predicate SQL92| yes

Constraint management SQL92| yes (ADD/DROP CONSTRAINT)

FOR BIT DATA types SQL92F yes

Assertion constraints SQL92F no

Temporary tables SQL92F IBM specific syntax only

Full dynamic SQL SQL92F no

Full value expressions SQL92F yes

Truth value tests SQL92F yes

Derived tables in FROM SQL92F yes

Trailing underscore SQL92F yes

Indicator data types SQL92F not relevant to JDBC

Referential name order SQL92F no

Full SQL Flagging SQL92F no

Row and table constructors SQL92F yes

Catalog name qualifiers SQL92F no

Simple tables SQL92F no

Subqueries in CHECK SQL92F no, but can do with Java methods

Union join SQL92F no

Collation and translation SQL92F Java locales supported

140

Copyright

Feature Source Derby
Referential update actions SQL92F RESTRICT and NO ACTION.
Can do others with triggers.
ALTER domain SQL92F no
INSERT column privileges SQL92F no
Referential MATCH types SQL92F no
View CHECK enhancements SQL92F no, views not updateable
Session management SQL92F use JDBC
Connection management SQL92F use JDBC
Self-referencing operations SQL92F yes
Insensitive cursors SQL92F Yes through JDBC 2.0
Full set function SQL92F partially
Catalog flagging SQL92F no
Local table references SQL92F no
Full cursor update SQL92F no

141

Copyright

Derby System Tables

Derby includes system tables.

You can query system tables, but you cannot alter them.

All of the above system tables reside in the SYS schema. Because this is not the default
schema, qualify all queries accessing the system tables with the SYS schema name.

The recommended way to get more information about these tables is to use an instance
of the Java interface java.sgl.DatabaseMetaData.

SYSALIASES
Describes the procedures and functions in the database.

Column Name | Type Length [Nullability | Contents

ALIASID CHAR 36 false unique identifier for the alias

ALIAS VARCHAR 128 false alias

SCHEMAID CHAR 36 true reserved for future use

JAVACLASSNAM LONGVARCHAR 255 false the Java class name

ALIASTYPE CHAR false 'F' (function)'P' (procedure)

NAMESPACE CHAR false 'F' (function)'P' (procedure)

SYSTEMALIAS | BOOLEAN ' false true (system supplied or

built-in alias)
false (alias created by a
user)

ALIASINFO ' true A Java interface that
org.apachg.derby. encapsulates the additional
catalog.AliasInfo: information that is specific to

an alias
This class is not part of the
public API
SPECIFICNAME | VARCHAR 128 false system-generated identifier

SYSCHECKS
Describes the check constraints within the current database.

Column Name Type Length | Nullability | Contents

CONSTRAINTID CHAR 36 false unique identifier for the
constraint

CHECKDEFINITION LONG VARCHAR ' false text of check constraint
definition

REFERENCEDCOLUMNS | org.apache.derby.catalo| false description of the columns

ReferencedColumns:

referenced by the check

142

Copyright

Column Name

Type

Length

Nullability

Contents

This class is not part of
the public API.

constraint

SYSCOLUMNS

Describes the columns within all tables in the current database:

Column Name

Type

Length

Nullable

Contents

REFERENCEID

CHAR

36

false

Identifier for table (join
with
SYSTABLES.TABLEID)

COLUMNNAME

CHAR

128

false

column or parameter
name

COLUMNNUMBER

INT

false

the position of the column
within the table

COLUMNDATATYPE

org.apache.derby.catal
TypeDescriptor

This class is not part
of the public API.

false

system type that
describes precision,
length, scale, nullability,
type name, and storage
type of data

COLUMNDEFAULT

java.io.Serializable

true

for tables, describes
default value of the
column. The toString()
method on the object
stored in the table returns
the text of the default
value as specified in the
CREATE TABLE or
ALTER TABLE
statement.

COLUMNDEFAULTID

CHAR

36

true

unique identifier for the
default value

AUTOINCREMENT
COLUMNVALUE

BIGINT

true

what the next value for
column will be, if the
column is an identity
column

AUTOINCREMENT
COLUMNSTART

BIGINT

true

initial value of column (if
specified), if it is an
identity column

AUTOINCREMENT
COLUMNINC

BIGINT

true

amount column value is
automatically
incremented (if specified),
if the column is an identity
column

SYSCONGLOMERATES

Describes the conglomerates within the current database. A conglomerate is a unit of

143

Copyright

storage and is either a table or an index.

Column Name Type Length Nullable | Contents

SCHEMAID CHAR 36 false schema id for the
conglomerate

TABLEID CHAR 36 false identifier for table (join
with
SYSTABLES.TABLEID

CONGLOMERATENUMBER BIGINT 8 false conglomerate id for
the conglomerate
(heap or index)

CONGLOMERATENAME VARCHAR 128 true index name, if
conglomerate is an
index, otherwise the
table ID

ISINDEX BOOLEAN 1 false whether or not
conglomerate is an
index

DESCRIPTOR ' true system type describing

org.apache.derby. the index
catalog.IndexDescript(

This class is not part

of the public API.

ISCONSTRAINT BOOLEAN 1 true whether or not
conglomerate is a
system-generated
index enforcing a
constraint

CONGLOMERATEID CHAR 36 false unique identifier for the
conglomerate

SYSCONSTRAINTS

Describes the information common to all types of constraints within the current database
(currently, this includes primary key, unique, foreign key, and check constraints).

Column Name Type Length Nullable | Contents
CONSTRAINTID CHAR 36 false unigue identifier for constraint
TABLEID CHAR 36 false identifier for table (join with
SYSTABLES.TABLEID)
CONSTRAINTNAME VARCHAR 128 false constraint name (internally
generated if not specified by user)
TYPE CHAR 1 false P (primary key), U (unique), C
(check), or F (foreign key)
SCHEMAID CHAR 36 false identifier for schema that the
constraint belongs to (join with
SYSSCHEMAS.SCHEMAID)
STATE CHAR false E for enabled, D for disabled
REFERENCECOUNT INTEGER false the count of the number of foreign
key constraints that reference this

144

Copyright

Column Name

Type Length

Nullable

Contents

constraint; this number can be
greater than zero only for
PRIMARY KEY and UNIQUE
constraints

SYSDEPENDS

Describes the dependency relationships between persistent objects in the database.
Persistent objects can be dependents (they depend on other objects) and/or providers
(other objects depend on them).

Providers are tables, conglomerates, and constraints. Dependents are views.

Column Name Type Length Nullable Contents
DEPENDENTID CHAR 36 false unique identifier for the
dependent
DEPENDENTFINDER org.apache.derby.catalo| 1 false system type describing
DependableFinder: the view
This class is not part of
the public API.
PROVIDERID CHAR 36 false unique identifier for the
provider
PROVIDERFINDER org.apache.derby.catalo| 1 false system type describing
DependableFinder This the tables,
class is not part of the conglomerates, and
public API. constraints that are
providers
SYSFILES
Describes jar files stored in the database.
Column Name Type Length Nullability Contents
FILEID CHAR 36 false unique identifier for the jar
file
SCHEMAID CHAR 36 false ID of the jar file's schema
(join with SYSSCHEMAS.
SCHEMAID)
FILENAME VARCHAR 128 false SQL name of the jar file
GENERATIONID BIGINT ' false Generation number for the
file. When jar files are
replaced, their generation
identifiers are changed.

SYSFOREIGNKEYS

Describes the information specific to foreign key constraints in the current database.

145

Copyright

Derby generates a backing index for each foreign key constraint; the name of this index
is the same as SYSFOREIGNKEYS.CONGLOMERATEID.

Column Name

Type

Length

Nullability

Contents

CONSTRAINTID

CHAR

36

false

unique identifier for the foreign key
constraint (join with
SYSCONSTRAINTS.
CONSTRAINTID)

CONGLOMERATEID

CHAR

36

false

unique identifier for index backing up
the foreign key constraint (join with
SYSCONGLOMERATES.
CONGLOMERATEID)

KEYCONSTRAINTID

CHAR

36

false

unique identifier for the primary key or
unique constraint referenced by this
foreign key
(SYSKEYS.CONSTRAINTID or
SYSCONSTRAINTS.
CONSTRAINTID)

DELETERULE

CHAR

false

R for NO ACTION (default), S for
RESTRICT, C for CASCADE, U for
SET NULL

UPDATERULE

CHAR

false

R for NO ACTION(default), S for
restrict

SYSKEYS

Describes the specific information for primary key and unigue constraints within the
current database. Derby generates an index on the table to back up each such
constraint. The index name is the same as SYSKEYS.CONGLOMERATEID.

Column Name Type Length Nullable | Contents

CONSTRAINTID CHAR 36 false unigue identifier for constraint

CONGLOMERATEID CHAR 36 false unigue identifier for backing
index

SYSSCHEMAS
Describes the schemas within the current database.

Column Name Type Length Nullability | Contents

SCHEMAID CHAR 36 false unique identifier for the schema

SCHEMANAME VARCHAR 128 false schema name

AUTHORIZATIONID VARCHAR 128 false the authorization identifier of the

owner of the schema

SYSSTATISTICS

Describes the schemas within the current database.

146

Copyright

Column Name Type Length Nullability | Contents
STATID CHAR 36 false unique identifier for the statistic
REFERENCEID CHAR 36 false the conglomerate for which the
statistic was created (join with
SYSCONGLOMERATES.
CONGLOMERATEID)
TABLEID CHAR 36 false the table for which the information
is collected
CREATIONTIMESTAMP | TIMESTAMP | ' false time when this statistic was
created or updated
TYPE CHAR 1 false type of statistics
VALID BOOLEAN ' false whether the statistic is still valid
COLCOUNT INTEGER ' false number of columns in the statistic
STATISTICS ' true statistics information
org.apache.
derby.catalog.
Statistics:
This class is
not part of the
public API.
SYSSTATEMENTS
Contains one row per stored prepared statement.
Column Name Type Length | Nullability | Contents
STMTID CHAR 36 false unique identifier for the
statement
STMTNAME VARCHAR 128 false name of the statement
SCHEMAID CHAR 36 false the schema in which the
statement resides
TYPE CHAR 1 false always 'S'
VALID BOOLEAN ' false TRUE if valid, FALSE if
invalid
TEXT LONG VARCHAR ' false text of the statement
LASTCOMPILED TIMESTAMP ' true time that the statement
was compiled
COMPILATION SCHEMAID | CHAR 36 false id of the schema
containing the statement
USINGTEXT LONG VARCHAR ' true text of the USING clause
of the CREATE
STATEMENT and ALTER
STATEMENT statements
SYSTABLES

147

Copyright

Describes the tables and views within the current database.

GRANULARITY

T

Column Name Type Length Nullable Contents

TABLEID CHAR 36 false unigue identifier for table or view

TABLENAME VARCHAR 128 false table or view name

TABLETYPE CHAR 1 false 'S' (system table), 'T' (user table), or V'
(view)

SCHEMAID CHAR 36 false schema id for the table or view

LOCK CHAR 1 false Indicates the lock granularity for the table

(table level locking)

R

(row level locking, the default)

SYSTRIGGERS

Describes the database's triggers.

Column Name Type Length| Nullabilit] Contents
TRIGGERID CHAR 36 false unique identifier for the trigger
TRIGGERNAME VARCHAR 128 false name of the trigger
SCHEMAID CHAR 36 false id of the trigger's schema (join
with SYSSCHEMAS.
SCHEMAID)
CREATIONTIMESTAMP TIMESTAMP ' false time the trigger was created
EVENT CHAR 1 false 'U' for update, 'D' for delete, 'I'
for insert
FIRINGTIME CHAR false '‘B' for before 'A' for after
TYPE CHAR false 'R for row, 'S’ for statement
STATE CHAR false 'E' for enabled, 'D' for
disabled
TABLEID CHAR 36 false id of the table on which the
trigger is defined
WHENSTMTID CHAR 36 true used only if there is a WHEN
clause (not yet supported)
ACTIONSTMTID CHAR 36 true id of the stored prepared
statement for the
triggered-SQL-statement (join
with SYSSTATEMENTS.
STMTID)
REFERENCEDCOLUMNS | org.apache.derby.cata| ' true descriptor of the columns
ReferencedColumns: referenced by UPDATE
This class is not part triggers
of the public API.
TRIGGERDEFINITION LONG VARCHAR ' true text of the action SQL
statement
REFERENCINGOLD BOOLEAN ' true whether or not the

148

Copyright

Column Name Type Length| Nullabilit] Contents

OLDREFERENCINGNAME, if
non-null, refers to the OLD
row or table

REFERENCINGNEW BOOLEAN ' true whether or not the
NEWREFERENCINGNAME,
if non-null, refers to the NEW
row or table

OLDREFERENCINGNAME | VARCHAR 128 true pseudoname as set using the
REFERENCING OLD AS
clause

NEWREFERENCINGNAME | VARCHAR 128 true pseudoname as set using the
REFERENCING NEW AS
clause

Any SQL text that is part of a triggered-SQL-statement is compiled and stored in
SYSSTATEMENTS. ACTIONSTMTID and WHENSTMTID are foreign keys that
reference SYSSTATEMENTS.STMTID. The statements for a trigger are always in the
same schema as the trigger.

SYSVIEWS
Describes the view definitions within the current database.
Column Name Type Length Nullability | Contents
TABLEID CHAR 36 false unique identifier for the view

(called TABLEID since itis
joined with column of that
name in SYSTABLES)

VIEWDEFINITION LONG VARCHAR ' false text of view definition
CHECKOPTION CHAR 1 false '‘N' (check option not

supported yet)
COMPILATION CHAR 36 false id of the schema containing
SCHEMAID the view

149

Copyright

Derby exception messages and SQL states

The JDBC driver returns SQLExceptions for all errors from Derby. If the exception
originated in a user type but is not itself an SQLEXxception, it is wrapped in an
SQLException. Derby-specific SQLExceptions use SQLState class codes starting with X.
Standard SQLState values are returned for exceptions where appropriate.

Unimplemented aspects of the JDBC driver return an SQLException with a message
starting "Feature not implemented" and an SQLState of XJZZZ. These unimplemented
parts are for features not supported by Derby.

Derby supplies values for the message and SQLState fields. In addition, Derby
sometimes returns multiple SQLExceptions using the nextException chain. The first
exception is always the most severe exception, with SQL-92 Standard exceptions
preceding those that are specific to Derby.

For information on processing SQLEXxceptions, see the Derby Developer's Guide .

SQLState and error message reference

The following tables list SQLStates for exceptions. Exceptions that begin with an X are
specific to Derby. Note that some SQLStates specific to the network client might change
in future releases.

Tablel. Class Code 01: Warning

SQLSTATE Message Text

01003 Null values were eliminated from the argument of a column function.

0100E XX Attempt to return too many result sets.

01500 The constraint <constraintName> on table <tableName> has been dropped.

01501 The view <viewName> has been dropped.

01502 The trigger <triggerName> on table <tableName> has been dropped.

01503 The column <columnName> on table <tableName> has been modified by adding a not
null constraint.

01504 The new index is a duplicate of an existing index: <index>.

01505 The value <valueName> may be truncated.

01522 The newly defined synonym '<synonymName>' resolved to the object '<objectName>'
which is currently undefined.

01J01 Database '<databaseName>' not created, connection made to existing database
instead.

01J02 Scroll sensitive cursors are not currently implemented.

01J03 Scroll sensitive and scroll insensitive updatable ResultSets are not currently
implemented.

01J04 The class '<className>' for column '<columnName>' does not implement
java.io.Serializable or java.sql.SQLData. Instances must implement one of these
interfaces to allow them to be stored.

01J05 Database upgrade succeeded. The upgraded database is now ready for use.

Revalidating stored prepared statements failed. See next exception for details about
failure.

150

Copyright

SQLSTATE

Message Text

01J06

ResultSet not updatable. Query does not qualify to generate an updatable ResultSet.

Tablel. Class Code 04: Database authentication

SQLSTATE

Message Text

04501

Database connection refused.

Tablel. Class Code 07: Dynamic SQL Error

SQLSTATE Message Text
07000 At least one parameter to the current statement is uninitialized.
07004 Parameter <parameterName> is a <procedureName> procedure parameter and must
be registered with CallableStatement.registerOutParameter before execution.
07009 No input parameters.

Tablel. Class Code 08: Connection Exception

SQLSTATE Message Text
08000 Connection closed by unknown interrupt.
08003 No current connection.
08004 Connection refused : <connectionName>
08006 Database '<databaseName>'

Tablel. Class Code OA: Feature Not Supported

SQLSTATE

Message Text

0A000

Feature not implemented: <featureName>.

Tablel. Class Code 21: Cardinality Violation

SQLSTATE

Message Text

21000

Scalar subquery is only allowed to return a single row.

Tablel. Class Code 22: Data Exception

SQLSTATE Message Text
2200L XMLPARSE operand is not an XML document; see next exception for details.
22001 A truncation error was encountered trying to shrink <value> '<value>' to length <value>
22003 The resulting value is outside the range for the data type <datatypeName>.
22005 An attempt was made to get a data value of type '<typeName>' from a data value of
type '<typeName>'.
22007 The string representation of a datetime value is out of range.
22007 The syntax of the string representation of a datetime value is incorrect.
22008 '<argument>' is an invalid argument to the <functionName> function.
22011 The second or third argument of the SUBSTR function is out of range.
22012 Attempt to divide by zero.

151

Copyright

SQLSTATE Message Text

22013 Attempt to take the square root of a negative number, '<number>'.

22014 The start position for LOCATE is invalid; it must be a positive integer. The index to start
the search from is '<index>'. The string to search for is '<index>'. The string to search
from is '<index>'".

22015 The '<functionName>' function is not allowed on the following set of types. First
operand is of type '<typeName>'. Second operand is of type '<typeName>'". Third
operand (start position) is of type '<typeName>'.

22018 Invalid character string format for type <typeName>.

22019 Invalid escape sequence, '<sequenceName>'. The escape string must be exactly one
character. It cannot be a null or more than one character.

22025 Escape character must be followed by escape character, _, or %. It cannot be followed
by any other character or be at the end of the pattern.

22027 The built-in TRIM() function only supports a single trim character. The LTRIM() and
RTRIM() built-in functions support multiple trim characters.

22501 An ESCAPE clause of NULL returns undefined results and is not allowed.

Tablel. Class Code 23: Constraint Violation

SQLSTATE Message Text

23502 Column '<columnName>' cannot accept a NULL value.

23503 <value> on table '<tableName>' caused a violation of foreign key constraint
‘<constraintName>' for key <keyName>. The statement has been rolled back.

23505 The statement was aborted because it would have caused a duplicate key value in a
unigue or primary key constraint or unique index identified by '<value>' defined on
'‘<value>'.

23513 The check constraint '<constraintName>' was violated while performing an INSERT or

UPDATE on table '<tableName>'.

Tablel. Class Code 24: Invalid Cursor State

SQLSTATE

Message Text

24000

Invalid cursor state - no current row.

Tablel. Class Code 25: Invalid Transaction State

SQLSTATE Message Text
25000 Invalid transaction state.
25501 Unable to set the connection read-only property in an active transaction.
25502 An SQL data change is not permitted for a read-only connection, user or database.
25503 DDL is not permitted for a read-only connection, user or database.
25505 A read-only user or a user in a read-only database is not permitted to disable read-only

mode on a connection.

Tablel. Class Code 28: Invalid Authorization Specification

SQLSTATE

Message Text

28501

Invalid database authorization property '<value>=<value>".

