Apache Derby .9'

Derby Reference Manual

Version 10
Derby Document build:
December 11, 2006, 7:09:24 AM (PST)

Copyright

Contents

... 8
ADOUL TNIS QUIAE...eeiiiiieiii ettt et e e s sabnee s 9
Purpose of thiS dOCUMENT.........ooii i 9
YN 0o [1=] o LoT =T 9
HOW this guide IS OrganiZed.........coooiiiiiiiiiii e 9
S O I Fo T g Yo [UF= o [N =] =T =1 (o] =TSR 10
Capitalization and special CharaCters........cccovveeereeeee e 10
Y@] Yo L=T] A1 =T SR UOP OO PUR PRSP 10
Rules for SQLO2 identifiers.........uuuueiiiiiiiee e e e 11

Y@ IR 2 o (=] o] 1] 1= PO PEERRRR 11

(o701 010 0] 0 B N F= 1 4 < 12
COITEIALION-NAMIEottt s e e st e e e et e s st e e st e e esaaeas 12
LSVt o] LR =1 LT 12

(Yo g 1T F=T AV F= T o T 13
SIMPIE-COIUMN-NAME......cci it e e e e e e e e e e e annnenes 13
L5370 0177 0 NN = 1 1= 13

1= 0] [N =T 1T 14
VT N F= 1 1 (=TT 14

19 Lo [V=1 LT 14
(o704 15Y1 = 111 o \\F= 10 1 (T 14

(ot U] Yo AN F=1 1 2 L= TS 15

I 10 1o 1T 4 A E= 1 41 TP 15
AUtNONZALIONIAENTIIEI.....uvei it seeaaans 15

] = 1 (=Y 0 41T 0] £ 15
Interaction with the dependency SYStem...........cooiiiiiiiiiiiie e 16
ALTER TABLE StAtEMENT... ettt s e eaas 17

(O 2y AN I S v 1 (=] 0 4[] 1 €T 20
DROP S atemMEBNIS. . cun i et e e aaaas 33
GRANT SEALEMENT ...eeiii e et e e e e e e e e eaas 36
RENAME S alBMENTS. ...ttt e e e e e e e abas 37
REVOKE StAIEIMENT ... et e e e e e e et e e e eaa e e eaaeeeaas 38

] IS = 1 =T 1]] £ 41
CALL (PROCEDURED).........coeiteiioeeeeieieeeeees et seetes s enessae et sen s e aenens 42
CONSTRAINT ClAUSE. ...ttt e e e e et e e e aaaas 43
DECLARE GLOBAL TEMPORARY TABLE statement................coccvvvvvvvvvvvennnnnn. 49

[I S £= 1 (=] 1 1] L PO 51
FOR UPDATE ClAUSE.ccettieiiieiieee ettt e ettt e e e e et e e e s e ettt e s e s s enaa s eeaees 52
FROM ClAUSE.coveeiiiiiieee et e e et e e s e et e e e e s e bbb s e e e e eebaaas 52
GROUP BY ClAUSE.uuuiiiiiieetee ettt e e et e e s e s e e e e eebaa s 53
HAVING ClAUSE.cccevtiieiieieeee ettt e e e s e e e s et e e e s e e aab s e e e s esbbaaeeaees 53
INNER JOIN ettt e et e et e et e et e s e e et esa e et s e s e eanseenses 54
NS R IS €= 1 (=] 1 (] 1 PO 55
JOIN OPEIALION. ...ttt e et e e s e e e e e annnees 56
LEFT OQUTER JOIN.....e ittt e et e e e e e e e e e e s enaa e eeaees 56
LOCK TABLE StatEMENT.....ccuiii it s e e s e e e e abas 57

(@] 3B = = o1 F= T 11T 58

L 11 1= Y2 59
RIGHT OUTER JOIN. ..ottt e e et e e s et e e e s e e aab e e e e s eeraans 60
SCAIAISUDGUETY ...ttt st 61
SIECTEXPIESSION. ... iiitieee ettt ettt ettt e ettt e et e e e et e e e e snbe e e e e e e 62

S | I L O IS = (] 1 4[] 1 | 64
TADIEEXPIESSION.ciiiiieeeiei ittt e e e e e e e et e e e e e e e e e e e e aanes 65
TaDIESUDQUENY.....cooiiee e 66
(Y N I S = 1 (=] 4 1] L PN 67
VALUES EXPIrESSION. .. .uuuuuiiiiiiiiieieeesisisiititteseeeteeeesessssssssstasaeeseeaaessssnannnssssnseeess 68
WHERE ClaUSE....uueiiiiiieeeee ettt e e e e e s e e e e e s eaaans 69

