Apache Derby .9'

Derby Developer's Guide

Version 10.2
Derby Document build:
December 11, 2006, 7:07:30 AM (PST)

Copyright

Contents

10707 o)V A 4 [0 1| ST PRPTPPPP 5
ADOUL TNIS QUIAE...eeiiiiieiii ettt et e e s sabnee s 6
PUrpose Of thiS QUITE........eiiiiii e 6

F N T 1T=T o [=T PO P PP PP PP PPPRURTRR 6

HOW this guide IS OrganiZed.........coooiiiiiiiiiii e 6

L0 0T | &= To L= PPREEPR 7
Preparing t0 UPGradE. ...t e e e e e e e s s s e e e e e e e e e e e e s ennnnnes 7
Upgrading @ database..........uuueeiiiiiiiiiiiiiieie e 7

Soft upgrade HMItAatioNS.....c.ueeii e 8

JDBC applications and Derby DaSICS.....coiuuiiiiiiiiiiie e 9
Application developmMENT OVEIVIEW.......cooiiiiiiiiiiiiee e 9
Derby embedded DasSiCS. ..o 9

DErDY JDBC AFVET....cciiiiiiiiiiitte ettt e e e e e e e e e e e abeeee s 9

Derby JDBC database connection URL.............ccoccciiiiiieiieee e, 10

[T o) VRS (=1 2 U PSERRRR 10

A Derby database........covviiieiiiiice e 14
ConNNecting t0 databaSES.........coiiiiiiiiie i 18

Working with the database connection URL attributes.............cccccccvveeeenniiinnns 21

ATEEE TNSTAITING ..o e e b e e e 24
The iNStallation ir@CTONY ... i 24

Batch files and shell SCrPLS........ocouiiiiiie e 24

(1T o} VA=Y o Yo I AV USSP 24

Derby libraries and classpath...........cccciiiiiiiii e 25
UNIX-SPECITIC ISSUEBS..eiiiiiieiii i ittt e e e e e e e e s e s s r e e e e e e e e e s e e aanennes 25
Configuring file deSCIPLOrS.vviiie i 25

Yol] o] £ T PP PPP PR 25

Derby embedded DASICS. . ..o 26
Embedded Derby JDBC AFiVEriiiiiiiaiaiiiiiee e 26
Embedded Derby JDBC database connection URL..........cccccceiiiiiiiiiiiiiiiiennenenn. 26
Getting a nested CONNECTION........ccciiiiiieicc e e e 26
Starting Derby as an embedded database.........ccccccccoeviiiiiiiiiii 27
Deploying Derby appliCationNS.......ccooiiiiiiieeece e e e e 28
DEPIOYMENT ISSUESeiiiiiiiiiie ettt e e st e e e st bt e e e s nbbaeeeeeaa 28
Embedded deployment application OVEIVIEW.uevieiiiiieieiiiiiiee e 28

Deploying Derby in an embedded environmMent............cccooiiiieeiiiiieeeenniiieee e 29

Creating Derby databases for read-0nly USe.......ccccooiiiiiiiiiiiiiiiiie e 30
Creating and preparing the database for read-only use...........ccccccceieeiiiiniiinns 30

Deploying the database on the read-only media...............ccccovvviieeiii e, 30
Transferring read-only databases to archive (jar or zip) files.......cccccccvveeeeeninns 30

Accessing a read-only database in a zip/jar file.........ccccccveeeiiiiiiiieee e, 31

Accessing databases within a jar file using the classpath............cccccccviiinnns 32
Databases on read-only media and DatabaseMetaData..............cccccccvveeeeeiinnns 33

Loading classes from a database. ..o 33

Class 10adiNG OVEIVIBW.uueiiieiiaa ettt ennnnbeeeees 33

Dynamic changes to jar files or to the database jar classpath..............cccccceeee. 35

Derby server-side programming.........ccccciiiiiiieiieeee e s e e e e e e e e e e s s s ssararrreereeeeeeeeesannanns 36
Programming database-side JDBC proCedUresS......cccccveeeeeeiiiicniiniieeeeeeeeeeseseinenns 36
Database-side JDBC procedures and nested connections..........cccccceeeevvvvcnnnnns 36
Database-side JDBC procedures using non-nested connections....................... 36
Database-side JDBC procedures and SQLEXCEPLiONS..........coovvevvvviiiieeiieneeeennn. 37
User-defined SQLEXCEPLONS.uuiiiiiiiiieiiiiiiee ettt 38
Programming trigger @CtIONSu i it 38
TrigQer ACtION OVEIVIEW.......coii ittt ittt e ettt a e e e e e e e e e e e e as 38
Performing referential aCtionS...........cceviiieiiiiiiiiiiiee e 39

Accessing before and after rOWS...........ooovi i 39

Examples of trigger aCtiONS.........cccuviiiiiiiiieie e e e e 39

Copyright

Trggers and EXCEPLIONS.uuiiii ettt e s e e e abre e e e e e 39
Controlling Derby application Dehavior..........oooiiiiiii e 41
The JDBC Connection and Transaction Model...........ooooiiiiiiiiiiinniieee, 41
1070] a L= 1o o = T SRR 41
TrANSACTIONS. ..eeeie ettt et e e e st e e e ettt e e e st e e e e e snbbee e e e annees 42
Result set and cursor MEeChanNiSMS......c.uuiiii i s 44
Simple non-updatable reSUIt SELS........ocuiiii i 44
UpPdatable reSUIL SEES.....coiiiiiiie it 45
Result sets and auto-COMMIL.........cciiiiiiiiiiiiiie e 49
SCrollable reSUIL SETS.......cooieiieee e 49
HOIdAbIE FESUIL SEES......coiiieeeeee e e 50
Locking, concurrency, and iSOlatioN........ccccuueeiiiiee i 51
Isolation levels and CONCUITENCY.........uuuuiiiieeee e ittt e e e e e e er e e e e e 51
Configuring iSOIAtioN [@VEIS.........cveee i 54
LOCK GranUIAIIEY vveeeeeiiiiiie ettt ettt e s e e s 54
Types and scope of 10cks in Derby SyStemsS........ccuvviiiiiiiiie e 55
DEAAIOCKS. ... 57
Working with multiple connections to a single database.............occcuviiiieeeeenn. 62
Deployment options and threading and connection modes............cccccceeeeernnnnns 62
Multi-user database ACCESS........uuiiiii it 63
Multiple connections from a single application...........cccccceveeeeiiiiiicciiiiiieie e, 63
Working with multiple threads sharing a single connection............cccccceveeeeeenn. 63
Pitfalls of sharing a connection among threads............cccoccveeiniii e, 63
Multi-thread programming tiPS.......ccoeuiiiiiei i 64
Example of threads sharing a statement. ... 64
Working with database threads in an embedded environment.......................... 65
Working with Derby SQLExceptions in an application..........cccccceeiiiiniiiiiiinnnnn. 65
Information provided in SQL EXCEPLIONS........ccuvviiierieieee e e e e e e e e e e 65
Using Derby as a J2EE reSOUICe MaNAQel.........ccccuuriurrrrereeeeeesisssninsnneeeeeaeesssssnnnnsssssneees 67
Classes that pertain to resoUrCe MaNAGErS.......c.cevvcciviiiiirieee e e e e e e e 67
GettiNg 8 DAtASOUICE.....eiiiiiiiiiie ettt et 67
Shutting down or creating a database...........ccueviiiiiiiiiiiii e 68
DEIDY ANG SECUTITY ..eetiiiiiiiiii ettt et e e s st b e e e e e sbb e e e e s abreeeaeeanes 70
Configuring security for your enVironment.........c..ueeeeiiiiiieiiiiiiiieiieeeee e 71
Configuring security in a client/server environment............cccccceeeeeiiininciiiiieeeen. 71
Configuring security in an embedded environment............ccccccoooeviiiiiiiineeeeeeeenn, 72
Working with user authentication..............cccciiiiiiii e 72
Enabling user authentiCation..............uuuviiiiiiee e 73
DEfINING USEIS. ..ttt e st e e s aabneeas 73
EXternal dir@CtOrY SEIVICE.......coiuuiiiii it 74
BUIlt-IN DEIDY USEIS....ciiiiiiiiiie ittt e e 78
List of user authentication PropPerti€sS.........cooiiiiiiiiiiiieie e 79
Programming applications for Derby user authentication................cccccccceeeeeeenn. 80
Users and authorization identifiers........cccoiiiiiiiiiii e 80
Authorization identifiers, user authentication, and user authorization................. 81
User Names and SChEMAS.iuuiiie it e 81
Exceptions when using authorization identifiers............ccccoceiiiiici i, 82
USEr @ULNOTIZAtIONS. ...t e e e e e e e s e eeees 82
Setting the SQL standard authorization mode............ccccoocvieieiiiiiiiee e 83
Read-only and full aCCESS PErMISSIONS.......ccoiiiiiiiiiiiiiie et 86
Encrypting databases 0N diSK......couooiiiiiii e 87
Requirements for Derby eNCryplion............ccveeeiii i 87
Working With €NCrYPtioN.........coiiiiiieeee e e e 87
SIGNEA JAr FIlES ..t ——————— 92
Notes on the Derby Security fEatUreS........cuviii i 93
User authentication and authorization examples.........cccoooiiiiinii e 93
User authentication example in a client/server environment.................ccccvveeee. 93
User authentication example in a single-user, embedded environment............. 94
Running Derby under a SECUrity MaNAQer.......cccuueeiiiiiiiiiiiiiiiieeee e eeiiiieeeeeee e 97

Copyright

Granting permissions t0 Derby ... 97

Examples of Java 2 security policy files for embedded Derby............cccceeeeeeeen. 98
Developing tools and using Derby with an IDE.............cc.uuiiiiiiiiiiiiiie e 99
Offering connection choices t0 the USEr.......ccciveeeiiiiii e 99

The DriverPropertylnfo AITAY.........cocccciiiiiieiiiee e r e e e e e e e ae s 99

USING DErby With IDES.......ccciiiiiiiiieiieeee et e e e e e e e e e e e e s e 100

IDES and MUItIPIE JVIMS.......oiiiiiiiiiie e 100

ST]I 4o =3 RS OPRPTSRPRN 102
Retrieving the database connection URL.........ccccciiiiiiiiiiic e, 102
Supplying a parameter ONlY ONCe........ooiiiiiiiii s 102
Defining an identity COIUMN........ooiiiii e 102

Using third-party t00IS. ... 102
Tricks Of the VALUES ClaUSE........oooiiiiiiieccee s 103
MUIIPIE FOWS....etteteeee e e e e e e e e e e e e e s e s s reeeeeeeeesanannns 103

Mapping column values to return ValUES.ccuevieiiiiiiiee e 103

Creating EMPLY QUETIES.c.ciiiiiiii ettt s b 103
LOCAIZING DOIDY ...ttt e e e e 104
SQL parser support for UNIiCOAe.........uuiiiiiiiiiiiaiiiiiee e 104

Other COMPONENTS.. et e e e e e e e e e e e e e e aaaaeee 104
MESSAQES [IDIAIIES.. ...t 104
(D=1 o) VA=Y aTo IS = o o =T o £ PSR 106
ALTER TABLE. ..ottt e 106
Calling functions and ProCEAUIES.......ocuiiii it 106
CLOB @Nd BLOB........eiiiiiiie ittt sttt se e stee e snbe e e sntee e anbeeesnneeans 106
01T]] o] ¢ T TR STSRURPPPP 106
DECIMAL MaX PIrECISION ...uuttiiiiiiiaiaee ettt e e e et e e e e e e e e e e s s snanbeeseeeeeeas 106
DYNAMIC SQL ...ttt e e e e e e e e e e e e e e e e 106
EXPressions 0N LONGS.....ccuiiiiiii ittt e e e e rre e e e e e e e e e s e st reeeeaaee s 106
INFOrmMation SCHEM@A........coiii e 107

NOT NULL CharaCteriStiC.....cuuuiireierieieiiii ettt 107

QL2 T 5= 1o 10 = S 107
Stored routines anNd PSM.......oii oot 107
Unique constraints and NUIIS ... 107

XML data types and OPEratorS.....c.ooiiuiiiiiiieeeee ettt e e e e e e e e 107
TrAOEMAIKS ..o 109

Copyright
Apache Software FoundationDerby Developer's GuideApache Derby

Copyright

Copyright

Apache Derby

Copyright 2004, 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

Purpose of this guide

This guide explains how to use the core Derby technology and is for developers building
Derby applications.

It describes basic Derby concepts, such as how you create and access Derby databases
through JDBC procedures and how you can deploy Derby applications.

Audience

This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized
This document includes the following sections.
» JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, and starting Derby.

 After installing
Explains the installation layout.
« Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.

» Controlling Derby application behavior
JDBC, cursors, locking and isolation levels, and multiple connections.
» Using Derby as a J2EE resource manager
Information for programmers developing back-end components in a J2EE system.
« Developing tools and using Derby with an IDE
Tips for tool designers.
e SQL tips
Insiders' tricks of the trade for using SQL.
* Localizing Derby

An overview of database localization.

Copyright

Upgrades

To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

* marks the database as upgraded to the current release (Version 10.2).
« allows use of new features.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade

Upgrading your database occurs the first time the new Derby software connects to the
old database.

Before you connect to the database using the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Derby Server and Administration Guide.

2. Update your CLASSPATH with the latest jar files.

3. Make sure that there are no older versions of the Derby jar files in your
CLASSPATH. You can determine if you have multiple versions of Derby in your
CLASSPATH by using the sysinfo tool.

To use the sysi nf o tool, execute the following command:

java org. apache. derby. t ool s. sysi nfo

The sysi nf o tool uses information found in the Derby jar files to determine the
version of any Derby jar in your CLASSPATH. Be sure that you have only one
version of the Derby jar files specified in your CLASSPATH.

Upgrading a database

To upgrade a database, you must explicitly request an upgrade the first time you connect
to the database with the new version of Derby.

Ensure that you complete the prerequisite steps before you upgrade:
« Back up your database before you upgrade.
« Ensure that only the new Derby jar files are in your CLASSPATH.

When you upgrade the database, you can perform a full upgrade or soft upgrade:

< A full upgrade is a complete upgrade of the Derby database. When you perform a
full upgrade, you cannot connect to the database with an older version of Derby and
you cannot revert back to the previous version.

« A soft upgrade allows you to run a newer version of Derby against an existing
database without having to fully upgrade the database. This means that you can
continue to run an older version of Derby against the database. However, if you
perform a soft upgrade, certain features will not be available to you until you
perform a full upgrade.

1. To upgrade the database, select the type of upgrade that you want to perform:

Copyright

Type of upgrade Action

Full upgrade Connect to the database using the upgr ade=t r ue
database connection URL attribute. For example:

j dbc: der by: sanpl e; upgr ade=t r ue

Soft upgrade Connect to the database. For example:

connect 'jdbc: derby: sanpl e

In this example, sanpl e is a database from a
previous version of Derby.

Soft upgrade limitations

Soft upgrade allows you to run a newer version of Derby against an existing database
without having to fully upgrade the database. This means that you can continue to run an
older version of Derby against the database.

If you perform a soft upgrade, you will not be able to perform certain functions that are
not available in older versions of Derby. For example, the following Derby Version 10.2
features cannot be used in a database that has been soft upgraded from 10.0:

* SYNONYMS

» Creating tables using the GENERATED BY DEFAULT option for identity columns

« Reclaiming unused space using the
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE procedure

The following 10.2 features cannot be accessed from a database which has been soft
upgraded from 10.1:

« GRANT/REVOKE
* Online backup procedures SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT
and
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT.
* The encryption or re-encryption of a database with a new phrase/key.

Other new features in Derby that do not affect database structure, such as using
timestamp arithmetic, are allowed in a soft upgraded database.
To perform a soft upgrade on a database created using an earlier version of Derby:

1. Simply connect to the database, as shown in the following example:

connect 'jdbc: derby: sanpl e’

In this example, the sample database is a Version 10.0 database.

Copyright

JDBC applications and Derby basics

This section describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview

Derby application developers use JDBC, the application programming interface that
makes it possible to access relational databases from Java programs.

The JDBC API is part of the Java(tm) 2 Platform, Standard Edition and is not specific to
Derby. It consists of the java.sql and javax.sql packages, which is a set of classes and
interfaces that make it possible to access databases (from a number of different vendors,
not just Derby) from a Java application.

To develop Derby applications successfully, you will need to learn JDBC. This section
does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This chapter gives you the details of
how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of
JDBC in the Derby Reference Manual.

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types. SQL-92 is the version of SQL standardized by ANSI and I1SO in 1992; Derby
supports entry-level SQL-92 as well as some higher-level features. Entry-level SQL-92 is
a subset of full SQL-92 specified by ANSI and ISO that is supported by nearly all major
DBMSs today. This chapter does not teach you SQL. You will find reference information
about the particulars of Derby's implementation of SQL in the Derby Reference Manual.

Derby implements JDBC that allows Derby to serve as a resource manager in a J2EE

compliant system.

Derby embedded basics

This section discusses the basics of the Derby database.

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database. Applications running on JDK 1.5 or earlier, must
load the driver in order to work with the database.

In an embedded environment, loading the driver also starts Derby.

In a Java application, you typically load the driver with the static Class.forName method
or with the j dbc. dri ver s system property. For example:

Copyright

d ass. f or Nanme(" or g. apache. der by. j dbc. EnbeddedDri ver");

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver" in the
Derby Reference Manual.

If your application runs on JDK 1.6 or higher, then you do not need to explicitly load the
EmbeddedDriver. In that environment, the driver loads automatically.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object.

The standard way to obtain a Connect i on object is to call the method

Dri ver Manager . get Connect i on, which takes a String containing a connection URL
(uniform resource locator). A JDBC connection URL provides a way of identifying a
database. It also allows you to perform a number of high-level tasks, such as creating a
database or shutting down the system.

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment. See
the Derby Server and Administration Guide for more information on the Network Server.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

« you can specify the name of the database you want to connect to

« you can specify a number of attributes and values that allow you to accomplish
tasks. For more information about what you can specify with the Derby connection
URL, see "Examples". For detailed reference about attributes and values, as well as
syntax of the database connection URL, see the "Derby Database Connection URL
Syntax" in the Derby Reference Manual.

An example use of the connection URL:

Connecti on conn=Dri ver Manager . get Connecti on("j dbc: der by: sanpl e") ;

Derby system

A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a
system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties. This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the system - as well as its directory, which you name - is an essential part of a
running database or databases. Understanding the Derby system is essential to
successful development and deployment of Derby applications.

Figure 1. Derby databases live in a system, which includes system-wide properties,
an error log, and one or more databases.

10

Copyright

T r derby.system.home
{ value of this system variabla

Derby tells Derby the name
of your system directary)

derby. properties

Accounting DB Sales DB

derby.log

The system directory can also contain an error log file called derby.log (see The error
log).

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

One Derby instance for each Java Virtual Machine

You could potentially have two instances of a Derby system (JVM) running on the same
machine at the same time. Each instance must run in a different JVM. Two separate
instances of Derby must not access the same database.

For example, in an embedded environment, an application that accesses Derby
databases starts up the local JDBC driver, which starts up an instance of Derby. If you
start another application, such as ij, and connect to the same database, severe database
corruption can result. See Double-booting system behavior.

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

You can also configure your system to automatically boot all databases in the system

when it starts up; see derby.system.bootAll in the Tuning Derby manual. Because of the
time needed to boot a database, the number of databases in the system directory affects

11

Copyright

startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, a message is added to the error log. The message
includes the Derby version that the database was booted with, for example:

n ache

2006 10- 04 03: 54 06. 196 GMI: Bootin Derb versio
2. 0f d- 0cb0- e736- ffffdl 25a25 on

1.5 - (448900): instance c01 800d
dat abase directory sanple

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.
Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the JVM running,
Derby continues to run and is available for database connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=t rue") ;
Shutdown commands always raise SQLEXxceptions.

When a Derby system shuts down, a message goes to the error log:

Sat Jan 10 14: 31:54 PDT 2005
Shutti ng down i nstance 80000001 00d0- 8bdf - d115- 000a0a0b2d00

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart it in
the same JVM session. To restart Derby successfully, the JVM needs to unload
org.apache.derby.jdbc.EmbeddedDriver, so that it can reload it when it restarts Derby.
(Loading the local driver starts Derby.)

You cannot explicitly request that the JVM unload a class, but you can ensure that the
EmbeddedDriver class is unloaded by using a Syst em gc() to force it to garbage
collect classes that are no longer needed. Running with - nogc or - nocl assgc definitely
prevents the class from being unloaded and makes you unable to restart Derby in the
same JVM.

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database. You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called der by. syst em horre.

If you do not specify the system directory when starting up Derby, the current directory
becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system

12

Copyright

directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See Tuning Derby for more information on
setting this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages to the error log.

Typically, Derby writes this information to a log called derby.log in the system directory,
although you can also have Derby send messages to a stream, using the

der by. st ream error. met hod property. By default, Derby overwrites derby.log when
you start the system. You can configure Derby to append to the log with the

der by. i nf ol og. append property. For information on setting this and other properties,
see Tuning Derby.

derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters that are valid for the entire system.

The derby.properties file is not automatically created. If you want to set Derby properties
with this file, you need to create the file yourself. The derby.properties file should be in
the format created by the j ava. uti | . Properti es. save method. For more
information about properties and the derby.properties file, see Tuning Derby.

Double-booting system behavior

Derby attempts to prevent two instances of Derby from booting the same database by
using a file called db.Ick inside the database directory.

On all platforms running with a JDK of 1.4 or higher, Derby can successfully prevent a
second instance of Derby from booting the database and thus prevents corruption.

On some platforms running with a JDK lower than 1.4, Derby may prevent a second
instance of Derby from booting the database (previous to JDK 1.4 the ability to do this
was OS dependent).

If this is the case, you will see an SQLException like the following:

FRR(Pd %(J.O|40: Failed to start database 'sanple', see the next exception
or details.

ERROR XSDB6: Anot her instance of Derby m ght have al ready booted

t he dat abaseC:\ dat abases\ sanpl e.

The error is also written to the error log.

If you are running a JVM prior to 1.4, Derby issues a warning message on some
platforms if an instance of Derby attempts to boot a database that already has a running
instance of Derby attached to it. However, it does not prevent the second instance from
booting, and thus potentially corrupting, the database. (You can change this behavior
with the property der by. dat abase. f or ceDat abaselLock.)

If a warning message has been issued, corruption might already have occurred.
Corruption can occur even if one of the two booting systems has "readonly" access to the
database.

The warning message looks like this:

13

Copyright

WARNI NG Derb%

(i nstance 80000000-00d2-3265- de92- OOOaOaOaOZOOZ<

atte 'hl nghto boot the database /export/home/sky/ wonbat

even thou
i nst ance980000050 00d2- 3265- 8abf - 000a0a0a0200) might still be active.
Iy one instance of Derb

shoul d boot a database at a tine. Severe and non-recoverabl e corruption

can

result and might have already occurred.

The warning is also written to the error log.

If you see this warning, you should close the connection and exit the JVM, minimizing the
risk of a corruption. Close all instances of Derby, then restart one instance of Derby and
shut down the database properly so that the db.Ick file can be removed. The warning
message continues to appear until a proper shutdown of the Derby system can delete the
db.Ick file.

When developing applications, you might want to configure Derby to append to the log.
Doing so will help you detect when you have inadvertently started more than one
instance of Derby in the same system. For example, when the derby.infolog.append
property is set to true for a system, booting two instances of Derby in the same system
produces the following in the log:

Sat Aug 14 09:42:51 PDT 2005:
Booti ng Derby version Apache Derby - 10.0.0.1 - (29612):

i nstance 80000000- 00d2- 1c87- 7586- 000a0a0b1300 on dat abase at
directory C\tutorial _system sanple

Sat Aug 14 09:42:59 PDT 2005:

Booti ng Derby version Agache Der b 0.0.1 - (29612):

i nstance 80000000- 00d2-1¢87-9143- 00a0a0b1300 on dat abase at
directory C\tutorial _system Hel |l oWr| dDB

Derby allows you to boot databases that are not in the system directory. While this might
seem more convenient, check that you do not boot the same database with two JVMs. If
you need to access a single database from more than one JVM, you will need to put a
server solution in place. You can allow multiple JVMs that need to access that database
to connect to the server. The Derby Network Server is provided as a server solution. See
the Derby Server and Administration Guide for more information on the Network Server.

Recommended practices

When developing Derby applications, create a single directory to hold your database or
databases.

Give this directory a unigue name, to help you remember that:

« All databases exist within a system.

» System-wide properties affect the entire system, and persistent system-wide
properties live in the system directory.

* You can boot all the databases in the system, and the boot-up times of all
databases affect the performance of the system.

* You can preboot databases only if they are within the system. (Databases do not
necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

< Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

« Only one instance of Derby can run in a JVM at a single time, and only one instance
of Derby should boot a database at one time. Keeping databases in the system
directory makes it less likely that you would use more than one instance of Derby.

» The error log is located inside the system directory.

A Derby database

14

Copyright

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory
A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.
A database directory contains the following, as shown in Derby database directories
contain files and directories used by the software.:

« log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).

* segO directory

Contains one file for each user table, system table, and index (known as
conglomerates).

« service.properties file
A text file with internal configuration information.
 tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

* jar directory
(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file.

Figure 2. Derby database directories contain files and directories used by the
software.

Sales DB T

jar
sanvice.properties

Derby imposes relatively few limitations on the number and size of databases and

15

Copyright

database objects. The following table shows some size limitations of Derby databases

and database objects:

Table 1. Size Limits to Derby Database Objects

Type of Object

Limit

tables per database

java.lang.Long.MAX_VALUE

Some operating systems impose a limit to the number of files
allowed in a single directory.

indexes per table

32,767 or storage

columns per table 1,012
number of columns on an index key 16
rows per table no limit

size of table no limit Some operating systems impose a limit on the size of
a single file.
size of row no limit--rows can span pages. Rows cannot span tables so

some operating systems impose a limit on the size of a single
file, and therefore limit the size of a table and size of a row in
that table.