152

Copyright

SQLSTATE Message Text
28502 The user name '<userName>' is not valid.
28503 User(s) '<userName>' must not be in both read-only and full-access authorization lists.
28504 Repeated user(s) '<userName>' in access list '<listName>".

Tablel. Class Code 38: External Function Exception

SQLSTATE Message Text
38000 The exception '<exception>' was thrown while evaluating an expression.
38001 The external routine is not allowed to execute SQL statements.
38002 The routine attempted to modify data, but the routine was not defined as MODIFIES
SQL DATA
38004 The routine attempted to read data, but the routine was not defined as READS SQL

DATA.

Tablel. Class Code 39: External Function Exception

SQLSTATE

Message Text

39004

A NULL value cannot be passed to a method which takes a parameter of primitive type
'<type>'.

Tablel. Class Code 3B: Invalid SAVEPOINT

SQLSTATE Message Text
3B001 SAVEPOINT, <savepoint> does not exist or is not active in the current transaction.
3B002 The maximum number of savepoints has been reached.
3B501 A SAVEPOINT with the passed name already exists in the current transaction.
3B502 A RELEASE or ROLLBACK TO SAVEPOINT was specified, but the savepoint does

not exist.

Tablel. Class Code 40: Transaction Rollback

SQLSTATE Message Text

40001 A lock could not be obtained due to a deadlock, cycle of locks and waiters is: <value>.
The selected victim is XID : <value>.

40XCO0 Dead statement. This may be caused by catching a transaction severity error inside
this statement.

40XDO0 Container has been closed.

40XD1 Container was opened in read-only mode.

40XD2 Container <containerName> cannot be opened; it either has been dropped or does not
exist.

40XL1 A lock could not be obtained within the time requested.

40XL2 A lock could not be obtained within the time requested. The lockTable dump is:
<tableDump>.

40XTO An internal error was identified by RawStore module.

40XT1 An exception was thrown during transaction commit.

40XT2 An exception was thrown during rollback of a SAVEPOINT.

153

Copyright

SQLSTATE Message Text
40XT4 An attempt was made to close a transaction that was still active. The transaction has
been aborted.
40XT5 Exception thrown during an internal transaction.
40XT6 Database is in quiescent state, cannot activate transaction. Please wait for a moment
until it exits the inactive state.
40XT7 Operation is not supported in an internal transaction.

Tablel. Class Code 42: Syntax Error or Access Rule Violation

SQLSTATE Message Text

42000 Syntax error or access rule violation; see additional errors for details.

42601 ALTER TABLE statement cannot add an IDENTITY column to a table.

42601 In an ALTER TABLE statement, the column '<columnName>' has been specified as
NOT NULL and either the DEFAULT clause was not specified or was specified as
DEFAULT NULL.

42605 The number of arguments for function '<functionName>' is incorrect.

42606 An invalid hexadecimal constant starting with '<snumber>' has been detected.

42610 All the arguments to the COALESCE/VALUE function cannot be parameters. The
function needs at least one argument that is not a parameter.

42611 The length, precision, or scale attribute for column, or type mapping '<value>' is not
valid.

42613 Multiple or conflicting keywords involving the '<clause>' clause are present.

42621 A check constraint or generated column that is defined with '<value>' is invalid.

42622 The name '<name>' is too long. The maximum length is '<maximumLength>".

42734 Name '<name>' specified in context '<context>' is not unique.

42802 The number of values assigned is not the same as the number of specified or implied
columns.

42803 An expression containing the column '<columnName>' appears in the SELECT list and
is not part of a GROUP BY clause.

42815 The replacement value for '<value>' is invalid.

42815 The data type, length or value of arguments '<firstArguement>' and
'<secondArguement>' is incompatible.

42818 Comparisons between '<value>' and '<value>' are not supported.

42820 The floating point literal '<string>' contains more than 30 characters.

42821 Columns of type '<type>' cannot hold values of type '<type>'.

42824 An operand of LIKE is not a string, or the first operand is not a column.

42831 ‘<columnName>' cannot be a column of a primary key or unique key because it can
contain null values.

42834 SET NULL cannot be specified because FOREIGN KEY '<key>' cannot contain null
values.

42837 ALTER TABLE '<tableName>' specified attributes for column '<columnName>' that are
not compatible with the existing column.

42846 Cannot convert types '<type>' to '<type>'.

42877 A qualified column name '<columnName>' is not allowed in the ORDER BY clause.

42884 No authorized routine named '<routineName>' of type '<type>' having compatible

154

Copyright

SQLSTATE Message Text

arguments was found.

42886 '‘<value>' parameter '<value>' requires a parameter marker '<parameter>'.

42894 DEFAULT value or IDENTITY attribute value is not valid for column ‘'<columnName>'.

428C1 Only one identity column is allowed in a table.

428EK The qualifier for a declared global temporary table name must be SESSION.

42903 Invalid use of an aggregate function.

42908 The CREATE VIEW statement does not include a column list.

42915 Foreign Key '<key>' is invalid because '<value>".

42916 Synonym '<synonym2>' cannot be created for '<synonym1>' as it would result in a
circular synonym chain.

42939 An object cannot be created with the schema name '<schemaName>".

42962 Long column type column or parameter '<columnName>' not permitted in declared
global temporary tables or procedure definitions.

42972 An ON clause associated with a JOIN operator is not valid.

42995 The requested function does not apply to global temporary tables.

42X01 Syntax error: <error>.

42X02 <value>.

42X03 Column name '<columnName>' is in more than one table in the FROM list.

42X04 Column '<columnName>' is either not in any table in the FROM list or appears within a
join specification and is outside the scope of the join specification or appears in a
HAVING clause and is not in the GROUP BY list. If this is a CREATE or ALTER
TABLE statement then '<columnName>' is not a column in the target table.

42X05 Table '<tableName>' does not exist.

42X06 Too many result columns specified for table '<tableName>".

42X07 Null is only allowed in a VALUES clause within an INSERT statement.

42X08 The constructor for class '<className>' cannot be used as an external virtual table
because the class does not implement '<constructorName>".

42X09 The table or alias name '<tableName>' is used more than once in the FROM list.

42X10 '<tableName>' is not an exposed table name in the scope in which it appears.

42X12 Column name '<tableName>' appears more than once in the CREATE TABLE
statement.

42X13 Column name '<columnName>' appears more than once in the column list of an
INSERT statement.

42X14 ‘<columnName>' is nhot a column in table or VTI '<value>'.

42X15 Column name '<columnName>' appears in a statement without a FROM list.

42X16 Column name '<columnName>' appears multiple times in the SET clause of an
UPDATE statement.

42X17 In the Properties list of a FROM clause, the value '<value>' is not valid as a joinOrder
specification. Only the values FIXED and UNFIXED are valid.

42X19 The WHERE or HAVING clause or CHECK CONSTRAINT definition is a '<value>'
expression. It must be a BOOLEAN expression.

42X23 Cursor <cursorName> is not updatable.

42X25 The '<functionName>' function is not allowed on the '<type>' type.

42X26 The class '<className> for column '<columnName>' does not exist or is inaccessible.

155

Copyright

SQLSTATE Message Text

This can happen if the class is not public.

42X28 Delete table '<tableName>' is not target of cursor '<cursorName>".

42X29 Update table '<tableName>' is not the target of cursor '<cursorName>'.

42X30 Cursor '<cursorName>' not found. Verify that autocommit is OFF.

42X31 Column '<columnName>' is not in the FOR UPDATE list of cursor '<cursorName>"'.

42X32 The number of columns in the derived column list must match the number of columns
in table '<tableName>".

42X33 The derived column list contains a duplicate column name '<columnName>'.

42X34 There is a ? parameter in the select list. This is not allowed.

42X35 It is not allowed for both operands of '<value>' to be ? parameters.

42X36 The '<operator>' operator is not allowed to take a ? parameter as an operand.

42X37 The unary '<operator>' operator is not allowed on the '<type>' type.

42X38 'SELECT * only allowed in EXISTS and NOT EXISTS subqueries.

42X39 Subquery is only allowed to return a single column.

42X40 A NOT statement has an operand that is not boolean . The operand of NOT must
evaluate to TRUE, FALSE, or UNKNOWN.

42X41 In the Properties clause of a FROM list, the property '<propertyName>' is not valid (the
property was being set to '<value>").

42X42 Correlation name not allowed for column '<columnName>' because it is part of the
FOR UPDATE list.

42X43 The ResultSetMetaData returned for the class/object '<className>' was null. In order
to use this class as an external virtual table, the ResultSetMetaData cannot be null.

42X44 Invalid length '<length>" in column specification.

42X45 <type> is an invalid type for argument number <value> of <value>.

42XA48 Value '<value>' is not a valid precision for <value>.

42X49 Value '<value>' is not a valid integer literal.

42X50 No method was found that matched the method call
<methodName>.<value>(<value>), tried all combinations of object and primitive types
and any possible type conversion for any parameters the method call may have. The
method might exist but it is not public and/or static, or the parameter types are not
method invocation convertible.

42X51 The class '<className>' does not exist or is inaccessible. This can happen if the class
is not public.

42X52 Calling method ('<methodName>") using a receiver of the Java primitive type '<type>"
is not allowed.

42X53 The LIKE predicate can only have 'CHAR' or 'VARCHAR' operands. Type '<type>'is
not permitted.

42X54 The Java method '<smethodName>' has a ? as a receiver. This is not allowed.

42X55 Table name '<tableName>' should be the same as '<value>".

42X56 The number of columns in the view column list does not match the number of columns
in the underlying query expression in the view definition for '<value>'.

42X57 The getColumnCount() for external virtual table '<tableName>' returned an invalid
value '<value>'. Valid values are greater than or equal to 1.

42X58 The number of columns on the left and right sides of the <tableName> must be the

same.

156

Copyright

SQLSTATE Message Text

42X59 The number of columns in each VALUES constructor must be the same.

42X60 Invalid value '<value>' for insertMode property specified for table '<tableName>".

42X61 Types '<type>' and '<type>' are not <value> compatible.

42X62 '<value>' is not allowed in the '<schemaName>' schema.

42X63 The USING clause did not return any results. No parameters can be set.

42X64 In the Properties list, the invalid value '<value>' was specified for the useStatistics
property. The only valid values are TRUE or FALSE .

42X65 Index '<index>' does not exist.

42X66 Column name '<columnName>' appears more than once in the CREATE INDEX
statement.

42X68 No field '<fieldName>' was found belonging to class '<className>'. The field might
exist, but it is not public, or the class does not exist or is not public.

42X69 It is not allowed to reference a field ('<fieldName>") using a referencing expression of
the Java primitive type '<type>'.

42X72 No static field '<fieldName>" was found belonging to class '<className>'. The field
might exist, but it is not public and/or static, or the class does not exist or the class is
not public.

42X73 Method resolution for signature <value>.<value>(<value>) was ambiguous. (No single
maximally specific method.)

42X74 Invalid CALL statement syntax.

42X75 No constructor was found with the signature <value>(<value>). It may be that the
parameter types are not method invocation convertible.

42X76 At least one column, '<columnName>', in the primary key being added is nullable. All
columns in a primary key must be non-nullable.

42X77 Column position '<columnPosition>' is out of range for the query expression.

42X78 Column '<columnName>' is not in the result of the query expression.

42X79 Column name '<columnName>' appears more than once in the result of the query
expression.

42X80 VALUES clause must contain at least one element. Empty elements are not allowed.

42X82 The USING clause returned more than one row. Only single-row ResultSets are
permissible.

42X83 The constraints on column '<columnName>' require that it be both nullable and not
nullable.

42X84 Index '<index>' was created to enforce constraint '<constraintName>'". It can only be
dropped by dropping the constraint.

42X85 Constraint '<constraintName>' is required to be in the same schema as table
'<tableName>".

42X86 ALTER TABLE failed. There is no constraint '<constraintName>' on table
'<tableName>'.

42X87 At least one result expression (THEN or ELSE) of the '<expression>' expression must
not be a '?".

42X88 A conditional has a non-boolean operand. The operand of a conditional must evaluate
to TRUE, FALSE, or UNKNOWN.

42X89 Types '<type>' and '<type>' are not type compatible. Neither type is assignable to the
other type.

42X90 More than one primary key constraint specified for table '<tableName>"'.

157

Copyright

SQLSTATE Message Text

42X91 Constraint name '<constraintName>' appears more than once in the CREATE TABLE
statement.

42X92 Column name '<columnName>' appears more than once in a constraint's column list.

42X93 Table '<tableName>' contains a constraint definition with column '<columnName>'
which is not in the table.

42X94 <value> '<value>' does not exist.

42X96 The database classpath contains an unknown jar file '<fileName>'.

42X98 Parameters are not allowed in a VIEW definition.

42Y00 Class '<className>' does not implement
org.apache.derby.iapi.db.AggregateDefinition and thus cannot be used as an
aggregate expression.

42Y01 Constraint '<constraintName>' is invalid.

42Y03 '<statement>' is not recognized as a function or procedure.

42Y04 Cannot create a procedure or function with EXTERNAL NAME '<name>' because it is
not a list separated by periods. The expected format is <fulljavapath>.<method name>.

42Y05 There is no Foreign Key named '<key>'.

42Y07 Schema '<schemaName>' does not exist.

42Y08 Foreign key constraints are not allowed on system tables.

42Y09 Void methods are only allowed within a CALL statement.

42Y10 A table constructor that is not in an INSERT statement has all ? parameters in one of
its columns. For each column, at least one of the rows must have a non-parameter.

42Y11 A join specification is required with the '<clauseName>' clause.

42Y12 The ON clause of a JOIN is a '<expressionType>' expression. It must be a BOOLEAN
expression.

42Y13 Column name '<columnName>' appears more than once in the CREATE VIEW
statement.

42Y16 No public static method '<smethodName>' was found in class '<className>'. The
method might exist, but it is not public, or it is not static.

42Y19 '<columnName>' appears multiple times in the GROUP BY list. Columns in the
GROUP BY list must be unambiguous.

42Y22 Aggregate <aggregateType> cannot operate on type <type>.

42Y23 Incorrect JDBC type info returned for column <columnName>.

42Y24 View '<viewName>' is not updatable. (Views are currently not updatable.)

42Y25 '<tableName>' is a system table. Users are not allowed to modify the contents of this
table.

42Y27 Parameters are not allowed in the trigger action.

42Y29 The SELECT list of a non-grouped query contains at least one invalid expression.
When the SELECT list contains at least one aggregate then all entries must be valid
aggregate expressions.

42Y30 The SELECT list of a grouped query contains at least one invalid expression. If a
SELECT list has a GROUP BY, the list may only contain grouping columns and valid
aggregate expressions.

42Y32 Aggregator class '<className> aggregate '<aggregateName>' on type <type> does
not implement com.ibm.db2j.aggregates.Aggregator.

42Y33 Aggregate <aggregateName> contains one or more aggregates.

158

Copyright

SQLSTATE Message Text

42Y34 Column name '<columnName>' matches more than one result column in table
'<tableName>".

42Y35 Column reference '<reference>' is invalid. When the SELECT list contains at least one
aggregate then all entries must be valid aggregate expressions.

42Y36 Column reference '<value>' is invalid. For a SELECT list with a GROUP BY, the list
may only contain grouping columns and valid aggregate expressions.

42Y37 '<value>' is a Java primitive and cannot be used with this operator.

42Y38
i nsert Mode = repl ace
is not permitted on an insert where the target table, '<tableName>', is referenced in the
SELECT.

42Y39 '<value>' may not appear in a CHECK CONSTRAINT definition because it may return
non-deterministic results.

42Y40 '<value>' appears multiple times in the UPDATE OF column list for trigger
'<triggerName>',

42Y41 '<value>' cannot be directly invoked via EXECUTE STATEMENT because it is part of a
trigger.

42Y42 Scale '<scaleValue>' is not a valid scale for a <value>.

42Y43 Scale '<scaleValue>' is not a valid scale with precision of '<precision>".

42Y44 Invalid key '<key>' specified in the Properties list of a FROM list. The case-sensitive
keys that are currently supported are '<key>'.

42Y45 VTI '<value>' cannot be bound because it is a special trigger VTI and this statement is
not part of a trigger action or WHEN clause.

42Y46 Invalid Properties list in FROM list. There is no index '<index>' on table '<tableName>'.

42Y48 Invalid Properties list in FROM list. Either there is no named constraint
'<constraintName>' on table '<tableName>' or the constraint does not have a backing
index.

42Y49 Multiple values specified for property key '<key>'.

42Y50 Properties list for table '<tableName>' may contain values for index or for constraint but
not both.

42Y55 ‘<value>' cannot be performed on '<value>' because it does not exist.

42Y56 Invalid join strategy '<strategyValue>' specified in Properties list on table
'<tableName>'. The currently supported values for a join strategy are:
hash
and
nest edl oop

42Y58 NumberFormatException occurred when converting value '<value>' for optimizer
override '<value>'.

42Y59 Invalid value, '<value>', specified for hashlnitialCapacity override. Value must be
greater than 0.

42Y60 Invalid value, '<value>', specified for hashLoadFactor override. Value must be greater
than 0.0 and less than or equal to 1.0.

42Y61 Invalid value, '<value>' specified for hashMaxCapacity override. Value must be greater

than 0.

159

Copyright

SQLSTATE Message Text

42Y62 '<value>' is not allowed on '<value>' because it is a view.

42Y63 Hash join requires an optimizable equijoin predicate on a column in the selected index
or heap. An optimizable equijoin predicate does not exist on any column in table or
index '<index>'. Use the 'index’ optimizer override to specify such an index or the heap
on table '<tableName>'.

42Y64 bulkFetch value of '<value>' is invalid. The minimum value for bulkFetch is 1.

42Y65 bulkFetch is not permitted on '<joinType>' joins.

42Y66 bulkFetch is not permitted on updatable cursors.

42Y67 Schema '<schemaName>' cannot be dropped.

42Y69 No valid execution plan was found for this statement. This may have one of two
causes: either you specified a hash join strategy when hash join is not allowed (no
optimizable equijoin) or you are attempting to join two external virtual tables, each of
which references the other, and so the statement cannot be evaluated.

42Y70 The user specified an illegal join order. This could be caused by a join column from an
inner table being passed as a parameter to an external virtual table.

42Y71 System function or procedure '<procedureName>' cannot be dropped.

42Y82 System generated stored prepared statement '<statement>' that cannot be dropped
using DROP STATEMENT. It is part of a trigger.

42Y83 An untyped null is not permitted as an argument to aggregate <aggregateName>.
Please cast the null to a suitable type.

42Y84 '‘<value>' may not appear in a DEFAULT definition.

42Y85 The DEFAULT keyword is only allowed in a VALUES clause when the VALUES clause
appears within an INSERT statement.

42Y90 FOR UPDATE is not permitted in this type of statement.

42Y91 The USING clause is not permitted in an EXECUTE STATEMENT for a trigger action.

42Y92 <triggerName> triggers may only reference <value> transition variables/tables.

42Y93 lllegal REFERENCING clause: only one name is permitted for each type of transition
variable/table.

42Y94 An AND or OR has a non-boolean operand. The operands of AND and OR must
evaluate to TRUE, FALSE, or UNKNOWN.

42Y95 The '<operatorName>' operator with a left operand type of '<operandType>' and a right
operand type of '<operandType>' is not supported.

42Y97 Invalid escape character at line '<lineNumber>', column '<columnName>"'.