Copyright

WHERE CURRENT OF ClaUSE......ueiiiiieetee ettt e 70
ST TE T IR 0 o Toa A0] F= T 70
Standard Built-in FUNCHIONS.........oiiiiiii e 70
Aggregates (Set FUNCHIONS).......uuiiiiiiie i 71
ABS OF ABSVAL. ..ottt e e e e e s e e e e e e e e s eeaaaas 72
F X O @ TN 11T 1 o] o 72
F NS 1AV (8T o3 £] o TR 73
F AN NI 0 o3 1T o T 73
AV G e e e e e e e et aaaes 73
2] (€11 PR 74
(O X I 74
(of =1 | I o T O = | I | N[{1 (o3 1 0 1O 77
(0 Y N 78
(@f0] aTor=11=] g T 1o] o RN 79
(O(@ 1 IR 1] g T3 110 o TR 80
COUNIT e et et ettt e e e e et e e e e e e e e e e e e e e e eaeereeaeees 80
(010 LU\ I I o PRSP 81
CURRENT DATE . ..ttt e et e e e e et et e e e e s ea e e e eeeeaes 81
CURRENT _DATE-.....i ittt ettt e e e e e e e e e sttt e e e e e e e e e e e s e e snnnnnes 81
CURRENT ISOLATIONttt ittt e s eea e e s e e et s e s s s eabaaseeeaees 81
CURRENT SCHEMA . ..ottt e e e e e e s et e e s s e e bbb e e e s eeaaans 81
CURRENT TIME....oetii ettt s e e e e et s e e s s eebaa e e e e eeanes 82
CURRENT _TIME....coittittitiiiiieee ettt n e e e e e e e e e e aeaaeaeneeeees 82
CURRENT TIMESTAMPttt e e e e e 82
CURRENT _TIMESTAMPttt e e e eenanes 82
CURRENT _USER. ..ottt e e e e e e e eenaees 83
)N I TR 83
[0 R 83
DEGREES fUNCHON. ...uuuiiiiiieie ettt e e e s e e e e s e e et e e e s esbaaseeaees 84
(011U 2 I 84
L) G o U] T 10] R 85
[l IO @] = 3 1] g ox 1] o TR 85
[(01U = TR 85
IDENTITY VAL LOCAL. ...ttt e e 86
INTEGER. ...t e et e e ettt s e e s s e et eeeaee bbb s aeesenes 87
LCASE OF LOWER.oueiiiiieeee ettt ettt e e e e e e e s et a e e e 88
I N[I TR 88
[o T I L U o 1o o TR 88
(@3 0 I U] 110 1T 89
LO C AT E . .. ettt ————— 89
[1 311 TR 89
A TR 90
1 T 90
N L I =T 91
1Y/] 91
1Y/ (0 1N N = SR 92
NULLIF @nd CASE ©XPreSSIONS.ccciiutieieiiiiiitiesiiiieeeessiiieeessssbeeeessnnnneeesssnsnnes 92
o] I 0] T2 0] TR 93
RADIANS fUNCHON. ...ttt e e e e e e e et e e st e e s e e e eeaass 93
L I 11 PR 93
] L@] 1N | 5 TR 94
SESSION_USER ...ttt e e e e e s s e e e e e e e e e e eeaaans 94
] [NV VT o 1o o T 94
] I N 95
Y@] 3 R 95
SUB ST R . ettt et ettt e et e e e e e e e e e e e r e aea 96
BNV 9 1 o3 1T o PR 96
] U Y TR 97
I T 97