For a complete list of restrictions on Derby databases and database objects, see the
Derby Reference Manual.

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL.

There is no drop database command. To drop a database, delete the database directory
with operating system commands. The database must not be booted when you remove a
database. You can get a list of booted databases with getPropertyinfo.

To back up a database, you can use the online backup utility. For information on this
utility, see the Derby Server and Administration Guide.

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Derby Server and Administration Guide.

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running.

Storage and recovery

A Derby database provides persistent storage and recovery. Derby ensures that all
committed transactions are durable, even if the system fails, through the use of a
database transaction log.

Whereas inserts, updates, and deletes may be cached before being written to disk, log
entries tracking all those changes are never cached but always forced to disk when a
transaction commits. If the system or operating system fails unexpectedly, when Derby
next starts up it can use the log to perform recovery, recovering the "lost" transactions
from the log and rolling back uncommitted transactions. Recovery ensures that all
committed transactions at the time the system failed are applied to the database, and all

16

Copyright

transactions that were active are rolled back. Thus the databases are left in a consistent,
valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

Log on separate device

You can put a database's log on a separate device when you create it.

For more information, see the Derby Server and Administration Guide.
Database pages

Derby tables and indexes, known as conglomerates, consist of two or more pages.

A page is a unit of storage whose size is configurable on a system-wide, database-wide,
or conglomerate-specific basis. By default, a conglomerate grows one page at a time until
eight pages of user data (or nine pages of total disk use, which includes one page of
internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in Tuning Derby.) After that, it grows eight pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.
Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property.

For more information, see "Database-Wide Properties" in Tuning Derby.

Note: You should work with database-level properties wherever possible.
Derby database limitations

Derby databases have a few limitations.

Indexes

Indexes are not supported for columns defined on CLOB, BLOB, LONG VARCHAR, and
XML data types.

If the length of the key columns in an index is larger than half the page size of the index,

creating an index on those key columns for the table fails. For existing indexes, an insert
of new rows for which the key columns are larger than half of the index page size causes
the insert to fail.

Avoid creating indexes on long columns. Create indexes on small columns that provide a
quick look-up to larger, unwieldy data in the row. You might not see performance
improvements if you index long columns. For information about indexes, see Tuning
Derby.

System shutdowns

17

Copyright

The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of | OExcept i on occurs in the der by. | og file when the
system runs out of space. If the system has no more disk space to append to the
der by. | og file, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call.

You specify a path to the database within this connection URL.
Connecting to databases within the system

The standard way to access databases is in the file system by specifying the path to the
database, either absolute or relative to the system directory. In a client/server
environment, this path is always on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system, just
specify the database name on the connection URL. For example, if your system directory
contains a database called myDB, you can connect to that database with the following
connection URL:

j dbc: der by: myDB
The full call within a Java program would be:

Connecti on conn =Dri ver Manager . get Connecti on("j dbc: der by: myDB") ;
Connecting to databases outside the system directory

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system.

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

Two examples:

jdbc: derby:../otherDirectory/ mDB
j dbc: derby: c:/otherDirectory/ myDB

Note: Once connected, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and no other instance of Derby should access that database. It
is recommended that you connect to databases only in the system directory.
Conventions for specifying the database path

When accessing databases from the file system (instead of from classpath or a jar file),
any path that is not absolute is interpreted as relative to the system directory.
The path must do one of the following:

« refer to a previously created Derby database
 specify the create=true attribute

The path separator in the connection URL is / (forward slash), as in the standard file://
URL protocol.

18

Copyright

You can specify only databases that are local to the machine on which the JVM is
running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path and its relative path are connections to the same database.
Within Derby, the name of the database is defined by the canonical path of its directory
from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

If the path to the database is ambiguous, i.e., potentially the same as that to a database
that is available on the classpath (see "Special Database Access"), use the directory:
subsubprotocol to specify the one in the file system. For example:

j dbc: derby: directory: nyDB
Special database access

You can also access databases from the classpath or from a jar file (in the classpath or
not) as read-only databases.

Accessing databases from the classpath:

In most cases, you access databases from the file system. However, it is also possible to
access databases from the classpath. The databases can be archived into a jar or zip file
or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, specify the name of the database
relative to the directory in the classpath. You can use the classpath subprotocol if such a
database is ambiguous within the directory system. See Embedded Derby JDBC
database connection URL for more information.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

j dbc: der by: / sanpl e

The forward slash is required before sample to indicate that it is relative to
C:\derby\demo\databases directory.

If only C:\derby were in the class path, you could access sample (read-only) like this:

j dbc: der by: / denb/ dat abases/ sanpl e
Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file does not have to be on the
classpath.

Note: All such databases are read-only.
For example, suppose you have archived the database jarDBL1 into a file called jarl.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with

19

Copyright

the following connection URL

j dbc: derby: /jar DBl
To access a database in a jar file that is not on the classpath, use the jar subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.
This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocaol, like this:

jdbc: derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file.

Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment.

This information also applies to the client connection URL in a client/server environment.
For reference information about client connection URLS, see "java.sql.Connection"” in the
Derby Reference Manual.

« jdbc:derby:dbl

Open a connection to the database dbl. dbl is a directory located in the system
directory.

« jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.

« jdbc:derby:/reference/phrases/french
Open a connection to the database /reference/phrases/french.
On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C. If a jar file

storing databases were in the user's classpath, this could also be a path within the
jar file.

« jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.

« jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLSs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.

« jdbc:derby:support/bugsdb;create=true

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.

« jdbc:derby:sample;shutdown=true
Shut down the sample database.
* jdbc:derby:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only

20

Copyright
database.

* jdbc:derby:classpath:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database. The reason for using the subsubprotocol is that it might have the same
path as a database in the directory structure.

« jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.

* jdbc:derby:directory:myDB

Access myDB, which is in the system directory. The reason for using the
di rect ory: subsubprotocol is that it might happen to have the same path as a
database in the classpath.

Working with the database connection URL attributes

You specify attributes on the Derby connection URL.

The examples in this section use the syntax of the connection URL for use in an
embedded environment. You can also specify these same attributes and values on the
client connection URL if you are using Derby as a database server. For more information,
see the Derby Server and Administration Guide.

You can also set these attributes by passing a Properties object along with a connection
URL to Dri ver Manager . get Connect i on when obtaining a connection; see
"Specifying Attributes in a Properties Object".

All attributes are optional. For detailed information about the connection URL syntax and
attributes, see "Derby Database Connection URL Syntax"in the Derby Reference Manual.

You can specify the following attributes:

bootPassword=key
create=true
databaseName=nameofDatabase
dataEncryption=true
encryptionProvider=providerName
encryptionAlgorithm=algorithm
territory=Il_CC
logDevice=logDirectoryPath
createFrom=BackupPath
restoreFrom=BackupPath
rollForwardrecoveryFrom=BackupPath
password=userPassword
shutdown=true

e user=userName
Using the databaseName attribute

You can use a databaseName attribute on a database connection URL to specify the
name of the database to which you want to connect.

j dbc: der by: ; dat abaseNane=dat abaseNane

You can access read-only databases in jar or zip files by specifying j ar as the
subsubprotocol, like this:

21

Copyright

jdbc: derby: jar: (pat hToAr chi ve) dat abasePat hW't hi nAr chi ve

Or, if the jar or zip file has been included in the classpath, like this:

j dbc: der by: / dat abasePat hW t hi nAr chi ve
Shutting down Derby or an individual database

Applications in an embedded environment shut down the Derby system by specifying the
shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you must not specify any other attribute.

j dbc: der by: ; shut down=t r ue

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

You can also shut down an individual database if you specify the databaseName. You
can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

// shutting down a database from your application
Dri ver Manager . get Connect i on(

"j dbc: der by: sanpl e; shut down=t rue") ;
Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true.

Derby creates a new database inside a new subdirectory in the system directory. This
system directory has the same name as the new database. If you specify a partial path, it
is relative to the system directory. You can also specify an absolute path.

j dbc: der by: dat abaseNan®; cr eat e=t r ue

For more details about create=true, see "create=true" in the Derby Reference Manual.
Providing a user name and password

When user authentication is enabled, an application must provide a user name and
password. One way to do this is to use the user=userName and
password=userPassword connection URL attributes.

j dbc: der by: sanpl e; user=jil | ; passwor d=t oFet chAPai |
Encrypting a database when you create it

If your environment is configured properly, you can create your database as an encrypted
database (one in which the database is encrypted on disk). To do this, you use the
dataEncryption=true attribute to turn on encryption and the boot Passwor d=key
attribute or the encryptionKey attribute to specify a key for the encryption.

You can also specify an encryption provider and encryption algorithm other than the
defaults with the encr ypt i onProvi der =pr ovi der Nane and
encrypti onAl gorithmeal gorithm attributes.

j dbc: der by: encr ypt edDB; cr eat e=t r ue; dat aEncrypti on=t r ue;

22

Copyright

boot Passwor d=DBpasswor d
Creating an encrypted database with an external key

You can create a database and encrypt the database with an external key.

To create an encrypted database using an external key:
1. Use the encryptionKey attribute in the connection URL.

For example to create the database and encrypt the database encDB using an
external key, specify this URL:

j dbc: der by: encDB; cr eat e=t r ue; dat aEncrypti on=t rue; encrypti onAl gorit hm=DES/ CBC/ NoPad

Attention: If you lose the encryption key you will not be able to boot the database.
Booting an encrypted database

You must specify several attributes in the URL when you boot an encrypted database.
You must specify these attributes the first time that you connect to the database within a
JVM session, or after you shut the database down within the same JVM session.

To boot an existing encrypted database:

1. The attribute that you specify depends on how the database was originally
encrypted:
« If the database was encrypted using the bootPassword mechanism, specify
the bootPassword attribute. For example:

j dbc: der by: wonbat ; boot Passwor d=cl 0760uds2caPe
« If the database was encrypted using an external key, specify the
encryptionKey attribute. For example:

jdbc: derby: flintstone; encr% ti onAl gorit hm=AES/ CBC/ NoPaddi ng;
encrypt i onKey=c566bab9ee8b62a5ddb4d9229224c678

If the algorithm that was used when the database was created is not the
default algorithm, you must also specify the encryptionAlgorithm attribute. The
default encryption algorithm used by Derby is DES/CBC/NoPadding.

Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes as
properties in a Properties object that you pass as a second argument to the
Dri ver Manager . get Connect i on method.

For example, to set the user name and password:

Cl ass. for Name(" or g. apache. der by. j dbc. EnbeddedDri ver");
Properties p = new Properties();

p. put ("user", "sa");

p. put ("password", "manager");

Connecti on conn = Driver Manager. get Connecti on(
"j dbc: der by: mynewDB", p);

23

Copyright

After installing

This section provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the i nstal | . ht m file that is installed with Derby for information on installing
the Derby development environment. See the Release Notes for information on platform
support, changes that may affect your existing applications, defect information, and
recent documentation updates. See Getting Started with Derby for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath.

The installation directory

The installation program installs the Derby software in a directory of your choice.
Seetheinstall. html file for information on how to install Derby.

The installer automatically creates setup scripts that include an environment variable
called DERBY_HOME. The installer's value is set to the Derby base directory.

C. >echo %DERBY_HOVE%
C:. \ DERBY_HOVE

If you want to set your own environment, Getting Started with Derby instructs you on
setting its value to the directory in which you installed the Derby software.

The installer for Derby installs all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

« index.html in the top-level directory is the top page for the on-line documentation.

 release_notes.html, in the top-level Derby base directory, contains important
last-minute information. Read it first.

« /demo contains some sample applications, useful scripts, and prebuilt databases.

 /databases includes prebuilt sample databases.
* /programs includes sample applications.

 /doc contains the on-line documentation (including this document).

« [frameworks contains utilities and scripts for running Derby.

« /javadoc contains the documented APIs for the public classes and interfaces.
Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

« /lib contains the Derby libraries.

Batch files and shell scripts

The /frameworks/embedded/bin directory contains scripts for running some of the Derby
tools and utilities. To customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on

any platform. However, they can require modification in order to run properly on certain
platforms.

Derby and JVMs

Derby is a database engine written completely in Java; it will run in any JVM, version 1.3

24

Copyright

or higher.

Derby libraries and classpath

Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath on your development machine to include the appropriate libraries.

Getting Started with Derby explains how to set the classpath in a development
environment.

UNIX-specific issues

This section discusses Derby issues specifically related to UNIX platforms.

Configuring file descriptors

Scripts

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time.

If the default is a low number, such as 64, you might run into unexpected IOExceptions

(wrapped in SQLExcept i ons). If your operating system lets you configure the number of
file descriptors, set this number to a higher value.

Your installation contains executable script files that simplify invoking the Derby tools. On
UNIX systems, these files might need to have their default protections set to include
execute privilege.

A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

25

Copyright

Derby embedded basics

This section explains how to use and configure Derby in an embedded environment.

Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

Embedded Derby JDBC driver

The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver.

In a Java application running on JDK 1.5 or lower, you typically load the driver with the
static O ass. f or Narmre method or with the j dbc. dri ver s system property. If your
application runs on JDK 1.6 or higher, then you do not need to explicitly load the
EmbeddedDriver. In that environment, the driver loads automatically.

For detailed information about loading the Derby JDBC driver, see “java.sql.Driver" in the
Derby Reference Manual.

Embedded Derby JDBC database connection URL

This is the standard Derby JDBC connection URL, which you can use for tasks besides
connecting to a database.

j dbc: der by: [subsubpr ot ocol :] [dat abaseNane] [; attri but e=val ue] *

Subsubprotocol, which is not typically specified, determines how Derby looks for a
database: in a directory, in a class path, or in a jar file. Subsubprotocol is one of the
following:

« directory The default. Specify this explicitly only to distinguish a database that might
be ambiguous with one on the class path.

« classpath Databases are treated as read-only databases, and all databaseNames
must begin with at least a slash, because you specify them "relative" to the
classpath directory.

« jar Databases are treated as read-only databases. DatabaseNames might require a
leading slash, because you specify them "relative" to the jar file.

jar requires an additional element immediately before the database name:
(pat hToAr chi ve)
pathToArchive is the path to the jar or zip file that holds the database.

You typically pass the connection URL as an argument to the JDBC
DriverManager.getConnection method call. For example:

Dri ver Manager . get Connecti on("j dbc: der by: sanpl e") ;

You can specify attributes and attribute values to a connection URL. For detailed
reference about attributes and values, see the Derby Reference Manual.

26

Copyright

Getting a nested connection

When you are executing a method within SQL, that method might need to reuse the
current connection to the database in order to execute more SQL statements. Such a
connection is called a nested connection. The way for a method to get a nested
connection is to issue a connection request using the connection URL.

j dbc: defaul t: connecti on

URL attributes are not supported as part of this connection URL. Any URL attributes
specified in a Properties object, user name, or password that are passed to a
java.sqgl.DriverManager.getConnection() call will be ignored.

Starting Derby as an embedded database

To start Derby, you start the Derby JDBC driver. Starting the Derby driver starts up the
complete Derby system within the current JVM.

For example, when using the JBDC driver manager directly within Java code, you
typically start a JDBC driver in one of these ways:

« Specify the jdbc.drivers system property, which allows users to customize the JDBC
drivers used by their applications. For example:

java, - D{ dbc. dri ver s=or g. apache. der by. j dbc. EnbeddedDri ver
a

appl i cati onCl ass
» Load the class directly from Java code using the static method Class.forName. For
example:

d ass. f or Nanme(" or g. apache. der by. j dbc. EnbeddedDri ver");

« If your application runs on JDK 1.6 or higher, then you do not need to explicitlty load
the EmbeddedDriver. In that environment, the driver loads automatically and the
engine starts when your application requests its first Connection.

For more details, see "java.sql.Driver" in the Derby Reference Manual.

Once the Derby JDBC driver class has been loaded, you can connect to any Derby
database by passing the embedded connection URL with the appropriate attributes to the
DriverManager.getConnection method.

For example:

Connecti on conn = Driver Manager. get Connection("j dbc: derby: sanpl e");

27

Copyright

Deploying Derby applications
Typically, once you have developed a Derby application and database, you package up

the application, the Derby libraries, and the database in some means for distribution to
your users. This process is called deployment.

This section discusses issues for deploying Derby applications and databases.

Deployment issues

This section discusses deployment options and details.
Embedded deployment application overview
In an embedded environment, Derby runs in the same JVM as the application.

The application can be a single-user application or a multi-user application server. In the
latter case, Derby runs embedded in the user-provided server framework, and any client
applications use user-provided connectivity or allow the application server to handle all
database interaction.

Figure 3. Derby embedded in a single-user Java application

Java Virtual Machine

B— oY of L p— Y i I

Application Derby Derby database

Figure 4. Derby embedded in a multi-user Java application server

o VT =

Connectivity ||) | D
lii? Application Derby Derby database

When a Derby database is embedded in a Java application, the database is dedicated to
that single application. If you deploy more than one copy of the application, each
application has its own copy of the database and Derby software. A Derby server
framework can work in multi-threaded, multi-connection mode and can even connect to
more than one database at a time. A server framework, such as the Derby Network
Server, can be used to manage multiple connections and handle network capabilities.
Some server framework solutions, such as WebSphere Application Server, provide
additional features such as web services and connection pooling. However, only one

28

Copyright
server framework at a time can operate against a Derby database.

The Derby application accesses an embedded Derby database through the JDBC API.
To connect, an application makes a call to the local Derby JDBC driver. Accessing the
JDBC driver automatically starts the embedded Derby software. The calling application is
responsible for shutting down the embedded Derby database software.

Deploying Derby in an embedded environment

You can "embed" Derby in any Java application (single- or multi-user) by deploying the
following packages.

e The Derby library (derby.jar).

» The application's libraries. You have the option of storing these libraries in the
database.

» The database or databases used by the application, in the context of their system
directory.

Figure 5. Deploying an application, embedded Derby software, and the database.
Storing the application in the database and setting properties as database-wide
properties simplify deployment.

\ derby jar Your Sysiem Direclory

| ¥our application.jar darby propartias Your DB
By] Your System Directory
derby.jar
Application and
properties storad
in database
Your DB

Embedded systems and properties

Database-wide properties are stored in the database and are simpler for deployment,
while system-wide parameters might be easier for development.

* If you are setting any system-wide properties, see if they can be set as
database-wide properties instead.
« Are any properties being set in the derby.properties file? Some properties can only

29

Copyright

be set on a system-wide basis. If so, deploy the entire system directory along with
the properties file. Deploy only those databases that you wish to include. Setting
properties programmatically can simplify this step- you will not have to worry about
deploying the system directory/properties file.

Extra steps are required for deploying an application and an embedded database on
read-only media.

Creating Derby databases for read-only use

You can create Derby databases for use on read-only media such as CD-ROMs.

Derby databases in zip or jar files are also read-only databases. Typically, read-only
databases are deployed with an application in an embedded environment.

Creating and preparing the database for read-only use

To create databases for use on read-only media, perform these steps.

1.
2.

Create and populate the database on read-write media.

Commit all transactions and shut down Derby in the prescribed manner. If you do
not shut down Derby in the prescribed manner, Derby will need to perform recovery
the next time the system boots. Derby cannot perform recovery on read-only media.
Delete the tmp directory if one was created within your database directory. If you
include this directory, Derby will attempt to delete it and will return errors when
attempting to boot a database on read-only media.

For the read-only database, set the property derby.storage.tempDirectory to a
writable location.

Derby needs to write to temporary files for large sorts required by such SQL
statements as ORDER BY, UNION, DISTINCT, and GROUP BY. For more
information about this property, see Tuning Derby.

der by. st orage. t enpDi rect ory=c: /t enp/ nyt enp

Configure the database to send error messages to a writable file or to an output
stream.

For information, see Tuning Derby.

derby.streamerror.file=c:/tenp/ nyl og. LOG

Be sure to set these properties so that they are deployed with the database.

Deploying the database on the read-only media

To deploy the database on read-only media, perform the following steps.

1.

2.

Move the database directory to the read-only media, including the necessary
subdirectory directories (log and seg0) and the file ser vi ce. properti es.

Use the database as usual, except that you will not be able to insert or update any
data in the database or create or drop dictionary objects.

Transferring read-only databases to archive (jar or zip) files

Once a database has been created in Derby, it can be stored in a jar or zip file and
continue to be accessed by Derby in read-only mode.

This allows a read-only database to be distributed as a single file instead of as multiple
files within a directory and to be compressed. In fact, a jar or zip file can contain any

30

Copyright

number of Derby databases and can also contain other information not related to Derby,
such as application data or code.

You cannot store the derby.properties file in a jar or zip file.

To create a jar or zip file containing one or more Derby databases:

1. Create a database for use on read-only media.

2. From the directory that contains the database folder, archive the database directory
and its contents. For example, for the database sales that lives in the system
directory C:\london, issue the command from london. Do not issue the command
from inside the database directory itself.

For example, archive the database folder and its contents using the JAR program from
the JDK. You can use any zip or jar tool to generate the archive.

This command archives the database directory sales and its contents into a compressed
jar file called dbs.jar.

cd C\lon do
jar cM C\

dbs.jar sales
You can add multiple databases with jar. For example, this command puts the sales
databases and the boiledfood database (in the subdirectory products) into the archive.

cd C\lon d\o

jar cM dbs.jar sal es product s\ boi |l edf ood

The relative paths of the database in the jar need not match their original relative paths.
You can do this by allowing your archive tool to change the path, or by moving the
original databases before archiving them.

The archive can be compressed or uncompressed, or individual databases can be
uncompressed or compressed if your archive tool allows it. Compressed databases take
up a smaller amount of space on disk, depending on the data loaded, but are slower to
access.

Once the database is archived into the jar or zip file, it has no relationship to the original
database. The original database can continue to be modified if desired.

Accessing a read-only database in a zip/jar file

To access a database in a zip/jar, you specify the jar in the subsubprotocol.

jdbc: derby: jar: (pat hToAr chi ve) dat abasePat hW t hi nAr chi ve
The pathToArchive is the absolute path to the archive file. The

databasePathWithinArchive is the relative path to the database within the archive. For
example:

jdbc: derby:jar:(C:/dbs.jar)products/boil edf ood
J dbc: derby:jar: (C /dbs.jar

If you have trouble finding a database within an archive, check the contents of the archive
using your archive tool. The databasePathWithinArchive must match the one in the
archive. You might find that the path in the archive has a leading slash, and thus the URL
would be:

jdbc: derby:jar: (C: /dbs.jar)/products/boil edf ood

31

Copyright

Databases in a jar or zip file are always opened read-only and there is currently no
support to allow updates of any type.

Accessing databases within a jar file using the classpath

Once an archive containing one or more Derby databases has been created it can be
placed in the classpath. This allows access to a database from within an application
without the application's knowing the path of the archive.

When jar or zip files are part of the classpath, you do not have to specify the jar
subsubprotocol to connect to them.

To access a database in a zip or jar file in the classpath:

1. Set the classpath to include the jar or zip file before starting up Derby:

CLASSPATH="C: \ dbs. j ar ; “CLASSPATHY%

2. Connect to a database within the jar or zip file with one of the following connection
URLs:

St andard synta
j dbc: der by: /dat abasePat hW t hi nAr chi ve

Synt ax th subsubpr ot ocol
j dbc: der b :cl asspat h: / dat abasePat hW t hi nAr chi ve
For example:

dbc: der by: / product s/ boi | d ood
dbc: der by: cl asspat h: / product s/ boi | edf ood

i
J
Connecting to databases with ambiguous paths to databases in the file system

Use the basic connection URL syntax only if the database path specified does not also
point to a Derby database in the file system.

If this is the case, the connection attempt might fail or connect to the wrong database.
Use the form of the syntax with the subsubprotocol to distinguish between the databases.

For example:

j dbc: der by: cl asspat h: / product s/ boi | edf ood

Connecting to databases when the path is ambiguous because of databases in the
classpath

To connect to a database in the file system when the connection URL that you would use
would be ambiguous with a database in the classpath, use the following form of the
connection URL.

j dbc: der by: di rect ory: dat abasePat hl nFi | eSyst em
For example,

j dbc: derby: directory:/product s/ boi |l edf ood

Apart from the connection URL, databases in archives in the classpath behave just like
databases in archives accessed through the file system. However, databases in archives

32

Copyright

are read-only.

Databases on read-only media and DatabaseMetaData

Databases on read-only media return true for DatabaseMetaData.isReadOnly.

Loading classes from a database

You can store application logic in a database and then load classes from the database.

Application logic, which can be used by SQL functions and procedures, includes Java
class files and other resources. Storing application code simplifies application
deployment, since it reduces the potential for problems with a user's classpath.

In an embedded environment, when application logic is stored in the database, Derby
can access classes loaded by the Derby class loader from stored jar files.

Class loading overview

You store application classes and resources by storing one or more jar files in the
database. Then your application can access classes loaded by Derby from the jar file and
does not need to be coded in a particular way. The only difference is the way in which
you invoke the application.

Here are the basic steps.

Create jar files for your application

Include any Java classes in a jar file that are intended for Derby class loading, except the
following classes:

« The standard Java packages (java.*, j avax. *)

Derby does not prevent you from storing such a jar file in the database, but these
classes are never loaded from the jar file.

* The classes that are supplied with your Java environment (for example, sun.*)
A running Derby system can load classes from any number of jar files from any number
of schemas and databases.

Create jar files intended for Derby database class loading the same way you create a jar
file for inclusion in a user's classpath. For example, consider an application targeted at
travel agencies:

jar cf travel agent.jar travel agent/*. cl ass.
Various IDEs have tools to generate a list of contents for a jar file based on your
application. If your application requires classes from other jar files, you have a choice:

« Extract the required third-party classes from their jar file and include only those
classes in your jar file.