42702 Multiple DISTINCT aggregates are not supported at this time.

42707 Aggregates are not permitted in the ON clause.

42708 Bulk insert replace is not permitted on '<value>' because it has an enabled trigger
(<value>).

42715 Invalid type specified for column '<columnName>". The type of a column may not be
changed.

42716 Only columns of type VARCHAR may have their length altered.

42717 Invalid length specified for column '<columnName>'. Length must be greater than the
current column length.

42718 Column '<columnName>' is part of a foreign key constraint '<constraintName>'. To
alter the length of this column, you should drop the constraint first, perform the ALTER
TABLE, and then recreate the constraint.

42719 Column '<columnName>' is being referenced by at least one foreign key constraint

160

Copyright

SQLSTATE Message Text

constraintName>'". To alter the length of this column, you should drop referencing
constraints, perform the ALTER TABLE, and then recreate the constraints.

42720 Column '<columnName>' cannot be made nullable. It is part of a primary key, which
cannot have any nullable columns.

42721 Invalid increment specified for identity for column '<columnName>'. Increment cannot
be zero.

42722 Invalid type specified for identity column '<columnName>'. The only valid types for
identity columns are BIGINT, INT and SMALLINT.

42723 Attempt to modify an identity column '<columnName>'.

42724 Overflow occurred in identity value for column '<columnName>' in table '<tableName>".

42725 INTERNAL ERROR identity counter. Update was called without arguments with
current value = NULL

42726 A column, '<columnName>', with an identity default cannot be made nullable.

42727 A nullable column, '<columnName>', cannot be modified to have identity default.

42750 INTERNAL ERROR: Unable to generate code for <value>.

42753 INTERNAL ERROR: Do not know what type of activation to generate for node choice
<value>.

42790 Class '<className>' does not return an updatable ResultSet.

42791 subquery

42792 repeatable read

42793 Constraints '<constraintName>' and '<constraintName>' have the same set of columns,
which is not allowed.

42797 Renaming column '<columnName>' will cause check constraint '<constraintName>' to
break.

42799 String or Hex literal cannot exceed 64K.

4279A read uncommitted

4279B The external virtual table interface does not support BLOB or CLOB columns. '<value>'
column '<value>'.

4279D '<statement>' statements are not allowed in '<triggerName>' triggers.

4279E Constraint '<constraintName>' is not a <value> constraint.

4279F Too many indexes (<index>) on the table <tableName>. The limit is <number>.

Tablel. Class Code XOX: Execution exceptions

SQLState Message Text

X0X02 Table '<tableName>' cannot be locked in '<smode>' mode.

X0X03 Invalid transaction state - held cursor requires same isolation level

X0X05 Table '<tableName>' does not exist.

X0X07 Cannot drop jar file '<fleName>' because its on your db2j.database.classpath
‘<classpath>'.

XOXO0E The column position '<columnPaosition>' listed in the auto-generated column selection
array was not found in the insert table.

XOXO0F Column name '<columnName>' listed in auto-generated column selection array not

161

Copyright

SQLState Message Text
found in the insert table.

X0X10 The USING clause returned more than one row; only single-row ResultSets are
permissible.

X0X11 The USING clause did not return any results so no parameters can be set.

X0X13 Jar file '<fileName>' does not exist in schema '<schemaName>".

X0X14 Binding directly to an XML value is not allowed; try using XMLPARSE.

X0X15 XML values are not allowed in top-level result sets; try using XMLSERIALIZE.

X0X16 XML syntax error; missing keyword(s): '<keywords>".

X0X17 Invalid target type for XMLSERIALIZE: '<value>".

X0X18 XML feature not supported: '<featureName>'.

X0X57 An attempt was made to put a Java value of type '<type>' into a SQL value, but there is
no corresponding SQL type. The Java value is probably the result of a method call or
field access.

XO0X60 A cursor with name '<cursorName>' already exists.

X0X61 The values for column '<value>' in index '<value>' and table '<value>.<value>' do not

match for row location <value>. The value in the index is '<value>', while the value in
the base table is '<value>'. The full index key, including the row location, is '<value>'.
The suggested corrective action is to recreate the index.

X0X62 Inconsistency found between table '<tableName>' and index '<index>'. Error when
trying to retrieve row location '<rowLocation>' from the table. The full index key,
including the row location, is '<index>'. The suggested corrective action is to recreate

the index.
X0X63 Got IOException '<value>'.
X0X67 Columns of type '<type>' may not be used in CREATE INDEX, ORDER BY, GROUP

BY, UNION, INTERSECT, EXCEPT or DISTINCT statements because comparisons
are not supported for that type.

X0X81 <value> '<value>' does not exist.
X0X85 Index '<index>' was not created because '<type>'is not a valid index type.
X0X86 0 is an invalid parameter value for

Resul t Set . absol ute(i nt row)

X0X87
Resul t Set.rel ative(int row)
cannot be called when the cursor is not positioned on a row.

X0X95 Operation '<operation>' cannot be performed on object '<object>' because there is an
open ResultSet dependent on that object.

X0X99 Index '<index>' does not exist.

XOXML Encountered unexpected error while processing XML; see next exception for details.

Tablel. Class Code X0Y: Execution exceptions
SQLSTATE Message Text

X0Y16 '<value>'is not a view. If it is a table, then use DROP TABLE instead.

X0Y23 Operation '<operation>' cannot be performed on object '<object>' because VIEW
‘<viewName>' is dependent on that object.

162

Copyright

SQLSTATE Message Text

X0Y24 Operation '<operation>' cannot be performed on object '<object>' because
STATEMENT '<statement>' is dependent on that object.

X0Y25 Operation '<value>' cannot be performed on object '<value>' because <value>
‘<value>' is dependent on that object.

X0Y26 Index '<index>'is required to be in the same schema as table '<tableName>".

X0Y28 Index '<index>' cannot be created on system table '<tableName>'. Users cannot create
indexes on system tables.

X0Y32 <value> '<value>' already exists in <value> '<value>'.

X0Y38 Cannot create index '<index>' because table '<tableName>' does not exist.

X0Y41 Constraint '<constraintName>' is invalid because the referenced table <tableName>
has no primary key. Either add a primary key to <tableName> or explicitly specify the
columns of a unique constraint that this foreign key references.

X0Y42 Constraint '<constraintName>' is invalid: the types of the foreign key columns do not
match the types of the referenced columns

X0Y43 Constraint '<value>' is invalid: the number of columns in <value> (<value>) does not
match the number of columns in the referenced key (<value>).

X0Y44 Constraint '<constraintName>' is invalid: there is no unique or primary key constraint on
table '<tableName>' that matches the number and types of the columns in the foreign
key.

X0Y45 Foreign key constraint '<constraintName>' cannot be added to or enabled on table
<tableName> because one or more foreign keys do not have matching referenced
keys.

X0Y46 Constraint '<constraintName>' is invalid: referenced table <tableName> does not exist.

X0Y54 Schema '<schemaName>' cannot be dropped because it is not empty.

X0Y55 The number of rows in the base table does not match the number of rows in at least 1
of the indexes on the table. Index '<value>' on table '<value>.<value>' has <value>
rows, but the base table has <value> rows. The suggested corrective action is to
recreate the index.

X0Y56 '<value>' is not allowed on the System table '<value>'".

X0Y57 A non-nullable column cannot be added to table '<tableName>' because the table
contains at least one row. Non-nullable columns can only be added to empty tables.

X0Y58 Attempt to add a primary key constraint to table '<tableName>' failed because the table
already has a constraint of that type. A table can only have a single primary key
constraint.

X0Y59 Attempt to add or enable constraint(s) on table '<tableName>' failed because the table
contains <rowName> row(s) that violate the following check constraint(s):
<constraintName>.

X0Y63 The command on table '<tableName>' failed because null data was found in the
primary key or unique constraint/index column(s). All columns in a primary or unique
index key must not be null.

X0Y66 Cannot issue commit in a nested connection when there is a pending operation in the
parent connection.

X0Y67 Cannot issue rollback in a nested connection when there is a pending operation in the
parent connection.

X0Y68 <value> '<value>' already exists.

X0Y69 <value> is not permitted because trigger <triggerName> is active on <value>.

X0Y70 INSERT, UPDATE and DELETE are not permitted on table <tableName> because

trigger <triggerName> is active.

163

Copyright

SQLSTATE Message Text

X0Y71 Transaction manipulation such as SET ISOLATION is not permitted because trigger
<triggerName> is active.

X0Y72 Bulk insert replace is not permitted on '<value>' because it has an enabled trigger
(<value>).

X0Y77 Cannot issue set transaction isolation statement on a global transaction that is in
progress because it would have implicitly committed the global transaction.

X0Y78 Statement.executeQuery() cannot be called with a statement that returns a row count.

X0Y79 Statement.executeUpdate() cannot be called with a statement that returns a ResultSet.

X0Y80 ALTER table '<tableName>' failed. Null data found in column '<columnName>"'.

X0Y83 WARNING: While deleting a row from a table the index row for base table row

<rowName> was not found in index with conglomerate id <id>. This problem has
automatically been corrected as part of the delete operation.

Tablel. Class Code XBCA: CacheService

SQLSTATE

Message Text

XBCAO

Cannot create new object with key <key> in <cache> cache. The object already exists
in the cache.

Tablel. Class Code XBCM: ClassManager

SQLSTATE Message Text
XBCM1 Java linkage error thrown during load of generated class <className>.
XBCM2 Cannot create an instance of generated class <className>.
XBCM3 Method <methodName> () does not exist in generated class <className>.

Tablel. Class Code XBCX: Cryptography

SQLSTATE Message Text

XBCXO0 Exception from Cryptography provider. See next exception for details.

XBCX1 Initializing cipher with illegal mode, must be either ENCRYPT or DECRYPT.

XBCX2 Initializing cipher with a boot password that is too short. The password must be at least
<number> characters long.

XBCX5 Cannot change boot password to null.

XBCX6 Cannot change boot password to a non-string serializable type.

XBCX7 Wrong format for changing boot password. Format must be : ol d_boot _passwor d,
new_boot password.

XBCX8 Cannot change boot password for a non-encrypted database.

XBCX9 Cannot change boot password for a read-only database.

XBCXA Wrong boot password.

XBCXB Bad encryption padding '<value>' or padding not specified. 'NoPadding' must be used.

XBCXC Encryption algorithm '<algorithmName>' does not exist. Please check that the chosen
provider '<providerName>' supports this algorithm.

XBCXD The encryption algorithm cannot be changed after the database is created.

XBCXE The encryption provider cannot be changed after the database is created.

164

Copyright

SQLSTATE Message Text

XBCXF The class '<className>' representing the encryption provider cannot be found.

XBCXG The encryption provider '<providerName>' does not exist.

XBCXH The encryptionAlgorithm '<algorithmName>' is not in the correct format. The correct
formatis al gori t hnt f eedbackMode/ NoPaddi ng.

XBCXI The feedback mode '<mode>' is not supported. Supported feedback modes are CBC,
CFB, OFB and ECB.

XBCXJ The application is using a version of the Java Cryptography Extension (JCE) earlier

than 1.2.1. Please upgrade to JCE 1.2.1 and try the operation again.

XBCXK The given encryption key does not match the encryption key used when creating the
database. Please ensure that you are using the correct encryption key and try again.

XBCXL The verification process for the encryption key was not successful. This could have
been caused by an error when accessing the appropriate file to do the verification
process. See next exception for details.

Tablel. Class Code XBM: Monitor

SQLSTATE Message Text

XBMO01 Startup failed due to an exception. See next exception for details.

XBMO02 Startup failed due to missing functionality for <value>. Please ensure your classpath
includes the correct Derby Derby software.

XBMO5 Startup failed due to missing product version information for <value>.

XBMO06 Startup failed. An encrypted database cannot be accessed without the correct boot
password.

XBMO7 Startup failed. Boot password must be at least 8 bytes long.

XBMO08 Could not instantiate <value> StorageFactory class <value>.

XBMOG Failed to start encryption engine. Please make sure you are running Java 2 and have
downloaded an encryption provider such as jce and put it in your classpath.

XBMOH Directory <directoryName> cannot be created.

XBMOI Directory <directoryName> cannot be removed.

XBMO0J Directory <directoryName> already exists.

XBMOK Unknown sub-protocol for database name <databaseName>.

XBMOL Specified authentication scheme class <className> does implement the
authentication interface <interfaceName>.

XBMOM Error creating instance of authentication scheme class <className>.

XBMON JDBC Driver registration with java.sql.DriverManager failed. See next exception for
details.

XBMOP Service provider is read-only. Operation not permitted.

XBMOQ File <fleName> not found. Please make sure that backup copy is the correct one and it
is not corrupted.

XBMOR Unable to remove file <fileName>.

XBMOS Unable to rename file '<fileName>' to ‘fileName>"'

XBMOT Ambiguous sub-protocol for database name <databaseName>.

XBMOU No class was registered for identifier <identifierName>.

XBMOV An exception was thrown while loading class <className> registered for identifier

<identifierName>.

165

Copyright

SQLSTATE Message Text

XBMOW An exception was thrown while creating an instance of class <className> registered
for identifier <identifierName>.

XBMOX Supplied territory description '<value>' is invalid, expecting In[_CO[_variant]]
In=lower-case two-letter ISO-639 language code, CO=upper-case two-letter ISO-3166
country codes, see java.util.Locale.

XBMOY Backup database directory <directoryName> not found. Please make sure that the
specified backup path is right.

XBMO0Z Unable to copy file '<value>' to '<value>'. Please make sure that there is enough space

and permissions are correct.

Tablel. Class Code XCL: Non-SQLSTATE

SQLSTATE Message Text

XCLO1 ResultSet does not return rows. Operation <operationName> not permitted.

XCLO05 Activation closed. Operation <operationName> not permitted.

XCLO7 Cursor '<cursorName>' is closed. Verify that autocommit is OFF.

XCLO8 Cursor '<cursorName>' is not on a row.

XCL09 An Activation was passed to the '<smethodName>' method that does not match the
PreparedStatement.

XCL10 A PreparedStatement has been recompiled and the parameters have changed. If you
are using JDBC you must prepare the statement again.

XCL12 An attempt was made to put a data value of type '<type>' into a data value of type
'<type>'.

XCL13 The parameter position '<parameterPosition>' is out of range. The number of
parameters for this prepared statement is '<number>',

XCL14 The column position '<value>' is out of range. The number of columns for this
ResultSet is '<number>'.

XCL15 A ClassCastException occurred when calling the compareTo() method on an object
'<object>". The parameter to compareTo() is of class 'className>'.

XCL16 ResultSet not open. Operation '<operation>' not permitted. Verify that autocommit is
OFF.

XCL17 Statement not allowed in this database.

XCL19 Missing row in table '<tableName>' for key '<key>'.

XCL20 Catalogs at version level '<versionLevel>' cannot be upgraded to version level
‘<versionLevel>'.

XCL21 You are trying to execute a Data Definition statement (CREATE, DROP, or ALTER)
while preparing a different statement. This is not allowed. It can happen if you execute
a Data Definition statement from within a static initializer of a Java class that is being
used from within a SQL statement.

XCL22 Parameter <parameterName> cannot be registered as an OUT parameter because it is
an IN parameter.

XCL23 SQL type number '<type>'is not a supported type by registerOutParameter().

XCL24 Parameter <parameterName> appears to be an output parameter, but it has not been
so designated by registerOutParameter(). If it is not an output parameter, then it has to
be set to type <type>.

XCL25 Parameter <parameterName> cannot be registered to be of type <type> because it

maps to type <type> and they are incompatible.

166

Copyright

SQLSTATE Message Text

XCL26 Parameter <parameterName> is not an output parameter.

XCL27 Return output parameters cannot be set.

XCL30 An IOException was thrown when reading a '<value>' from an InputStream.

XCL31 Statement closed.

XCL33 The table cannot be defined as a dependent of table <tableName> because of delete
rule restrictions. (The relationship is self-referencing and a self-referencing relationship
already exists with the SET NULL delete rule.)

XCL34 The table cannot be defined as a dependent of table <tableName> because of delete
rule restrictions. (The relationship forms a cycle of two or more tables that cause the
table to be delete-connected to itself (all other delete rules in the cycle would be
CASCADE)).

XCL35 The table cannot be defined as a dependent of table <tableName> because of delete
rule restrictions. (The relationship causes the table to be delete-connected to the
indicated table through multiple relationships and the delete rule of the existing
relationship is SET NULL).

XCL36 The delete rule of foreign key must be <ruleName>. (The referential constraint is
self-referencing and an existing self-referencing constraint has the indicated delete rule
(NO ACTION, RESTRICT or CASCADE).)

XCL37 The delete rule of foreign key must be <ruleName>. (The referential constraint is
self-referencing and the table is dependent in a relationship with a delete rule of
CASCADE.)

XCL38 The delete rule of foreign key must be <ruleName>. (The relationship would cause the
table to be delete-connected to the same table through multiple relationships and such
relationships must have the same delete rule (NO ACTION, RESTRICT or
CASCADE).)

XCL39 The delete rule of foreign key cannot be CASCADE. (A self-referencing constraint
exists with a delete rule of SET NULL, NO ACTION or RESTRICT.)

XCL40 The delete rule of foreign key cannot be CASCADE. (The relationship would form a
cycle that would cause a table to be delete-connected to itself. One of the existing
delete rules in the cycle is not CASCADE, so this relationship may be definable if the
delete rule is not CASCADE.)

XCL41 the delete rule of foreign key can not be CASCADE. (The relationship would cause
another table to be delete-connected to the same table through multiple paths with
different delete rules or with delete rule equal to SET NULL.)

XCL42 CASCADE

XCL43 SET NULL

XCL44 RESTRICT

XCL45 NO ACTION

XCL46 SET DEFAULT

XCL47 Use of '<value>' requires database to be upgraded from version <versionNumber> to
version <versionNumber> or later.

XCL48 TRUNCATE TABLE is not permitted on '<value>' because unique/primary key
constraints on this table are referenced by enabled foreign key constraints from other
tables.

XCL49 TRUNCATE TABLE is not permitted on '<value>' because it has an enabled DELETE
trigger (<value>).

XCL50 Upgrading the database from a previous version is not supported. The database being

accessed is at version level 'versionNumber>', this software is at version level

167

Copyright

SQLSTATE Message Text
versionNumber>'.
XCL51 The requested function cannot reference tables in SESSION schema.
Tablel. Class Code XCW: Upgrade unsupported
SQLSTATE Message Text
XCWO00 Unsupported upgrade from '<value>' to '<value>'.
Tablel. Class Code XCXA: ID Parse Error
SQLSTATE Message Text
XCXAO Invalid identifier.
Tablel. Class Code XCXB: DB_Class_Path_Parse_Error
SQLSTATE Message Text
XCXBO0 Invalid database classpath: '<classpath>'.
Tablel. Class Code XCXC: ID List Parse Error
SQLSTATE Message Text
XCXCO Invalid id list.
Tablel. Class Code XCXE: No locale
SQLSTATE Message Text
XCXEO You are trying to do an operation that uses the territory of the database, but the
database does not have a territory.
Tablel. Class Code XCY: Properties
SQLSTATE Message Text
XCYO00 Invalid value for property '<value>'='<value>'.
XCY02 The requested property change is not supported '<value>'='<value>'".
XCYO03 Required property '<propertyName>' has not been set.
Tablel. Class Code XCZ: org.apache.derby.database.UserUtility
SQLSTATE Message Text
XCZ00 Unknown permission '<permissionName>'.
XCz01 Unknown user '<userName>".
XCz02 Invalid parameter '<value>'='<value>'.
Tablel. Class Code XD0OOx: Dependency Manager
SQLSTATE Message Text
XDO003 Unable to restore dependency from disk. DependableFinder = '<value>'. Further

168

Copyright

SQLSTATE

Message Text

information: '<value>'.

XD004

Unable to store dependencies.

Tablel. Class Code XIE: Import/Export

SQLSTATE Message Text

XIEO1 Connection was null.

XIEQO3 Data found on line <lineNumber> for column <columnName> after the stop delimiter.

XIEO4 Data file not found: <fileName>.

XIEQ5 Data file cannot be null.

XIEO6 Entity name was null.

XIEQ7 Field and record separators cannot be substrings of each other.

XIEO8 There is no column named: <columnName>.

XIEQ9 The total number of columns in the row is: <number>.

XIEOB Column '<columnName>' in the table is of type <type>, it is not supported by the
import/export feature.

XIEOD Cannot find the record separator on line <lineNumber>.

XIEOE Read endOfFile at unexpected place on line <lineNumber.

XIEOI An IOException occurred while writing data to the file.

XIEQJ A delimiter is not valid or is used more than once.

XIEOK The period was specified as a character string delimiter.

XIEOM Table '<tableName>' does not exist.

Tablel. Class Code XJ: Connectivity Errors

SQLSTATE Message Text

XJ0o04 Database '<databaseName>' not found.

XJ009 Use of CallableStatement required for stored procedure call or use of output
parameters: <value>

XJ010 Cannot issue savepoint when autoCommit is on.

XJo11 Cannot pass null for savepoint name.

XJ012 '‘<value>' already closed.

XJ013 No ID for named savepoints.

XJ014 No name for un-named savepoints.

XJ015 Derby system shutdown.

XJ016 Method '<methodName>' not allowed on prepared statement.

XJ0o17 No savepoint command allowed inside the trigger code.

XJ0o18 Column name cannot be null.

XJ020 Object type not convertible to TYPE '<typeName>', invalid java.sql.Types value, or
object was null.

XJ022 Unable to set stream: '<name>'.

XJ023 Input stream held less data than requested length.

XJ025 Input stream cannot have negative length.

169

Copyright

SQLSTATE Message Text

XJ028 The URL '<urlValue>' is not properly formed.

XJ030 Cannot set AUTOCOMMIT ON when in a nested connection.

XJ040 Failed to start database '<databaseName>', see the next exception for details.

XJo41 Failed to create database '<databaseName>', see the next exception for details.

XJ0o42 '<value>' is not a valid value for property '<propertyName>"'.

XJ0o44 '‘<value>' is an invalid scale.

XJ045 Invalid or (currently) unsupported isolation level, '<value>', passed to
Connection.setTransactionlsolationLevel(). The currently supported values are
java.sgl.Connection. TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sgl.Connection.TRANSACTION_READ_COMMITTED, and
java.sgl.Connection.TRANSACTION_READ_UNCOMMITTED.

XJ049 Conflicting create attributes specified.

XJo4B Batch cannot contain a command that attempts to return a result set.

XJo4c CallableStatement batch cannot contain output parameters.

XJ056 Cannot set AUTOCOMMIT ON when in an XA connection.

XJ057 Cannot commit a global transaction using the Connection. Commit processing must go
through XAResource interface.

XJ058 Cannot rollback a global transaction using the Connection, commit processing must go
through XAResource interface.

XJ059 Cannot close a connection while a global transaction is still active.

XJO5B JDBC attribute '<attributeName>' has an invalid value '<value>', Valid values are
‘<value>".

XJosC Cannot set holdability ResultSet. HOLD _CURSORS_OVER_COMMIT for a global
transaction.

XJ0o61 The '<valueName>' method is only allowed on scroll cursors.

XJ062 Invalid parameter value '<value>' for ResultSet.setFetchSize(int rows).

XJ063 Invalid parameter value '<value>' for Statement.setMaxRows(int maxRows). Parameter
value must be >= 0.

XJ064 Invalid parameter value '<value>' for setFetchDirection(int direction).

XJ065 Invalid parameter value '<value>' for Statement.setFetchSize(int rows).

XJ066 Invalid parameter value '<value>' for Statement.setMaxFieldSize(int max).

XJ067 SQL text pointer is null.

XJ068 Only executeBatch and clearBatch allowed in the middle of a batch.

XJ069 No SetXXX methods allowed in case of USING execute statement.

XJ070 Negative or zero position argument '<argument>' passed in a Blob or Clob method.

XJOo71 Zero or negative length argument '<argument>' passed in a BLOB or CLOB method.

XJ0o72 Null pattern or searchStr passed in to a BLOB or CLOB position method.

XJ0o73 The data in this BLOB or CLOB is no longer available. The BLOB or CLOB's
transaction may be committed, or its connection is closed.

XJO76 The position argument '<argument>' exceeds the size of the BLOB/CLOB.

XJo77 Got an exception when trying to read the first byte/character of the BLOB/CLOB
pattern using getBytes/getSubString.

XJ080 USING execute statement passed <numparameters> parameters rather than

170

Copyright

SQLSTATE Message Text
numparameters>.
XJos1 Conflicting create/restore/recovery attributes specified.
XJos1 Invalid value '<value>' passed as parameter '<parameterName>' to method

'<moduleName>'.

Tablel. Class Code XSAIx: Store - access.protocol.interface statement exceptions

SQLSTATE Message Text
XSAI2 The conglomerate (<value>) requested does not exist.
XSAI3 Feature not implemented.

Tablel. Class Code XSAMx: Store - AccessManager

SQLSTATE Message Text
XSAMO Exception encountered while trying to boot module for '<value>".
XSAM2 There is no index or conglomerate with conglom id ‘'<conglomID>' to drop.
XSAM3 There is no index or conglomerate with conglom id ‘<conglomID>'.
XSAM4 There is no sort called '<sortName>'.
XSAM5 Scan must be opened and positioned by calling next() before making other calls.
XSAMG6 Record <recordnumber> on page <page> in container <containerName> not found.

Tablel. Class Code XSASx: Store-Sort

SQLSTATE Message Text
XSASO A scan controller interface method was called which is not appropriate for a scan on a
sort.
XSAS1 An attempt was made to fetch a row before the beginning of a sort or after the end of a
sort.
XSAS3 The type of a row inserted into a sort does not match the sorts template.
XSAS6 Could not acquire resources for sort.

Tablel. Class Code XSAXx: Store - access.protocol.XA statement exception

SQLSTATE Message Text
XSAXO0 XA protocol violation.
XSAX1 An attempt was made to start a global transaction with an Xid of an existing global

transaction.

Tablel. Class Code XSCBx: Store-BTree

SQLSTATE Message Text
XSCBO Could not create container.
XScCB1 Container <containerName> not found.
XSCB2 The required property <propertyName> not found in the property list given to
createConglomerate() for a btree secondary index.
XSCB3 Unimplemented feature.

171

Copyright

SQLSTATE Message Text

XSCB4 A method on a btree open scan was called prior to positioning the scan on the first row
(that is, no next() call has been made yet). The current state of the scan is (<value>).

XSCB5 During logical undo of a btree insert or delete, the row could not be found in the tree.

XSCB6 Limitation: Record of a btree secondary index cannot be updated or inserted due to
lack of space on the page. Use the parameters derby.storage.pageSize and/or
derby.storage.pageReservedSpace to work around this limitation.

XSCB7 An internal error was encountered during a btree scan - current_rh is null = <value>,
position key is null = <value>.

XSCB8 The btree conglomerate <value> is closed.

XSCB9 Reserved for testing.

Tablel. Class Code XSCGO: Conglomerate

SQLSTATE

Message Text

XSCGO

Could not create a template.

Tablel. Class Code XSCHx: Heap

SQLSTATE Message Text
XSCHO Could not create container.
XSCH1 Container <containerName> not found.
XSCHA4 Conglomerate could not be created.
XSCH5 In a base table there was a mismatch between the requested column number
<columnnumber> and the maximum number of columns <maxcol>.
XSCH6 The heap container with container id <containerID> is closed.
XSCH7 The scan is not positioned.
XSCHS8 The feature is not implemented.

Tablel. Class Code XSDAXx: RawsStore - Data.Generic statement exceptions

SQLSTATE Message Text

XSDA1 An attempt was made to access an out of range slot on a page.

XSDA2 An attempt was made to update a deleted record.

XSDA3 Limitation: Record cannot be updated or inserted due to lack of space on the page.
Use the parameters derby.storage.pageSize and/or
derby.storage.pageReservedSpace to work around this limitation.

XSDA4 An unexpected exception was thrown.

XSDAS5 An attempt was made to undelete a record that was not deleted.

XSDAG6 Column <column> of row is null, it needs to be set to point to an object.

XSDA7 Restore of a serializable or SQLData object of class <className>, attempted to read
more data than was originally stored.

XSDAS8 Exception during restore of a serializable or SQLData object of class <className>.

XSDA9 Class not found during restore of a serializable or SQLData object of class
<className>.

XSDAA lllegal time stamp <timestamp>, either time stamp is from a different page or of

incompatible implementation.

172

Copyright

SQLSTATE Message Text
XSDAB Cannot set a null time stamp.
XSDAC Attempt to move either rows or pages from one container to another.
XSDAD Attempt to move zero rows from one page to another.
XSDAE Can only make a record handle for special record handle IDs.
XSDAF Using special record handle as if it were a normal record handle.
XSDAG The allocation nested top transaction cannot open the container
XSDAI Page <page> being removed is already locked for deallocation.
XSDAJ Exception during write of a serializable or SQLData object.
XSDAK The wrong page was retrieved for record handle <value>.
XSDAL Record handle <value> unexpectedly points to overflow page.

Tablel. Class Code XSDBx: RawStore - Data.Generic transaction exceptions

SQLSTATE Message Text

XSDBO Unexpected exception on in-memory page <page>.

XSDB1 Unknown page format at page <page>.

XSDB2 Unknown container format at container <containerName> : <value>.

XSDB3 Container information cannot change once written: was <value>, now <value>.

XSDB4 Page <page> is at version <value> but the log file contains change version <value>.
Either the log records for this page are missing or this page was not written to disk
properly.

XSDB5 Log has change record on page <page>, which is beyond the end of the container.

XSDB6 Another instance of Derby may have already booted the database <value>.

XSDB7 WARNING: Derby (instance <value>) is attempting to boot the database <value> even
though Derby (instance <value>) might still be active. Only one instance of Derby
should boot a database at a time. Severe and non-recoverable corruption can result
and might have already occurred.

XSDB8 WARNING: Derby (instance <value>) is attempting to boot the database <value> even
though Derby (instance <value>) might still be active. Only one instance of Derby
should boot a database at a time. Severe and non-recoverable corruption can result if
two instances of Derby boot on the same database at the same time. The
db2j.database.forceDatabaselLock=true property is set so the database will not boot
until the db.Ick is no longer present. Normally this file is removed when the first
instance of Derby to boot on the database exits. However, it is not removed in some
shutdowns. If the file is not removed, you must remove it manually. It is important to
verify that no other VM is accessing the database before manually deleting the db.Ick
file.

XSDB9 Stream container <containerName> is corrupt.

XSDBA Attempt to allocate object <object> failed.

Tablel. Class Code XSDFx: RawStore - Data.Filesystem statement exceptions

SQLSTATE Message Text
XSDFO Could not create file <fileName> as it already exists.
XSDF1 Exception during creation of file <fleName> for container.
XSDF2 Exception during creation of file <fleName> for container, file could not be removed.

173

Copyright

SQLSTATE Message Text
The exception was: <value>.

XSDF3 Cannot create segment <segmentName>.

XSDF4 Exception during remove of file <fleName> for dropped container, file could not be
removed <value>.

XSDF6 Cannot find the allocation page <page>.

XSDF7 Newly created page failed to be latched <value>.

XSDF8 Cannot find page <page> to reuse.

XSDFB Operation not supported by a read only database.

XSDFD Different page image read on two 1/0Os on Page <page>. The first image has an
incorrect checksum, the second image has a correct checksum. Page images follows:
<value> <value>.

XSDFF The requested operation failed due to an unexpected exception.

Tablel. Class Code XSDGx: RawStore - Data.Filesystem database exceptions

SQLSTATE Message Text

XSDGO Page <page> could not be read from disk.

XSDG1 Page <page> could not be written to disk, please check if disk is full.

XSDG2 Invalid checksum on Page <page>, expected=<value>, on-disk version=<value>, page
dump follows: <value>.

XSDG3 Meta-data for Container <containerName> could not be accessed.

XSDG5 Database is not in create mode when createFinished is called.

XSDG6 Data segment directory not found in <value> backup during restore. Please make sure
that backup copy is the right one and it is not corrupted.

XSDG7 Directory <directoryName> could not be removed during restore. Please make sure
that permissions are correct.

XSDG8 Unable to copy directory '<directoryName>' to '<value>' during restore. Please make

sure that there is enough space and permissions are correct.

Tablel. Class Code XSLAXx: RawStore - Log.Generic database exceptions

SQLSTATE Message Text

XSLAO Cannot flush the log file to disk <value>.

XSLAL Log Record has been sent to the stream, but it cannot be applied to the store (Object
<object>). This may cause recovery problems also.

XSLA2 An IOException occurred while accessing the log file. The system will shut down.

XSLA3 The log file is corrupt. The log stream contains invalid data.

XSLA4 Unable to write to the log, most likely because the log is full. It is also possible that the
file system is read-only, the disk failed, or another problem occurred with the media.
Delete unnecessary files.

XSLA5 Cannot read log stream for some reason to rollback transaction <value>.

XSLA6 Cannot recover the database.

XSLA7 Cannot redo operation <operation> in the log.

XSLAS8 Cannot rollback transaction <value>, trying to compensate <value> operation with

<value>.

174

Copyright

SQLSTATE Message Text

XSLAA The store has been marked for shutdown by an earlier exception.

XSLAB Cannot find log file <logfileName>. Verify that the logDevice property is set with the
correct path separator for your platform.

XSLAC Database at <value> have incompatible format with the current version of software, it
may have been created by or upgraded by a later version.

XSLAD Log record at instance <value> in log file <logfileName> is corrupted. Expected log
record length <value>, actual length <value>.

XSLAE Control file at <value> cannot be written or updated.

XSLAF A read-only database was created with dirty data buffers.

XSLAH A read-only database is being updated.

XSLAI Cannot log the checkpoint log record.

XSLAJ The log record size <value> exceeds the maximum allowable log file size <maxSize>.
An error was encountered in log file <fleName>, position <value>.

XSLAK Database has exceeded largest log file number <value>.

XSLAL The log record size <value> exceeds the maximum allowable log file size <maxSize>.
An error was encountered in log file <fleName>, position <value>.

XSLAM Cannot verify database format at <value> due to IOException.

XSLAN Database at <value> has an incompatible format with the current version of the
software. The database was created by or upgraded by version <version>.

XSLAO Recovery failed. Unexpected problem <value>.

XSLAP Database at <value> is at version <version>. Beta databases cannot be upgraded.

XSLAQ Cannot create log file at directory <directory>.

XSLAR Unable to copy log file '<logfileName>' to '<value>' during restore. Please make sure
that there is enough space and permissions are correct.

XSLAS Log directory <directory> not found in backup during restore. Please make sure that
backup copy is the correct one and it is not corrupted.

XSLAT Log directory <directory> exists. Please make sure specified logDevice location is

correct.

Tablel. Class Code XSLBx: RawStore - Log.Generic statement exceptions

SQLSTATE Message Text

XSLB1 Log operation <logoperation> encounters error writing itself out to the log stream, this
could be caused by an errant log operation or internal log buffer full due to excessively
large log operation.

XSLB2 Log operation <logoperation> logging excessive data, it filled up the internal log buffer.

XSLB4 Cannot find truncationLWM <value>.

XSLB5 lllegal truncationLWM instance <value> for truncation point <value>. Legal range is
from <value> to <value>.

XSLB6 Trying to log a 0 or -ve length log Record.

XSLB8 Trying to reset a scan to <value>, beyond its limit of <value>.

XSLB9 Unable to issue any more changes. Log factory has been stopped.

Tablel. Class Code XSRSx: RawStore - protocol.Interface statement exceptions

175

Copyright

SQLSTATE Message Text
XSRS0 Cannot freeze the database after it is already frozen.
XSRS1 Cannot backup the database to <value>, which is not a directory.
XSRS4 Error renaming file (during backup) from <value> to <value>.
XSRS5 Error copying file (during backup) from <path> to <path>.
XSRS6 Cannot create backup directory <directoryName>.
XSRS7 Backup caught unexpected exception.
XSRS8 Log device can only be set during database creation time, it cannot be changed after
the database is created.
XSRS9 Record <recordName> no longer exists.

Tablel. Class Code XSTA2: XACT_TRANSACTION_ACTIVE

SQLSTATE

Message Text

XSTA2

A transaction was already active when an attempt was made to activate another
transaction.

Tablel. Class Code XSTBx: RawStore - Transactions.Basic system exceptions

SQLSTATE Message Text
XSTBO An exception was thrown during transaction abort.
XSTB2 Unable to log transaction changes, possibly because the database is read-only.
XSTB3 Cannot abort transaction because the log manager is null, probably due to an earlier
error.
XSTB5 Creating database with logging disabled encountered unexpected problem.
XSTB6 Cannot substitute a transaction table with another while one is already in use.

Tablel. Class Code XXXXX : No SQLSTATE

SQLSTATE

Message Text

XXXXX

Normal database session close.

176

Copyright

JDBC Reference

Derby comes with a built-in JDBC driver. That makes the JDBC API the only API for
working with Derby databases. The driver is a native protocol all-Java driver (type
number four of types defined by Sun).

This chapter provides reference information about Derby's implementation of the JDBC
API and documents the way it conforms to the JDBC 2.0 and 3.0 APIs.

See the Derby Developer's Guide for task-oriented instructions on working with the driver.

This JDBC driver implements the standard JDBC interface defined by Sun. When
invoked from an application running in the same JVM as Derby, the JDBC driver supports
connections to a Derby database in embedded mode. No network transport is required to
access the database. In client/server mode, the client application dispatches JDBC
requests to the JDBC server over a network; the server, in turn, which runs in the same
JVM as Derby, sends requests to Derby through the embedded JDBC driver.

The Derby JDBC implementation provides access to Derby databases and supplies all
the required JDBC interfaces. Unimplemented aspects of the JDBC driver return an
SQLException with a message stating "Feature not implemented" and an SQLState of
XJZZZ. These unimplemented parts are for features not supported by Derby.

Core JDBC java.sql Classes, Interfaces, and Methods
This section details Derby's implementation of the following java.sql classes, interfaces,
and methods:

e java.sgl.Driver

java.sqgl.DriverManager.getConnection

java.sql.Driver.getPropertylnfo

java.sgl.Connection

java.sgl.DatabaseMetaData

java.sqgl.Statement

java.sgl.PreparedStatement

java.sgl.CallableStatement

java.sgl.ResultSet

java.sgl.ResultSetMetaData

java.sgl.SQLException

java.sgl.SQLWarning

Mapping of java.sql.Types to SQL types

java.sql.Driver

The class that loads Derby's local JDBC driver is the class
org.apache.derby.jdbc.EmbeddedDriver. Listed below are some of the ways to create
instances of that class. Do not use the class directly through the java.sql.Driver interface.
Use the DriverManager class to create connections.

¢ Class.forName("org.apache.derby.jdbc.EmbeddedDriver")

Our recommended manner, because it ensures that the class is loaded in all JVMs
by creating an instance at the same time.

¢ new org.apache.derby.jdbc.EmbeddedDriver()

Same as Class.forName("org.apache.derby.jdbc.EmbeddedDriver") , except that it
requires the class to be found when the code is compiled.