Use this option when you need only a small subset of the classes in the third-party
jar file.

« Store the third-party jar file in the database.

Use this option when you need most or all of the classes in the third-party jar file,
since your application and third-party logic can be upgraded separately.

» Deploy the third-party jar file in the user's class path.

33

Copyright

Use this option when the classes are already installed on a user's machine (for
example, Objectspace's JGL classes).

Add the jar file or files to the database

Use a set of procedures to install, replace, and remove jar files in a database. When you
install a jar file in a database, you give it a Derby jar name, which is an
SQ.92l dentifier.

Note: Once a jar file has been installed, you cannot modify any of the individual classes
or resources within the jar file. Instead, you must replace the entire jar file.
Jar file examples:

See the Derby Tools and Utilities Guide for reference information about the utility and
complete syntax.

Installing jar files:

SQ. st atenent
CALL sqlj.install jar(
"tours. jar', TAPP. Sanmplel', 0)

-- SQ statenent
-- usmgaquotedldentlfler for the
-- Derby_ jar nanme
CALL sqlj |nstall‘_| r(,
"tours.jar APP. " Sanpl e2"', 0)

Removing jar files:

SQ. statenent
CALL sgl renove | (
P. Sanpl el 0)

Replacing jar files:

SQ. statenent
CALL squ repl ace_jar(]
\rryjarflle newtours.jar', 'APP. Sanplel')

Enable database class loading with a property

Once you have added one or more jar files to a database, you must set the database jar
“classpath" by including the jar file or files in the derby.database.classpath property to
enable Derby to load classes from the jar files.

This property, which behaves like a class path, specifies the jar files to be searched for
classes and resources and the order in which they are searched. If Derby does not find a
needed class stored in the database, it can retrieve the class from the user's classpath.
(Derby first looks in the user's classpath before looking in the database.)

« Separate jar files with a colon ().

« Use two-part names for the jar files (schema name and jar name). Set the property
as a database-level property for the database. The first time you set the property,
you must reboot to load the classes.

Example:
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(

' der b¥ dat abase. cT asspat h'
' APP. Tour sLogi c: APP. ACCOUNTI NGLOG C)

See "derby.database.classpath" in Tuning Derby for more information about the property.

Note: Derby's class loader looks first in the user's classpath for any needed classes, and
then in the database. To ensure class loading with the database class loader, remove
classes from the classpath.

34

Copyright

Code your applications

In your applications, you load the classes either by indirectly referencing them in the code
or by directly using java.lang.Class.forName.

You load resources the way you normally would, using the standard
java.lang.Class.getResourceAsStream, a mechanism that allows an application to access
resources defined in the classpath without knowing where or how they are stored.

You do not need to make any changes to the way code interacts with Derby and its JDBC
driver. An application can safely attempt to boot Derby, even though it is already running,
without any errors. Applications connect to Derby in the usual manner.

Note: The method getResource is not supported.

Dynamic changes to jar files or to the database jar classpath

When you store jar files in a single database and make those jar files available to that
database, it is possible to make changes to jar files or to change the database jar
“"classpath" dynamically (without having to reboot).

That is, when you install or replace a jar file within an SQL statement or change the
database jar "classpath” (the derby.database.classpath property) , Derby is able to load
the new classes right away without your having to reboot.

Requirements for dynamic changes

Certain conditions must be met for Derby to be able to load the new classes right away
without you having to reboot.

 You originally configured database-level class loading for the database correctly.
Turning on the database-level class loading property requires setting the
der by. dat abase. cl asspat h property with valid two-part names, then rebooting.
« If changes to the derby.database.classpath property are needed to reflect new jar
files, you change the property to a valid value.

If these requirements are not met, you will have to reboot to see the changes.

Notes on dynamic changes

When you are changing the derby.database.classpath property, all classes loaded from
database jar files are reloaded, even for a jar file that has not changed.

Remember that the user's classpath is searched first.

Any existing prepared statements will use the previously loaded classes unless they
require class loading, in which case they will fail with a ClassNotFound error.

Cached objects do not match objects created with newly loaded classes. For example, an

in-memory Customer object will not match a new Cust omer object if the Cust oner
class has been reloaded, and it will raise a C assCast Excepti on.

35

Copyright

Derby server-side programming

This section discusses special programming for Derby.

These features include such programming as database-side JDBC procedures and
triggers.

Programming database-side JDBC procedures

Methods invoked within an application are called application-side methods. Methods
invoked within Derby are called database-side procedures.

An application-side method can be exactly the same as a database-side procedure. The
only difference is where you invoke them. You write the method only once. Where you
invoke the method-within the application or within an SQL statement-determines whether
it is an "application-side" or a "database-side" method.

Database-side JDBC procedures and nested connections

Most database-side JDBC Procedures need to share the same transaction space as the
statements that called them.

The reasons for this are:

« to avoid blocking and deadlocks
* to ensure that any updates done from within the method are atomic with the outer
transaction

In order to use the same transaction, the procedure must use the same connection as the
parent SQL statement in which the method was executed. Connections re-used in this
way are called nested connections.

Use the connection URL jdbc:default:connection to re-use the current Connect i on

The Database Connection URL jdbc:default:connection allows a Java method to get the
Connection of the SQL statement that called it. This is the standard (SQL standard, Part
13 SQL Routines and Java) mechanism to obtain the nested connection object. The
method would get a Connect i on:

Connection conn = Driver Manager. get Connecti on(
"j dbc: def aul t: connecti on™);

Loading a JDBC driver in a database-side routine is not required.
Requirements for database-side JDBC procedures using nested connections

In order to preserve transactional atomicity, database-side JDBC procedures that use
nested connections have the following limitations.

« Cannot issue a commit or rollback, unless called within a CALL statement.

« Cannot change connection attributes such as auto-commit.

« Cannot modify the data in a table used by the parent statement that called the
procedure, using INSERT, UPDATE, or DELETE. For example, if a SELECT
statement using the T table calls the changeTabl es procedure, changeTabl es
cannot modify data inthe T t abl e.

< Cannot drop a table used by the statement that called the procedure.

« Cannot be in a class whose static initializer executes DDL statements.

In addition, the Connection object that represents the nested connection always has its
auto-commit mode set to false.

36

Copyright

Database-side JDBC procedures using non-nested connections

A database-side JDBC procedure can create a new connection instead of using a nested
connection. Statements executed in the procedure will be part of a different transaction,
and so can issue commits and rollbacks.

Such procedures can connect to a database different from the one to which the parent
SQL statement that called it is connected. The procedure does not use the same
transaction or Connection. It establishes a new Connect i on and transaction.

Note: If database-side JDBC procedures do not use nested connections, this means that
they are operating outside of the normal DBMS transaction control, so it is not good
practice to use them indiscriminately.

Invoking a procedure using the CALL command

If a procedure uses only IN parameters, Derby can execute the procedure by using the
SQL CALL command. A stored procedure with IN, OUT, or INOUT parameters can be
invoked from a client application by using the CallableStatement method.

You can invoke the procedure in an SQL statement such as the following:

CALL MYPROC()

Note: You cannot roll back this statement, because commits occur within the procedure
itself. Procedures that use nested connections, on the other hand, are not permitted to
commit or roll back and can therefore be rolled back after the calling statement.

You can also use the CALL command to execute a procedure that does return a value,
but you will not be able to access the value.

Database-side JDBC procedures and SQLExceptions

It is possible to code database-side procedures, like application-side methods, to catch
SQLExceptions. SQLExceptions that are caught within a procedure are hidden from the
calling application code.

When such SQLExcept i ons are of transaction severity (such as deadlocks), this
"hiding" of the exception causes unexpected problems.

This is because errors of transaction severity roll back work already done by a
transaction (not just the piece executed by the called method) and silently begin a new
transaction. When the method execution is complete, Derby detects that the outer
statement was invalidated by a deadlock and rolls back any work done in the new
transaction as well. This is the expected behavior, because all the statements in between
explicit commits should be treated atomically; the new transaction implicitly begun by
Derby's rollback was not intended by the application designer.

However, this is not the same behavior that would happen if the method were invoked in
the application. In that situation, Derby would roll back the work done by the transaction
and silently begin a new transaction. Work in the new transaction would not be rolled
back when the method returned. However, coding the application in that way means that
the transaction did not end where you expected it to and is probably a programming
mistake. Coding in this manner is not recommended.

A method that catches a deadlock exception and then continues is probably making a
mistake. Errors of transaction severity should be caught not by nested code, but only by
the outermost application code. That is the only way to ensure that transactions begin
and end where you expect them to.

37

Copyright

Not all database vendors handle nested deadlocks the same way. For this and other
reasons, it is not possible to write portable SQL-invoking methods. However, it is possible
to write SQL-invoking methods that behave identically regardless of whether you invoke
them in the application or as a procedure in the database.

In order to ensure identical application- and database-side handling of nested errors,
code try-catch blocks to check for the severity of exceptions as follows:

try
Pre par edSt at enent . execut e() ;
} catch (SQ.Exception se) {
ring SQLState = se, getS State()
if (SQState. equal s(

{ correct DupI i cat eKe E

else if (tate equals "2 003")) {
correc hrretlcO/er low(); }

else { t h

Of course, users also have the choice of not wrapping SQL statements in try-catch blocks
within methods. In that case, SQLExceptions are caught higher up in their applications,
which is the desired behavior.

User-defined SQLExceptions

When the execution of a database-side method raises an error, Derby wraps that
exception in an SQLException with an SQLSt at e of 38000.
You can avoid having Derby wrap the exception if:

» The exception is an SQLException
* The range of the SQLState is 38001-38999

(This conforms to the SQL99 standard.)

Programming trigger actions

Derby allows you to create triggers. When you create a trigger, you define an action or
set of actions that are executed when a database event occurs on a specified table. A
database event is a delete, insert, or update operation.

For example, if you define a trigger for a delete on a particular table, the trigger action is
executed whenever someone deletes a row or rows from the table.

The CREATE TRI GGER statement in the Derby Reference Manual goes into detail of the
complete CREATE TRI GCGER syntax. This section provides information on defining the
trigger action itself, which is only one aspect of creating triggers.

This section refers to the CREATE TRI GGER statement as the trigger actions.

Trigger action overview

A trigger action is a simple SQL statement.

For example:

CREATE TRI GCGER .
DELETE FROM f | i htavallabll E
WHERE f htlle;SLECTfll ht id FRO\/IfIlghtavallablllty
ERE YEAR(T!ight _date) < 2005);)

38

Copyright

A trigger action does have some limitations, though; for example, it cannot contain
dynamic parameters or alter the table on which the trigger is defined. See "TriggerAction”
in the Derby Reference Manual for details.

Performing referential actions

Derby provides referential actions. Examples in this section are included to illustrate how
to write triggers.

You can choose to use standard SQL referential integrity to obtain this functionality,
rather than writing triggers. See the Derby Reference Manual for more information on
referential integrity.

Accessing before and after rows

Many trigger actions need to access the values of the rows being changed.

Such trigger actions need to know one or both of the following:

« the "before" values of the rows being changed (their values before the database
event that caused the trigger to fire)

« the "after" values of the rows being changed (the values to which the database
event is setting them)

Derby provides transition variables and transition tables for a trigger action to access
these values. See "Referencing Old and New Values: The Referencing Clause" in the
Derby Reference Manual.

Examples of trigger actions

The following trigger action copies a row from the flights table into the flight_history table
whenever any row gets inserted into flights and adds the comment "inserted from trigl" in
the status column of the flight_history table.

CREATE TRIGGER trigl

AFTER UPDATE ON flights
REFERENCI NG O_D AS _UPDATEDROW
FOR_EACH ROW MODE DB2SQL

I NSERT | NTO flights hIStOI‘Y
VALUES UPDATEDEQON D, DATEDRQN SEGNENT NUMBER,
UPDATE| UPDATEDROW DE|

UPDATED ROW DEST AI RPO?T UPDATEDROW ARRI VE
UPDATEDROW MEAL, UPDATEDRON FLYI NG TI ME, UPDATEDRON M LES,
UPDATEDROW Al RCRAFT, ' | NSERTED FROMtrigl');

Triggers and exceptions

Exceptions raised by triggers have a statement severity; they roll back the statement that
caused the trigger to fire.

This rule applies to nested triggers (triggers that are fired by other triggers). If a trigger
action raises an exception (and it is not caught), the transaction on the current connection
is rolled back to the point before the triggering event. For example, suppose Trigger A
causes Trigger B to fire. If Trigger B throws an exception, the current connection is rolled
back to the point before the statement in Trigger A that caused Trigger B to fire. Trigger A
is then free to catch the exception thrown by Trigger B and continue with its work. If
Trigger A does not throw an exception, the statement that caused Trigger A, as well as
any work done in Trigger A, continues until the transaction in the current connection is
either committed or rolled back. However, if Trigger A does not catch the exception from
Trigger B, it is as if Trigger A had thrown the exception. In that case, the statement that

39

Copyright

caused Trigger A to fire is rolled back, along with any work done by both of the triggers.
Aborting statements and transactions

You might want a trigger action to be able to abort the triggering statement or even the
entire transaction.

Triggers that use the current connection are not permitted to commit or roll back the
connection, so how do you do that? The answer is: have the trigger throw an exception,
which is by default a statement-level exception (which rolls back the statement). The
application-side code that contains the statement that caused the trigger to fire can then
roll back the entire connection if desired. Programming triggers in this respect is no
different from programming any database-side JDBC method.

40

Copyright

Controlling Derby application behavior

This section looks at some advanced Derby application concepts.

The JDBC Connection and Transaction Model

Session and transaction capabilities for SQL are handled through JDBC procedures, not
by SQL commands.

JDBC defines a system session and transaction model for database access. A session is
the duration of one connection to the database and is handled by a JDBC Connect i on
object.

Connections

A Connection object represents a connection with a database.

Within the scope of one Connect i on, you access only a single Derby database.
(Database-side JDBC procedures can allow you to access more than one database in
some circumstances.) A single application might allow one or more Connect i ons to
Derby, either to a single database or to many different databases, provided that all the
databases are within the same system.

With DriverManager, you use the connection URL as an argument to get the
get Connect i on method to specify which database to connect to and other details.

The following example shows an application establishing three separate connections to
two different databases in the current system.

Connection conn = Driver Manager . get Connecti on(
"] dbc: der by: sanpl e"
System out. println(" Connected to database sanple");
conn. set Aut oConri t f al se) ;
Connection conn2 = Driver l\/ana%;er get Connect i on(
"j dbc: der by: newDB; cr eat e=tr ue
System out . println("Creat ed AND connect ed to newDB");
conn2. set Au oOo t(false
Connect i on conn3 i ver nager get Connect i on(

= v
dbc: der by: eWDB%

System out. println("Go econd connection to newDB");

conn3. set Aut oCormmi t (fal s),

A Connection object has no association with any specific thread; during its lifetime, any
number of threads might have access to it, as controlled by the application.

Statements

To execute SQL statements against a database, an application uses Statements
(j ava. sql . St at enent) and PreparedStatements

(j ava. sql . Prepar edSt at enent), or CallableStatements

(j ava. sql . Cal | abl eSt at enent) for stored procedures.

Because PreparedStatement extends Statement and CallableStatement extends
PreparedStatement, this section refers to both as Statements. Statements are obtained
from and are associated with a particular Connection.

ResultSets and Cursors

Executing a Statement that returns values gives a Resul t Set

(j ava. sgl . Resul t Set), allowing the application to obtain the results of the statement.
Only one Resul t Set can be open for a particular St at enent at any time, as per the
JDBC specification.

41

Copyright

Thus, executing a Statement automatically closes any open Resul t Set generated by an
earlier execution of that St at enent .

For this reason, you must use a different Statement to update a cursor (a named
Resul t Set) from the one used to generate the cursor.

The names of open cursors must be unique within a Connection.

Nested connections

SQL statements can include routine invocations. If these routines interact with the
database, they must use a Connection.

Transactions

A transaction is a set of one or more SQL statements that make up a logical unit of work
that you can either commit or roll back and that will be recovered in the event of a system
failure.

All the statements in the transaction are atomic. A transaction is associated with a single
Connect i on object (and database). A transaction cannot span Connections (or
databases).

Derby permits schema and data manipulation statements (DML) to be intermixed within a
single transaction. If you create a table in one transaction, you can also insert into it in
that same transaction. A schema manipulation statement (DDL) is not automatically
committed when it is performed, but participates in the transaction within which it is
issued. Because DDL requires exclusive locks on system tables, keep transactions that
involve DDL short.

Transactions when auto-commit is disabled

When auto-commit is disabled, you use a Connection object's commi t and r ol | back
methods to commit or roll back a transaction.

The conmi t method makes permanent the changes resulting from the transaction and
releases locks. The r ol | back method undoes all the changes resulting from the
transaction and releases locks. A transaction encompasses all the SQL statements
executed against a single Connect i on object since the last commi t orrol | back.

You do not need to explicitly begin a transaction. You implicitly end one transaction and
begin a new one after disabling auto-commit, changing the isolation level, or after calling
conmit orroll back.

Committing a transaction also closes all Resul t Set objects excluding the Resul t Set
objects associated with cursors with holdability t r ue. The default holdability of the
cursorsistrue and Resul t Set objects associated with them need to be closed
explicitly. A commit will not close such Resul t Set objects. It also releases any database
locks currently held by the Connect i on, whether or not these objects were created in
different threads.

Using auto-commit

A new connection to a Derby database is in auto-commit mode by default, as specified by
the JDBC standard.

Auto-commit mode means that when a statement is completed, the method commit is
called on that statement automatically. Auto-commit in effect makes every SQL statement
a transaction. The commit occurs when the statement completes or the next statement is
executed, whichever comes first. In the case of a statement returning a Resul t Set , the
statement completes when the last row of the Resul t Set has been retrieved or the

42

Copyright

Resul t Set has been closed explicitly.

Some applications might prefer to work with Derby in auto-commit mode; some might
prefer to work with auto-commit turned off. You should be aware of the implications of
using either model.

You should be aware of the following when you use auto-commit:

Cursors

You cannot use auto-commit if you do any positioned updates or deletes (that is, an
update or delete statement with a "WHERE CURRENT OF" clause) on cursors
which have the close cursors on commit option set.

Auto-commit automatically closes cursors, which are explicitly opened with the
close on commit option, when you do any in-place updates or deletes.

A cursor declared to be held across commit can execute updates and issue multiple
commits before closing the cursor, but the cursor must be repositioned before any
statement following the commit. If this is attempted with auto-commit on, an error is
generated.

Database-side JDBC Procedures (procedures using nested connections)

You cannot execute procedures within SQL statements if those procedures perform
a commit or rollback on the current connection. Since in the auto-commit mode all
SQL statements are implicitly committed, Derby turns off auto-commit during
execution of database-side procedures and turns it back on when the method
completes.

Procedures that use nested connections are not permitted to turn auto-commit on or
off or to commit or roll back.

Table-level locking and the SERIALIZABLE isolation level

When an application uses table-level locking and the SERIALIZABLE isolation level,
all statements that access tables hold at least shared table locks. Shared locks
prevent other transactions that update data from accessing the table. A transaction
holds a lock on a table until the transaction commits. So even a SELECT statement
holds a shared lock on a table until its connection commits and a new transaction
begins.

Table 2. Summary of Application Behavior with Auto-Commit On or Off

Topic Auto-Commit On Auto-Commit Off
Transactions Each statement is a Commit() or rollback()
separate transaction. begins a transaction.

Database-side JDBC procedures (routines using | Auto-commit is turned Works (no explicit

nested connections) off. commits or rollbacks are
allowed).

Updatable cursors Does not work. Works.

Multiple connections accessing the same data Works. Works. Lower

concurrency when
applications use
SERIALIZABLE isolation
mode and table-level
locking.

Updatable ResultSets Works. Works. Not required by

the JDBC program.

43

Copyright
Turning off auto-commit

You can disable auto-commit with the Connection class's setAutoCommit method.

conn. set Aut oCommi t (f al se);
Explicitly closing Statements, ResultSets, and Connections

You should explicitly close Statements, Resul t Set s, and Connect i ons when you no
longer need them.

Connections to Derby are resources external to an application, and the garbage collector
will not close them automatically.

For example, close a Statement object using its ¢l ose method; close a Connecti on
object using its cl ose method. If auto-commit is disabled, active transactions need to be
explicitly committed or rolled back before closing the connection

Statement versus transaction runtime rollback

When an SQL statement generates an exception, this exception results in a runtime
rollback. A runtime rollback is a system-generated rollback of a statement or transaction
by Derby, as opposed to an explicit r ol | back call from your application.

Extremely severe exceptions, such as disk-full errors, shut down the system, and the
transaction is rolled back when the database is next booted. Severe exceptions, such as
deadlock, cause transaction rollback; Derby rolls back all changes since the beginning of
the transaction and implicitly begins a new transaction. Less severe exceptions, such as
syntax errors, result in statement rollback; Derby rolls back only changes made by the
statement that caused the error. The application developer can insert code to explicitly
roll back the entire transaction if desired.

Derby supports partial rollback through the use of savepoints. See the Derby Reference
Manual for more information.

Result set and cursor mechanisms

A result set maintains a cursor, which points to its current row of data. It can be used to
step through and process the rows one by one.

In Derby, any SELECT statement generates a cursor which can be controlled by a

j ava. sgl . Resul t Set object. Derby does not support SQL-92's DECLARE CURSOR
language construct to create cursors, however Derby supports positioned deletes and
positioned updates of updatable cursors.

Simple non-updatable result sets

This example is an excerpt from a sample JDBC application that generates a result set
with a simple SELECT statement and then processes the rows.

Connection conn = Drijver Manager. get Connecti on(
"j dbc: der by: sanpl e"%;
Statement s = conn. createStatenment();
s. execute("set schema 'SAMP'");)
/I note that autocommit is on--it is on by default in JDBC
Resul tSet rs = s. executeQuery
"SELECT enpno, firstnne, |astnane, salary, bonus, comm"
+ " FROM sanp. enpl oyee") ;
/** a standard JDBC ResultSet. It mamintains a
cursor that points to the current row of data. The cu
noves down one row each tinme the nethod next %) is cal
* You can scroll one way only--forward--with the next()
* method. When auto-conirit is on, after you reach the

sor
ed.

* %k

-
I

44

Copyright

* |ast row the statenment is considered conpleted
. and the transaction is committed.

/
S;/stemout.println('| ast nane" + "first nane" + ": earnings");
/* here we are scrolllng t hr ough the result set
with the next () nethod.
while (rs.next()) %
/| processing the rows
String firstnne = rs.getString("Fl RSTNVE"
String lastName = rs.getString("LASTNAVE
Bi gDeci nal sal ary = rs. getBi ge ci mal (" SALARY)
Bi gDeci mal bonus” = rs. get _BI%e ci mal (" BONUS") ;
Bi gDeci mal comm = rs. get Bi gbeci mal (" COW'") ;
Systemout.println(|astName + ", " + firstnme + ";: "
) + (sal ary. add(bonus add(conm))));
rs.close();
/1l once we've iterated through the |ast row,
/1 the transaction comits automatically and rel eases
/[shared | ocks
s.cl ose();

Updatable result sets

Updatable result sets in Derby can be updated by using result set update methods
(updat eRow() ,del et eRow() andi nsert Row()), or by using positioned update or
delete queries.

Both scrollable and non-scrollable result sets can be updatable in Derby.

If the query which was executed to create the result set is not updatable, Derby will
downgrade the concurrency mode to Resul t Set . CONCUR_READ ONLY, and add a
warning about this on the Resul t Set . The compilation of the query fails if the result set
cannot be updatable, and contains a FOR UPDATE clause.

Positioned updates and deletes can be performed if the query contains FOR UPDATE or if
the concurrency mode for the result set is Resul t Set . CONCUR_UPDATABLE.

To use the result set update methods, the concurrency mode for the result set must be
Resul t Set . CONCUR_UPDATABLE. The query does not need to contain FOR UPDATE to
use these methods.

Updatable cursors lock the current row with an update lock when positioned on the row,
regardless of isolation level. Therefore, to avoid excessive locking of rows, only use
concurrency mode Resul t Set . CONCUR_UPDATABLE or the FOR UPDATE clause when
you actually need to update the rows. For more information about locking, see Types and
scope of locks in Derby systems.

Requirements for updatable result sets
Only specific SELECT statements- simple accesses of a single table-allow you to update
or delete rows as you step through them.

For more information, see "SELECT statement” and "FOR UPDATE clause" in the Derby
Reference Manual.

Forward only updatable result sets
A forward only updatable result set maintains a cursor which can only move in one
direction (forward), and also update rows.

To create a forward only updatable result set, the statement has to be created with
concurrency mode Resul t Set . CONCUR_UPDATABLE and type

Resul t Set . TYPE_FORWARD_ONLY.

Note: The default type is Resul t Set . TYPE_FORWARD_ONLY.

Example of using Resul t Set . updat eXXX() + Result Set. updat eRow() to update

45

Copyright

a row:

Statenent stmt = conn.createStatenment(ResultSet. TYPE FORWARD ONLY,
Resul t Set . CONCUR_UPDATABLE) :
Resul t Set uprs = stnt.executeQu g(
"SELECT F RSTNAIVE LASTNAME, V\dé DEPT, BONUS " +
" FROM EMPLOYEE") ;
whil e (uprs.next())
int newBonus = uE getlnt(BONUS") + 100;
uprs. updatel nb\{ newBonus) ;

) upr s. updat eRo

Example of using Resul t Set . del et eRow() to delete a row:

Statenent stm = conn. createStatenment (ResultSet. TYPE FORWARD ONLY,
R Resul t Set . CONCUR_UPDATABLE) ;
sultSet u

rs = stnt.executeQue H
SELECT F RSTNAIVE LASTNAME, DEPT, BONUS " +
" FROM EMPLOYEE") ;

whi | e (uprs nextf)% {
if (uprs.getlhn WORKDEPT") ==300) {
uprs. del et eRow() ;

}

Visibility of changes

 After an update or delete is made on a forward only result set, the result set's cursor
is no longer on the row just updated or deleted, but immediately before the next row
in the result set (it is necessary to move to the next row before any further row
operations are allowed). This means that changes made by
Resul t Set . updat eRow() and Resul t Set . del et eRow() are never visible.