¢ Class ¢ = org.apache.derby.jdbc.EmbeddedDriver.class

177

Copyright

This is also the same as Class.forName("org.apache.derby.jdbc.EmbeddedDriver")
, except that it requires the class to be found when the code is compiled. The
pseudo-static field class evaluates to the class that is named.

« Setting the System property jdbc.drivers

To set a System property, you alter the invocation command line or the system
properties within your application. It is not possible to alter system properties within
an applet.

java -Djdbc. drivers=org. apache. der by. j dbc. EnbeddedDri ver
appl i cati onCl ass

The actual driver that gets registered in the DriverManager to handle the jdbc:derby:
protocol is not the class org.apache.derby.jdbc.EmbeddedDriver; that class simply
detects the type of Derby driver needed and then causes the appropriate Derby driver to
be loaded.

The only supported way to connect to a Derby system through the jdbc:derby: protocol is
using the DriverManager to obtain a driver (java.sql.Driver) or connection
(java.sgl.Connection) through the getDriver and getConnection method calls.

java.sql.DriverManager.getConnection

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object. The standard way to obtain a Connection object is to call
the method DriverManager.getConnection, which takes a String containing a database
connection URL. A JDBC database connection URL (uniform resource locator) provides
a way of identifying a database.

DriverManager.getConnection can take one argument besides a database connection
URL, a Properties object. You can use the Properties object to set database connection
URL attributes.

You can also supply strings representing user names and passwords. When they are
supplied, Derby checks whether they are valid for the current system if user
authentication is enabled. User names are passed to Derby as authorization identifiers,
which are used to determine whether the user is authorized for access to the database
and for determining the default schema. When the connection is established, if no user is
supplied, Derby sets the default user to APP, which Derby uses to name the default
schema. If a user is supplied, the default schema is the same as the user name.

Derby database connection URL syntax

A Derby database connection URL consists of the basic database connection URL
followed by an optional subsubprotocol and optional attributes.

This section provides reference information only. For a more complete description,
including examples, see "Connecting to Databases" in Chapter 1 of the Derby
Developer's Guide .

Syntax of database connection URLSs for applications with embedded databases

178

Copyright

For applications with embedded databases, the syntax of the database connection URL

IS
j dbc: derb%/: [
subsubpr ot ocol
][data asenane] [
ja*t ributes

¢ jdbc:derby:

In JDBC lingo, derby is the subprotocol for connecting to a Derby database. The
subprotocol is always derby and does not vary.

¢ subsubprotocol:

subsubprotocol, which is not typically specified, specifies where Derby looks for a
database: in a directory, in a classpath, or in a jar file. It is used only in rare
instances, usually for read-only databases. subsubprotocol is one of the following:

e directory
¢ classpath: Databases are treated as read-only databases, and all
databaseNames must begin with at least a slash, because you specify them
"relative” to the classpath directory or archive. (You do not have to specify
classpath as the subsubprotocol; it is implied.)
« jar Databases are treated as read-only databases.
jar: requires an additional element immediately before the databaseName:

(pat hToAr chi ve)

pathToArchive is the path to the jar or zip file that holds the database and includes
the name of the jar or zip file.

See the Derby Developer's Guide for examples of database connection URLs for
read-only databases.
* databaseName
Specify the databaseName to connect to an existing database or a new one.
You can specify the database name alone, or with a relative or absolute path. See

"Standard Connections-Connecting to Databases in the File System" in Chapter 1
of the Derby Developer's Guide .

« attributes

Specify 0 or more database connection URL attributes as detailed in Attributes of
the Derby database connection URL .

Additional SQL syntax

Derby also supports the following SQL standard syntax to obtain a reference to the
current connection in a database-side JDBC procedure or method:

jdbc: defaul t: connecti on

Attributes of the Derby database connection URL

You can supply an optional list of attributes to a database connection URL. Derby

179

Copyright
translates these attributes into properties, so you can also set attributes in a Properties
object passed to DriverManager.getConnection. (You cannot set those attributes as
system properties, only in an object passed to the DriverManager.getConnection
method.)

These attributes are specific to Derby and are listed in Setting attributes for the database
connection URL .

Attribute name/value pairs are converted into properties and added to the properties

provided in the connection call. If no properties are provided in the connection call, a
properties set is created that contains only the properties obtained from the database
connection URL.

inmport java.util.Properties;

Connecti on conn = Driver Manager. ?et Connecti on(
{ dbc: der by: sa_rrBI eDB; creat e=true");)

-- setting an attribute In a Properties object

Properties myProps = new Properties();

nmyProps. put (“create", "true"); .

Connection conn = DriverManager. get Connecti on(
"j dbc: der by: sanpl eDB", myProps);

-- passing user nane and password)

Connection conn = Driver nager. get Connecti on(
"j dbc: der by: sanpl eDB", "dba", "password");

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute or
corresponding value, it is simply ignored. (Derby does provide a tool for parsing the
correctness of attributes. For more information, see the Derby Tools and Utilities Guide .)

java.sql.Driver.getPropertyinfo

To get the DriverPropertylnfo object, request the JDBC driver from the driver manager:

java.sql . Driver Manager. get Dri ver("j dbc: derby:").
=L get Propertyl nf o?

Pr op
)

Do not request it from org.apache.derby.jdbc.EmbeddedDriver, which is only an
intermediary class that loads the actual driver.

This method might return a DriverPropertylnfo object. In a Derby system, it consists of an
array of database connection URL attributes. The most useful attribute is
databaseName=nameofDatabase , which means that the object consists of a list of
booted databases in the current system.

For example, if a Derby system has the databases toursDB and flightsDB in its system
directory, all the databases in the system are set to boot automatically, and a user has
also connected to a database A: / dbs/ t our s94, the array returned from
getPropertyInfo contains one object corresponding to the databaseName attribute. The
choices field of the DriverPropertylnfo object will contain an array of three Strings with the
values toursDB, flightsDB, and A: / dbs/ t our s94. Note that this object is returned only if
the proposed connection objects do not already include a database name (in any form) or
include the shutdown attribute with the value true.

180

Copyright

For more information about java.sql.Driver.getPropertylnfo, see "Offering Connection
Choices to the User" in Chapter 8 of the Derby Developer's Guide .

java.sql.Connection

A Derby Connection object is not garbage-collected until all other JDBC objects created
from that connection are explicitly closed or are themselves garbage-collected. Once the
connection is closed, no further JDBC requests can be made against objects created
from the connection. Do not explicitly close the Connection object until you no longer
need it for executing statements.

A session-severity or higher exception causes the connection to close and all other JDBC
objects against it to be closed. System-severity exceptions cause the Derby system to
shut down, which not only closes the connection but means that no new connections
should be created in the current JVM.

java.sgl.Connection.setTransactionlsolation

java.sgl.Connection. TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sgl.Connection.TRANSACTION_READ_COMMITTED, and

java.sgl.Connection. TRANSACTION_READ_UNCOMMITTED transaction isolations are
available from a Derby database.

TRANSACTION_READ_COMMITTED is the default isolation level.

Changing the current isolation for the connection with setConnection commits the current
transaction and begins a new transaction, per the JDBC standard.

java.sgl.Connection.setReadOnly

java.sgl.Connection.setReadOnly is supported.

java.sgl.Connection.isReadOnly

If you connect to a read-only database, the appropriate isReadOnly DatabaseMetaData
value is returned. For example, Connections set to read-only using the setReadOnly
method, Connections for which the user has been defined as a readOnlyAccess user
(with one of the Derby properties), and Connections to databases on read-only media
return true.

Connection functionality not supported

Derby does not use catalog names; the getCatalog and setCatalog methods result in a
"Feature not implemented" SQLEXxception with an SQLState of XJZZZ.

java.sgl.DatabaseMetaData

This section discuss java.sgl.DatabaseMetaData functionality in Derby.
DatabaseMetaData result sets

181

Copyright

DatabaseMetaData result sets do not close the result sets of other statements, even
when auto-commit is set to true.

DatabaseMetaData result sets are closed if a user performs any other action on a JDBC
object that causes an automatic commit to occur. If you need the DatabaseMetaData
result sets to be accessible while executing other actions that would cause automatic
commits, turn off auto-commit with setAutoCommit(false).

getProcedureColumns

Derby supports Java procedures. Derby allows you to call Java procedures within SQL
statements. Derby returns information about the parameters in the getProcedureColumns
call. If the corresponding Java method is overloaded, it returns information about each
signature separately. Derby returns information for all Java procedures defined by
CREATE PROCEDURE.

getProcedureColumns returns a ResultSet. Each row describes a single parameter or
return value.

Parameters to getProcedureColumns
The JDBC API defines the following parameters for this method call:

« catalog
always use null for this parameter in Derby.
« schemaPattern
Java procedures have a schema.
* procedureNamePattern
a String object representing a procedure name pattern.
¢ column-Name-Pattern

a String object representing the name pattern of the parameter names or return
value names. Java procedures have parameter names matching those defined in
the CREATE PROCEDURE statement. Use "%" to find all parameter names.

Columns in the ResultSet returned by getProcedureColumns

Columns in the ResultSet returned by getProcedureColumns are as described by the
API. Further details for some specific columns:
* PROCEDURE_CAT

always "null" in Derby
¢ PROCEDURE_SCHEM
schema for a Java procedure
e PROCEDURE_NAME
the name of the procedure
+ COLUMN_NAME
the name of the parameter (see column-Name-Pattern)
« COLUMN_TYPE

182

Copyright

short indicating what the row describes. Always is
DatabaseMetaData.procedureColumnin for method parameters, unless the
parameter is an array. If so, it is DatabaseMetaData.procedureColumninOut. It
always returns DatabaseMetaData.procedureColumnReturn for return values.

« TYPE_NAME
Derby-specific name for the type.
¢ NULLABLE

always returns DatabaseMetaData.procedureNoNulls for primitive parameters and
DatabaseMetaData.procedureNullable for object parameters

* REMARKS

a String describing the java type of the method parameter
* METHOD_ID

a Derby-specific column.
* PARAMETER_ID

a Derby-specific column.

DatabaseMetaData functionality not supported

In the current release, Derby does not provide all of the DatabaseMetaData functionality.
The following JDBC requests result in empty result sets, in the format required by the
JDBC API:

« getColumnPrivileges

e getTablePrivileges

Derby does not implement privileges, and thus has no information to provide for these
calls.

getBestRowldentifier looks for identifiers in this order:
e a primary key on the table
e aunique constraint or unique index on the table
¢ all the columns in the table

Because of this last choice, it will always find a set of columns that identify a row.
However, if there are duplicate rows in the table, use of all columns might not necessarily
identify a unique row in the table.

java.sql.Statement

Derby does not implement the following JDBC 1.2 methods of java.sql.Statement:
e cancel
* setEscapeProcessing
¢ setQueryTimeout

ResultSet objects

An error that occurs when a SELECT statement is first executed prevents a ResultSet
object from being opened on it. The same error does not close the ResultSet if it occurs
after the ResultSet has been opened.

183

Copyright

For example, a divide-by-zero error that happens while the executeQuery method is
called on a java.sgl.Statement or java.sql.PreparedStatement throws an exception and
returns no result set at all, while if the same error happens while the next method is
called on a ResultSet object, it does not cause the result set to be closed.

Errors can happen when a ResultSet is first being created if the system partially executes
the query before the first row is fetched. This can happen on any query that uses more
than one table and on queries that use aggregates, GROUP BY, ORDER BY, DISTINCT,
INTERSECT, EXCEPT, or UNION.

Closing a Statement causes all open ResultSet objects on that statement to be closed as
well.

The cursor name for the cursor of a ResultSet can be set before the statement is
executed. However, once it is executed, the cursor name cannot be altered.

java.sql.PreparedStatement

Derby provides all the required JDBC 1.2 type conversions and additionally allows use of
the individual setXXX methods for each type as if a setObject(Value, IDBCTypeCode)
invocation were made.

This means that setString can be used for any built-in target type.

The setCursorName method can be used on a PreparedStatement prior to an execute
request to control the cursor name used when the cursor is created.

Prepared statements and streaming columns

setXXXStream requests stream data between the application and the database.

JDBC allows an IN parameter to be set to a Java input stream for passing in large
amounts of data in smaller chunks. When the statement is executed, the JDBC driver
makes repeated calls to this input stream, reading its contents and transmitting those
contents as the parameter data.

Derby supports the three types of streams that JDBC 1.2 provides. These three streams
are:
* setBinaryStream

for streams containing uninterpreted bytes
e setAsciiStream

for streams containing ASCII characters
e setUnicodeStream

for streams containing Unicode characters

JDBC requires that you specify the length of the stream. The stream object passed to
these three methods can be either a standard Java stream object or the user's own
subclass that implements the standard java.io.InputStream interface.

184

Copyright

According to the JDBC standard, streams can be stored only in columns of the data types
shown in Streamable JDBC Data Types . Streams cannot be stored in columns of the

other built-in data types or of user-defined data types.
Tablel. Streamable JDBC Data Types

Column Values Type Correspondent| AsciiStream | UnicodeStream

BinaryStream

CLOB java.sql.Clob

CHAR '

VARCHAR '

LONGVARCHAR '

BINARY '

BLOB java.sql.Blob

VARBINARY '

X | XXX X|X]|X]X
XX XX X|X]|X]|X

x| x| x| x

LONGVARBINARY '

A large X indicates the preferred target data type for the type of stream. (See Mapping of
java.sql.Types to SQL Types .)

Note: If the stream is stored in a column of a type other than LONG VARCHAR or LONG
VARCHAR FOR BIT DATA, the entire stream must be able to fit into memory at one time.

Streams stored in LONG VARCHAR and LONG VARCHAR FOR BIT DATA columns do

not have this limitation.

The following example shows how a user can store a streamed java.io.File in a LONG

VARCHAR column:

Statenent s = conn.createStat en"entf);

s. execut eUpdat e(" CREATE TABLE atable (a INT, b LONG VARCHAR)"
conn.comit () ;

java.io.File file = new java.io. F|Ie(derby. txt");

int fileLength = (i t) file.length();

[l first, create an ihput stream

ava. i o. InputStr amfln = new java.io.FilelnputStreanm(file);
reparedStaterrent s = conn. repareStaterrent?
I NSERT | NTO at abl e VALUES (?, ?)");

S. setlnt 1, 1);

/ set the val ue of the input
ps.setAsciiStrean(2, fin,
ps execute();

conn. commi t (§;

ararreter to the input stream
il eLength

java.sql.CallableStatement

Derby supports all the IDBC 1.2 methods of CallableStatement:
e getBoolean()
getByte()
getBytes()
getDate()
getDouble()
getFloat()
getint()
getLong()
getObject()
getShort()
getString()
getTime()
getTimestamp()

185

Copyright

e registerOutParamter()
e wasNull()

CallableStatements and OUT Parameters

Derby supports OUT parameters and CALL statements that return values, as in the
following example:

Cal | abl eSt at ement c¢s =_conn. prepar eCal | F\IT
"? = CALL getDriverT El)e(cast (? as INT))"
cs.registerQu { Types. | NTEGER) ;
cs.seflnt(2,

CS. executeUpdat e();

Par anet er

Note: Using a CALL statement with a procedure that returns a value is only supported
with the ? = syntax.

Register the output type of the parameter before executing the call.

CallableStatements and INOUT Parameters

INOUT parameters map to an array of the parameter type in Java. (The method must
take an array as its parameter.) This conforms to the recommendations of the SQL
standard.

Given the following example:

cal | onn. preparecCal | (

Cal | a%)l eSt at enent 51

CALL doubl eM/I nt (?)

c
(
[l for_inout ararreters, |}t ?ood practice to
/1 regl ster the outparaneter be ore setting the input value
call. ?I ster Qut Par aneter (1, Types. | NTEGER ?
call. Int(1,10)
call. execut e(
int retval = call. getlnt(l);

The method doublelt should take a one-dimensional array of i nt s. Here is sample
source code for that method:

i) A

returns the first element of the array. */

publ i cost at |2c voi d doubl eMyInt (int[]
/ r by

Note: The return value is not wrapped in an array even though the parameter to the
method is.
Tablel. INOUT Parameter Type Correspondence

Array Type for Method
JDBC Type Parameter Value and Return Type
BIGINT long(] long
BINARY byte[l[] byte[]
BIT boolean(] boolean
DATE java.sql.Date[] java.sql.Date
DOUBLE double(] double
FLOAT double(] double
INTEGER int[] int

186

Copyright

Array Type for Method
JDBC Type Parameter Value and Return Type
LONGVARBINARY byte[][] byte[]
REAL float[] float
SMALLINT short]] short
TIME java.sgl.Time[] java.sgl.Time
TIMESTAMP java.sgl.Timestamp(] java.sgl.Timestamp
VARBINARY byte[][] byte[]
OTHER yourType(] yourType
JAVA OBJECT (only valid in yourType[] yourType
Java2/JDBC 2.0 environments)

Register the output type of the parameter before executing the call. For INOUT

parameters, it is good practice to register the output parameter before setting its input

value.

java.sql.ResultSet

A positioned update or delete issued against a cursor being accessed through a
ResultSet object modifies or deletes the current row of the ResultSet object.

Some intermediate protocols might pre-fetch rows. This causes positioned updates and
deletes to operate against the row the underlying cursor is on, and not the current row of
the ResultSet.

Derby provides all the required JDBC 1.2 type conversions of the getXXX methods.

JDBC does not define the sort of rounding to use for ResultSet.getBigDecimal. Derby
uses java.math.BigDecimal. ROUND_HALF_DOWN.

ResultSets and streaming columns

If the underlying object is itself an OutputStream class, getBinaryStream returns the
object directly.

To get a field from the ResultSet using streaming columns, you can use the
getXXXStream methods if the type supports it. See Streamable JDBC Data Types for a
list of types that support the various streams. (See also Mapping of java.sgl.Types to
SQL Types .)

You can retrieve data from one of the supported data type columns as a stream, whether
or not it was stored as a stream.

The following example shows how a user can retrieve a LONG VARCHAR column as a
stream:

eve data as a stream
t rs = s.executeQuery("SELECT b FROM at abl e");

187

Copyright

V\:hl|/e (rs.next()) {
|

use a java.lo.lnputStreamto get the data
java.io.lnputStreamip = rs.getAsciiStreaml);
/| process the stream-this I's just a generic way to

/1 print the data

int c;
int columsSize =
Pyte£1 ?u}f = nem1byte[128]

Int size = ip. read(buff)
if (size == -1)

br eak;
col umSi ze += si ze .
String chunk = new Strlng(buff 0, size);
Syst em out . pri nt (chunk) ;

}

rs.close();
s.cl ose();
conn. comm t () ;

java.sql.Re

sultSetMetaData

Derby does not track the source or updatability of columns in ResultSets, and so always
returns the following constants for the following methods:

Method Name Value
isDefinitelyWritable false
isReadOnly false
isWritable false

java.sql.SQLException

Derby supplies values for the getMessage(), getSQLState(), and getErrorCode() calls of
SQLExceptions. In addition, Derby sometimes returns multiple SQLEXxceptions using the
nextException chain. The first exception is always the most severe exception, with
SQL-92 Standard exceptions preceding those that are specific to Derby. For information
on processing SQLExceptions, see "Working with Derby SQLExceptions in an
Application” in Chapter 5 of the Derby Developer's Guide .

java.sqgl.SQLWarning

Derby can generate a warning in certain circumstances. A warning is generated if, for
example, you try to connect to a database with the create attribute set to true if the
database already exists. Aggregates like sum() also raise a warning if NULL values are
encountered during the evaluation.

All other informational messages are written to the Derby system's derby.log file.