« If arow has been inserted, i.e using Resul t Set . i nsert Row() it may be visible in
a forward only result set.

Conflicting operations

The current row of the result set cannot be changed by other transactions, since it will be
locked with an update lock. Result sets held open after a commit have to move to the
next row before allowing any operations on it.

Some conflicts may prevent the result set from doing updates/deletes:
« If the current row is deleted by a statement in the same transaction, calls to
Resul t Set . updat eRow() will cause an exception, since the cursor is no longer
positioned on a valid row.
Scrollable updatable result sets

A scrollable updatable result set maintains a cursor which can both scroll and update
rows.

Derby only supports scrollable insensitive result sets. To create a scrollable insensitive
result set which is updatable, the statement has to be created with concurrency mode
Resul t Set . CONCUR_UPDATABLE and type

Resul t Set . TYPE_SCROLL_I NSENSI TI VE.

Example of using result set update methods to update a row:

Statement stnt =
conn. cr eat eSt at enent (Resul t Set. TYPE_SCROLL_| NSENSI TI VE,
Resul t Set . CONCUR _UPDATABLE) ;
ResuItSet uprs = stnt.execut eQJV‘O&(
"SELECT F RSTNAI\/E LASTNAVE DEPT, BONUS " +
"FROM EMPLOYEE") ;

46

Copyright

uprs. absol ute(5); // update the fif
i nt newBonus = uprs. getlnt("BONUS")
upr s. updat el nt (" BONUS", newBonus);
uprs. updat eRow() ;

th row
+ 100;

Example of using Resul t Set . del et eRow() to delete a row:

Statement stnmt =
conn. cr eat eSt at enent (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE,
ReSul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.execut eQJ\%ﬁ((
"SELECT Fl| RSTNAME, LASTNAME, DEPT, BONUS " +
" FROM EMPLOYEE") ;
uprs. last();

uprs.relative(-5); // noves to the 5th fromthe |ast row
uprs. del eteRow() ;

Visibility of changes

« Changes caused by other statements, triggers and other transactions (others) are
considered as other changes, and are not visible in scrollable insensitive result sets.

< Own updates and deletes are visible in Derby's scrollable insensitive result sets.
Note: Derby handles changes made using positioned updates and deletes as own
changes, so when made via a result set's cursor such changes are also visible in
that result set.

* Rows inserted to the table may become visible in the result set.

* Resul t Set . rowDel et ed() returns true if the row has been deleted using the
cursor or result set. It does not detect deletes made by other statements or
transactions.

e Resul t Set . r owpdat ed() returns true if the row has been updated using the
cursor or result set. It does not detect updates made by other statements or
transactions.

* Note: Both Resul t Set . r owpdat ed() and Resul t Set . r owDel et ed() return
true if the row first is updated and later deleted.

Please be aware that even if changes caused by others are not visible in the result set,
SQL operations, including positioned updates, which access the current row will read and
use the row data as it is in the database, not as it is reflected in the result set.

Conflicting operations

A conflict may occur in scrollable insensitive result sets if a row is updated/deleted by
another committed transaction, or if a row is updated by another statement in the same
transaction. The row which the cursor is positioned on is locked, however once it moves
to another row, the lock may be released depending on transaction isolation level. This
means that rows in the scrollable insensitive result set may have been updated/deleted
by other transactions after they were fetched.

Since the result set is insensitive, it will not detect the changes made by others. When
doing updates using the result set, conflicting changes on the columns being changed will
be overwritten.

Some conflicts may prevent the result set from doing updates/deletes:

» The row has been deleted after it was read into the result set: Scrollable insensitive
result sets will give a warning with SQLSt at e 01001 .

* The table has been compressed: Scrollable insensitive result sets will give a
warning with SQLSt at e 01001. A compress conflict may happen if the cursor is
held over a commit. This is because the table intent lock is released on commit, and
not reclaimed until the cursor moves to another row.

To avoid conflicts with other transactions, you may increase the transaction isolation level
to repeatable read or serializable. This will make the transaction hold locks on the rows
which have been read until it commits.

Note: When you use holdable result sets, be aware that the locks will be released on
commit, and conflicts may occur regardless of isolation level. You should probably avoid

47

Copyright

using holdable result sets if your application relies on transactional behavior for the result
set.
Inserting rows with updatable result sets

Updatable result set can be used to insert rows to the table, by using
Resul t Set. i nsert Row() .

When inserting a row, each column in the insert row that does not allow null as a value
and does not have a default value must be given a value using the appropriate update
method. If the inserted row satisfies the query predicate, it may become visible in the
result set.

Example of using Resul t Set . i nsert Row() to insert a row:

Statenent stmt = conn. createSt atenent(ResuItSet TYPE FORWARD ONLY,
Resul t Set . CONCUR UPDATABLE)
ResgltSet uprs = stnt.executeQuery

ELECT fI rst name, iastname, wor &dept bonus " +
"FROM enpl oyee") ;
uprs. noveTol nsert OV\HQ
uprs. updat eStri ng STNAME", " Andreas");
uprs. updateStri n ASTNAIVE 3')' Kor nel i ussen");

uprs. updat elnt("
uprs.insertRo
uprs. erveToOJrrent Row() ;

Naming or accessing the name of a cursor

There is no SQL language command to assign a hame to a cursor. You can use the
JDBC set Cur sor Nane method to assign a name to a Resul t Set that allows
positioned updates and deletes.

You assign a name to a Resul t Set with the set Cur sor Nane method of the
St at ement interface. You assign the name to a cursor before executing the St at ermrent
that will generate it.

ement s3 = conn.createStatenent();

ane the statement so we can reference the result set
it &enerates

et Cur sor Narref " UPDATABLESTATEMENT") ;

a

‘we Will be able to use the fol | owing statenent |ater
to access the current row of the cursor
a result set needs to be obtained prior to using the
V\HE E CURRENT synt ax
tSet rs = s3.executeQuery("select * from

ght Booki ngs FOR UPDATE of number seats”);
Prepare St at emen E s2 = connEIIJ_repareSt atement (

UPDATE FIl i ght Booki ngs SET nunber seats = ? " +
"WHERE CURRENT OF UPDATABLESTATENENT")'

~~==un >
\\\\00\\'_"
(%]

?9

Typically, you do not assign a name to the cursor, but let the system generate one for
you automatically. You can determine the system-generated cursor name of a ResultSet
generated by a SELECT statement using the Resul t Set class's get Cur sor Nare
method.

Prepar edSt atenent ps2 = conn. prepareSt at ement
DATE rrBIoeeSI:—I'bons— ? WHERE CURRENT OF "+
Updata | eZ get Cursor Nane());

Extended updatable result set example

Connection conn = Driver Manager . get Connecti on("j dbc: derby: sanpl e");
conn. set Aut oConmi t (f al se);

/]l Create the statement with concurrency node CONCUR_UPDATABLE

/] to aIIowresuIt sets to be UP at ab

Statenent stnmt = conn.createSta errent(ResuI t Set. TYPE FORWARD ONLY
Resul t Set . CONCUR_UPDATABLE, '

48

Copyright

Resul t Set . CLOSE_CURSORS_AT_COW T) ;
Updat abl e statenents have sone requirenents
for exanple, select nust be on a single table
ultSet uprs = stnt.execute erxs
"SELECT FI RSTNME, LASTNAME, KDEPT, BONUS " +
"FROM EMPLOYEE FOR UPDATE of BONUS"); // O1Iy bonus can be updat ed

String theDept="E21";

[
//
Res

while (uprs.next()) {
String firstnhe = uprs.get String("Fl RSTNVE"
String | astNane = prs get String(" LASTNAVE"
String workDept = uprs. getStrlng ' WORKDEPT!
Bi gDecCi mal bonus = uPrs get Bi gDeci mal (" BON)'
i f (workDept . equals(heDept)) {
/1 if the current row neets our criteria,
/1 update the updatable coI um in the row
upr s. updat eBi gDeci n'ﬂl& ,
bonus. add?Bl gDeci nal . vaI ueCf (50L)))
uprs. updat eRow(
System out . prin in(" Updati ng bonus for enpl oyee:" +
) firstnme™ + | ast Nane) ;

onn.comrit(); // conmit the transaction

/ close object

Prs cl ose

nt_. close();]

/ Close connection if the application does not need it any nore
onn. cl ose();

O ~0nc o

Result sets and auto-commit

Except for the result sets associated with holdable cursors, issuing a commit will cause
all result sets on your connection to be closed.

The JDBC application is not required to have auto-commit off when using update
methods on updatable result set, even if the result set is not holdable. Positioned updates
and deletes cannot be used in combination with autocommit and non-holdable result
sets.

Scrollable result sets

JDBC 2.0 adds two new types of result sets which allows you to scroll in either direction
or to move the cursor to a particular row. Derby supports one of these types: scrollable
insensitive result sets (Resul t Set . TYPE_SCROLL_| NSENSI TI VE).

When you use a result set of type of type Resul t Set . TYPE_SCRCLL_| NSENSI TI VE,
Derby materializes rows from the first one in the result set up to the one with the biggest
row number as the rows are requested. The materialized rows will be backed to disk if
necessary, to avoid excessive memory usage.

Insensitive result sets, in contrast to sensitive result sets, are insensitive to changes

made by others on the rows which have been materialized. Derby allows updates of

scrollable insensitive result sets, please see Visibilty of changes, which also explains
visibility of own changes.

Note: Derby does not support result sets of type ResultSet. TYPE_SCROLL_SENSITIVE.

/[l autocommit does not have to be off because even if]

[Iwe accidentally scroll past the last row, the inplicit conmt

/[/on the the statement will not close the result set because result sets
/lare held over commt by default

conn. set Aut oConmi t (f al sef

Statenent s4 = conn. creat eSt atement(ResuI t Set. TYPE SCROLL_| NSENSI TI VE,

Resul t Set . CONCUR_READ_ONLY) ;
s4. execute("set schema ' SAMP''
Resul t Set scrol | er=s4. execute
ELECT sal es_person, re |on sales FROM sales " +
"WHERE sal es > 8 ORDER BY sal es DESC');

49

Copyright

if (scroller. flrst(2? // One rowis now materialized

System out. prin ThF saIes rep who sold the highest nunber" +
of sales is " +
scrol l er.getString("SALES PERSON'));

} else {)
Systemout.println("There are no rows.");
scrol | er. beforeFirst(); .
scrol l er.afterlLast(); /1l By calling afterlast(), all rows will be
mat eri al i zed
scrol |l er. absoluteg 3);
if (Lscroller.isAfter ast%
System out . printl e enployee with the third hi ghest nunmber " +
"of sales is +

scrol | er. getStrln%g SALES PERSON') + ", with " +
scrol l er. getlnt("SALE + " sales");

%f (scroller.isLas t(?) {
Systen10ut println("There are only three rows.");

1f (scroller.last()2
Systenlout println(" The | east hi ghest nunber " +
sales of the top three sales is: " +
scroller getlnt("SALES"));

écroller close();

s4.close():

conn. commi t ()

conn. cl ose(); .)
Systemout. println("d osed connection");

Holdable result sets

The holdable result set feature permits an application to keep result sets open after
implicit or explicit commits. By default, the cursor controlled by the result set is held open
after a commit.

Note: Derby, supports non-holdable result sets on platforms which support JDBC 3.

Starting with Java 2 Platform, Standard Edition, v 1.4 (J2SE), result sets can be created
with close when a commit occurs option. Such result sets will be automatically closed
when a commit happens. Result sets are automatically closed when a transaction aborts,
whether or not they have been specified to be held open.

To specify whether a result set should be held open after a commit takes place, supply
one of the following ResultSet parameters to the Connect i on method
creat eSt at ement, prepar eSt at enent, or prepareCal | :

« CLOSE_CURSORS_AT_COMMIT
Result sets are closed when an implicit or explicit commit is performed.

« HOLD_CURSORS_OVER_COMMIT

Result sets are held open when a commit is performed, implicitly or explicitly. This is
the default behavior.

The method Statement.getResultSetHoldability() indicates whether a result set generated
by the Statement object stays open or closes, upon commit. See the Derby Reference
Manual for more information.

When an implicit or explicit commit occurs, result sets that hold cursors open behave as
follows:

« Open result sets remain open. Non-scrollable result sets becomes positioned before
the next logical row of the result set. Scrollable insensitive result sets keep their
current position.

* When the session is terminated, the result set is closed and destroyed.

50

Copyright

« All'locks are released, including locks protecting the current cursor position.
» For non-scrollable result sets, immediately following a commit, the only valid
operations that can be performed on the ResultSet object are:
* positioning the result set to the next row with Resul t Set . next ().
« closing the result set with Resul t Set . cl ose().

When a rollback or rollback to savepoint occurs, either explicitly or implicitly, the following
behavior applies:

 All open result sets are closed.

* All locks acquired during the unit of work are released.

Note: Holdable result sets do not work with XA transactions in Derby. When working with
XA transactions, the result set should be opened with holdability

Resul t Set . CLOSE_CURSORS_AT_COW T.

Holdable result sets and autocommit

When autocommit is on, a positioned update or delete statement will automatically cause
the transaction to commit.

If the result set has holdability Resul t Set . CLOSE_CURSORS_AT_COWM T, combined
with autocommit on, Derby gives an exception on positioned updates and deletes
because the cursor is closed immediately before the positioned statement is commenced,
as mandated by JDBC. In contrast, no such implicit commit is done when using result set
updates methods.

Non-holdable result set example

The following example uses Connection.createStatement to return a Resul t Set that will
close after a commit is performed.

Connecti on conn = ds. get Connection(user, passwd);
Statement stnmt =
conn. cr eat eSt at enent (Resul t Set . TYPE_SCROLL | NSENSI Tl VE,
Resul t Set . CONCUR READ ONLY,
Resul t Set . CLOSE_CURSCORS_AT_COWM T) ;

Locking, concurrency, and isolation

This section discusses topics pertinent to multi-user systems, in which concurrency is
important.

Derby is configured by default to work well for multi-user systems. For single-user
systems, you might want to tune your system so that it uses fewer resources; see Lock
granularity.

Isolation levels and concurrency

Derby provides four transaction isolation levels. Setting the transaction isolation level for
a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions.

For example, it allows you to specify whether transaction A is allowed to make changes
to data that have been viewed by transaction B before transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with a
way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

51

Copyright

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setlsolationLevel method or the
SQL SET ISOLATION statement. The names of the isolation levels are different,
depending on whether you use a JDBC method or SQL statement. Mapping of JDBC
transaction isolation levels to Derby isolation levels shows the equivalent names for
isolation levels whether they are set through the JDBC method or an SQL statement.

Table 3. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation levels for JDBC Isolation levels for SQL

Connection. TRANSACTION_READ_UNCOMMITTED UR, DIRTY READ, READ

(ANSI level 0) UNCOMMITTED

Connection.TRANSACTION_READ_COMMITTED (ANSI CS, CURSOR STABILITY, READ

level 1) COMMITTED

Connection. TRANSACTION_REPEATABLE_READ (ANSI | RS

level 2)

Connection.TRANSACTION_SERIALIZABLE (ANSI level 3) | RR, REPEATABLE READ,
SERIALIZABLE

These levels allow you to avoid particular kinds of transaction anomalies, which are
described in Transaction Anomalies.

Table 4. Transaction Anomalies

Anomaly Example

Dirty Reads Transaction A begins.

A dirty read happens when a transaction reads UPDATE enpl oyee SET salary = 31650
data that is being modified by another transaction | WHERE enpno = ' 000090
that has not yet committed. Transaction B begins.

SELECT * FROM enpl oyee

(Transaction B sees data updated by transaction A.
Those updates have not yet been committed.)

Non-Repeatable Reads Transaction A begins.
Non-repeatable reads happen when a query SELECT * FROM e ee
returns data that would be different if the query WHERE enpno = "0 OOg

were repeated within the same transaction.
Non-repeatable reads can occur when other

transactions are modifying data that a transaction | UPDATE enpl oyee SET sal ary = 30100
is reading. VWHERE enpno = ' 000090

Transaction B begins.

(Transaction B updates rows viewed by transaction
A before transaction A commits.) If Transaction A
issues the same SELECT statement, the results will
be different.

Phantom Reads Transaction A begins.
Records that appear in a set being read by SELECT * FROM enpl oyvee
another transaction. Phantom reads can occur WHERE sal ary > 30000

when other transactions insert rows that would
satisfy the WHERE clause of another

transaction's statement. | NSERT | NTO enpl oyee
(enpno, firstnme, mdinit,

Transaction B begins.

52

Copyright

Anomaly Example

| ast nane, Lob,

sal ar& VALUES (' 000350', 'N CK,

A EEN , ' LEGAL COUNSEL', 35000)
Transaction B inserts a row that would satisfy the
guery in Transaction A if it were issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

When Transaction Anomalies Are Possible shows which anomalies are possible under
the various locking schemas and isolation levels.

Table 5. When Transaction Anomalies Are Possible

Table-Level
Isolation Level Locking Row-Level Locking
TRANSACTION_READ_UNCOMMITTED Dirty reads, Dirty reads,
nonrepeatable nonrepeatable reads,
reads, and phantom | and phantom reads
reads possible possible
TRANSACTION_READ_COMMITTED Nonrepeatable Nonrepeatable reads
reads and phantom | and phantom reads
reads possible possible
TRANSACTION_REPEATABLE_READ Phantom reads not | Phantom reads
possible because possible
entire table is
locked
TRANSACTION_SERIALIZABLE None None

The following java.sqgl.Connection isolation levels are supported:
e TRANSACTI ON_SERI ALI ZABLE
RR, SERI ALI ZABLE, or REPEATABLE READ from SQL.
TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues

locks to prevent all the transaction anomalies listed in Transaction Anomalies from
occurring. The type of lock it issues is sometimes called a range lock.

* TRANSACTI ON_REPEATABLE_READ
RS from SQL.
TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent

only dirty reads and non-repeatable reads, but not phantoms. It does not issue
range locks for selects.

« TRANSACTI ON_READ_COWMM TTED
CS or CURSOR STABI LI TY from SQL.

TRANSACTION_READ_COMMITTED means that Derby issues locks to prevent

53

Copyright
only dirty reads, not all the transaction anomalies listed in Transaction Anomalies.

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.
* TRANSACTI ON_READ_UNCOWM TTED
UR, DI RTY READ, or READ UNCOWM TTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

< Any row that is read during the unit of work to be changed by other application
processes.

« Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels

If a connection does not specify its isolation level, it inherits the default isolation level for
the Derby system. The default value is CS.

When set to CS, the connection inherits the TRANSACTION_READ_COMMITTED
isolation level. When set to RR, the connection inherits the
TRANSACTION_SERIALIZABLE isolation level, when set to RS, the connection inherits
the TRANSACTION_REPEATABLE_READ isolation level, and when set to UR, the
connection inherits the TRANSACTION_READ_ UNCOMMITTED isolation level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an SQL
statement. For more information, see "SET ISOLATION statement” in the Derby
Reference Manual. You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the"WITH clause," see
the "SELECT statement"in the Derby Reference Manual.

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction.

Note: For information about how to choose a particular isolation level, see Tuning Derby.

Lock granularity

Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning off
row-level locking, see "derby.storage.rowLocking" in Tuning Derby. For more information
about automatic lock escalation, see "About the System's Selection of Lock Granularity"
and "Transaction-Based Lock Escalation" in Tuning Derby. For more information on

54

Copyright

tuning your Derby system, see "Tuning Databases and Applications".

Types and scope of locks in Derby systems

There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.

Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data.

This lock remains in place until the transaction holding the lock issues a commit or
rollback. Table-level locking lowers concurrency in a multi-user system.

Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data.

Another transaction that tries to read the same data is permitted to read, but a transaction
that tries to update the data will be prevented from doing so until the shared lock is
released. How long this shared lock is held depends on the isolation level of the
transaction holding the lock. Transactions using the
TRANSACTION_READ_COMMITTED isolation level release the lock when the
transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ isolation
level hold the lock until the transaction is committed, so even a SELECT can prevent
updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.

Update locks

When a user-defined update cursor (created with the FOR UPDATE clause or by using
concurrency mode Resul t Set . CONCUR_UPDATABLE) reads data, its transaction
obtains an update lock on the data.

If the user-defined update cursor updates the data, the update lock is converted to an
exclusive lock. If the cursor does not update the row, when the transaction steps through
to the next row, transactions using the TRANSACTION_READ_COMMITTED isolation
level release the lock. (For update locks, the TRANSACTION_READ_UNCOMMITTED
isolation level acts the same way as TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.

Lock compatibility

This table lists compatibility between lock types. + means the lock types are compatible,
while - means they are incompatible.

Table 6. Lock Compatibility Matrix

' Shared Update Exclusive
Shared + + i

Update + i i
Exclusive

Scope of locks

55

Copyright
The amount of data locked by a statement can vary.

Table locks

A statement can lock the entire table.
Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a statement
cannot use an index. For example, UPDATES that cannot use an index lock the entire
table.

Row-level locking systems can lock entire tables if a high number of single-row locks
would be less efficient than a single table-level lock. Choosing table-level locking instead
of row-level locking for performance reasons is called lock escalation. For more
information about this topic, see "About the System's Selection of Lock Granularity" and
"Transaction-Based Lock Escalation” in Tuning Derby.

Single-row locks
A statement can lock only a single row at a time.

For row-level locking systems:

* For TRANSACTION_REPEATABLE_READ isolation, the locks are released at the
end of the transaction.

e For TRANSACTION_READ_COMMITTED isolation, Derby locks rows only as the
application steps through the rows in the result. The current row is locked. The row
lock is released when the application goes to the next row.

e For TRANSACTION_SERIALIZABLE isolation, however, Derby locks the whole set
before the application begins stepping through.

e For TRANSACTION_READ_ UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the transaction is
committed. If there is an index associated with the table, the previous key is also locked.

Range locks
A statement can lock a range of rows (range lock).

For row-level locking systems:
« For any isolation level, Derby locks all the rows in the result plus an entire range of
rows for updates or deletes.
» For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows in
the result plus an entire range of rows in the table for SELECTS to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where the
salary is BETWEEN two values, the system can lock more than just the actual rows it
returns in the result. It also must lock the entire range of rows between those two values
to prevent another transaction from inserting, deleting, or updating a row within that
range.

An index must be available for a range lock. If one is not available, Derby locks the entire
table.

Table 7. Types and scopes of locking

Transaction Isolation Level | Table-Level Locking Row-Level Locking
Connection.TRANSACTION_H For SELECT SELECT statements get no locks. For other
(SQL: UR) statements, table-level statements, same as for TRANSACTION_

56

Copyright

Transaction Isolation Level

Table-Level Locking

Row-Level Locking

locking is never
requested using this
isolation level. For other
statements, same as for
TRANSACTION_READ_

READ_COMMITTED.

Connection. TRANSACTION_H
(SQL: CS)

SELECT statements get
a shared lock on the
entire table. The locks
are released when the
user closes the
ResultSet. Other
statements get exclusive
locks on the entire table,
which are released
when the transaction
commits.

SELECTs lock and release single rows as the
user steps through the ResultSet. UPDATES
and DELETEs get exclusive locks on a range
of rows. INSERT statements get exclusive
locks on single rows (and sometimes on the
preceding rows).

Connection. TRANSACTION_H
(SQL: RS)

Same as for
TRANSACTION_SERIAL

SELECT statements get shared locks on the
rows that satisfy the WHERE clause (but do
not prevent inserts into this range). UPDATES
and DELETEs get exclusive locks on a range
of rows. INSERT statements get exclusive
locks on single rows (and sometimes on the
preceding rows).

Connection. TRANSACTION_{
(SQL: RR)

SELECT statements get
a shared lock on the
entire table. Other
statements get exclusive
locks on the entire table,
which are released
when the transaction
commits.

SELECT statements get shared locks on a
range of rows. UPDATE and DELETE
statements get exclusive locks on a range of
rows. INSERT statements get exclusive locks
on single rows (and sometimes on the
preceding rows).

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance

reasons.

Deadlocks

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the lock
on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions.

Figure 6. A deadlock.

57

Copyright

Transaction A Transaction B
A has a lock on B has a lock
ordars and needs on accounts and
a lock on accounts needs a lock on
1o finish. orders to finish,
Orders Accounts
'

Avoiding deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation
level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible.

Derby application developers can avoid deadlocks by using consistent application logic;
for example, transactions that access Accounts and Orders should always access the
tables in the same order. That way, in the scenario described above, Transaction B
simply waits for transaction A to release the lock on Orders before it begins. When
transaction A releases the lock on Orders, Transaction B can proceed freely.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt to
lock a table in exclusive mode when it starts to prevent other transactions from getting
shared locks on a table. For more information, see "LOCK TABLE statement" in the
Derby Reference Manual.

Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.

When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLSt at e of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

ERROR 40001: A | ock could not be obtained due to a deadl ock,

cycle of locks & waiters is:

Lock : ROW_ DEPARTMENT, (1,14)) .

Wiaiting XID : {752, X} , APP, update departnent set |ocation='Boise'
wher e dept no=' E21"

Ganted XID : {758, Lock : ROW EMPLOYEE, (2, 8)

Waiting XID : {758, , APP, update enpl oyee set bonus=150 where

sal ary=23840 T

Ganted XID : {752, X} The selected victimis XID: 752

58

Copyright

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts.

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization

primitives are not detected by Derby.
Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs.

In such a situation, you might not want a transaction to wait indefinitely. Instead, you
might want the waiting transaction to abort, or time out, after a reasonable amount of
time, called a lock wait timeout.

Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property.

You configure the amount of time a transaction waits before timing out with the

der by. | ocks. wai t Ti meout property. When configuring your database or system, you
should consider these properties together. For example, in order for any deadlock
checking to occur, the der by. | ocks. deadl ockTi meout property must be setto a
value lower than the der by. | ocks. wai t Ti neout property. If it is set to a value equal
to or higher than the der by. | ocks. wai t Ti meout , the transaction times out before
Derby does any deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait

timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

Figure 7. One possible configuration: deadlock checking occurs when a
transaction has waited 30 seconds; no lock wait timeouts occur.

59

Copyright

L : Transactions ana el abond
 deadlockTimeout=30 uniass thay are selected as the

b 4

Fva waited 30 seconds,
Am | deadiocked?

F mol, kg waiting undil
I can obtain locks | or forevar).

01 1 VA I 1

seconds waiting 1o obtain a lock

v

Figure 8. Another typical configuration: deadlock checking occurs after a
transaction has waited 60 seconds for a lock; after 90 seconds, the transaction

times out and is rolled back.

w

60

Copyright

Figure 9. A configuration in which no deadlock checking occurs: transactions time
out after they have waited 50 seconds. No deadlock checking occurs.

dead|ock TimEout=50 % 7 Mo deadiock checking
oocurs. Wailting transactions

always Hmaout,

I'va baen walling 50 seconds.
Abort me | I'll try agan later).

seconds waiting to obdain a lock

Debugging Deadlocks

If deadlocks occur frequently in your multi-user system with a particular application, you
might need to do some debugging.

Derby provides a class to help you in this situation, org.apache.derby.diag.LockTable.
You can also set the property derby.locks.deadlockTrace to dump additional information
to the derby.log file about any deadlocks that occur on your system. See the Tuning
Guide for more information on this property. For information, see the Derby Server and
Administration Guide.

Programming applications to handle deadlocks

When you configure your system for deadlock and lockwait timeouts and an application
could be chosen as a victim when the transaction times out, you should program your
application to handle them.

To do this, test for SQLExceptions with SQLSt at es of 40001 (deadlock timeout) or
40XL1 or 40XL2 (lockwait timeout).

In the case of a deadlock you might want to re-try the transaction that was chosen as a
victim. In the case of a lock wait timeout, you probably do not want to do this right away.

The following code is one example of how to handle a deadlock timeout.

[1] if this code m ght encounter a deadl ock,
[PUt the whol e t hnglnatr/cat_ch bl ock]
/[l then try again if the deadl ock victimexception
[/ was thrown
try {

S6.

execut eUpdat ef
"UPDATE enpl oyee " +

61

Copyright

"SET bonus

" WHERE en‘Pno— 000150
a

s6. execut eUpd

e(" UPDATE gr?)j ect T

"SET respe =
"WHERE pPorﬁo- IF1000 ")

note: do not

O ~———
Q ~~—~

tch (S
|f((;sg/é get

[l try

catch such exceptions only a
application code.

See Dat abase-si de JDBC procedures and SQLExcepti ons.
Excegtlon se)

Q_State() equal s("40001")) {

it was chosen as a victimof a deadl ock.
agai n at
S%stenlout println('

t he out er npst

once at this
"Wl tr

| east poi nt .

executeUpdat e(UPDATE enpl oyee " +

"SET bonus
"WHERE enp

625

no="' 000150

s6. executeUpdateg UPDA}E prolect "o+
" SET resperrp

) "VWHERE
el se throw se;

proj no="1 FlOOO' ")'

catch such exceptions in database-si de nethods;
| evel of

t he transaction again.");

Working with multiple connections to a single database

This section discusses deploying Derby so that many connections can exist to a single

database.

Deployment options and threading and connection modes

A database can be available to multiple connections in several situations.

« Multiple applications access a single database (possible only when Derby is running
inside a server framework).
« A single application has more than one Connection to the same database.

The way you deploy Derby affects the ways applications can use multi-threading
and connections, as shown in Threading and Connection Modes.

Table 8. Threading and Connection Modes

Connection mode

Embedded

Server

Multi-Threaded

From an application, using a
singleConnect i on to a Derby
database and issuing requests
against that connection in multiple
threads.

Supply a single Connection object to
separate threads. Derby ensures that
only one operation is applied at a
time for consistency. Server
frameworks automatically manage
multi-threaded operations..

Server frameworks can
automatically multi-thread
operations. Remote client
applications can
multi-thread if desired.

Multi-Connection

From an application, using multiple
connections to a Derby database
and issuing requests against those
connections on multiple threads.

Create individual connections within
a single application and use the
appropriate connection for each
JDBC request. The connections can
all be to the same database, or can
be to different databases in the same
Derby system.

Remote client applications
can establish the multiple
connections desired.

Multi-User

Multiple applications (or JVMs)
accessing the same Derby
database. Each user application has
its own connection or connections to

Not possible. Only one application
can access a database at a time, and
only one application can access a
specific system at a time. When
using a pre-1.4 JVM, Derby might not
prevent multiple applications from

Only one server should
access a database at a
time. Multiple remote client
applications can access
the same server, and thus
can access the same

62

Copyright

Connection mode Embedded Server

the database.

concurrently accessing the same database at the same time
Derby system, but do not allow this | through that server.
because such access can corrupt the
databases involved.

Multi-user database access

Multi-user database access is possible if Derby is running inside a server framework.

If more than one client application tries to modify the same data, the connection that gets
the table first gets the lock on the data (either specific rows or the entire table). The
second connection has to wait until the first connection commits or rolls back the
transaction in order to access the data. If two connections are only querying and not
modifying data, they can both access the same data at the same time because they can
each get a shared lock.

Multiple connections from a single application

A single application can work with multiple Connections to the same database and assign
them to different threads.

You can avoid concurrency and deadlock problems in your application in several ways:

« Use the TRANSACTION_READ_COMMITTED isolation level and turn on row-level
locking (the defaults).

» Beware of deadlocks caused by using more than one Connection in a single thread
(the most obvious case). For example, if the thread tries to update the same table
from two different Connect i ons, a deadlock can occur.

« Assign Connections to threads that handle discrete tasks. For example, do not have
two threads update the Hotels table. Have one thread update the Hotels table and a
different one update the Groups table.

« If threads access the same tables, commit transactions often.

« Multi-threaded Java applications have the ability to self-deadlock without even
accessing a database, so beware of that too.

» Use nested connections to share the same lock space.

Working with multiple threads sharing a single connection

JDBC allows you to share a single Connection among multiple threads.

Pitfalls of sharing a connection among threads

Here is a review of the potential pitfalls of sharing a single Connection among multiple
threads.

« Committing or rolling back a transaction closes all open ResultSet objects and
currently executing Statements, unless you are using held cursors.

If one thread commits, it closes the Statements and ResultSets of all other threads
using the same connection.

« Executing a Statement automatically closes any existing open ResultSet generated
by an earlier execution of that Statement.

If threads share Statements, one thread could close another's ResultSet.

In many cases, it is easier to assign each thread to a distinct Connection. If thread A
does database work that is not transactionally related to thread B, assign them to

63

Copyright

different Connections. For example, if thread A is associated with a user input window
that allows users to delete hotels and thread B is associated with a user window that
allows users to view city information, assign those threads to different Connections. That
way, when thread A commits, it does not affect any ResultSets or Statements of thread
B.

Another strategy is to have one thread do queries and another thread do updates.
Queries hold shared locks until the transaction commits in SERIALIZABLE isolation
mode; use READ_COMMITTED instead.

Yet another strategy is to have only one thread do database access. Have other threads
get information from the database access thread.

Multiple threads are permitted to share a Connection, Statement, or ResultSet. However,
the application programmer must ensure that one thread does not affect the behavior of
the others.

Recommended Practices
Here are some tips for avoiding unexpected behavior:

« Avoid sharing Statements (and their Resul t Set s) among threads.

« Each time a thread executes a Statement, it should process the results before
relinquishing the Connect i on.

« Each time a thread accesses the Connection, it should consistently commit or not,
depending on application protocol.

< Have one thread be the "managing"” database Connection thread that should handle
the higher-level tasks, such as establishing the Connect i on, committing, rolling
back, changing Connect i on properties such as auto-commit, closing the
Connect i on, shutting down the database (in an embedded environment), and so
on.

» Close ResultSets and St at enent s that are no longer needed in order to release
resources.

Multi-thread programming tips

You may be sharing a Connection among multiple threads because you have
experienced poor concurrency using separate transactions.

Here are some tips for increasing concurrency:

« Use row-level locking.

« Use the TRANSACTION_READ_COMMITTED isolation level.

« Avoid queries that cannot use indexes; they require locking of all the rows in the
table (if only very briefly) and might block an update.

In addition, some programmers might share a statement among multiple threads to avoid
the overhead of each thread's having its own. Using the single statement cache, threads
can share the same statement from different connections. For more information, see in
Tuning Derby.

Example of threads sharing a statement

This example shows what can happen if two threads try to share a single Statement.

Prepar edSt at enent PS =_conn. prepar est at enent (
"UPDATE account SET bal ance = bal ance + ’7 WHERE id = ?");
[* now assune two threads T1, T2 are given thi
lnava sql . Prepar edSt at errent obj ect and that the foll owi ng events
ap en in the order shown BseudOJ ava code) */
- ps. set Bi gDeci nal gl
T1 - ps.set Long(2 1234

64

Copyright

- ps. setBi gDeci nal %1, -500. 00) ;

***" At this point the prepared statenent has the paraneters
-500. 00 and 1234

Tl thinks it is adding 100.00 to account 1234 but actually
it is subtracti n? 500.°00

- ps. execut eUpdate();

- ps.setlong(2, 5678);

T2 executes the correct update

- ps. execut eUpdat e();)

Al so, the auto-conmmt node of the connection can |ead
sone strange behavior. */

—_,~ ~ ~——

If it is absolutely necessary, the application can get around this problem with Java
synchronization.

If the threads each obtain their own PreparedStatement (with identical text), their set XXX
calls do not interfere with each other. Moreover, Derby is able to share the same
compiled query plan between the two statements; it needs to maintain only separate
state information. However, there is the potential for confusion in regard to the timing of
the commit, since a single commit commits all the statements in a transaction.

Working with database threads in an embedded environment

Do not use i nt er r upt calls to notify threads that are accessing a database, because
Derby will catch the i nt er r upt call and close the connection to the database. Use
wai t and not i fy calls instead.

This will not happen in a client/server environment, but if you want your application to
work in either environment it is good practice to follow this rule.

There are also special considerations when working with more than one database thread
in an application.

Working with Derby SQLExceptions in an application

JDBC generates exceptions of the type java.sql.SQLException. If your application runs
on JDK 1.6 or higher, the exceptions will be the refined subtypes of
java.sql.SQLException introduced by JDBC4. To see the exceptions generated by Derby,
retrieve and process the SQLExcept i ons in a catch block.

Information provided in SQL Exceptions

Derby provides the message, SQLState values, and error codes in SQL exceptions.

Use the get SQLSt at e and get Message methods to view the SQLSt at e and error
messages. Use get Er r or Code to see the error code. The error code defines the
severity of the error and is not unique to each exception.

Note: Severity is not standardized in Derby. Applications should not depend on the
severity returned from SQL exceptions.

Applications should also check for and process java.sql.SQLWarnings, which are
processed in a similar way. Derby issues an SQLWar ni ng if the cr eat e=t r ue attribute
is specified and the database already exists.

Example of processing SQLExceptions

A single error can generate more than one SQLException. Use a loop and the
get Next Except i on method to process all SQLExcept i ons in the chain. In many
cases, the second exception in the chain is the pertinent one.

The following is an example:

65

Copyright

cat ch (Throwable e) f)
System out. println("exception thrown:");
errorPrint(e);

étatic voi d errorPrlnt Thr owabl e e) {
if (e _instanceof Except
: SQLExcept i onPrl nt ((S%_Exceptl on)e);
el se
Systemout.println("A non-SQ. error: " + e.toString());

static void SQ.ExceptionPrint(SQException sqgle) {

while (sqle !'= nu II? {
System out. print|n(’ \n---SQ_Exceptlon Cau ht---\n%
Systemout.println(" Q_State '+ sql e? getSQ_S ate());
Systemout. print|ln("Severity: " sql e) . get Error Code());
Syst em out SPI‘I ntln I\/Essage " sql e) . get Message()) ;
sqgl e prl nt ackTrace();
sql e e. get Next Exception();

(S

If your application runs on JDK 1.4 or higher, then the SQLException may wrap another,
triggering exception, like an IOException. To inspect this additional, wrapped error, call
the SQLException's getCause method.

See also "Derby Exception Messages and SQL States", in the Derby Reference Manual.

66

Copyright

Using Derby as a J2EE resource manager

J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE), J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such, it is one
part of a larger system that includes, among other things, a JNDI server, a connection
pool module, a transaction manager, a resource manager, and user applications. Within
this system, Derby can serve as the resource manager.

For more information on J2EE and how to work in this environment, see the J2EE
specification available at http://java.sun.com/j2ee/docs.html.

Note: This chapter does not show you how to use Derby as a Resource Manager.
Instead, it provides details specific to Derby that are not covered in the specification. This
information is useful to programmers developing other modules in a distributed J2EE
system, not to end-user application developers.

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support. These three areas of support involve implementation of APIS and are
described in "J2EE Compliance: Java Transaction APl and javax.sql Extensions" in the
Derby Reference Manual.

This chapter describes the Derby classes that implement the APIs and provides some
implementation-specific details.

Note: All of the classes described in this chapter require a Java 2 Platform, Standard
Edition, v 1.2 (J2SE) or higher environment.

Classes that pertain to resource managers

See the javadoc for each class for more information.

Each of these DataSources has two variants. Use the first variant if your application run
on JDK 1.5 or lower. Use the second variant (the one whose class name ends with "40")
if your application runs on JDK 1.6 or higher.

» org.apache.derby.jdbc.EmbeddedDataSource and
org.apache.derby.jdbc.EmbeddedDataSource40

Implements javax.sql.DataSource interface, which a JNDI server can reference.
Typically this is the object that you work with as a Dat aSour ce.

« org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

Implements javax.sql.ConnectionPoolDataSource. A factory for
Pool edConnect i on objects.

» org.apache.derby.jdbc.EmbeddedXADataSource and
org.apache.derby.jdbc.EmbeddedXADataSource40

Derby's implementation of a javax.sql.XADataSource.

Getting a DataSource

Normally, you can simply work with the interfaces for javax.sql.DataSource,

67

Copyright

j avax. sql . Connect i onPool Dat aSour ce, and j avax. sql . XADat aSour ce, as
shown in the following examples.

ication runs on JDK 1.6 or higher, you
iants of these classes:

. EnbeddedConnect i onPool Dat aSour ce40
. EnrbeddedDat aSour ce40
. EnbeddedXADat aSour ce40

bc. EnbeddedConnect i onPool Dat aSour ce;
bc. EnbeddedDat aSour ce;
dbc. EnbeddedXADat aSour ce;

]Eavax. sql . Connect i onPool Dat aSour ce cpds = new
EnmbeddedConnect i onPool Dat aSour ce() ;

j avax. sql . Dat aSour ce ds = new EnbeddedDat aSourceg);

J avax. sql . XADat aSour ce xads = new EnbeddedXADat aSour ce();

DY DODOLD
00 000

—————
=y

e

-
Ny
Ny

Derby provides six properties for a DataSource. These properties are in
org.apache.derby.jdbc.EmbeddedDataSource. They are:

+ DatabaseName

This mandatory property must be set. It identifies which database to access. If a
database named wombat located at /locall/db/wombat is to be accessed, then one
should call setDatabaseName("/locall/db/wombat") on the data source object.

+ CreateDatabase

Optional. Sets a property to create a database the next time the getConnection
method of a data source object is called. The string createString is always "create"
(or possibly null). (Use the method set Dat abaseNane() to define the name of the
database.)

¢ ShutdownDatabase

Optional. Sets a property to shut down a database. The string shutDownString is
always "shutdown" (or possibly null). Shuts down the database the next time
get Connect i on method of a data source object is called.

e DataSourceName

Optional. Name for ConnectionPooledDataSource or XADataSource. Not used by
the data source object. Used for informational purpose only.

» Description

Optional. Description of the data source. Not used by the data source object. Used
for informational purpose only.

* connectionAttributes

Optional. Connection attributes specific to Derby. See the Derby Reference Manual
for a more information about the attributes.

Shutting down or creating a database

If you need to shut down or create a database, it is easiest just to work with the
Derby-specific implementations of interfaces, as shown in these examples.

j avax. sql . XADat aSour ce xads = makeXADat aSour ce(mydb, true);

exanpl e of setting property directory using
Derby 's XADat aSour ce obj ect

t org. apache. derby. j dbc. EnbeddedXADat aSour ce;
t javax. sql . XADat aSour ce;
name i s the database nane

68

Copyright

~

[i
E(ADa

}

create is true, create the database if not already created
Sour ce makeXADat aSource (String dbnane, bool ean create)

ou will use the JDBC4 variant of this class:
nmbeddedXADat aSour ce40.

EnbeddedXADat aSour ce xads = new EnbeddedXADat aSour ce() ;
/1 use Derby 's setDat abaseNane cal l
xads. set Dat abaseName(dbnane) ;
if (create)
xads. set Cr eat eDat abase("create");
return xads;

f

ta

[]]]

H If your application runs on JDK 1.6 or higher, then
I

I/

Setting the property does not create or shut down the database. The database is not
actually created or shut down until the next connection request.

69

Copyright

Derby and Security
Derby can be deployed in a number of ways and in a number of different environments.
The security needs of the Derby system are also diverse.
Derby supplies or supports the following optional security mechanisms:
» User authentication

Derby verifies user names and passwords before permitting them access to the
Derby system.

« User authorization

A means of granting specific users permission to read a database or to write to a
database.

 Disk encryption
A means of encrypting Derby data stored on disk.
« Validation of Certificate for Signed Jar Files

In a Java 2 environment, Derby validates certificates for classes loaded from signed
jar files.

Figure 10. Some of the Derby security mechanisms at work in a client/server
environment

=1

Cliant Application Metwork [S5L)

Permission fo read/write data

L3 1
Cannactivity Q G
framemwork
Derby Data not encrypled
{ trusted emvironment)

il

Liser authentication

v

LDAP Directory Service

70

Copyright
Figure 11. Another Derby security mechanism, disk encryption, protects data when

the recipient might not know how to protect data. It is useful for databases
deployed in an embedded environment.

e —{

Disk encryption

Application Derby

Configuring security for your environment

In most cases, you enable Derby's security features through the use of properties. It is
important to understand the best way of setting properties for your environment.

Derby does not come with a built-in superuser. For that reason, be careful when
configuring Derby for user authentication and user authorization.

1. When first working with security, work with system-level properties only so that you
can easily override them if you make a mistake.

2. Be sure to create at least one valid user, and grant that user full (read-write) access.
For example, you might always want to create a user called sa with the password
derby while you are developing.

3. Test the authentication system while it is still configured at the system level. Be
absolutely certain that you have configured the system correctly before setting the
properties as database-level properties.

4. Before disabling system-level properties (by setting derby.database.propertiesOnly
to true), test that at least one database-level read-write user (such as sa) is valid. If
you do not have at least one valid user that the system can authenticate, you will
not be able to access your database.

Configuring security in a client/server environment

This procedure requires a system with multiple databases and some administrative
resources.

1. Configure security features as system properties. See Tuning Derby.

2. Provide administrative-level protection for the derby.properties file and Derby
databases. For example, you can protect these files and directories with operating
system permissions and firewalls.

3. Turn on user authentication for your system. All users must provide valid user IDs
and passwords to access the Derby system. If you are using Derby's built-in users,
configure users for the system in the derby.properties file. Provide the protection for
this file.

4. Configure user authorization for sensitive databases in your system. Only
designated users will be able to access sensitive databases. You typically configure
user authorization with database-level properties. It is also possible to configure
user authorization with system-level properties. This is useful when you are
developing systems or when all databases have the same level of sensitivity.

5. Check and if necessary configure your Derby network security according to your

71

Copyright

environment. See the section "Network client security" in the Derby Server and
Administration Guide.

Configuring security in an embedded environment

In an embedded environment, typically there is only one database per system and there
are no administrative resources to protect databases.

To configure security in an embedded environment:

1. Encrypt the database when you create it.

2. Configure all security features as database-level properties. These properties are
stored in the database (which is encrypted). See Tuning Derby.

3. Turn on protection for database-level properties so that they cannot be overridden
by system properties by setting the derby.database.propertiesOnly property to
TRUE.

4. To prevent unauthorized users from accessing databases once they are booted,
turn on user authentication for the database and configure user authorization for the
database.

5. If you are using Derby's built-in users, configure each user as a database-level
property so that user names and passwords can be encrypted.

Working with user authentication

Derby provides support for user authentication. User authentication means that Derby
authenticates the name and password for a user before allowing that user access to the
system.

When user authentication is enabled (which it is not by default), the user requesting a
connection must provide a valid name and password, which Derby verifies against the
repository of users defined for the system. After Derby authenticates the user, it grants
the user access to the Derby system but not necessarily access to the database made in
the connection request. In the Derby system, access to a database is determined by user
authorization.

For user authentication, Derby allows you to provide a repository of users in a number of
different ways. For example, you can hook Derby up to an external directory service
elsewhere in your enterprise, create your own directory service, or use Derby's simple
mechanism for creating a built-in repository of users.

You can define a repository of users for a particular database or for an entire system,
depending on whether you use system-wide or database-wide properties.

When Derby user authentication is enabled and Derby uses an external directory service,
the architecture looks something like that shown in the Figure below:

Figure 12. Derby user authentication using an external service. The application can
be a single-user application with an embedded Derby engine or a multi-user
application server.

72

Copyright

Application or Derby
application server &

Dearby External directory
Lizer authentication SErVica

Derby always runs embedded in another Java application, whether that application is a
single-user application or a multiple-user application server or connectivity framework. A
database can be accessed by only one JVM at a time, so it is possible to deploy a
system in which the application in which Derby is embedded, not Derby, handles the user
authentication by connecting to an external directory service.

Figure 13. The application provides the user authentication using an external
service. The application can be a single-user application with an embedded Derby
engine or a multi-user application server.

Enabling user authentication

To enable user authentication, set the derby.connection.requireAuthentication property to
true. Otherwise, Derby does not require a user name and password. You can set this
property as a system-wide property or as a database-wide property.

For a multi-user product, you would typically set it for the system in the derby.properties
file for your server, since it is in a trusted environment.

Note: If you start a Derby system with user authentication enabled but without defining at
least one user, you will not be able to shut down the system gracefully. When Derby is

running in a connectivity server and user authentication is turned on, stopping the server
requires a user name and password. You will need to alter shutdown scripts accordingly.

Defining users

Derby provides several ways to define the repository of users and passwords. To specify
which of these services to use with your Derby system, set the property
derby.authentication.provider to the appropriate value as discussed here.

Setting the property as a system-wide property creates system-wide users. Setting the
property as a database-wide property creates users for a single database only.

« External directory service: LDAP directory service. This includes Windows NT
domain user authentication through the Netscape NT Synchronization Service.

73

Copyright

» User-defined class

* Built-in Derby users
Note: Shutting down the Derby system (for example, using the shutdown=true form of the
connection URL without specifying a particular database) when user authentication is
turned on requires that you define at least one user as a system-wide user.

External directory service

A directory service stores names and attributes of those names. A typical use for a
directory service is to store user names and passwords for a computer system. Derby
uses the Java naming and directory interface (JNDI) to interact with external directory
services that can provide authentication of users' names and passwords.

LDAP directory service

You can allow Derby to authenticate users against an existing LDAP directory service
within your enterprise. LDAP (lightweight directory access protocol) provides an open
directory access protocol running over TCP/IP. An LDAP directory service can quickly
authenticate a user's name and password.

To use an LDAP directory service, set derby.authentication.provider to LDAP.

Examples of LDAP service providers are:
» Netscape Directory Server

Netscape Directory Server is an LDAP directory server. In addition, the Netscape
Directory Synchronization Service synchronizes entries in a Windows NT directory
with the entries in Netscape's Directory Server. It allows you to use the Windows NT
directory as a repository for Derby users.

« UMich slapd (freeware for the UNIX platform from the University of Michigan)
» AE SLAPD for Windows NT, from AEInc
Libraries for LDAP user authentication:

To use an LDAP directory service with Derby, you need these libraries in your classpath.
* jndi.jar
JNDI classes
* Idap.jar
LDAP provider from Sun
« providerutil.jar

JNDI classes for a provider

Derby does not provide these libraries; they are available from Sun on the JNDI page.
Use the 1.1.x versions of these libraries, not the 1.2.x versions. You might need to do two
separate downloads to obtain all the required libraries.

Setting up Derby to use your LDAP directory service:

When specifying LDAP as your authentication service, you must specify what LDAP
server to use.

 derby.authentication.server

Set the property derby.authentication.server to the URL to the LDAP server. For
example:

der by. aut henti cati on. server =l dap: // godfrey: 389/

74

Copyright

The LDAP server may be specified using just the server name, the server name and
its port number separated by a colon, or a [dap URL. If a full URL is not provided,
Derby will by default use unencrypted LDAP - to use SSL encrypted LDAP an URL
starting with "Idaps://" must be provided.

Also note that support for Idaps:// URLSs requires that Derby runs on Java 1.4.2 or
higher.

Guest access to search for DNs:

In an LDAP system, users are hierarchically organized in the directory as a set of entries.
An entry is a set of name-attribute pairs identified by a uniqgue name, called a DN
(distinguished name).