Mapping of java.sql.Types to SQL types

Mapping of java.sql.Types to SQL Types shows the mapping of java.sql.Types to SQL

types.
Tablel. Mapping of java.sql.Types to SQL Types

java.sql.Types SQL Types

BIGINT

BIGINT

188

Copyright

java.sql.Types SQL Types
BINARY CHAR FOR BIT DATA
BIT1 CHAR FOR BIT DATA
BLOB BLOB (JDBC 2.0 and up)
CHAR CHAR
CLOB CLOB (JDBC 2.0 and up)
DATE DATE
DECIMAL DECIMAL
DOUBLE DOUBLE PRECISION
FLOAT DOUBLE PRECISION 2
INTEGER INTEGER
LONGVARBINARY LONG VARCHAR FOR BIT DATA
LONGVARCHAR LONG VARCHAR
NULL Not a data type; always a value of a particular type
NUMERIC DECIMAL
REAL REAL
SMALLINT SMALLINT
TIME TIME
TIMESTAMP TIMESTAMP
VARBINARY VARCHAR FOR BIT DATA
VARCHAR VARCHAR

Notes:

1. BIT is only valid in JDBC 2.0 and earlier environments.

2. Values can be passed in using the FLOAT type code; however, these are stored as
DOUBLE PRECISION values, and so always have the type code DOUBLE when
retrieved.

java.sql.Blob and java.sql.Clob

In JDBC 2.0, java.sql.Blob is the mapping for the SQL BLOB (binary large object) type;
java.sql.Clob is the mapping for the SQL CLOB (character large object) type.

java.sql.Blob and java.sql.Clob provide a logical pointer to the large object rather than a
complete copy of the objects. Derby processes only one data page into memory at a
time. The whole BLOB does not need to be processed and stored in memory just to
access the first few bytes of the LOB object

Derby now supports the built-in BLOB or CLOB data types. Derby also provides the
following support for these data types:

* BLOB Features Derby supports the java.sql.Blob interface and the BLOB-related
methods in java.sql.PreparedStatement and java.sql.ResultSet . The getBlob
methods of CallableStatement are not implemented.

e CLOB Features Derby supports the java.sqgl.Clob interface and the CLOB-related
methods in java.sql.PreparedStatement and java.sql.ResultSet . The getClob
methods of CallableStatement procedures are not implemented.

To use the java.sql.Blob and java.sql.Clob features:

189

Copyright

« Use the SQL BLOB type for storage; LONG VARCHAR FOR BIT DATA, BINARY,
and VARCHAR FOR BIT DATA types also work.

¢ Use the SQL CLOB type for storage; LONG VARCHAR, CHAR, and VARCHAR
types also work.

¢ Use the getBlob or getClob methods on the java.sql.ResultSet interface to retrieve a
BLOB or CLOB handle to the underlying data.

¢ You cannot call static methods (SQL extension over SQL) on any LOB-columns.

In addition, casting between strings and BLOBSs is not recommended because casting is
platform and database dependent.

Derby uses unicode strings (2 byte characters), while other database products may use
ASCII characters (1 byte per character). If various codepages are used, each character
might need several bytes. A larger BLOB type might be necessary to accommodate a
normal string in Derby. You should use CLOB types for storing strings.

Restrictions on BLOB, CLOB, (LOB-types):
« LOB-types cannot be compared for equality(=) and non-equality(!=, <>.
* LOB-typed values are not order-able, so <, <=, >, >= tests are not supported.
* LOB-types cannot be used in indices or as primary key columns.
« DISTINCT, GROUP BY, ORDER BY clauses are also prohibited on LOB-types.
« LOB-types cannot be involved in implicit casting as other base-types.

Derby implements all of the methods for these JDBC 2.0 interfaces except for the set and
get methods in CallableStatement interface.

Recommendations: Because the lifespan of a java.sql.Blob or java.sqgl.Clob ends when
the transaction commits, turn off auto-commit with the java.sql.Blob or java.sql.Clob
features.

Tablel. JDBC 2.0 java.sql.Blob Methods Supported

Returns Signature Implementation Notes

InputStream| getBinaryStream()

byte[] getBytes(long pos, int length) Exceptions are raised if pos < 1, if pos is larger than the
length of the , or if length <= 0.

long length() '

long position(byte[] pattern, long Exceptions are raised if pattern == null, if start < 1, or if
start) pattern is an array of length O.

long position(Blob pattern, long start) | Exceptions are raised if pattern == null, if start < 1, if

pattern has length 0, or if an exception is thrown when
trying to read the first byte of pattern.

Tablel. JDBC 2.0 java.sql.Clob Methods Supported

Returns Signature Implementation Notes

InputStream | getAsciiStream() '

Reader getCharacterStream() NOT SUPPORTED

String getSubString(long pos, int length) Exceptions are raised if pos < 1, if pos is larger
than the length of the Clob, or if length <= 0.

long length() '

long position(Clob searchstr, long start) | Exceptions are raised if searchStr == null or start <

190

Copyright

Returns Signature Implementation Notes
1, if searchStr has length 0, or if an exception is
thrown when trying to read the first char of
searchsStr.
long position(String searchstr, long start) | Exceptions are raised if searchStr == null or start <
1, or if the pattern is an empty string.
Notes

The usual Derby locking mechanisms (shared locks) prevent other transactions from
updating or deleting the database item to which the java.sql.Blob or java.sql.Clob object
is a pointer. However, in some cases, Derby's instantaneous lock mechanisms could
allow a period of time in which the column underlying the java.sql.Blob or java.sql.Clob is
unprotected. A subsequent call to getBlob/getClob, or to a
java.sql.Blob/java.sql.Clobmethod, could cause undefined behavior.

Furthermore, there is nothing to prevent the transaction that holds the
java.sqgl.Blob/java.sql.Clob (as opposed to another transaction) from updating the
underlying row. (The same problem exists with the getXXXStream methods.) Program
applications to prevent updates to the underlying object while a
java.sqgl.Blob/java.sql.Clob is open on it; failing to do this could result in undefined
behavior.

Do not call more than one of the ResultSet getXXX methods on the same column if one
of the methods is one of the following:

e getBlob

e getClob

e getAsciiStream

e getBinaryStream

e getUnicodeStream

These methods share the same underlying stream; calling one more than one of these
methods on the same column so could result in undefined behavior. For example:

Resul tSet rs = s.executeQuery("SELECT text FROM CLOBS WHERE i = 1");
vvhllefrs next(% {

acl ob=rs ge obg[
) ip =rs.getAscii ream(l)

The streams that handle long-columns are not thread safe. This means that if a user
chooses to open multiple threads and access the stream from each thread, the resulting
behavior is undefined.

Clobs are not locale-sensitive.

java.sgl.Connection

Tablel. JDBC 2.0 Connection Methods Supported

Returns Sighature

Statement createStatement(int resultSetType, int
resultSetConcurrency)

PreparedStatement prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

CallableStatement prepareCall(String sql, int resultSetType, int

191

Copyright

Returns

Signature

resultSetConcurrency

Implementation notes

ResultSet. TYPE_ FORWARD_ONLY and ResultSet. TYPE_SCROLL_INSENSITIVE are
the only scrolling types supported. If you request TYPE_SCROLL_SENSITIVE, Derby
issues an SQLWarning and returns a TYPE_SCROLL_INSENSITIVE ResultSet.

These methods support both ResultSet. CONCUR_READ_ONLY and

ResultSet. CONCUR_UPDATABLE concurrencies. However, you can only request an
updatable ResultSet that has a TYPE_FORWARD_ONLY scrolling type. If you request
an updatable ResultSet with SCROLL_SENSITIVE or SCROLL_INSENSITIVE types,
Derby issues an SQLWarning and returns TYPE_SCROLL_INSENSITIVE READ_ONLY

ResultSet.

(Use Connection.getWarnings to see warnings.)

java.sql.ResultSet
Tablel. JDBC 2.0 ResultSet Methods Supported

Returns Signature Implementation Notes

void afterLast() '

void beforeFirst() '

void beforeFirst() '

void deleteRow() After the row is updated, the ResultSet object will be
positioned before the next row. Before issuing any
methods other than close on the ResultSet object,
the program will need to reposition the ResultSet
object by using the next() method.

boolean first() '

Blob getBlob(int columnindex) See java.sql.Blob and java.sql.Clob

Blob getBlob(String column-Name)

Clob getClob(int columnindex)

Clob getClob(String column-Name)

int getConcurrency() If the Statement object has
CONCUR_READ_ONLY concurrency, then this
method will return
ResultSet. CONCUR_READ_ONLY. But if the
Statement object has CONCUR_UPDATABLE
concurrency, then the return value will depend on
whether the underlying language ResultSet is
updatable or not. If the language ResultSet is
updatable, then getConcurrency() will return
ResultSet. CONCUR_UPDATABLE. If the language
ResultSet is not updatable, then getConcurrency()
will return ResultSet. CONCUR_READ_ONLY.

int getFetchDirection() '

int getFetchSize() Always returns 1.

int getRow() '

boolean isAfterLast() '

192

Copyright

Returns Signature Implementation Notes

boolean isBeforeFirst '

boolean isFirst() '

boolean isLast() '

boolean last() '

boolean previous() '

boolean relative(int rows) '

void setFetchDirection(int direction) '

void setFetchSize(int rows) A fetch size of 1 is the only size supported.

void updateRow() After the row is updated, the ResultSet object will be

positioned before the next row. Before issuing any
methods other than close on the ResultSet object,
the program will need to reposition the ResultSet
object by using the next() method.

Note: When working with scrolling insensitive ResultSets when auto-commit mode is
turned on, the only positioning method that can close the ResultSet automatically is the
next() method. When auto-commit mode is on, this method automatically closes the
ResultSet if it is called and there are no more rows. afterLast() does not close the

ResultSet, for example.

JDBC is not required to have auto-commit off when using updatable ResultSets.

At this moment, Derby does not support the insertRow() method for updatable

ResultSets.

java.sgl.Statement
Tablel. JDBC2.0 java.sql.Statement Methods Supported

Returns | Signature Implementation Notes

void addBatch(String sql) '

void clearBatch() '

int[] executeBatch() '

int getFetchDirection() Method call does not throw an exception, but call
is ignored.

int getFetchSize() Method call does not throw an exception, but call
is ignored.

int getMaxFieldSize() '

void getMaxRows() '

void setEscapeProcessing(boolean enable) | '

void setFetchDirection(int direction) Method call does not throw an exception, but call
is ignored.

void setFetchSize(int rows) Method call does not throw an exception, but call
is ignored.

void setMaxFieldSize(int max) Has no effect on Blobs and Clobs.

void setMaxRows() '

193

Copyright

java.sql.PreparedStatement

Tablel. JDBC 2.0 java.sql.PreparedStatement Methods Supported

Returns Signature Implementation Notes
void addBatch()

ResultSetMetaData getMetaData()

void setBlob(int i, Blob x)

void setClob(int i, Clob x)

java.sql.CallableStatement

Tablel. JDBC 2.0 java.sql.CallableStatements Methods Supported

Returns Signature Implementation Notes
BigDecimal getBigDecimal

Date getDate(int, Calendar)

Time getTime(int,Calendar)

Timestamp getTimestamp(int, Calendar)

java.sql.DatabaseMetaData

Derby implements all of the JDBC 2.0 methods for this interface.

java.sql.ResultSetMetaData

Derby implements all of the JDBC 2.0 methods for this interface.

java.sql.BatchUpdateException

Thrown if there is a problem with a batch update.

JDBC Package for Connected Device Configuration/Foundation
Profile (JSR169)

Derby supports the JDBC API defined for the Connected Device
Configuration/Foundation Profile, also known as JSR169. The features supported are a
subset of the JDBC 3.0 specification. Support for JSR169 is limited to the embedded
driver. Derby does not support using the Network Server under JSR169.

To obtain a connection under JSR169 specifications, use the

or g. apache. der by. j dbc. EnbeddedSi npl eDat aSour ce class. This class is
identical in implementation to the or g. apache. der by. j dbc. EnbeddedDat aSour ce
class. See the Derby Developer's Guide for information on using the properties of the
or g. apache. der by. j dbc. EnbeddedDat aSour ce class.

Some other features to note concerning the JSR169 implementation using Derby:
« Applications must get and set DECI MAL values using alternate JDBC get XXX and

194

Copyright

set XXX methods, such as get Stri ng() and set Stri ng() . Any alternate
method that works against a DECIMAL type with JDBC 2.0 or 3.0 will work in
JSR169.

« Java functions and procedures that use server-side JDBC parameters such as
CONTAI NS SQ., READS SQL DATAor MODI FI ES SQL DATA are not supported in
JSR169.

¢ The standard API used to obtain a connection (j dbc: def aul t : connecti on)is

not supported in JSR169. A runtime error may occur when the routine tries to obtain

a connection using j dbc: def aul t : connecti on.

Diagnostic tables are not supported.

Triggers are not supported.

Encrypted databases are not supported.

DriverManager is not supported. You cannot use DriverManager.getConnection() to

obtain a connection.

JDBC 3.0-only features

JDBC 3.0 adds some functionality to the core API. This section documents the features
supported by Derby.
Note: These features are present only in a Java 2 version 1.4 or higher environment.

These features are:

« New DatabaseMetaData methods. See java.sql.DatabaseMetaData .

« Retrieval of parameter metadata. See java.sql.ParameterMetaData and
java.sql.PreparedStatement .
Retrieval of auto-generated keys. See java.sql.Statement and
java.sgl.DatabaseMetaData .
* Savepoints. See java.sql.Connection .
HOLD Cursors. See java.sqgl.DatabaseMetaData .

The complete list:

¢ java.sgl.Connection
java.sql.DatabaseMetaData
java.sql.ParameterMetaData
java.sgl.PreparedStatement
java.sgl.Savepoint
java.sgl.Statement

java.sql.Connection

Tablel. JDBC 3.0 Connection Methods Supported

Returns | Signature Implementation Notes

Savepoint| setSavepoint (String name) Creates a savepoint with the given name in the
current transaction and returns the new Savepoint
object that represents it.

Savepoint| setSavepoint () Creates an unnamed savepoint in the current
transaction and returns the new Savepoint object
that represents it.

void releaseSavepoint (Savepoint savepoint) | Removes the given Savepoint object from the
current transaction.

void rollback(Savepoint savepoint) Undoes all changes made after the given

Savepoint object was set.

195

Copyright

java.sql.DatabaseMetaData
Tablel. JDBC 3.0 DatabaseMetaData Methods Supported

Returns | Signature Implementation Notes
boolean | supportsSavepoints() '

int getDatabaseMajorVersion() '

int getDatabaseMinorVersion() '

int getJDBCMajorVersion() '

int getJDBCMinorVersion() '

int getSQLStateType() '
boolean | supportsNamedParameters() '
boolean | supportsMultipleOpenResults() '
boolean | supportsGetGeneratedKeys() '
boolean | supportsResultSetHoldability(int holdability) '

int getResultSetHoldability() returns

ResultSet. HOLD_CURSORS_OVER_COMMI]

java.sql.ParameterMetaData

ParameterMetaData is new in JDBC 3.0. It describes the number, type, and properties of
parameters to prepared statements. The method
PreparedStatement.getParameterMetaData returns a ParameterMetaData object that
describes the parameter markers that appear in the PreparedStatement object. See
java.sgl.PreparedStatement for more information.

Interface ParameterMetaData methods are listed below.
Tablel. JIDBC 3.0 ParameterMetaData Methods

Returns Signature Implementation Notes
int getParameterCount() '
int isNullable(int param) '
boolean isSigned(int param) '
int getPrecision(int param) '
int getScale(int param) '
int getParameterType(int param) '
String getParamterTypeName (int param) '
String getParamterClassName (int param) '
int getParameterMode (int param) '

java.sql.PreparedStatement

The method PreparedStatement.getParameterMetaData returns a ParameterMetaData
object describing the parameter markers that appear in the PreparedStatement object.
See java.sql.ParameterMetaData for more information.

Tablel. JDBC 3.0 PreparedStatement Methods

196

Copyright

Returns

Signature Implementation Notes

ParameterMetaData getParameterMetaData() '

java.sgl.Savepoint

The Savepoint interface is new in JDBC 3.0. It contains new methods to set, release, or
roll back a transaction to designated savepoints. Once a savepoint has been set, the
transaction can be rolled back to that savepoint without affecting preceding work.
Savepoints provide finer-grained control of transactions by marking intermediate points
within a transaction.

Setting and rolling back to a savepoint

The JDBC 3.0 API adds the method Connection.setSavepoint, which sets a savepoint
within the current transaction. The Connection.rollback method has been overloaded to
take a savepoint argument. See java.sqgl.Connection for more information.

The code example below inserts a row into a table, sets the savepoint svpt 1, and then
inserts a second row. When the transaction is later rolled back to svpt 1, the second
insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing '1' will be added to TABLE1.

conn. set AutoConmmit (fal se); // Autoconmit nust be off to use savepoints.
Statenent stmt = conn. createSt at ement (?;

int rows = stnt.executeUpdate("I NSERT | NTO TABLE1 (COL1) VALUES(1)");
/| set savepoi nt]

Savepoi nt svptl = conn. set Savepoi nt ("S1");

rows = stnt.executeUpdate("|NSERT | NTO TABLE1 (COL1) VALUES (2)");

conn. rol | back(svpt1);

conn. comi t () ;

Releasing a savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a parameter and
removes it from the current transaction. Once a savepoint has been released, attempting
to reference it in a rollback operation will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or when the entire transaction is rolled
back.

Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints created after the savepoint in question.

Rules for savepoints

The savepoint cannot be set within a batch of statements to enabled partial recovery. If a
savepoint is set any time before the method executeBatch is called, it is set before any of
the statements that have been added to the batch are executed.

A savepoint-Name can be reused after it has been released explicitly (by issuing a

release of savepoint) or implicitly (by issuing a connection commit/rollback).

Restrictions on savepoints

197

Copyright

Derby does not support savepoints within a trigger.

Derby does not release locks as part of the rollback to savepoint.
Tablel. JDBC 3.0 Savepoint Methods

Returns Signature Implementation Notes

int getSavepointld() Throws SQLException if this is a named savepoint. Retrieves the
generated ID for the savepoint that this Savepoint object
represents.

String getSavepointName() Throws SQLEXxception if this is an unnamed savepoint. Retrieves

the name of the savepoint that this Savepoint object represents.

java.sql.Statement

Tablel. JIDBC 3.0 Statement Methods

Returns

Signature Implementation Notes

ResultSet

getGeneratedKeys()

Autogenerated keys

JDBC 3.0's autogenerated keys feature provides a way to retrieve values from columns
that are part of an index or have a default value assigned. Derby supports the
autoincrement feature, which allows users to create columns in tables for which the
database system automatically assigns increasing integer values. In JDBC 3.0, the
method Statement.getGeneratedKeys can be called to retrieve the value of such a
column. This method returns a ResultSet object with a column for the automatically
generated key. Calling ResultSet.getMetaData on the ResultSet object returned by
getGeneratedKeys produces a ResultSetMetaData object that is similar to that returned
by IDENTITY_VAL_LOCAL . A flag indicating that any auto-generated columns should be
returned is passed to the methods execute, executeUpdate, or prepareStatement when
the statement is executed or prepared.