An entry is unambiguously identified by a DN, which is the concatenation of selected
attributes from each entry in the tree along a path leading from the root down to the
named entry, ordered from right to left. For example, a DN for a user might look like this:

cn=mary, ou=Peopl e, o=Fl yTour s. com

ui d=rmary, ou=Peopl e, o=Fl yTours. com
The allowable entries for the name are defined by the entry's objectClass.

An LDAP client can bind to the directory (successfully log in) if it provides a user ID and
password. The user ID must be a DN, the fully qualified list of names and attributes. This
means that the user must provide a very long name.

Typically, the user knows only a simple user name (e.g., the first part of the DN above,
mary). With Derby, you do not need the full DN, because an LDAP client (Derby) can go
to the directory first as a guest or even an anonymous user, search for the full DN, then
rebind to the directory using the full DN (and thus authenticate the user).

Derby typically initiates a search for a full DN before binding to the directory using the full
DN for user authentication. Derby does not initiate a search in the following cases:

* You have set derby.authentication.ldap.searchFilter to derby.user.
« A user DN has been cached locally for the specific user with the
derby.user.UserName property.

For more information, see derby.authentication.ldap.searchFilter in Tuning Derby.

Some systems permit anonymous searches; other require a user DN and password. You
can specify a user's DN and password for the search with the properties listed below. In
addition, you can limit the scope of the search by specifying a filter (definition of the

object class for the user) and a base (directory from which to begin the search) with the
properties listed below.

 derby.authentication.ldap.searchAuthDN (optional)

Specifies the DN with which to bind (authenticate) to the server when searching for
user DNs. This parameter is optional if anonymous access is supported by your
server. If specified, this value must be a DN recognized by the directory service,
and it must also have the authority to search for the entries.

If not set, it defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property. For example:

ui d=guest, o=Fl yTours. com

 derby.authentication.ldap.searchAuthPW (optional)

75

Copyright

Specifies the password to use for the guest user configured above to bind to the
directory service when looking up the DN. If not set, it defaults to an anonymous
search using the root DN specified by the derby.authentication.ldap.searchBase

property.
myPasswor d

« derby.authentication.ldap.searchBase (optional)

Specifies the root DN of the point in your hierarchy from which to begin a guest
search for the user's DN. For example:

ou=peopl e, o=Fl yTours. com

When using Netscape Directory Server, set this property to the root DN, the special
entry to which access control does not apply (optional).
To narrow the search, you can specify a user's objectClass.
« derby.authentication.ldap.searchFilter (optional)

Set derby.authentication.ldap.searchFilter to a logical expression that specifies what
constitutes a user for your LDAP directory service. The default value of this property
is obj ect ass=i net Or gPer son. For example:

obj ect O ass=per son
LDAP performance issues:

For performance reasons, the LDAP directory server should be in the same LAN as
Derby. Derby does not cache the user's credential information locally and thus must
connect to the directory server every time a user connects.

Connection requests that provide the full DN are faster than those that must search for
the full DN.

Considerations when using Windows NT with LDAP:

Netscape provides LDAP functionality for Windows NT systems with its Netscape
Directory Synchronization service, which synchronizes the Windows NT users with the
Netscape Directory Server. SSL is recommended in this configuration.

LDAP restrictions:
Derby does not support LDAP groups.
JNDI-specific properties for external directory services

Derby allows you to set a few advanced JNDI properties, which you can set in any of the
supported ways of setting Derby properties. Typically you would set these at the same
level (database or system) for which you configured the external authentication service.

The list of supported properties can be found in Appendix A: INDI Context Environment
in the Java Naming and Directory API at
http://java.sun.com/products/jndi/reference/api/index.html. The external directory service
must support the property.

Each JNDI provider has its set of properties that you can set within the Derby system.
For example, you can set the property java.naming.security.authentication to allow user

credentials to be encrypted on the network if the provider supports it. You can also
specify that SSL be used with LDAP (LDAPS).

76

Copyright

User-defined class

Set derby.authentication.provider to the full name of a class that implements the public
interface org.apache.derby.authentication.UserAuthenticator.

By writing your own class that fulfills some minimal requirements, you can hook Derby up
to an external authentication service other than LDAP. To do so, specify an external
authentication service by setting the property der by. aut henti cati on. provi der toa
class name that you want Derby to load at startup.

The class that provides the external authentication service must implement the public
interface org.apache.derby.authentication.UserAuthenticator and throw exceptions of the
type java.sgl.SQLException where appropriate.

Using a user-defined class makes Derby adaptable to various haming and directory
services.
Example of setting a user-defined class:

A very simple example of a class that implements the
org.apache.derby.authentication.UserAuthenticator interface.

i mport org. apache. derby. aut henti cati on. User Aut hent i cat or;
i mport java.lo. Fil el nput Stream
inmport]ava.util.Properties;
}Lrgort J ava. sql . SQLExcepti on;
* A sinple exanple of a specialized Authentication schene.
: Thet s%st err][property 'derby. connection.requireAuthentication'
mus e se
* to true and 'derby. aut hentication. provi der' nust))
* contain the full class name of the overriden authentication
: schene, i.e., the name of this class.
:/ @ee org. apache. der by. aut henti cati on. User Aut hent i cat or

ublic class l\/%/Aut henti cati onSchenel npl inpl ements
er Aut henticator {]

rivate static final String USERS CONFI G FILE = "nmyUsers. cfg";

rivate static Properties usersConfig;

Const ruct or]]

We get passed some Users properties if the
ut hentication service could not set them as
art of System properties.

To

;ubl i c MyAut henti cati onSchenel mpl () {

* static block where we |l oad the users definition froma
users configuration file.*/

static {]
/* | oad users confi
File must be in th
Derby gets started.
otherwi Se full path nust
ilelnputStreamin =nu||t'

g file as Java properties
e sanme directory where

be specified) */

tjser{sOonfig = new Properties();
r
Y I'n = new Fil el nput Stream USERS_CONFI G_FI LE) ;
usersConfig.load(in);
in.close(); . .
} catch (java.io.|OException ie)
/ No Config file. ise error nessage
Systemerr.println)))
. "WARNI NG Error during Users Config file
retrieval");]]]
Systemerr.println("Exception: " + ie);

}

)

* Aut henticate the passed-in user's credentials.

* A nore conplex class could nake calls
I to any external users directory.
* @ar am user Nane The user's nane

77

Copyright

* ar am user Passwor d The user's password
* ar am dat abaseNane] The dat abase
* aram i nf oAddi ti onal jdbc connection info.
:/ xception SQLException on failure
publ i c bool ean aut henti cateUser(String user Nane,
String userPassword,
String dat abaseNane,
ProEertl es info)
throws SQLException
/* Specific Authentication schene |ogic,

If user has been authenticated, then sinply return.
I f user nane and/or password are invalid,
then raise the appropriate exception.

Thi s exan’P! e allows only users defined in the
users config properties” object.

Check if the passed-in user has been defined for the system
We expect to find and natch the property corresponding to
the credentials passed in. */
if (userNane == null)

/1 W do not tolerate 'guest' user for now.

return fal se;

[

[l Check if user exists in our users config (file)

[Propert!es set .)]

[/l If we did not find the user in the users config set, then
H try to find if the user is defined as a System property.
Stri nP act ual User Passwor d;)

actual User Password = usersConfi g. get Property(user Nane) ;

i f (actual User Password == nul |

] act ual User Password = System get Property(user Nane) ;

i f (actual User Password == nul |)

no such passed-in user found
return fal se;
/'l check if the password nat ches

i f (!actual User Passwor d. equal s(user Password))
return fal se;]]
/[Now, check if the user is a valid user of the database
|{f (dat abaseNanme != null)
/* if database users restriction lists present, then check
if there is one for this database and if so,
check if the user is a valid one of that database.
For this exanple, the only user we authorize in database
DarkSide is user 'DarthVader'. This is the only database
users restriction list we have for this exanple.
We aut horize any valid (login) user to access the
OTHER dat abases” in the system)
Not e that database users” ACLs coul d be set in the sane
pro erglles file or a separate one and inpl enented as you
Wi s
[/
i f 5dat abaseNane. equal s(" DarkSi de")) {
/|l check if user is a valid one.
if (!userNane. equal s("DarthVader")) .
/1 This user is not a valid ohe of the passed-in
return fal se;

}

;/ The user is a valid one in this database
return true;

Built-in Derby users

Derby provides a simple, built-in repository of user names and passwords.

To use the built-in repository, set derby.authentication.provider to BUILTIN. Using built-in
users is an alternative to using an external directory service such as LDAP.

der by. aut henti cati on. provi der =BUl LTI N

You can create user names and passwords for Derby users by specifying them with the
derby.user.UserName property.

78

Copyright

Note: These user names are case-sensitive for user authentication. User names are
SQL92ldentifiers. Delimited identifiers are allowed:

der by. user. "FRed"=j ava

Note: For passwords, it is a good idea not to use words that would be easily guessed,
such as a login name or simple words or numbers. A password should be a mix of
numbers and upper- and lowercase letters.

Database-level properties

When you create users with database-level properties, those users are available to the
specified database only.

You set the property once for each user. To delete a user, set that user's password to
null.

-- adding the user sa with password 'der%eass'
CALL SYSCS _UTI L. SYSCS_SET_DATABASE PROPERTY(
' derby.user.sa', "derbypass')

-- adding the user mary w password 'little7xyl anb'
CALL SYSCS_UTI L. SYSCS SET_DATABASE_PROPERTY(
‘derby-user.nary' 7 'ITttle7xylanb')

-- renoving mary by setti n%Aﬁ)_assvmrd to null
CALL SYSCS_UTI L. SYSCS_SET ABASE_PROPERTY(
"derby-user.mary' T null)

System-level properties

When you create users with system-level properties, those users are available to all
databases in the system.

You set the value of this system-wide property once for each user, so you can set it
several times. To delete a user, remove that user from the file.

You can define this property in the usual ways- typically in the derby.properties file. For
more information about setting properties, see Tuning Derby.

Here is a sample excerpt from the derby.properties file:

ﬁ Users definition
der by. user . sa=der .b%/{)ass
derby. user. mary=liitl e7xyl anb

List of user authentication properties

This table summarizes the various properties related to user authentication.

Table 9. User authentication properties

Property Name Use

derby.connection.requireAuthentication Turns on user authentication.

derby.authentication.provider Specifies the kind of user authentication to
use.

derby.authentication.server For LDAP user authentication, specifies the
location of the server.

derby.authentication.ldap.searchAuthDN, Configures the way that DN searches are

derby.authentication.ldap.searchAuthPW, performed.

derby.authentication.ldap.searchFilter, and
derby.authentication.ldap.searchBase

derby.user.UserName Creates a user name and password for the

built-in user repository inDerby.

79

Copyright

Property Name Use

java.naming.* JNDI properties. See Appendix A in the JNDI
API reference for more information about
these properties.

Programming applications for Derby user authentication

This section discusses programming user authentication into applications for use with
Derby.

Programming the application to provide the user and password

In the DriverManager.getConnection call, an application can provide the user name and
password in the following ways.

» Separately as arguments to the following signature of the method:
getConnection(String url, String user, String password)

Oonnectl on conn = Drlverl\/anager [qetOonnect onl(

"j dbc: der by: rryDB" " ittle7xyl anb”);

« As attributes to the database connection URL

Connection conn = Driver Manager. getConnec n(
"j dbc: der by: nyDB user=mary; password=little7xyl anb");

« By setting the user and password properties in a Properties object as with other
connection URL attributes

Propertl es p = new Pr opertl es();
put (" user mary
%Oput asswor d" [1tt]e7xyl amb");
nnectl on conn = Driver Manager. getConnectl on(
"j dbc: der by: rryDB p);

Note: The password is not encrypted. When you are using Derby in the context of a

server framework, the framework should be responsible for encrypting the password

across the network. If your framework does not encrypt the password, consider using
SSL.

For information about the treatment of user names within the Derby system, see Users
and authorization identifiers.
Login failure exceptions with user authentication

If user authentication is turned on and a valid user name and password are not provided,
SQLException 08004 is raised.

ERROR 08004: Connection refused : Invalid authentication.

Users and authorization identifiers

User names within the Derby system are known as authorization identifiers. The
authorization identifier is a string that represents the name of the user, if one was
provided in the connection request.

For example, the built-in function CURRENT_USER returns the authorization identifier for
the current user.

Once the authorization identifier is passed to the Derby system, it becomes an
SQL92Identifier. SQL921 dent i fi er s-the kind of identifiers that represent database

80

Copyright

objects such as tables and columns-are case-insensitive (they are converted to all caps)
unless delimited with double quotes, are limited to 128 characters, and have other
limitations.

User names must be valid authorization identifiers even if user authentication is turned
off, and even if all users are allowed access to all databases.

For more information about SQL92ldentifiers, see the Derby Reference Manual.

Authorization identifiers, user authentication, and user authorization

When working with both user authentication and user authorization, you need to
understand how user names are treated by each system.

If an external authentication system is used, the conversion of the user's name to an
authorization identifier does not happen until after authentication has occurred but before
user authorization. Imagine, for example, a user named Fred.

« Within the user authentication system, Fred is known as FRed. Your external user
authorization service is case-sensitive, so Fred must always type his name that
way.

Connection conn = Drijver Managerﬁ?etConnect i, on(
jdbc: derby: nyDB", "FRed", | i ntstone");
« Within the Derby user authorization system, Fred becomes a case-insensitive
authorization identifier. Fred is known as FRED.
« When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, FRED (which you can type as FRED,
FREd, or fred, since the system automatically converts it to all-uppercase).

der by. ful | AccessUser s=sa, FRED, mary

Let's take a second example, where Fred has a slightly different name within the user
authentication system.

« Within the user authentication system, Fred is known as Fred!. You must now put
double quotes around the name, because it is not a valid SQL92I denti fi er.
(Derby knows to remove the double quotes when passing the name to the external
authentication system.)

Connection conn = DriverManager. get Connecti on(
"jdbc: derby: nyDB", "\"Fred!\™, "flintstone");

« Within the Derby user authorization system, Fred becomes a case-sensitive
authorization identifier. Fred is known as Fred!.

« When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, "Fred!" (which you must always delimit
with double quotation marks).

der by. ful | AccessUsers=sa, "Fred!", manager

As shown in the first example, your external authentication system may be
case-sensitive, whereas the authorization identifier within Derby may not be. If your
authentication system allows two distinct users whose names differ by case, delimit all
user names within the connection request to make all user names case-sensitive within
the Derby system. In addition, you must also delimit user names that do not conform to
SQL92ldentifier rules with double quotes.

User names and schemas

User names can affect a user's default schema.

81

Copyright

For information about user names and schemas, see "SET SCHEMA statement” in the
Derby Reference Manual.

Exceptions when using authorization identifiers

Specifying an invalid authorization identifier in a database user authorization property
raises an exception. Specifying an invalid authorization identifier in a connection request
raises an exception.

User authorizations

When you specify user authorizations, Derby verifies that a user has been granted
permission to access a system, database, object, or SQL action.

There are two types of user authorization in Derby, connection authorization and SQL
authorization. Connection authorization specifies the access that users have to connect
to a system or database. SQL authorization controls the permissions that users have on
database objects or for SQL actions. You can set the user authorization properties in
Derby as system-level properties or database-level properties.

Set system-level user authorizations when you are developing applications, or when you
want to specify a secure default authorization for all users to connect to all of the
databases in the system.

There are several properties that you can set to control database-level user
authorizations. Some of the properties are general properties that set the access mode
for all users. Other properties are user specific properties that set the type of access for
specific user IDs.

The properties that affect authorization are:

e The der by. dat abase. def aul t Connect i onMode property controls the default
access mode. Use the der by. dat abase. def aul t Connect i onMbde property to
specify the default connection access that users have when they connect to the
database. If you do not explicitly set the
der by. dat abase. def aul t Connect i onMode property, the default user
authorization for a database is fullAccess, which is read-write access.

e The der by. dat abase. sql Aut hori zat i on property enables SQL standard
authorization. Use the der by. dat abase. sql Aut hori zat i on property to specify
if object owners can grant and revoke permission for users to perform SQL actions
on database objects. The default setting for the
der by. dat abase. sqgl Aut hori zat i on property is FALSE. When the
der by. dat abase. sqgl Aut hori zat i on property is set to TRUE, object owners
can use the GRANT and REVOKE SQL statements to set the user permissions for
specific database objects or for specific SQL actions.

e The der by. dat abase. ful | AccessUsers and
der by. dat abase. readOnl yAccessUser s properties are user specific
properties. Use these properties to specify the user IDs that have read-write access
and read-only access to a database.

If you do not specify the user authorizations for a specific user ID, the user ID inherits
whatever authorization is set as the default user authorization for the database.

Tip: If you set the der by. dat abase. def aul t Connect i onMode property to noAccess
or readOnlyAccess, you should allow at least one user read-write access. Otherwise,
depending on the default connection authorization you specify, you will configure the
database so that it cannot be accessed or changed.

How user authorization properties work together
The der by. dat abase. def aul t Connect i onMode property and the

82

Copyright

der by. dat abase. sqgl Aut hori zat i on property work together. The default settings
for these properties allow anyone to access and drop the database objects that you
create. You can change the default access mode by specifying different settings for these
properties.

« When the der by. dat abase. sql Aut hori zat i on property is FALSE, the ability
to read from or write to database objects is determined by the setting for the
der by. dat abase. def aul t Connect i onMode property. If the
der by. dat abase. def aul t Connect i onMbde property is set to readOnlyAccess,
users can access all of the database objects but they cannot update or drop the
objects.

* When the der by. dat abase. sql Aut hori zat i on property is TRUE, the ability to
read from or write to database objects is further restricted to the owner of the
database objects. The owner must grant permission for others to access the
database objects. No one but the owner of an object or the database owner can
drop the object.

« The access mode specified for the der by. dat abase. def aul t Connect i onMbde
property overrides the permissions that are granted by the owner of a database
object. For example, if a user is granted INSERT privileges on a table but the user
only has read-only connection authorization, the user cannot insert data into the
table.

Changes to connection authorization settings

Connection authorization properties are fixed for the duration of a connection. If you
change the connection authorization properties during a connection, those changes are
not in affect until you establish a new connection.

Setting the SQL standard authorization mode

Use the der by. dat abase. sql Aut hori zat i on property to enable SQL standard
authorization.

The der by. dat abase. sqgl Aut hori zat i on property controls the ability for object
owners to grant and revoke permission for users to perform actions on database objects.

The valid settings for the der by. dat abase. sql Aut hori zati on property are:
 TRUE
* FALSE

The default setting for the der by. dat abase. sqgl Aut hori zat i on property is FALSE.

After you set the der by. dat abase. sqgl Aut hori zat i on property to TRUE, you
cannot set the property back to FALSE.

You can set the der by. dat abase. sql Aut hori zat i on property as a system property
or as a database property. If you set this property as a system property before you create
the databases, all new databases will automatically have SQL authorization enabled. If
the databases already exists, you can set this property only as a database property.

To enable SQL standard authorization for the entire system, set the
der by. dat abase. sql Aut hori zat i on property as a system property:

der by. dat abase. sql Aut hori zati on=t rue

To enable SQL standard authorization for a specific database, set the
der by. dat abase. sqgl Aut hori zat i on property as a database property:

CALL SYSCS_UTI L. SYSCS SET DATABASE_PROPERTY(
: ?er by) dat abase. sql Authori zation',
rue

Setting the default connection access mode

83

Copyright

Use the der by. dat abase. def aul t Connect i onibde property to specify the default
type of access that users have when they connect to the database.

The valid settings for the der by. dat abase. def aul t Connect i onMbde property are:
* noAccess
« readOnlyAccess
« fullAccess

If you do not specify a setting for the der by. dat abase. def aul t Connect i onMbde
property, the default access setting is fullAccess.

To set the default connection access mode, specify the access in a CALL statement. For
example:

To specify read-write access for the system administrator userlD sa and the read-only as
the default access for anyone else who connects to the database, issue these CALL
statements:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by- dat abase. ful | AccessUsers', 'sa')

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
" der b\é.qdat abase. def auT't Connect 1 onhbde' ,
' readOnl yAccess')

To specify read-write access for the user ID Fred and no access for other users, issue
these CALL statements:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by dat abase. ful | AccessUsers', 'Fred")

CALL SYSCS_UTI L. SYSCS SET DATABASE_PROPERTY(
' der by dat abase. def aul't Connect T onMbde' ,
' noAccess')

Setting the user authorizations for individual users:

Use the der by. dat abase. f ul | AccessUser s and
der by. dat abase. readOnl yAccessUser s properties to specify the user IDs that
have read-write access and read-only access to a database.

You can specify multiple user IDs by using a comma-separated list, with no spaces
between the comma and the next user ID.

To set the user authorizations for individual users, specify the access in a CALL
statement. For example:

To specify read-write access for the system administrator user ID sa and for the user ID
mari a, issue this CALL statement:

CALL SYSCS UTI L. SYSCS_SET DATABASE PROPERTY(
' der by dat abase. ful | AccessUsers', 'sa,nmaria')

To specify read-only access for a guest user ID and for Fred, issue this CALL statement:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(
' der by~ dat abase. readOnl yAccessUsers', 'guest, Fred')

To specify read-write access for the user ID "Elena!”, use delimited identifiers for the user
ID. For example:

CALL SYSCS_UTI L, SYSCS SET_DATABASE_PROPERTY(
' der by-dat abase. ful | AccessUsers', '"Elenal"")

SQL standard authorization

84

Copyright

When the SQL standard authorization mode is enabled, object owners can use the
GRANT and REVOKE SQL statements to set the user permissions for specific database
objects or for specific SQL actions.

The SQL standard authorization mode is a SQL2003 compatible access control system.
You enable the SQL standard authorization mode by setting the
der by. dat abase. sql Aut hori zat i on property to TRUE.

While Derby has a simpler database access mode which can be set to provide users with
full, read-only, or no access authorization, this simpler access mode is less appropriate
for most client-server database configurations. When users or applications issue SQL
statements directly against the database, the Derby SQL authorization mode provides a
more precise mechanism to limit the actions that users can take on the database.

The GRANT statement is used to grant specific permissions to users. The REVOKE
statement is used to revoke permissions. The grant and revoke privileges are:
« DELETE
« EXECUTE
INSERT
SELECT
REFERENCES
TRIGGER
UPDATE

When a table, view, function, or procedure is created, the person that creates the object
is referred to as the owner of the object. Only the object owner and the database owner
have full privileges on the object. No other users have privileges on the object until the
object owner grants privileges to them.

Public and individual user privileges

The object owner can grant and revoke privileges for specific users or for all users. The
keyword PUBLIC is used to specify all users. When PUBLIC is specified, the privileges
affect all current and future users. The privileges granted and revoked to PUBLIC and to
individual users are independent. For example, a SELECT privilege on table t is granted
to both PUBLIC and to the user har ry. The SELECT privilege is later revoked from user
har ry, but user har ry has access to table t through the PUBLIC privilege.

Exception: When you create a view, trigger, or constraint, Derby first checks to
determine if you have the required privileges at the user-level. If you have the user-level
privileges, the object is created and is dependent on that user-level privilege. If you do
not have the required privileges at the user-level, Derby checks to determine if you have
the required privileges at the PUBLIC level. If you have the PUBLIC level privileges, the
object is created and is dependent on that PUBLIC level privilege. After the object is
created, if the privilege on which the object depends on is revoked, the object is
automatically dropped. Derby does not try to determine if you have other privileges that
can replace the privileges that are being revoked.
Example 1
User zhi creates table t 1 and grants SELECT privileges to user harry on table t 1.
User zhi grants SELECT privileges to PUBLIC on table t 1. User har r y creates
view v1 with the statement SELECT * from zhi . t 1. The view depends on the
user-level privilege that user har ry has on t 1. Subsequently, user zhi revokes
SELECT privileges from user har ry on table t 1. As a result, the view harry. v1is
dropped.
Example 2
User ani t a creates table t 1 and grants SELECT privileges to PUBLIC. User harry
creates view v1 with the statement SELECT * from ani t a. t 1. The view depends on
the PUBLIC level privilege that user harry has ont 1 since user har ry does not
have user-level privileges on table t 1 when he creates the view harry. v1.
Subsequently, user ani t a grants SELECT privileges to user har ry on table

85

Copyright

anita.t1l. Theview harry. vl continues to depend on PUBLIC level privilege that
user harry has ont 1. When user ani t a revokes SELECT privileges from PUBLIC
ontablet 1, the view harry. v1 is dropped.

Permissions on views, triggers, and constraints

Views, triggers, and constraints operate with the permissions of the owner of the view,
trigger, or constraint. For example, user ani t a wants to create a view using the following
statement:

CREATE VI EWs v&_c LV

FRG\/Itl JONtZ
WHERE t2.c2 =

c2,v
.cl, t
ONtl.c
5

User ani t a needs the following permissions to create the view:

« Ownership of the schema s, so that she can create something in the schema

« Ownership of the table t 1, so that she can allow others to see columns in the table

e SELECT permission on columnt 2. ¢l and columnt 2. c2

« EXECUTE permission on function f
When the view is created, only user ani t a has SELECT permission on it. User ani t a
can grant SELECT permission on any or all of the columns of view s. v to anyone, even
to users that do not have SELECT permissionont 1 ort 2, or EXECUTE permission on
f. User ani t a grants SELECT permission on view s. v to user har ry. When user
har ry issues a SELECT statement on the view s. v, Derby checks to determine if user
har ry has SELECT permission on views. v. Derby does not check to determine if user
har ry has SELECT permissionont 1, ort 2, or EXECUTE permission on f .

Permissions on triggers and constraints work the same way as permissions on views.
When a view, trigger, or constraint is created, Derby checks that the owner has the
required permissions. Other users do not need to have those permissions to perform
actions on a view, trigger, or constraint.

If the required permissions are revoked from the owner of a view, trigger, or constraint,
the object is dropped as part of the REVOKE statement.

See the Derby Reference Manual for more information on the GRANT and REVOKE
statements.
User authorization exceptions

SQL exceptions are returned when errors occur with user authorizations.

Derby validates the database properties when you set the properties. An exception is
returned if you specify an invalid value when you set these properties.

After you set the der by. dat abase. sqgl Aut hori zat i on property to TRUE, you
cannot set the property back to FALSE.

If a user attempts to connect to a database but is not authorized to connect to that
database, the SQLException 04501 is returned.

If a user with read-only access attempts to write to a database, the SQLException 08004
- connection refused is returned.

Read-only and full access permissions

The actions that users can perform on a Derby database is determined by the type of
access that users have to the database objects.

The following table lists the actions that users can perform based on the type of access
that a user is granted on a database. These actions apply to regular databases, source

86

Copyright

databases, and target databases.
Table 10. Actions that are authorized by type of access

DELETE statements

Action Read-only access Full access
Executing SELECT statements X X
Reading database properties X X
Loading database classes from jar files | X X
Executing INSERT, UPDATE, or ' X

Executing DDL statements ' X
Adding or replacing jar files ' X
Setting database properties ' X

Encrypting databases on disk

Derby provides a way for you to encrypt your data on disk.

Typically, database systems encrypt and decrypt data in transport over the network,
using industry-standard systems. This system works well for client/server databases; the
server is assumed to be in a trusted, safe environment, managed by a system
administrator. In addition, the recipient of the data is trusted and should be capable of
protecting the data. The only risk comes when transporting data over the wire, and data
encryption happens during network transport only.

However, Derby databases are platform-independent files that are designed to be easily
shared in a number of ways, including transport over the Internet. Recipients of the data
might not know how, or might not have the means, to properly protect the data.

This data encryption feature provides the ability to store user data in an encrypted form.
The user who boots the database must provide a boot password.

Note: Jar files stored in the database are not encrypted.

Requirements for Derby encryption

Derby supports disk encryption, but you must supply the following items.

< An implementation of the Java Cryptographic Extension (JCE) package version
1.2.1 or higher.

Derby does not support earlier, non-exportable, versions of JCE (such as JCE 1.2).
More information on JCE 1.2.1, including a product download, can be found at:
http://java.sun.com/products/jce/index.html.

Any attempt to create or access an encrypted database without the libraries for an
implementation of JCE of the proper version, or without Java 2 Platform, Standard
Edition, v 1.2 (J2SE) or higher, raises an exception; you will not be able to create or
boot the database.

Note: The JCE installation documentation describes configuring (registering) the
JCE software. You do not need to do this; Derby registers JCE dynamically.
» The encryption provider

An encryption provider implements the Java cryptography concepts. The JRE for
J2SE 1.4 or J2EE 1.4 includes JCE and one or more default encryption providers.

Working with encryption

87

Copyright

This section describes using encryption in Derby.
Encrypting databases on creation

You configure a Derby database for encryption when you create the database by
specifying the dataEncryption=true attribute on the connection URL.

The Java Runtime Environment (JRE) determines the default encryption provider, as
follows:

e For J2SE/J2EE 1.4 or higher, the JRE's provider is the default.

e For an IBM Corp J2SE/J2EE 1.3 JRE, the default provider is
com.ibm.crypto.provider.

» For a Sun Microsystem J2SE/J2EE 1.3 JRE, the default provider is
com.sun.crypto.provider.SunJCE.

» For any other J2SE/J2EE 1.3 JRE, a provider must be specified.

You have the option of specifying an alternate encryption provider. The default encryption
algorithm is DES, but you have the option of specifying an alternate algorithm as well.

Encrypting an existing unencrypted database

You can encrypt an unencrypted Derby database by specifying attributes on the
connection URL when you boot the database. The attributes that you specify depend on
how you want the database encrypted.

« If the database is configured with log archival, you must disable log archival and
perform a shutdown before you can encrypt the database.

« If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted.

When you encrypt an existing, unencrypted database, you can specify whether the
database should be encrypted using a boot password or an external encryption key. You
can also specify the encryptionProvider attribute and the encryptionAlgorithm attribute on
the connection URL. The database is configure with the specified encryption attributes
and all of the existing data in the database is encrypted.

Encrypting a database is a time consuming process because it involves encrypting all of
the existing data in the database. If the process is interrupted before completion, all the
changes are rolled back the next time that the database is booted. If the interruption
occurs immediately after the database is encrypted but before the connection is returned
to the application, you might not be able to boot the database without the boot password
or external encryption key. In these rare circumstances, you should try to boot the
database with the boot password or the external encryption key.

Recommendation: Ensure that you have enough free disk space before you encrypt a
database. In addition to the disk space required for the current size of the database,
temporary disk space is required to store the old version of the data to restore the
database back to it's original state if the encryption is interrupted or returns errors. All of
the temporary disk space is released back to the operating system after the database is
encrypted.

To encrypt an existing unencrypted database:

1. Specify the dataEncryption=true attribute and either the encryptionKey attribute or
the bootPassword attribute in a URL and boot the database.

For example, to encrypt the sal esdb database with the boot password
abc1234xyz, specify the following attributes in the URL:

j dbc: der by: sal esdb; dat aEncr ypti on=t r ue; boot Passwor d=abc1234xyz

If you disabled log archival before you encrypted the database, create a new

88

Copyright

backup of the database after the database is encrypted.
Creating the boot password

When you encrypt a database you must also specify a boot password, which is an
alpha-numeric string used to generate the encryption key.

The length of the encryption key depends on the algorithm used:

« AES (128, 192, and 256 bits)

« DES (the default) (56 bhits)

« DESede (168 hits)

« All other algorithms (128 bits)
Note: The boot password should have at least as many characters as number of bytes in
the encryption key (56 bits=8 bytes, 168 bits=24 bytes, 128 bits=16 bytes). The minimum
number of characters for the boot password allowed by Derby is eight.

It is a good idea not to use words that would be easily guessed, such as a login name or
simple words or numbers. A bootPassword, like any password, should be a mix of
numbers and upper- and lowercase letters.

You turn on and configure encryption and specify the corresponding boot password on
the connection URL for a database when you create it:

j dbc: der by: encrypti onDB1; cr eat e=t r ue; dat aEncr ypti on=t r ue;
boot Passwor d=cl 0760uds2caPe

Note: If you lose the bootPassword and the database is not currently booted, you will not
be able to connect to the database anymore. (If you know the current bootPassword, you
can change it. See Changing the boot password.)

Specifying an alternate encryption provider:

You can specify an alternate provider when you create the database with the
encrypti onProvi der =pr ovi der Nane attribute.

You must specify the full package and class name of the provider, and you must also add
the libraries to the application's classpath.

-- usi _nFj the the provider library jce_jdkl3-10b4. zi p|
-- availabl e from ww. bouncycastl e. org)
{Jdbc: der by: encrygt edDB3; cr eat e=t r ue; dat aEncrypti on=true;

oot Passwor d=c|l 0760uds2caPe;) ;]
encrypti onProvi der =org. bouncKlgastI e.j ce. provi der. BouncyCast | eProvi der;
encrypti onAl gorit hm=DES/ CBC/ NoPaddi ng

-- usi _nP a provider
-- available from

-- http://jceww.iaik.tu-graz.ac. at/downl oad. ht m
Ldbc: der by: encrypt edDB3; cr eat e=t r ue; dat aEncrypti on=true;

oot Passwor d=cl 0760uds2caPe; .)))
encrypti onProvi der =i ai k. security. provider.|AlK; encryptionAl gorithne
DES/ CBC/ NoPaddi ng

Specifying an alternate encryption algorithm:
Derby supports the following encryption algorithms.

* DES (the default)
« DESede (also known as triple DES)
« Any encryption algorithm that fulfills the following requirements:
* Itis symmetric
« Itis a block cipher, with a block size of 8 bytes
« |t uses the NoPadding padding scheme
« Its secret key can be represented as an arbitrary byte array
* It requires exactly one initialization parameter, an initialization vector of type
javax.crypto.spec.lvParameterSpec
* It can use javax.crypto.spec.SecretKeySpec to represent its key

89

Copyright

For example, the algorithm Blowfish implemented in the Sun JCE package fulfills
these requirements.

By Java convention, an encryption algorithm is specified like this:

al gori t hmNane/ f eedbackMode/ paddi ng

The only feedback modes allowed are:

+ CBC
+ CFB
- ECB
- OFB

By default, Derby uses the DES algorithm of DES/CBC/NoPadding.

Specify an alternate encryption algorithm when you create a database with the
encryptionAlgorithm=algorithm attribute. If the algorithm you specify is not supported by
the provider you have specified, Derby throws an exception.

Encrypting databases with a new key

You can apply a new encryption key to a Derby database by specifying a new boot
password or a new external key.

Encrypting a database with a new encryption key is a time consuming process because it
involves encrypting all of the existing data in the database with the new encryption key. If
the process is interrupted before completion, all the changes are rolled back the next time
that the database is booted. If the interruption occurs immediately after the database is
encrypted with the new encryption key but before the connection is returned to the
application, you might not be able to boot the database with the old encryption key. In
these rare circumstances, you should try to boot the database with the new encryption
key.

Recommendation: Ensure that you have enough free disk space before you encrypt a
database with a new key. In addition to the disk space required for the current size of the
database, temporary disk space is required to store the old version of the data to restore
the database back to it's original state if the new encryption is interrupted or returns
errors. All of the temporary disk space is released back to the operating system after the
database is reconfigured to work with the new encryption key.

To encrypt a database with a new encryption key:

1. Use the type of encryption that is currently used to encrypt the database:
* To encrypt the database with a new boot password key, use the
newBootPassword attribute.
* To encrypt the database with a new external encryption key, use the
newEncryptionKey attribute.
Encrypting databases with a new boot password:

You can apply a new boot password to a Derby database by specifying the
newBootPassword attribute on the connection URL when you boot the database.

« If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new boot password.

« If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new boot password.

« If the database is currently encrypted with an external encryption key, you should
use the newEncryptionKey attribute to encrypt the database.

90

Copyright

When you use the newBootPassword attribute, a new encryption key is generated
internally by the engine and the key is protected using the new boot password. The newly
generated encryption key encrypts the database, including the existing data. You cannot
change the encryption provider or encryption algorithm when you apply a new boot
password.

To encrypt a database with a new boot password:
1. Specify the newBootPassword attribute in a URL and reboot the database.

For example, when the following URL is used when the sal esdb database is
rebooted, the database is encrypted with the new encryption key, and is protected
by the password new1234xyz:

j dbc: der by: sal esdb; boot Passwor d=abc1234xyz; newBoot Passwor d=newl234xyz

If you disabled log archival before you applied the new boot password, create a new
backup of the database after the database is reconfigured with new the boot
password.

Encrypting databases with a new external encryption key:

You can apply a new external encryption key to a Derby database by specifying the
newEncryptionKey attribute on the connection URL when you boot the database.

« If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new external encryption key.

« If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new encryption key.

« If the database is currently encrypted with a boot password , you should use the
newBootPassword attribute to encrypt the database.

To encrypt a database with a new external encryption key:

1. Specify the newEncryptionKey attribute in a URL and reboot the database.

For example, when the following URL is used when the sal esdb database is
rebooted, the database is encrypted with the new encryption key
6862636465666768:

j dbc: der by: sal esdb; encrypti onKey=6162636465666768; newEncr ypt i onKey=686263646566676

If you disabled log archival before you applied the new encryption key, create a new
backup of the database after the database is reconfigured with new the encryption
key.

Booting an encrypted database

If you create an encrypted database using the bootPassword attribute, you must specify
the boot password to reboot the database. If you create an encrypted database using the
encryptionKey attribute, you must specify the encryptionKey to reboot the database.

Encrypted databases cannot be booted automatically along with all other system
databases on system startup (see "derby.system.bootAll" in Tuning Derby). Instead, you
boot encrypted databases when you first connect to the database.

Booting a database with the bootPassword attribute
To access an encrypted database called wonbat that was created with the boot
password cl 0760uds2caPe, use the following connection URL:

91

Copyright

j dbc: der by: wonbat ; boot Passwor d=cl 0760uds2caPe

Booting a database with the encryptionKey attribute
To access an encrypted database called f | i nt st one that was created with the
encrypti onKey=c566bhab9ee8b62a5ddb4d9229224c¢678 and with the
encrypti onAl gorit hmrAES/ CBC/ NoPaddi ng, use the following connection URL:

jdbc: derby: flintstone;encrypti onAl t hm=AES/ CBC/ NoPaddi ng;
encrypti onKey=c566ba bYee8b a5ddb4 9224c678

After the database is booted, all connections can access the database without the boot
password. Only a connection that boots the database requires the key.

For example, the following connections would boot the database and require the boot
password or encryption key, depending on what mechanism was used to encrypt the
database originally:
» The first connection to the database in the JVM session
» The first connection to the database after the database has been explicitly shut
down
« The first connection to the database after the system has been shut down and then
rebooted

Note: The boot password and the encryption key are not meant to prevent unauthorized
connections to the database after the database is booted. To protect a database after it
has been booted, turn on user authentication (see Working with user authentication).
Changing the boot password

You can change the boot password for the current database.

CALL SYSCS UTI L. SYSCS_SET_DATABASE PR(PERTY(
' boot Password', 'ol dbpw , newbpw);

where oldbpw is the current boot password and newbpw is the new boot password. This
call commits immediately; it is not transactional.

Note: Propertyl nf o. get Dat abasePr opert y("boot Password"), or VALUES
SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY(' boot Passwor d'), will not return
the boot password.

Signed jar files

In a Java 2 environment, Derby can detect digital signatures on jar files. When attempting
to load a class from a signed jar file stored in the database, Derby will verify the validity of
the signature.

Note: The Derby class loader only validates the integrity of the signed jar file and that the
certificate has not expired. Derby cannot ascertain whether the validity/identity of
declared signer is correct. To validate identity, use a Security Manager (i.e., an
implementation of java.lang.SecurityManager).

When loading classes from an application jar file in a Java 2 environment, Derby behaves
as follows:

« If the class is signed, Derby will:

« Verify that the jar was signed using a X.509 certificate (i.e., can be
represented by the class java.security.cert.X509Certificate). If not, throw an
exception.

 Verify that the digital signature matches the contents of the file. If not, throw an
exception.

« Check that the set of signing certificates are all valid for the current date and
time. If any certificate has expired or is not yet valid, throw an exception.

« Pass the array of certificates to the setSigners() method of

92

Copyright

j ava. | ang. O assLoader . This allows security managers to obtain the list
of signers for a class (using j ava. | ang. O ass. get Si gner s) and then
validate the identity of the signers using the services of a Public Key
Infrastructure (PKI).

Note: Derby does not provide a security manager.

For more information about signed jar files, see the Java 2 specifications at
http://java.sun.com.

For more information about Java 2 security, go to http://java.sun.com/security/.

Notes on the Derby security features

TheDerby security model has some basic limitations.

You lock out non full-access users with database properties, which are stored in the
database (and in an encrypted database these properties are also encrypted). Note,
however, for a distributed/embedded system that a sophisticated user with the database
encryption key might be able to physically change those properties in the database files.

In addition, in the Derby system, it is not necessary to have a specific connection (or
permission to access a particular database) to shut down the system. Any authenticated
user can shut down the system.

Other security holes to think about are:

« JVM subversion, running the application under a home-grown JVM.

« Trolling for objects

« Class substitution, locating a class that has access to sensitive data and replacing it
with one that passes on information

User authentication and authorization examples

This section provides examples on using user authentication and authorization in Derby
in either a client/server environment or in an embedded environment.

User authentication example in a client/server environment

In this example, Derby is running in a user-designed application server.

Derby provides the user authentication, not the application server. The server is running
in a secure environment, the application server encrypts the passwords, and a database
administrator is available. The administrator configures security using system-level
properties in the derby.properties file and has protected this file with operating system
tools. Derby connects to an existing LDAP directory service within the enterprise to
authenticate users.

The default access mode for all databases is set to fullAccess (the default).

The derby.properties file for the server includes the following entries:

turn on user authentication .
derb¥.connect|on.requ!reAuthentlcatlon:true

sel the authentication provider to an external LDAP server
der by. aut henti cati on. provi der =LDAP

the host name and port nunber of the LDAP server

der by. aut hent i cati on. server =godfrey: 389

the search base for user nanes

der by. aut henti cati on. | dap. sear chBase=0=0akl and. myconpany. com

93

Copyright

ow t he access node for databases (this is default)
. def aul t AccessMbde=f ul | Access

With these settings, all users must be authenticated by the LDAP server in order to
access any Derby databases.

The database administrator has determined that one database, accountingDB, has
additional security needs. Within a connection to that database, the database
administrator uses database-wide properties (which override properties set in the
derby.properties file) to limit access to this database. Only the users prez, cfo, and
numberCruncher have full (read-write) access to this database, and only clerkl and
clerk2 have read-only access to this database. No other users can access the database.

CALL SYSCS_UTI L. SYSCS_SET_DATABASE PR(PERTY&
' der by dat abase. def aul't AccessMbde', ' noAccess')

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by dat abase. ful | AccessUsers',
' prez, cf o, number Cruncher")

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by dat abase. readAccessUsers', 'clerkl,clerk2")

The database administrator then requires all current users to disconnect and re-connect.
These property changes do not go into effect for current connections. The database
administrator can force current users to reconnect by shutting down the database

User authentication example in a single-user, embedded environment

In this example, Derby is embedded in a single-user application that is deployed in a
number of different and potentially insecure ways.

For that reason, the application developer has decided to encrypt the database and to
turn on user authentication using Derby's built-in user authentication, which will not
require connections to an LDAP server. The end-user must know the bootPassword to
boot the database and the user name and password to connect to the database. Even if
the database ended up in an e-mail, only the intended recipient would be able to access
data in the database. The application developer has decided not to use any user
authorization features, since each database will accept only a single user. In that
situation, the default full-access connection mode is acceptable.

When creating the database, the application developer encrypts the database by using
the following connection URL:

j dbc: der by: wonbat ; cr eat e=t r ue; dat aEncrypti on=true;
boot Passwor d=sxy90WB48HHnN

Before deploying the database, the application developer turns on user authentication,
sets the authentication provider to BUILTIN, creates a single user and password, and
disallows system-wide properties to protect the database-wide security property settings:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by connecti on_requireAut hentication”, 'true')

CALL SYSCS_UTI L. SYSCS_SET_DATABASE PR(PERTYF
" der by aut henti cafi onprovider™, 'BULTIN)

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
" der by-user. enduser', ' red29Pl aNe')

94

Copyright

CALL SYSCS_UTI L. SYSCS SET_DATABASE_PROPERTY(
' der by dat abase. properti esOnly™, true')

When the user connects (and boots) the database, the user has to provide the
bootPassword, the user name, and the password. The following example shows how to
provide those in a connection URL, although the application programmer would probably
provide GUI windows to allow the end user to type those in:

j dbc: der by: wonbat ; boot Passwor d=sxy90W848HHN;
user =enduser ; passwor d=r ed29Pl aNe

User authentication and authorization extended examples

The following two examples from the sample database show how to turn on and turn off
user authentication using Derby's built-in user authentication and user authorization.

/**

: Turn on built-in user authentication and user authorization.

:/@)ar am conn a connection to the database.

PUbl ic static void turnOnBuiltlnUsers(Connection conn) throws
SQLEXxcepti on
%%’St em out . pr| ntl n("Turni ng on authentication.");
atement s = conn.createStatenent();

// Settln and Confirning requireAuthentication
xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SI:_I' DATABASE_P ERTY(" +
> ') ' derby. connecti on. requi reAut henti cati on’
rue')");

ResultSet rs = s. execut eQJerx{(g
" VALUES SYSCS _UTI L CS_GET_DATABASE PROPERTY("
+
"' derby. connection. requireAut hentication')");
rs.next();
S)/stem out.printin(rs.getStri ng(l?)
Settltn gut hentICE.tIOI’I schene to Der by
xecut e
SYSCS_UTI L. SYSCS SI:_I' DATABASE P ERTY(" +
"' derby. aut hentication.provider', '"BULTIN)");

// Creating sone sa | e users

execut eUp datef "
SYSCS_UTI L. SYSCS SET_ DATABASE P ERTY(" o
by. user. sa' aj axj3x9')");
executeUpdate "CALL
SYSCS_UTI L. SYSCS SET_ DATABASE P ERTY("+ .
' derDy. user.guest', 'javabwex')");
execut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SET_DATABASE PROPERTY(" +]
"'derby.user.mary', 'little7xylanb')");

/1 Setting default connection nbde to no access
// (user aut hori zat i on)
xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SEI’ DATABASE PROPERTY(" +
"' derDby. dat abase. def aul t Connect i onMbde' ,
'noAccess')");)
/1 Confirm n def aul t connecti on node
rs = xecu 81 chg
" VALUE UTI L. SYSCS_GET_DATABASE_PROPERTY("

t("' der by. dat abase. def aul t Connect i onMbde') ") ;
rs. nex
Systemout.println(rs.getString(1));

/
S

// Def|n| ng read-wite users
xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SEF DATABASE PROPERTY(" +
"' derby. dat abase. ful | AccessUsers', 'sa,mary')");

// Def |ng >
L
SYSCS_UTI L. SYSCS SEI’ TABASE ERTY(

r ead onI users

95

Copyright

"' der by. dat abase. readOnl yAccessUsers',

‘guest')");
/ Co firm fuI | -access users
rs = execu
" VALUEgJ Y%ES UTI L. SYSCS_GET_DATABASE_PROPERTY("

. "' der by. dat abase. ful | AccessUsers')");
rs.nex
System out println(rs.getString(1));

/
]

/1 Confirm n? read-only users
rs = s.execu e(sgj Y%&S
"VALUES S UTI L. SYSCS_GET_DATABASE PROPERTY("

"' der by. dat abase. readOnl yAccessUsers')");
rs.next();
Syst em out . println(rs.getString(1));

//we would set the followi ng property to TRUE only
//V\lnen we were ready to deploy.
execut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SI:_I' DATABASE P ERTY(" +
| () der by. dat abase. propertiesOnly', 'false')");
s. cl ose

/**

: Turn off built-in user authentication and user authorization.

@ar am conn a connection to the database.

Publ ic static void turnOfBuiltlnUsers(Connection conn) throws
SQLEXcepti on

Statenent s = conn. creat eSt at enent (?1

Systemout. println("Turning off authentication.");

xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SEI’ DATABASE_PROPERTY(" +
't al)"y ' derDy. connecti on. requi reAut henti cation',
al se')"

xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SEI’ DATABASE PROPERTY(" +
"' derby. aut hentl cation.provider', null)");

xecut eUp date&&D
SYSCS_UTI L. SYSCS SEI’ DATABASE PROPERTY("
.user.sa' nuI 1)");
executeUpdate " CALL
SYSCS_UTI L. SYSCS SET_ DATABASE_PROPERTY(" +
'derby. user.guest', null)");
ecut eUpdat e " CALL
SYSCS_UTI L. SYSCS SEI' DATABASE PROPERTY(" +
"'derby.user. mary', null)");
ut eUpdat e " CALL
SYSCS_UTI L. SYSCS SEI' DATABASE PROPERTY(" +]
"' derby. dat abase. def aul t Connect i onMbde' ,

execut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SET_DATABASE_PROPERTY("
derBy dat abase. fuI | AccessUsers', null)");
xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SEI' DATABASE P ERTY("
"' derby. dat abase. readOnI yAccessUsers', null)");
xecut eUpdat e(" CALL
SYSCS_UTI L. SYSCS SEI’ DATABASE PROPERTY(")
' der Dy. dat abase. pr opertiesOnly', 'false')");

"full Access')");

[/ Confirmng reqw reAut henti cati on
Resul t Set rs = s.execut eQJerx\/(g
"VALUES SYSCS_UTI L CS_CET_DATABASE_PROPERTY("

+
"' derby. connection. requireAut hentication')");
rs. next (
Syst em out println(rs.getString(1));
/1 Confirm ng default connection npde
rs = s.execut egj YéE:S
" VALUE UTI L. SYSCS_GET_DATABASE_PROPERTY("
+

"' der by. dat abase. def aul t Connect i onMbde')");
rs.next();
System out. println rs.getStri ng(l?)
] Systemout. println("Turned off "all the user-rel ated
properties.");

96

Copyright

s.close();

Running Derby under a security manager

When running within an application or application server with a Java 2 Security Manager
enabled, Derby must be granted certain permissions to execute and access database
files.

For more information about permissions and examples of creating permission objects
and granting permissions, see the Security Architecture specification at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html.

Granting permissions to Derby

This section discusses which permissions should be granted to Derby (the code base
derby.jar).

See Default Policy Implementation and Policy File Syntax at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html for more information
about creating policy files.

Mandatory permissions

permission java.lang.RuntimePermission createClassLoader
Mandatory. It allows Derby to execute SQL queries and supports loading class files
from jar files stored in the database.

permission java.util.PropertyPermission "derby.*", read
Allows Derby to read individual Derby properties set in the JVM's system set. If the
action is denied, properties in the JVM's system set are ignored.

Database access permissions

permission java.io.FilePermission "directory${/}/-", "read,write,delete"
Allows Derby to manage files within the database that maps to the directory specified.
For read-only databases, only the "read" action needs to be granted.

Optional permissions
permission java.io.FilePermission "${derby.system.home}", "read,write"

Allows Derby to determine the system directory when set by db2j.system.home and

create it if needed. If the system directory already exists then only the "read"

permission needs to be granted.
permission java.util.PropertyPermission "user.dir", "read"

Permits access to the system directory value if derby.system.home is not set or no

permission has been granted to read the der by. syst em hone property.
permission java.io.FilePermission
"${derby.system.home}${/}derby.properties", "read"

Allows Derby to read the system properties file from the system directory.
permission java.io.FilePermission "${derby.system.home}${/}derby.log",
"read,write,delete"
permission java.io.FilePermission "${user.dir}${/}derby.log",

"read,write,delete"

Only one of these permissions is needed. Permits the application to read, write, and

delete to the Derby log file, unless the log has been re-directed. (See the

derby.stream.error properties in Tuning Derby for more information.) If one of the
requested valid actions is denied, the Derby log will be j ava. | ang. System err.