Here's an example that returns a ResultSet with values for auto-generated columns in
TABLEL:

Statenent stnt = conn. createStat enent (? :
int rows = stnt.executeUpdate("INSERT | NTO TABLEL (Cl11, Cl2) VALUES

1,1)",
(St ?at ement . RETURN_GENERATED_KEYS) ;
Resul t Set rs = stnf. get Generat edKeys();

To use Autogenerated Keys in INSERT statements, pass the

St at ement . RETURN_GENERATED_KEYS flag to the execute or executeUpdate method.
Derby does not support passing column names or column indexes to the execute,
executeUpdate, or prepareStatement methods.

JDBC escape syntax

JDBC provides a way of smoothing out some of the differences in the way different
DBMS vendors implement SQL. This is called escape syntax. Escape syntax signals that
the JDBC driver, which is provided by a particular vendor, scans for any escape syntax

198

Copyright

and converts it into the code that the particular database understands. This makes
escape syntax DBMS-independent.

A JDBC escape clause begins and ends with curly braces. A keyword always follows the
opening curly brace:

f(}eyword

Derby supports the following JDBC escape keywords, which are case-insensitive:
« JDBC escape keyword for call statements

The escape keyword for use in CallableStatements.
* JDBC escape syntax

The escape keyword for date formats.
« JDBC escape syntax for LIKE clauses

The keyword for specifying escape characters for LIKE clauses.
« JDBC escape syntax for fn keyword

The escape keyword for scalar functions.
« JDBC escape syntax for outer joins

The escape keyword for outer joins.
« JDBC espace syntax for time formats

The escape keyword for time formats.
« JDBC escape syntax for timestamp formats

The escape keyword for timestamp formats.

Other JDBC escape keywords are not supported.

Note: Derby returns the SQL unchanged in the Connection.nativeSQL call, since the
escape syntax is native to SQL. In addition, it is unnecessary to call
Statement.setEscapeProcessing for this reason.

JDBC escape keyword for call statements

This syntax is supported for a java.sgl.Statement and a java.sql.PreparedStatement in
addition to a CallableStatement.

Syntax

{call statenent }

-- Call a Java procedure
{ call TOURS. BOOK TOUR(?, ?) }

JDBC escape syntax

Derby interprets the JDBC escape syntax for date as equivalent to the SQL syntax for

199

Copyright
dates.

Syntax

{d "yyyy-mmdd'}

Equivalent to

DATE(' yyyy- nm dd')

VALUES {d '1999-01-09'}

JDBC escape syntax for LIKE clauses

The percent signh % and underscore _ are metacharacters within SQL LIKE clauses.
JDBC provides syntax to force these characters to be interpreted literally. The JDBC
clause immediately following a LIKE expression allows you to specify an escape
character:

Syntax

Char act er Expr essi onW

WHERE Char act er Expr essi on L NOTC]a LI KE
thw| dCard
{ ESCAPE ' escapeCharacter' }

-- find all rows in which a begins with the character "%
SELECT a FROM t abA WHERE a LI KE ' $9%8% {escape '$'}

-- find all rows in which a ends with the character "_"
SELECT a FROM tabA WHERE a LIKE ' %_' {escape '='}

Note: ? is not permitted as an escape character if the LIKE pattern is also a dynamic
parameter (?).

In some languages, a single character consists of more than one collation unit (a 16-bit
character). The escapeCharacter used in the escape clause must be a single collation
unit in order to work properly.

You can also use the escape character sequence for LIKE without using JDBC's curly
braces; see Boolean expression .

JDBC escape syntax for fn keyword

The fn keyword allows the use of several scalar functions. The function name follows the
keyword fn.

Syntax

{fn functionCall}

where functionCall is one of the following functions:

concat ()
Char act er Expr essi on

200

Copyright

)Char act er Expr essi on

Character string formed by appending the second string to the first; if either string is null,
the result is NULL. {fn concat (CharacterExpression, CharacterExpression) is equivalent
to built-in syntax { CharacterExpression || CharacterExpression }. For more details, see
Concatenation .

sqgrt (. .
floatlngP0|ntExpreSS|on

Square root of floating point number.

{fn sqrt (FloatingPointExpression)} is equivalent to built-in syntax
SQRT(FloatingPointExpression) . For more details see SQRT .

abs (.)
yunerlcExpreSS|on

Absolute value of number. {fn abs(NumericExpression)} is equivalent to built-in syntax
ABSOLUTE(NumericExpression) . For more details see ABS or ABSVAL .

| ocat e()
Char act er Expr essi on

Char act er Expr essi on
start | ndex
1)

Position in the second CharacterExpression of the first occurrence of the first
CharacterExpression, searching from the beginning of the second character expression,
unless startindex is specified. {fn locate(CharacterExpression,CharacterExpression [,
startindex])} is equivalent to the built-in syntax LOCATE(CharacterExpression,
CharacterExpression [, StartPosition]) . For more details see LOCATE .

substring
Character&xpression

start | ndex
gength

A character string formed by extracting length characters from the CharacterExpression
beginning at startindex; the index starts with 1.

mod(
i nteger_type

;nteger_type

MOD returns the remainder (modulus) of argument 1 divided by argument 2. The result is
negative only if argument 1 is negative. For more details, see MOD .

Note: Any Derby built-in function is allowed in this syntax, not just those listed in this
section.

201

Copyright

TI MESTAMPADD(interval, integerExpression, tinestanpExpression)

Use the TI MESTAMPADD function to add the value of an interval to a timestamp. The
function applies the integer to the specified timestamp based on the interval type and
returns the sum as a new timestamp. You can subtract from the timestamp by using

negative integers.

Note that TI MESTAMPADD is a JDBC escaped function, and is only accessible using the
JDBC escape function syntax.

To perform TI MESTAMPADD on dates and times, it is necessary to convert them to
timestamps. Dates are converted to timestamps by putting 00:00:00.0 in the time-of-day
fields. Times are converted to timestamps by putting the current date in the date fields.

Note that you should not put a datetime column inside a timestamp arithmetic function in
WHERE clauses because the optimizer will not use any index on the column.

TI MESTAMPDI FF(i nterval , timestanpExpressionl, timestanpExpression2)

Use the TI MESTAMPDI FF function to find the difference between two timestamp values
at a specified interval. For example, the function can return the number of minutes
between two specified timestamps.

Note that TI MESTAMPDI FF is a JDBC escaped function, and is only accessible using the
JDBC escape function syntax.

To perform TI MESTAMPDI FF on dates and times, it is necessary to convert them to
timestamps. Dates are converted to timestamps by putting 00:00:00.0 in the time-of-day
fields. Times are converted to timestamps by putting the current date in the date fields.

Note that you should not put a datetime column inside a timestamp arithmetic function in
WHERE clauses because the optimizer will not use any index on the column.

Valid intervals for TIMESTAMPADD and TIMESTAMPDIFF
The TI MESTAMPADD and TI MESTAMPDI FF functions can be used to perform arithmetic
with timestamps. These two functions use the following valid intervals for arithmetic
operations:
e SQL_TSI_DAY
SQL_TSI_FRAC_SECOND
SQL_TSI_HOUR
SQL_TSI_MINUTE
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_SECOND
SQL_TSI_WEEK
SQL_TSI_YEAR

Examples of TIMESTAMPADD and TIMESTAMPDIFF

{fn TI MESTAMPADD(SQ._TSI _MONTH, 1, CURRENT_TI MESTAMWP)}

Returns a timestamp value one month later than the current timestamp.

{fn TI MESTAMPDI FF(SQL_TSI WEEK, CURRENT T| MESTAMP,
ti mestanp(' 2001- 0T- 01-12. 00. 00. 0000007))}

202

Copyright

Returns the number of weeks between now and the specified time on January 1, 2001.

JDBC escape syntax for outer joins

Derby interprets the JDBC escape syntax for outer joins (and all join operations) as
equivalent to the correct SQL syntax for outer joins or the appropriate join operation.

For information about join operations, see JOIN operation .

Syntax

{oj
JO N operations

[

JO N operations
1*}

Equivalent to

JO N operations

[

JO N operations

]*

- outer join
SELECT *
FROM
{oj Countries LEFT QUTER JO N Cities ON
(Countries,country | SO code=Cities.country_I SO code)}
- agﬁ)_t her join operafion

untries.country | SO code=Cities.country_| SO code)}
- a Tabl eExpression can be a joinCOperation. Therefore
- you can have nultl;la_lewtom OR/P ions in a FROM cl ause
SELECT E. EMPNO, E. L NO M LASTNAI\/E
FROM {oj EMPLOYEE E | NNER JO N DEPAI
I NNER JO N EMPLOYEE M ON MGRNO = M EI\/PNO ON E. WORKDEPT = DEPTNG ;

é
E Oountrles JONC Cities ON

JDBC espace syntax for time formats

Derby interprets the JDBC escape syntax for time as equivalent to the correct SQL
syntax for times. Derby also supports the 1SO format of 8 characters (6 digits, and 2
decimal points).

Syntax

{t "hh:mm ss'}

203

Copyright

Equivalent to

TI ME ' hh: nm ss'

VALUES {t ' 20:00:03'}

JDBC escape syntax for timestamp formats

Derby interprets the JDBC escape syntax for timestamp as equivalent to the correct SQL
syntax for timestamps. Derby also supports the 1SO format of 23 characters (17 digits, 3
dashes, and 3 decimal points).

Syntax

{ts 'yyyy-mmdd hh:mmss.f..."'}

Equivalent to

TI MESTAMP ' yyyy-mmdd hh:mmss.f..."'

The fractional portion of timestamp constants (.f...) can be omitted.

VALUES {ts '1999-01-09 20: 11: 11. 123455' }

204

Copyright

Setting attributes for the database connection URL

Derby allows you to supply a list of attributes to its database connection URL, which is a
JDBC feature.

The attributes are specific to Derby.

You typically set attributes in a semicolon-separated list following the protocol and
subprotocol. For information on how you set attributes, see Attributes of the Derby
database connection URL . This chapter provides reference information only.

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute or
corresponding value, it is simply ignored.

bootPassword=key
Function

Specifies the key to use for encrypting a new database or booting an existing encrypted
database. Specify an alphanumeric string at least eight characters long.

Combining with other attributes

When creating a new database, must be combined with create=true and
dataEncryption=true . When booting an existing encrypted database, no other attributes
are necessary.

-- boot an encrypted dat abase

j dbc: der by: encr ypt edDB; boot Passwor d=csever yPl ace

-- create a new, encr%/pt ed dat abase)

j dbc: der by: newDB; cr eat e=t r ue; dat aEncr ypt i on=t r ue;
boot Passwor d=csever yPl ace

Create=true
Function

Creates the standard database specified within the database connection URL Derby
system and then connects to it. If the database cannot be created, the error appears in
the error log and the connection attempt fails with an SQLException indicating that the
database cannot be found.

If the database already exists, creates a connection to the existing database and an
SQLWarning is issued.

JDBC does not remove the database on failure to connect at create time if failure occurs
after the database call occurs. If a database connection URL used create=true and the
connection fails to be created, check for the database directory. If it exists, remove it and
its contents before the next attempt to create the database.

Combining with other attributes

You must specify a databaseName (after the subprotocol in the database connection
URL) or a databaseName=nameofDatabase attribute with this attribute.

You can combine this attribute with other attributes. To specify a territory when creating a
database, use the territory=Il_CC attribute.
Note: If you specify create=true and the database already exists, an SQLWarning is

205

Copyright

raised.

j dbc: der by: sanpl eDB; cr eat e=tr ue
j dbc: der by: ; dat abaseName=newDB; cr eat e=t r ue

databaseName=nameofDatabase

Function

Specifies a database name for a connection; it can be used instead of specifying the
database name in after the subprotocol.

For example, these URL (and Properties object) combinations are equivalent:
¢ jdbc:derby:toursDB
¢ jdbc:derby:;databaseName=toursDB
¢ jdbc:derby:(with a property databaseName and its value set to toursDB in the
Properties object passed into a connection request)

If the database name is specified both in the URL (as a subname) and as an attribute, the
database name set as the subname has priority. For example, the following database
connection URL connects to toursDB:

j dbc: der by: t our sDB; dat abaseName=f | i ght sDB

Allowing the database name to be set as an attribute allows the getPropertylnfo method
to return a list of choices for the database name based on the set of databases known to

Derby. For more information, see java.sql.Driver.getPropertyinfo .

Combining with other attributes

You can combine this attribute with all other attributes.

j dbc: der by: ; dat abaseNanme=newDB; cr eat e=t r ue

dataEncryption=true

Function

Specifies data encryption on disk for a new database. (For information about data
encryption, see "Encrypting Databases on Disk" in the Derby Developer's Guide .)
Combining with other attributes

Must be combined with create=true and bootPassword=key . You have the option of also
specifying encryptionProvider=providerName and encryptionAlgorithm=algorithm .

j dbc: der by: encrypt edDB; cr eat e=t r ue; dat aEncrypti on=t r ue;
boot Passwor d=cLo4u922sc23aPe

encryptionProvider=providerName

Function

Specifies the provider for data encryption. (For information about data encryption, see
"Encrypting Databases on Disk" in the Derby Developer's Guide .)

206

Copyright

If this attribute is not specified, the default encryption provider is the one included in the
jvm that you are using.
Combining with other attributes

Must be combined with create=true , bootPassword=key , and dataEncryption=true . You
have the option of also specifying encryptionAlgorithm=algorithm .

j dbc: der by: encrypt edDB; cr eat e=t r ue; dat aEncr ypti on=t r ue;
encryptionProvi der=com sun. crypto. provi der. SunJCE;
encr¥)pt| onAl gori t hm=DESede/ CBC/ NoPaddi ng;
boot Passwor d=cLo4u922sc23aPe

encryptionAlgorithm=algorithm
Function
Specifies the algorithm for data encryption.

Specify the algorithm per the Java conventions:

?I gori t hnmNarme
Ieedbackl\/bde
paddi ng

The only padding type allowed with Derby is NoPadding.
If no encryption algorithm is specified, the default value is DES/CBC/NoPadding.

(For information about data encryption, see "Encrypting Databases on Disk" in Chapter 7
of the Derby Developer's Guide).
Combining with other attributes

Must be combined with create=true , bootPassword=key , dataEncryption=true , and
encryptionProvider=providerName .

j dbc: der by: encrypt edDB; cr eat e=t r ue; dat aEncrypti on=t r ue;
encrypti onProvi der =com sun. cr épt 0. provi der. SunJCE;
encrypti onAl gorit hmeDESede/ CBCZ/ NoPaddi ng;
boot Passwor d=cLo4u922sc23aPe

Note: If the specified provider does not support the specified algorithm, Derby throws an
exception.

territory=Ill_CC
Function

When creating or upgrading a database, use this attribute to associate a non-default
territory with the database. Setting the territory attribute overrides the default system
territory for that database. The default system territory is found using
java.util.Locale.getDefault().

Specify a territory in the form Il_CC, where Il is the two letter language code, and CC is

207

Copyright
the two letter country code.

Language codes consist of a pair of lower case letters that conform to ISO-639.
Tablel. Sample Language Codes

Language Code Description
de German

en English

es Spanish

ja Japanese

To see a full list of ISO-639 codes, go to
http://www.ics.uci.edu/publietf/http/related/iso639.txt .

Country codes consist of two uppercase letters that conform to ISO-3166.
Tablel. Sample Country Codes

Country Code Description
DE Germany

us United States
ES Spain

MX Mexico

JP Japan

A copy of ISO-3166 can be found at
http://mwww.chemie.fu-berlin.de/diverse/doc/ISO_3166.html .

Combining with other attributes

The territory attribute is used only when creating a database.

In the following example, the new database has a territory of Spanish language and
Mexican nationality.

j dbc: der by: Mexi canDB; create=true;territory=es_MX

logDevice=logDirectoryPath
Function

The logDirectoryPath specifies the path to the directory on which to store the database
log during database creation or restore. Even if specified as a relative path, the
logDirectoryPath is stored internally as an absolute path.

Combining with other attributes

Use in conjunction with create=true , createFrom, restoreFrom, or
rollFowardRecoveryFrom.

j dbc: der by: newDB; cr eat e=tr ue; | ogDevi ce=d: / newDBI og

208

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Copyright

password=userPassword

Function

A valid password for the given user name.

Combining with other attributes

Use in conjunction with user=userName .

j dbc: der by: t our sDB; user =j ack; passwor d=upTheHi | |

rollForwardRecoveryFrom=Path

Function

You can specify the rollForwardRecoveryFrom=Path in the boot time URL to restore the
database using a backup copy and perform rollforward recovery using archived and
active logs.

To restore a database using rollforward recovery, you must already have a backup copy
of the database, all the archived logs since then, and the active log files. All the log files
should be in the database log directory.

After a database is restored from full backup, transactions from the online archived logs
and the active logs are replayed.

Combining with other attributes

Do not combine this attribute with createFrom, restoreFrom, or create.

URL: j dbc: derby: wonbat ; rol | For war dRecover yFr omed: / backup/ wonbat

createFrom=Path

Function

You can specify the createFrom=Path attribute in the boot time connection URL to create
a database using a full backup at a specified location. If there is a database with the
same name in derby.system.home, an error will occur and the existing database will be
left intact. If there is not an existing database with the same name in the current
derby.system.home location, the whole database is copied from the backup location to
the derby.system.home location and started.

The Log files are copied to the default location. The logDevice attribute can be used in
conjunction with createFrom=Path to store logs in a different location. With
createFrom=Path you do not need to copy the individual log files to the log directory.

Combining with other attributes

Do not combine this attribute with rollforwardrecoveryFrom, restoreFrom, or create.

URL: j dbc: der by: wonbat ; cr eat eFr om=d: / backup/ wonbat

restoreFrom=Path

209

Copyright

Function

You can specify the restoreFrom=Path attribute in the boot time connection URL to
restore a database using a full backup from the specified location. If a database with the
same name exists in the derby.system.home location, the whole database is deleted,
copied from the backup location, and then restarted.

The log files are copied to the same location they were in when the backup was taken.
The logDevice attribute can be used in conjunction withrestoreFrom=Path to store logs in
a different location.

Combining with other attributes

Do not combine this attribute with createFrom, rollforwardrecoveryFrom, or create.

URL: j dbc: derby: wonbat ; rest or eFr om=d: / backup/ wonbat

shutdown=true

Function

Shuts down the specified database if you specify a databaseName. (Reconnecting to the
database reboots the database.)

Shuts down the entire Derby system if and only if you do not specify a databaseName

When you are shutting down a single database, it lets Derby perform a final checkpoint
on the database.

When you are shutting down a system, it lets Derby perform a final checkpoint on all
system databases, deregister the JDBC driver, and shut down within the JVM before the
JVM exits. A successful shutdown always results in an SQLException indicating that
Derby has shut down and that there is no connection. Once Derby is shut down, you can
restart it by reloading the driver. For details on restarting Derby, see "Shutting Down the
System" in Chapter 1 of the Derby Developer's Guide .

Checkpointing means writing all data and transaction information to disk so that no
recovery needs to be performed at the next connection.

Used to shut down the entire system only when it is embedded in an application.
Note: Any request to the DriverManager with a shutdown=true attribute raises an
exception.

-- shuts down entire system

j dbc: der by: ; shut down=t r ue

-- shuts down sal esDB

j dbc: der by: sal esDB; shut down=t r ue

user=userName

Specifies a valid user name for the system, specified with a password. A valid user name
and password are required when user authentication is turned on.

Combining with other attributes

Use in conjunction with password=userPassword .

210

Copyright

The following database connection URL connects the user jill to toursDB:
j dbc: der by: t our sDB; user=j il | ; passwor d=t oFet chAPai |

(no attributes)
If no attributes are specified, you must specify a databaseName.