Combining permissions
You might grant one FilePermission that encompasses several or all of the permissions
instead of separately granting a number of the more specific permissions. For example:

97

Copyright

perni ssion java.io.FilePernission "${derby.system hone}/-",
'read, wite, del ete"

This allows the Derby engine complete access to the system directory and any
databases contained in the system directory.

Examples of Java 2 security policy files for embedded Derby
Java 2 security policy file example 1

[* Grants permi ssion to run Derb%/ and access all */
[* dat abases under the DerbY syst em hone */
/[* when it is specified by the system property */
/* Derby.system hone */
/* Note Derby.system home nmust be an absol ute pat hnanme */

grant codeBase "file://f:/derby/lib/derby.jar" {

perni ssion java.l ang. Runti mePerm ssion "creat eC assLoader";
perm ssion Java. util.PropertyPerm ssion "derby.*", "read";]
tread":

perm ssion.]ava.io. Fil ePerm ssion " $i der by. system hon"ei "
permi ssi on. { ava.i o. Fi | ePerm ssi on "${derby. system hone} ${/}
"read, wite, del ete";
Java 2 security policy file example 2
[* Grants perm ssion to run Derb%/ and access all */
[* dat abases under the Derby system hone */
/* when it defaults to the current directory */

grant codeBase "file://f:/der byl i b/derby.jar" {
permi ssion java. |l ang. Runti mePer m ssi on” "creat eCl assLoader";
perm ssion Java. util.PropertyPerm ssion "derby.*", "read";
perm ssion Java.util.PropertyPerm ssion "user.dir", "read";
perm ssion Java.io. Fil ePerm ssion "${derby.system hone} ", "read";
perm ssion java.io. FilePerm ssion “${user dir}${/}-",
"read, wite,del ete";

}s

Java 2 security policy file example 3

[* Grants permission to run Derby and access a single */
/* dat abase (sal esdb) under the rby system hone */
/* Note Derby.system home nmust be an absol ute pat hnanme */
grant codeBase "file://f:/derby/lib/derby.jar" {

permi ssion java.l ang. Runti mePer m ssion "createC assLoader";
perm ssion Java. util.PropertyPerm ssion "derby.*", "read";
perm ssion |ava.io. Fil ePerm Ssion "${derby.system hone}", “read";
perm ssion Java.io. Fil ePerm ssion "${derby. system hone}${/}*"
"read,wite, delete"; o
Perm ssion java.io.FilePerm ssion "${derby. system hone}${/}
sal esdb${/}
-", "read,wite, del ete";

Ik

98

Copyright

Developing tools and using Derby with an IDE

Applications such as database tools are designed to work with databases whose
schemas and contents are unknown in advance. This section discusses a few topics
useful for such applications.

Offering connection choices to the user

JDBC's java.sql.Driver.getPropertylnfo method allows a generic GUI tool to determine the
properties for which it should prompt a user in order to get enough information to connect
to a database. Depending on the values the user has supplied so far, additional values
might become necessary. It might be necessary to iterate though several calls to

get Propertyl nfo.

If no more properties are necessary, the call returns an array of zero length.

In a Derby system, do not use the method against an instance of
org.apache.derby.jdbc.EmbeddedDriver. Instead, request the JDBC driver from the driver
manager:

j ava. sgl . Driver Manager . getDri verg
"jdbc:derby:").get Propertyl nfo(URL, Prop)

In a Derby system, the properties returned in the DriverPropertylnfo object are
connection URL attributes, including a list of booted databases in a system (the
dat abaseNane attribute).

Databases in a system are not automatically booted until you connect with them. You can
configure your system to retain the former behavior, in which case the steps described in
this section will continue to work. See "derby.system.bootAll" in Tuning Derby.

getPropertylInfo requires a connection URL and a Pr oper ti es object as parameters.
Typically, what you pass are values that you will use in a future call to

java. sql . Dri ver Manager . get Connect i on when you actually connect to the
database.

A call to getPropertyinfo with parameters that contain sufficient information to connect
successfully returns an array of zero length. (Receiving this zero-length array does not
guarantee that the get Connect i on call will succeed, because something else could go
wrong.)

Repeat calls to getPropertylnfo until it returns a zero-length array or none of the

properties remaining are desired.

The DriverPropertyinfo Array

When a non-zero-length array is returned by getPropertylnfo, each element is a
Dri ver Propertyl nf o object representing a connection URL attribute that has not
already been specified. Only those that make sense in the current context are returned.

This DriverPropertylnfo object contains:
* name of the attribute

* description
e current value

99

Copyright

If an attribute has a default value, this is set in the value field of DriverPropertyInfo,
even if the attribute has not been set in the connection URL or the Properti es
object. If the attribute does not have a default value and it is not set in the URL or
the Pr operti es object, its value will be null.

« list of choices
« whether required for a connection request

Several fields in a DriverPropertylnfo object are allowed to be null.

DriverPropertyInfo array example

Here is some example code:

import | s .
i mport {ava.u il.Properties;))
[l start with the | east amount_ of information
[l to see the full |ist of choices)
/1l we could also enter with a URL and Properties
I/ provided by a user.
String url = "jdbc:derby:";
Properties info = new Propertles(z;)
PI‘IV(EI‘ 3:Dr|ver = DriverManager.getDriver(url);
or (5,
f:)riverlPrope](t{l nfo[] attributes = cDriver. getPropertyl nfo(
url, 1nfo);)
[/ zero length neans a connection attenpt can be nade
if (attributes.length == 0
br eak;
[l insert code here to process the array, e.g.,
[l display all options In a GJ and allow the user to
[l pick and then set the attributes in info or URL.
Il try _tLe connection])
Connection conn = DriverManager. get Connection(url, info);

Using Derby with IDEs

When you use an integrated development environment (IDE) to develop an embedded
Derby application, you might need to run Derby within a server framework.

This is because an IDE might try connecting to the database from two different JVMs,
whereas only a single JVM instance should connect to a Derby database at one time
(multiple connections from the same JVM are allowed).

An "embedded Derby application” is one which runs in the same JVM as the application.
Such an application uses the embedded Derby driver
(org.apache.derby.jdbc.EmbeddedDriver) and connection URL

(j dbc: der by: dat abaseNarne). If you use this driver name or connection URL from the
IDE, when the IDE tries to open a second connection to the same database with the
embedded Derby, the attempt fails. Two JVMs cannot connect to the same database in
embedded mode.

IDEs and multiple JVMs

When you use an integrated development environment (IDE) to build a Java application,
you can launch the application from within the IDE at any point in the development
process. Typically, the IDE launches a JVM dedicated to the application. When the
application completes, the JVM exits. Any database connections established by the
application are closed.

During the development of a database application, most IDEs allow you to test individual
database connections and queries without running the entire application. When you test

100

Copyright

an individual database connection or query (which requires a database connection), the
IDE might launch a JVM that runs in a specialized testing environment. In this case, when
a test completes, the JVM remains active and available for further testing, and the
database connection established during the test remains open.

Because of the behaviors of the IDE described above, if you use the embedded Derby
JDBC driver, you may encounter errors connecting in the following situations:

« You test an individual query or database connection and then try to run an
application that uses the same database as the tested feature.

The database connection established by testing the connection or query stays
open, and prevents the application from establishing a connection to the same
database.

« You run an application, and before it completes (for example, while it waits for user
input), you attempt to run a second application or to test a connection or query that
uses the same database as the first application.

101

Copyright

SQL tips

This section provides some examples of interesting SQL features. It also includes a few
non-SQL tips.

Retrieving the database connection URL

Supplying

Derby does not have a built-in function that returns the name of the database. However,
you can use Dat abaseMet aDat a to return the connection URL of any local
Connecti on.

/[* in java */
String myURL = conn. get Met aDat a() . get URL();

a parameter only once

If you want to supply a parameter value once and use it multiple times within a query, put
it in the FROM clause with an appropriate CAST.

SELECT honebook *
honebook, (VALUES (CAST(? AS INT), CAST(? AS
VARCHAR(255))5)

AS Choi ce(choi ce,

search_stri gg) .
search_string = (case when choice = 1 then firstnme
en choi ce=2 then | ast nane)
when choi ce=3 then
phonenunber end);

This query selects what the second parameter will be compared to based on the value in
the first parameter. Putting the parameters in the FROM clause means that they need to

be applied only once to the query, and you can give them names so that you can refer to
them elsewhere in the query. In the example above, the first parameter is given the name
choice, and the second parameter is given the name search_string.

Defining an identity column

An identity column is a column that stores numbers that increment by one with each
insertion. ldentity columns are sometimes called autoincrement columns.

Derby provides autoincrement as a built-in feature; see CREATE TABLE statement in the
Derby Reference Manual.

Below is an example that shows how to use an identity column to create the MAP_ID
column of the MAPS table in the toursDB database.

CREATE TABLE MAPS

P | D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY (START W TH 1,
| NCREVENT BY

MAP NAME VA Rg24) NOT NULL,

REG ON_VARCHAR(26) .,

AREA DECI MAL(8, 4)° NOT NULL,

PHOTO FORMAT VARCHAR(26) NOT NULL,

PI CTURE BLOB(102400)

;JNI QUE (MAP_I D, MAP NAVE)

Using third-party tools

You can hook into any JDBC tool with just our JDBC Driver class name

102

Copyright
org.apache.derby.jdbc.EmbeddedDriver) and Derby's JDBC connection URL.

Tricks of the VALUES clause

This section contains some tips to use with the VALUES clause.

Multiple rows

Derby supports the complete SQL-92 VALUES clause; this is very handy in several
cases.

The first useful case is that it can be used to insert multiple rows:

I NSERT | NTO OneCol uimTabl e VALUES 1, 2, 3,4,5,6,7,8

I NSERT | NTO TwoCol unmTabl e VALUES
1, 'first row

2, 'second ro

3, '"third row)

Dynamic parameters reduce the number of times execute requests are sent across:

-- send 5 rows at tine

PREPARE p)l NSERT |'NTO Thr eeCol umTabl e VALUES
E)_(S") ’P ? ’P) ’) ’) ’)) S , _,
ECUT ﬁ USI VALUES(ist'*)1, ,"2d , 2,2 3rd" ",
4t "5th'',5,5)"

Mapping column values to return values

Multiple-row VALUES tables are useful in mapping column values to desired return
values in queries.

et the nanes of all departments in Chi oSELECT Dept Name

(VALUES (1 ' Shoe'),

2, Laces

4. ' Poli shé)
AS_Dept Map(Dept Code, Dept Des'v%1
WHERE Depts. De t Code = De 01

p. Dept Code
AND Depts. Dept Locn LIKE '

0%

You might also find it useful to store values used often for mapping in a persistent table
and then using that table in the query.

Creating empty queries

You may need Derby to create "empty" queries in existing applications for filling in bits of
functionality that Derby does not supply.

Empty queries of the right size and shape can be formed off a single values table and a
"WHERE FALSE" condition:

*

SE
FROM (VALUES (,1,"TRUE")) AS Procedur el nf o(Procedur eName, NunPar anet er s,
Pr ocedur eVal i d)

VWHERE 1=0

103

Copyright

Localizing Derby

Derby offers support for locales.

The word locale in the Java platform refers to an instance of a class that identifies a
particular combination of language and region. If a Java class varies its behavior
according to locale, it is said to be locale-sensitive. Derby provides some support for
locales for databases and other components such as the tools and the installer.

It also provides a feature to support databases in many different languages, a feature
which is independent of a particular territory.

When you create or upgrade a database, you can use the territory attribute to associate a
non-default territory with the database. For information about how to use the territory
attribute, see the Derby Reference Manual.

SQL parser support for Unicode

To support users in many different languages, Derby's SQL parser understands all
Unicode characters and allows any Unicode character or number to be used in an
identifier.

Derby does not attempt to ensure that the characters in identifiers are valid in the
database's locale.

Other components

Derby also provides locale support for the following components.

» Database error messages are in the language of the locale, if support is explicitly
provided for that locale with a special library.

For example, Derby explicitly supports Spanish-language error messages. If a
database's locale is set to one of the Spanish-language locales, Derby returns error
messages in the Spanish language.

« The Derby tools. In the case of the tools, locale support includes locale-specific
interface and error messages and localized data display.

For more information about localization of the Derby tools, see the Derby Tools and
Utilities Guide.

Localized messages require special libraries.

The locale of the error messages and of the tools is not determined by the database's
localle set by the locale=Il_CC attribute when the database is created but instead by the
default system locale. This means that it is possible to create a database with a
non-default locale. In such a case, error messages would not be returned in the language
of the database's locale but in the language of the default locale instead.

Note: You can override the default locale for ij with a property on the JVM. For more
information, see the Derby Tools and Utilities Guide.

Messages libraries

The following list describes the items required in order for Derby to provide localized
messages.

* You must have the locale-specific Derby jar file. Derby provides such jars for only

104

Copyright
some locales. You will find the locale jar files in the /lib directory in your Derby
installation.
» The locale-specific Derby jar file must be in the classpath.

The locale-specific Derby jar file is named derbyLocale _Il_CC.jar, where Il is the
two-letter code for language, and CC is the two-letter code for country. For example, the
name of the jar file for error messages for the German locale is

der byLocal e_de_DE. j ar.

Derby supports the following locales:
derbyLocale_de_DE.jar German
derbyLocale_es.jar - Spanish
derbyLocale_fr.jar - French

derbyLocale_it.jar - Italian
derbyLocale_ja_JP.jar - Japanese
derbyLocale_ko KR.jar - Korean
derbyLocale_pt_BR.jar - Brazilian Portuguese
derbyLocale_zh_CN.jar - Simplified Chinese
derbyLocale_zh_TW.jar - Traditional Chinese

105

Copyright

Derby and standards

Derby adheres to SQL99 standards wherever possible. Below you will find a guide to
those features currently in Derby that are not standard; these features are currently being
evaluated and might be removed in future releases.

This section describes those parts of Derby that are non-standard or not typical for a
database system.

ALTER TABLE

Derby uses a slightly different ALTER TABLE syntax for altering column defaults. While
SQL99 uses DROP and SET, Derby uses DEFAULT.

Calling functions and procedures

Derby supports the CALL (procedure) statement for calling external procedures declared
by the CREATE PROCEDURE statement. Built-in functions and user-defined functions
declared with the CREATE FUNCTION command can be called as part of an SQL select
statement or by using either a VALUES clause or VALUES expression.

CLOB and BLOB

Derby supports the standard CLOB and BLOB data types. BLOB and CLOB values are
limited to a maximum of 2,147,483,647 characters.

Cursors

Derby uses JDBC's result sets, and does not provide SQL for manipulating cursors
except for positioned update and delete. Derby's scrollable insensitive cursors are
provided through JDBC, not through SQL commands.

DECIMAL max precision

For Derby, the maximum precision for DECIMAL columns is 31 digits. SQL99 does not
require a specific maximum precision for decimals, but most products have a maximum
precision of 15-32 digits.

Dynamic SQL

Derby uses JDBC's Prepared Statement, and does not provide SQL commands for
dynamic SQL.

Expressions on LONGs

Derby permits expressions on LONG VARCHAR; however LONG VARCHAR data types
are not allowed in the following clauses, operations, constraints, functions, and
predicates.

« GROUP BY clauses
ORDER BY clauses

JOIN operations
PRIMARY KEY constraints
Foreign KEY constraints

106

Copyright

UNIQUE key constraints

MIN aggregate function

MAX aggregate function

[NOT] IN predicate

UNION, INTERSECT, and EXCEPT operators

SQL99 also places some restrictions on expressions on LONG types.

Information schema

Derby uses its own system catalog that can be accessed using standard JDBC
DatabaseMetadata calls. Derby does not provide the standard Information Schema
views.

NOT NULL characteristic

The SQL standard says NOT NULL is a constraint, and can be named and viewed in the
information schema as such. Derby does not provide naming for NOT NULL, nor does it
present it as a constraint in the information schema, only as a characteristic of the
column.

Transactions

All operations in Derby are transactional. Derby supports transaction control using JDBC
3.0 Connection methods. This includes support for savepoints and for the four JDBC
transaction isolation levels. The only SQL command provided for transaction control is
SET TRANSACTION ISOLATION.

Stored routines and PSM

Derby supports external procedures using the Java programming language. Procedures
are managed using the CREATE PROCEDURE and DROP PROCEDURE statements.

Unique constraints and nulls

The SQL standard defines that unique constraints on nullable columns allow any number
of nulls; Derby does not permit unique constraints on nullable columns.

XML data types and operators

Derby supports the XML data type and a set of operators that work with the XML data
type. The XML data type and operators are based on a small subset of the SQL/XML
specification.

The XML data type and operators are defined only in the SQL layer.

There is no JDBC-side support for XML data types. It is not possible to bind directly into
an XML value or to retrieve an XML value directly from a result set. Instead, you must
bind and retrieve the XML data as Java strings or character streams by explicitly
specifying the appropriate XML operator as part of the SQL statements:

» Use the XMLPARSE operator for binding data into XML values.

» Use the XMLSERIALIZE operator to retrieve XML values from a result set.
Additionally, there is no JDBC metadata support for the XML data type.

The XML data type is not allowed in any of the clauses or operations that are described
in the section on expressions on LONG data types.

107

Copyright

For the XML operators to work properly, Derby requires that a JAXP parser, such as
Apache Xerces, and Apache Xalan are included in the Java classpath. If either the parser
or Xalan are missing from the classpath, Derby disallows any XML-related operations.

To see a list of the versions of the JAXP implementation and of Apache Xalan that have
been tested with Derby XML support, see to the Derby release notes. The release notes
are available from the Apache Derby Downloads page.

Note: Most Java virtual machines (JVMs) that are version 1.4 or later have a JAXP
parser embedded in the JVM. If you are using one of these JVMs, you do not need to add
any other JAXP classes to your classpath. Additionally, if the JVM that you are using
includes an embedded version of Xalan, you should confirm that the version of Xalan
satisfies the minimum requirements for Derby. For example, if your JVM is Sun JDK
1.4.2, you must override the version of Xalan in the JVM with a newer version. Use
Java's Endorsed Standards Override Mechanisms described at
http://java.sun.com/j2se/1.4.2/docs/guide/standards/ to override the version of Xalan.

If the JVM that you are using does not have a JAXP parser or a version of Xalan, you can
add external versions of those classes in your classpath and Derby will pick up those
classes.

108

Copyright

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

109

	Copyright
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	Upgrades
	Preparing to upgrade
	Upgrading a database
	Soft upgrade limitations

	JDBC applications and Derby basics
	Application development overview
	Derby embedded basics
	Derby JDBC driver
	Derby JDBC database connection URL
	Derby system
	One Derby instance for each Java Virtual Machine
	Booting databases
	Shutting down the system
	Defining the system directory
	The error log
	derby.properties
	Double-booting system behavior
	Recommended practices

	A Derby database
	The database directory
	Creating, dropping, and backing up databases
	Single database shutdown
	Storage and recovery
	Log on separate device
	Database pages
	Database-wide properties
	Derby database limitations

	Connecting to databases
	Connecting to databases within the system
	Connecting to databases outside the system directory
	Conventions for specifying the database path
	Special database access
	Accessing databases from the classpath
	Accessing databases from a jar or zip file

	Database connection examples

	Working with the database connection URL attributes
	Using the databaseName attribute
	Shutting down Derby or an individual database
	Creating and accessing a database
	Providing a user name and password
	Encrypting a database when you create it
	Creating an encrypted database with an external key
	Booting an encrypted database
	Specifying attributes in a properties object

	After installing
	The installation directory
	Batch files and shell scripts

	Derby and JVMs
	Derby libraries and classpath
	UNIX-specific issues
	Configuring file descriptors
	Scripts

	Derby embedded basics
	Embedded Derby JDBC driver
	Embedded Derby JDBC database connection URL
	Getting a nested connection
	Starting Derby as an embedded database

	Deploying Derby applications
	Deployment issues
	Embedded deployment application overview
	Deploying Derby in an embedded environment
	Embedded systems and properties

	Creating Derby databases for read-only use
	Creating and preparing the database for read-only use
	Deploying the database on the read-only media
	Transferring read-only databases to archive (jar or zip) files
	Accessing a read-only database in a zip/jar file
	Accessing databases within a jar file using the classpath
	Connecting to databases with ambiguous paths to databases in the file
system
	Connecting to databases when the path is ambiguous because of databases
in the classpath

	Databases on read-only media and DatabaseMetaData

	Loading classes from a database
	Class loading overview
	Create jar files for your application
	Add the jar file or files to the database
	Jar file examples
	Installing jar files
	Removing jar files
	Replacing jar files

	Enable database class loading with a property
	Code your applications

	Dynamic changes to jar files or to the database jar classpath
	Requirements for dynamic changes
	Notes on dynamic changes

	Derby server-side programming
	Programming database-side JDBC procedures
	Database-side JDBC procedures and nested connections
	Requirements for database-side JDBC procedures using nested connections

	Database-side JDBC procedures using non-nested connections
	Invoking a procedure using the CALL command

	Database-side JDBC procedures and SQLExceptions
	User-defined SQLExceptions

	Programming trigger actions
	Trigger action overview
	Performing referential actions
	Accessing before and after rows
	Examples of trigger actions
	Triggers and exceptions
	Aborting statements and transactions

	Controlling Derby application behavior
	The JDBC Connection and Transaction Model
	Connections
	Statements
	ResultSets and Cursors
	Nested connections

	Transactions
	Transactions when auto-commit is disabled
	Using auto-commit
	Turning off auto-commit
	Explicitly closing Statements, ResultSets, and Connections
	Statement versus transaction runtime rollback

	Result set and cursor mechanisms
	Simple non-updatable result sets
	Updatable result sets
	Requirements for updatable result sets
	Forward only updatable result sets
	Scrollable updatable result sets
	Inserting rows with updatable result sets
	Naming or accessing the name of a cursor
	Extended updatable result set example

	Result sets and auto-commit
	Scrollable result sets
	Holdable result sets
	Holdable result sets and autocommit
	Non-holdable result set example

	Locking, concurrency, and isolation
	Isolation levels and concurrency
	Configuring isolation levels
	Lock granularity
	Types and scope of locks in Derby systems
	Exclusive locks
	Shared locks
	Update locks
	Lock compatibility
	Scope of locks
	Notes on locking

	Deadlocks
	Avoiding deadlocks
	Deadlock detection
	Lock wait timeouts
	Configuring deadlock detection and lock wait timeouts
	Debugging Deadlocks
	Programming applications to handle deadlocks

	Working with multiple connections to a single database
	Deployment options and threading and connection modes
	Multi-user database access
	Multiple connections from a single application

	Working with multiple threads sharing a single connection
	Pitfalls of sharing a connection among threads
	Multi-thread programming tips
	Example of threads sharing a statement

	Working with database threads in an embedded environment
	Working with Derby SQLExceptions in an application
	Information provided in SQL Exceptions
	Example of processing SQLExceptions

	Using Derby as a J2EE resource manager
	Classes that pertain to resource managers
	Getting a DataSource
	Shutting down or creating a database

	Derby and Security
	Configuring security for your environment
	Configuring security in a client/server environment
	Configuring security in an embedded environment

	Working with user authentication
	Enabling user authentication
	Defining users
	External directory service
	LDAP directory service
	Libraries for LDAP user authentication
	Setting up Derby to use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	Considerations when using Windows NT with LDAP
	LDAP restrictions

	JNDI-specific properties for external directory services
	User-defined class
	Example of setting a user-defined class

	Built-in Derby users
	Database-level properties
	System-level properties

	List of user authentication properties
	Programming applications for Derby user authentication
	Programming the application to provide the user and password
	Login failure exceptions with user authentication

	Users and authorization identifiers
	Authorization identifiers, user authentication, and user authorization
	User names and schemas
	Exceptions when using authorization identifiers

	User authorizations
	Setting the SQL standard authorization mode
	Setting the default connection access mode
	Setting the user authorizations for individual users

	SQL standard authorization
	User authorization exceptions

	Read-only and full access permissions

	Encrypting databases on disk
	Requirements for Derby encryption
	Working with encryption
	Encrypting databases on creation
	Encrypting an existing unencrypted database
	Creating the boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Encrypting databases with a new key
	Encrypting databases with a new boot password
	Encrypting databases with a new external encryption key

	Booting an encrypted database
	Changing the boot password

	Signed jar files
	Notes on the Derby security features
	User authentication and authorization examples
	User authentication example in a client/server environment
	User authentication example in a single-user, embedded environment
	User authentication and authorization extended examples

	Running Derby under a security manager
	Granting permissions to Derby
	Examples of Java 2 security policy files for embedded Derby
	Java 2 security policy file example 1
	Java 2 security policy file example 2
	Java 2 security policy file example 3

	Developing tools and using Derby with an IDE
	Offering connection choices to the user
	The DriverPropertyInfo Array
	DriverPropertyInfo array example

	Using Derby with IDEs
	IDEs and multiple JVMs

	SQL tips
	Retrieving the database connection URL
	Supplying a parameter only once
	Defining an identity column
	Using third-party tools
	Tricks of the VALUES clause
	Multiple rows
	Mapping column values to return values
	Creating empty queries

	Localizing Derby
	SQL parser support for Unicode
	Other components
	Messages libraries

	Derby and standards
	ALTER TABLE
	Calling functions and procedures
	CLOB and BLOB
	Cursors
	DECIMAL max precision
	Dynamic SQL
	Expressions on LONGs
	Information schema
	NOT NULL characteristic
	Transactions
	Stored routines and PSM
	Unique constraints and nulls
	XML data types and operators

	Trademarks