Derby opens a connection to an existing database with that name in the current system
directory. If the database does not exist, the connection attempt returns an SQLEXxception

indicating that the database cannot be found.

j dbc: der by: mydb

211

Copyright

J2EE Compliance: Java Transaction APl and javax.sql
Extensions

J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE) J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such, it is one
part of a larger system that includes, among other things, a JNDI server, a connection
pool module, a transaction manager, a resource manager, and user applications. Within
this system, Derby can serve as the resource manager.

For more information on J2EE, see the J2EE specification available at
http://java.sun.com/j2ee/docs.html .

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support:
e JNDI support.

Allows calling applications to register names for databases and access them
through those names instead of through database connection URLSs.
Implementation of one of the JDBC extensions, javax.sqgl.DataSource , provides this
support.

¢ Connection pooling

A mechanism by which a connection pool server keeps a set of open connections to
a resource manager (Derby). A user requesting a connection can get one of the
available connections from the pool. Such a connection pool is useful in
client/server environments because establishing a connection is relatively
expensive. In an embedded environment, connections are much cheaper, making
the performance advantage of a connection pool negligible. Implementation of two
of the JDBC extensions, javax.sgl.ConnectionPoolDataSource and
javax.sgl.PooledConnection , provide this support.

e XA support.

XA is one of several standards for distributed transaction management. It is based
on two-phase commit. The javax.sql.XAxxx interfaces, along with
java.transaction.xa package, are an abstract implementation of XA. For more
information about XA, see X/Open CAE Specification-Distributed Transaction
Processing: The XA Specification, X/Open Document No. XO/CAE/91/300 or ISBN
1 872630 24 3. Implementation of the JTA API, the interfaces of the
java.transaction.xa package (javax.sgl.XAConnection , javax.sql.XADataSource ,
javax.transaction.xa.XAResource , javax.transaction.xa.Xid , and
javax.transaction.xa.XAException), provide this support.

With the exception of the core JDBC interfaces, these interfaces are not visible to the
end-user application; instead, they are used only by the other back-end components in
the system.

Note: For information on the classes that implement these interfaces and how to use
Derby as a resource manager, see Chapter 6, "Using Derby as a J2EE Resource
Manager" in the Derby Developer's Guide .

212

http://java.sun.com/j2ee/docs.html

Copyright

JVM and libraries for J2EE features

These features require the following:
e Java 2 Platform, Standard Edition v 1.2 (J2SE) environment or greater
e javax.sql libraries

The JDBC 2.0 standard extension binaries are available from
http://java.sun.com/products/jdbc/download.html . These libraries are part of the
standard environment from Java 2 Platform, Standard Edition v 1.4 or later.

e javax.transaction.xa libraries

These libraries are part of the standard environment from Java 2 Platform, Standard
Edition v 1.4 or later.

For the JTA libraries, see http://java.sun.com/products/jta/ and download the
specification and javadoc help files for JTA interfaces.

¢ Derby (derby.jar)

The JTA API

The JTA API is made up of the two interfaces and one exception that are part of the
java.transaction.xa package. Derby fully implements this API.

¢ javax.transaction.xa.XAResource

¢ javax.transaction.xa.Xid

¢ javax.transaction.xa.XAException

Notes on Product Behavior
Recovered Global Transactions

Using the XAResource.prepare call causes a global transaction to enter a prepared state,
which allows it to be persistent. Typically, the prepared state is just a transitional state
before the transaction outcome is determined. However, if the system crashes, recovery
puts transactions in the prepared state back into that state and awaits instructions from
the transaction manager.

XAConnections, user names and passwords

If a user opens an XAConnection with a user name and password, the transaction it
created cannot be attached to an XAConnection opened with a different user name and
password. A transaction created with an XAConnection without a user name and
password can be attached to any XAConnection.

However, the user name and password for recovered global transactions are lost; any
XAConnection can commit or roll back that in-doubt transaction.

Note: Use the network client driver's XA DataSource interface
(org.apache.derby.jdbc.ClientXADataSource) when XA support is required in a remote
(client/server) environment.

javax.sql: JDBC Extensions

This section documents the JDBC extensions that Derby implements for J2EE
compliance. (For more details about these extensions, see
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/javax/sql/package-summary.html

* javax.sgl.DataSource

Derby's implementation of DataSource means that it supports JNDI; as a resource

213

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/javax/sql/package-summary.html

Copyright

manager, it allows a database to be named and registered within a JNDI server.
This allows the calling application to access the database by a name (as a data
source) instead of through a database connection URL.

¢ javax.sgl.ConnectionPoolDataSource and javax.sql.PooledConnection

Establishing a connection to the database can be a relatively expensive operation in
client/server environments. Establishing the connection once and then using the
same connection for multiple requests can dramatically improve the performance of
a database.

The Derby implementation of Connect i onPool Dat aSour ce and

Pool edConnect i on allows a connection pool server to maintain a set of such
connections to the resource manager (Derby). In an embedded environment,
connections are much cheaper and connection pooling is not necessary.

¢ javax.sgl.XAConnection

An XAConnection produces an XAResource, and, over its lifetime, many
Connections. It allows for distributed transactions.

* javax.sgl.XADataSource

An XADataSource is simply a ConnectionPoolDataSource that produces
XAConnections.

In addition, Derby provides three methods for XADataSource, DataSource, and
ConnectionPoolDataSource. Derby supports a number of additional data source
properties:

¢ setCreateDatabase(String create)

Sets a property to create a database at the next connection. The string argument
must be "create".

* setShutdownDatabase(String shutdown)

Sets a property to shut down a database. Shuts down the database at the next
connection. The string argument must be "shutdown".

Note: Set these properties before getting the connection.

214

Copyright

Derby API

Derby provides Javadoc HTML files of API classes and interfaces in the javadoc
subdirectory.

This appendix provides a brief overview of the API. Derby does not provide the Javadoc
for the java.sql packages, the main API for working with Derby, because it is included in
the JDBC API. For information about Derby's implementation of JDBC, see JDBC
Reference .

This document divides the API classes and interfaces into several categories. The
stand-alone tools and utilities are java classes that stand on their own and are invoked in
a command window. The JDBC implementation classes are standard JDBC APls, and
are not invoked on the command-line. Instead, you invoke these only within a specified
context within another application.

Stand-alone tools and utilities

These classes are in the packages org.apache.derby.tools.
e org.apache.derby.tools.ij

An SQL scripting tool that can run as an embedded or a remote client/server
application. See the Derby Tools and Utilities Guide .

e org.apache.derby.tools.sysinfo

A command-line, server-side utility that displays information about your JVM and
Derby product. See the Derby Tools and Utilities Guide .

« org.apache.derby.tools.dblook

A utility to view all or parts of the Data Definition Language (DDL) for a given
database. See the Derby Tools and Utilities Guide .

JDBC implementation classes

JDBC driver

This is the JDBC driver for Derby:
e org.apache.derby.jdbc.EmbeddedDriver

Used to boot the embedded built-in JIDBC driver and the Derby system.
e org.apache.derby.jdbc.ClientDriver
Used to connect to the Derby Network Server in client-server mode.

See the Derby Developer's Guide .

Data Source Classes

These classes are all related to Derby's implementation of javax.sql.DataSource and
related APIs. For more information, see the Derby Developer's Guide .

Embedded environment:
« org.apache.derby.jdbc.EmbeddedDataSource
e org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
e org.apache.derby.jdbc.EmbeddedXADataSource

215

Copyright
Client-server environment
e org.apache.derby.jdbc.ClientDataSource
« org.apache.derby.jdbc.ClientConnectionPoolDataSource
« org.apache.derby.jdbc.ClientXADataSource

Miscellaneous utilities and interfaces

« org.apache.derby.authentication.UserAuthenticator

* An interface provided by Derby. Classes that provide an alternate user
authentication scheme must implement this interface. For information about users,
see "Working with User Authentication" in Chapter 7 of the Derby Developer's
Guide .

216

Copyright

Supported territories

The following is a list of supported territories:

Territory Derby territory setting (derby.territory)
Japanese ja_JP
Korean ko KR
Chinese (Traditional) zh_TW
Chinese (Simplified) zh CN
French fr
German de DE
Italian it
Spanish es
Portuguese (Brazilian) pt BR

217

Copyright

Derby limitations

The section lists the limitations associated with Derby.

Limitations on identifier length

Tablel. Identifier length limitations
The following table lists limitations on identifier lengths in Derby.

Identifier Maximum number of characters allowed
constraint name 128
correlation name 128
cursor name 128
data source column name 128
data source index name 128
data source name 128
savepoint name 128
schema name 128
unqualified column name 128
unqualified function name 128
unqualified index name 128
unqualified procedure name 128
parameter name 128
unqualified trigger name 128
unqualified table name, view name, stored 128
procedure name

Numeric limitations

Tablel. Numeric limitations

The following table contains limitations on numeric values in Derby.

Value

Limit

Smallest INTEGER

-2,147,483,648

Largest INTEGER

2,147,483,647

Smallest BIGINT

-9,223,372,036,854,775,808

Largest BIGINT

9,223,372,036,854,775,807

Smallest SMALLINT -32,768
Largest SMALLINT 32,767
Largest decimal precision 31,255

Smallest DOUBLE

-1.79769E+308

Largest DOUBLE

1.79769E+308

Smallest positive DOUBLE

2.225E-307

Largest negative DOUBLE

-2.225E-307

218

Copyright

Value Limit
Smallest REAL -3.402E+38
Largest REAL 3.402E+38
Smallest positive REAL 1.175E-37
Largest negative REAL -1.175E-37

String limitations
Tablel. String limitations

The following table contains limitations on string values in Derby.

Value

Maximum Limit

Length of CHAR

254 characters

Length of VARCHAR

32,672 characters

Length of LONG VARCHAR

32,700 characters

Length of CLOB

2,147,483,647 characters

Length of BLOB

2,147,483,647 characters

Length of character constant

32,672

Length of concatenated character string

2,147,483,647

Length of concatenated binary string

2,147,483,647

Number of hex constant digits

16,336

Length of DOUBLE value constant

30 characters

DATE, TIME, and TIMESTAMP limitations

Tablel. DATE, TIME, and TIMESTAMP limitations
The following table lists limitations on date, time, and timestamp values in Derby.

Value Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000
Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Limitations for database manager values
Tablel. Database manager limitations
The following table lists limitations on various Database Manager values in Derby.

Value Limit
Maximum columns in a table 1,012
Maximum columns in a view 5,000
Maximum number of parameters in a stored 90
procedure

219

Copyright

Value

Limit

Maximum indexes on a table

32,767 or storage capacity

Maximum tables referenced in an SQL statement
or a view

storage capacity

Maximum elements in a select list

1,012

Maximum predicates in a WHERE or HAVING
clause

storage capacity

Maximum number of columns in a GROUP BY 32,677
clause
Maximum number of columns in an ORDER BY 1,012

clause

Maximum number of prepared statements

storage capacity

Maximum declared cursors in a program

storage capacity

Maximum number of cursors opened at one time

storage capacity

Maximum number of constraints on a table

storage capacity

Maximum level of subquery nesting

storage capacity

Maximum number of subqueries in a single
statement

storage capacity

Maximum number of rows changed in a unit of
work

storage capacity

Maximum constants in a statement

storage capacity

Maximum depth of cascaded triggers

16

220

Copyright

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

221

	Copyright
	About this guide
	Purpose of this document
	Audience
	How this guide is organized

	SQL language reference
	Capitalization and special characters
	SQL identifiers
	Rules for SQL92 identifiers
	SQL92Identifier
	Qualifying dictionary objects

	column-Name
	correlation-Name
	new-table-Name
	schemaName
	Simple-column-Name
	synonym-Name
	table-Name
	view-Name
	index-Name
	constraint-Name
	cursor-Name
	TriggerName
	AuthorizationIdentifier

	Statements
	Interaction with the dependency system
	ALTER TABLE statement
	CREATE statements
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE PROCEDURE statement
	CREATE SCHEMA statement
	CREATE SYNONYM statement
	CREATE TABLE statement
	column-definition
	generated-column-spec

	CREATE TRIGGER statement
	ReferencingClause

	CREATE VIEW statement

	DROP Statements
	DROP FUNCTION statement
	DROP INDEX statement
	DROP PROCEDURE statement
	DROP SCHEMA statement
	DROP SYNONYM statement
	DROP TABLE statement
	DROP TRIGGER statement
	DROP VIEW statement

	RENAME statements
	RENAME INDEX statement
	RENAME TABLE statement

	SET statements
	SET SCHEMA statement
	SET CURRENT ISOLATION statement

	CALL (PROCEDURE)
	CONSTRAINT clause
	Column-level-constraint
	Table-level constraint
	References specification
	searchCondition

	DECLARE GLOBAL TEMPORARY TABLE statement
	DELETE statement
	FOR UPDATE clause
	FROM clause
	GROUP BY clause
	HAVING clause
	INNER JOIN
	INSERT statement
	JOIN operation
	LEFT OUTER JOIN
	LOCK TABLE statement
	ORDER BY clause
	Query
	RIGHT OUTER JOIN
	ScalarSubquery
	SelectExpression
	SELECT statement
	TableExpression
	TableOrViewExpression

	TableSubquery
	UPDATE statement
	Value

	VALUES expression
	Value

	WHERE clause
	WHERE CURRENT OF clause

	Built-in functions
	Standard built-in functions
	Aggregates (set functions)
	ABS or ABSVAL
	AVG
	BIGINT
	CAST
	CHAR
	LENGTH
	Concatenation
	NULLIF and CASE expressions
	COUNT
	COUNT(*)
	CURRENT DATE
	CURRENT_DATE
	CURRENT ISOLATION
	CURRENT SCHEMA
	CURRENT TIME
	CURRENT_TIME
	CURRENT TIMESTAMP
	CURRENT_TIMESTAMP
	CURRENT_USER
	DATE
	DAY
	DOUBLE
	HOUR
	IDENTITY_VAL_LOCAL
	INTEGER
	LOCATE
	LCASE or LOWER
	LTRIM
	MAX
	MIN
	MINUTE
	MOD
	MONTH
	RTRIM
	SECOND
	SESSION_USER
	SMALLINT
	SQRT
	SUBSTR
	SUM
	TIME
	TIMESTAMP
	UCASE or UPPER
	USER
	VARCHAR
	YEAR

	Built-in system functions
	SYSCS_UTIL.SYSCS_CHECK_TABLE
	SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS
	SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY

	Built-in system procedures
	SYSCS_UTIL.SYSCS_COMPRESS_TABLE
	SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE
	SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS
	SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING
	SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
	SYSCS_UTIL.SYSCS_FREEZE_DATABASE
	SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE
	SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE
	SYSCS_UTIL.SYSCS_EXPORT_TABLE
	SYSCS_UTIL.SYSCS_EXPORT_QUERY
	SYSCS_UTIL.SYSCS_IMPORT_TABLE
	SYSCS_UTIL.SYSCS_IMPORT_DATA

	Data types
	Built-In type overview
	Numeric types
	Numeric type overview
	Numeric type promotion in expressions
	Storing values of one numeric data type in columns of another numeric
data type
	Scale for decimal arithmetic

	Data type assignments and comparison, sorting, and ordering
	BIGINT
	BLOB
	CHAR
	CHAR FOR BIT DATA
	CLOB
	DATE
	DECIMAL
	DOUBLE
	DOUBLE PRECISION
	FLOAT
	INTEGER
	LONG VARCHAR
	LONG VARCHAR FOR BIT DATA
	NUMERIC
	REAL
	SMALLINT
	TIME
	TIMESTAMP
	VARCHAR
	VARCHAR FOR BIT DATA

	SQL expressions
	Expression precedence
	Example

	Boolean expression
	Dynamic parameters
	Dynamic parameters example
	Where dynamic parameters are allowed

	SQL reserved words
	Derby support for SQL-92 features
	Derby System Tables
	SYSALIASES
	SYSCHECKS
	SYSCOLUMNS
	SYSCONGLOMERATES
	SYSCONSTRAINTS
	SYSDEPENDS
	SYSFILES
	SYSFOREIGNKEYS
	SYSKEYS
	SYSSCHEMAS
	SYSSTATISTICS
	SYSSTATEMENTS
	SYSTABLES
	SYSTRIGGERS
	SYSVIEWS

	Derby exception messages and SQL states
	SQLState and error message reference

	JDBC Reference
	Core JDBC java.sql Classes, Interfaces, and Methods
	java.sql.Driver
	java.sql.DriverManager.getConnection
	Derby database connection
URL syntax
	Syntax of database connection URLs for applications with embedded databases
	Additional SQL syntax
	Attributes of the Derby database connection URL

	java.sql.Driver.getPropertyInfo
	java.sql.Connection
	java.sql.Connection.setTransactionIsolation
	java.sql.Connection.setReadOnly
	java.sql.Connection.isReadOnly
	Connection functionality not supported

	java.sql.DatabaseMetaData
	DatabaseMetaData result sets
	getProcedureColumnsgetProcedureColumns
	Parameters to getProcedureColumns
	Columns in the ResultSet returned by getProcedureColumns
	DatabaseMetaData functionality not supported

	java.sql.Statement
	ResultSet objects

	java.sql.PreparedStatement
	Prepared statements and streaming columns

	java.sql.CallableStatement
	CallableStatements and OUT Parameters
	CallableStatements and INOUT Parameters

	java.sql.ResultSet
	ResultSets and streaming columns

	java.sql.ResultSetMetaData
	java.sql.SQLException
	java.sql.SQLWarning
	Mapping of java.sql.Types to SQL types
	java.sql.Blob and java.sql.Clob
	Notes

	java.sql.Connection
	java.sql.ResultSet
	java.sql.Statement
	java.sql.PreparedStatement
	java.sql.CallableStatement
	java.sql.DatabaseMetaData
	java.sql.ResultSetMetaData
	java.sql.BatchUpdateException
	JDBC Package for Connected Device Configuration/Foundation Profile
(JSR169)
	JDBC 3.0-only features
	java.sql.Connection
	java.sql.DatabaseMetaData
	java.sql.ParameterMetaData
	java.sql.PreparedStatement
	java.sql.Savepoint
	Setting and rolling back to a savepoint
	Releasing a savepoint
	Rules for savepoints
	Restrictions on savepoints

	java.sql.Statement
	Autogenerated keys

	JDBC escape syntax
	JDBC escape keyword for call statements
	JDBC escape syntax
	JDBC escape syntax for LIKE clauses
	JDBC escape syntax for fn keyword
	JDBC escape syntax for outer joins
	JDBC espace syntax for time formats
	JDBC escape syntax for timestamp formats

	Setting attributes for the database connection URL
	bootPassword=key
	create=true
	databaseName=nameofDatabase
	dataEncryption=true
	encryptionProvider=providerName
	encryptionAlgorithm=algorithm
	territory=ll_CC
	logDevice=logDirectoryPath
	password=userPassword
	rollForwardRecoveryFrom=Path
	createFrom=Path
	restoreFrom=Path
	shutdown=true
	user=userName
	(no attributes)

	J2EE Compliance: Java Transaction API and javax.sql Extensions
	JVM and libraries for J2EE features
	The JTA API
	Notes on Product Behavior
	Recovered Global Transactions
	XAConnections, user names and passwords

	javax.sql: JDBC Extensions

	Derby API
	Stand-alone tools and utilities
	JDBC implementation classes
	JDBC driver
	Data Source Classes

	Miscellaneous utilities and interfaces

	Supported territories
	Derby limitations
	Limitations on identifier length
	Numeric limitations
	String limitations
	DATE, TIME, and TIMESTAMP limitations
	Limitations for database manager values

	Trademarks