Copyright

TIMESTAMPttt e e e et e e e e st e e e e s antb e e e e e asaaeaeeennees 98
UCASE OF UPPER......ci ittt ettt et a et e e e ssna e e e s ennnaee s 98
LS = RSP 99
VARGCHAR ...ttt e e e s st e e e sttt e e e s snbb e e e e e s anbaeeeeeane 99
XMLEXISTS OPEIALOL......ccceeiiieieieieeeeeietieiete s ss s s e e e s e e e e e e e e e aeeeeeeeeeaeeeeesennnnnnnnanns 99
XMLPARSE OPEIALON.....ciii e i i e e e eeeeei ettt e s s e s e s e e e e e e e aeaeaeeeeeeeeeeeennrnnes 101
XMLQUERY OPEIALOL.ceeeeiieieeeiieiiiitie ettt e e e e et a e e e s e eee s 102
XMLSERIALIZE OPEIALOL ...ttt ee e ettt e e 103
D= N USSP 105
BUilt-in SYStem fUNCHIONS......uuiiiiiiiiieee e 105
SYSCS_UTIL.SYSCS_CHECK_TABLE.......cccciiiiiiieiiiiiiie e 105
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS......cocciiiieeiiiiee e 105
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTYcoevviiiiiieiiiiieee e 106
BUIilt-iN SYStEM ProCEAUIES.......cuiiiiiiiiiiie et e e e e e e e e e e e 106
SYSCS_UTIL.SYSCS_COMPRESS_TABLE........cccoiiiiiiiiiiiiiee e 106
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE........ccccccceiiiiiiniin 107
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS......ccceeeiiiiiieeeiieee e 109
SYSCS_UTIL.SYSCS_SET_STATISTICS _TIMING......cccccceeiiiiireeeeiiiee e 109
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY.....ccccoivieiiiieee e, 110
SYSCS_UTIL.SYSCS_FREEZE_DATABASE........cccccoiiiiiiee it 110
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE........cccccoviiiiiiiiiiieee e 111
SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE.......ccccccevniiiieeeniiee e 111
SYSCS_UTIL.SYSCS_BACKUP_DATABASE. ..ottt 111
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT......cccoiieeiiiieeeeee 112

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE113

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT

SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE..........ccccccevvvvnennnn 114
SYSCS_UTIL.SYSCS_EXPORT_TABLE.......cccotiiiiiiiiee i 115
SYSCS_UTIL.SYSCS_EXPORT_QUERY.....ccocvoviiireieeeeeeeeeeeeeeeeeeee s 116
SYSCS_UTIL.SYSCS IMPORT _TABLE........ooiiiiiii ettt 117
SYSCS_UTIL.SYSCS _IMPORT _DATA. ..ottt eree e 118
(D1 8- WY 011 T TP P PSP PRPPRPPPN 119
BUIIE-IN TYPE OVEIVIBW.etiiiiiiieie ettt e e 119
[N T =T o Y o1 PPEURRR 119
Data type assignments and comparison, sorting, and ordering........................ 122
121 [| TP PPR 125
2 0] T 126
(O o A USSP 126
CHAR FOR BIT DATA .ttt ettt ettt a e et e e e e nntae e e e e e 127
(O IO = TP PP 128
[AN I PRSPPI 129
DECIMAL. ...ttt ettt ettt e e et e e e s st e e e e e bt e e e st e e e e e nbbeeeeeenees 129
DOUBLE ...ttt e e et e e et e e e s b eee e e 130
DOUBLE PRECISION.....cciiiiiiiitieiiiiit ettt inbee e e 130
] 1 P 131
INTEGER......oiii ittt s e e e e e s et e e e e st e e e s snnae e e e s annrnees 132
LONG VARCHAR. ..ottt ettt e e e et e e e e st e e e e s sbaeaaeeanes 132
LONG VARCHAR FOR BIT DATA . ..ottt ettt ettt a s iavee e 133
NUMERIC. ... ettt e ettt e e e e st e e e e s ssba e e e s sbbeeeeessnbaeeaeeann 133
REAL . .. ettt ettt e et e e e e et e e e e b e e e e e a e e e e e e nrees 133
SMALLINT ettt et e e e et e e e et e e e e s nba e e e e e nneneas 134
TIME . .ttt ettt e et e e e sttt e e e st b e e e e e nnbae e e e s anbaeeaeeane 135
TIMESTAMP ...t e e e et s e e e e e et e e e e e e anta e 135
VARCHAR. ...t e e e e e s st e e e e s st e e e e s atbaeaaeeanes 136
VARCHAR FOR BIT DATA . .ottt ettt et eiaae e e e e snnnenae s 136
XIMIL A8 By Pttt ettt ettt e e e e e e e e e st ee e e e e e e e as 137
SOL X P IS SIONS ittt ettt e ettt e e e e e e e e e s e bbb e e e e e e e e e e e e e bbb e b e e e e e aaeeas 138

Copyright

EXPreSSion PreCRUBNCE.coiueiiii ettt 140
BOO0IEAN EXPIrESSION. ..ottt ettt e e e e e e e e e e e enaee 140
DYNAMIC PAIAMELEIS.ttt e e e e e e e e e e e e aebaneees 142
Y@ I =T =T Y=o IRV] o £ SRR 146
Derby support for SQL-92 fEAtUIEScccuviiiiiiiiiic e e e e e e e e 150
Derby SYSTEM TabIES...cuiii i e e e e 157
SY S AL ASES. ... e 157
SYSCHECKS ...ttt e et e e s e e e e s s b e e e e stb e e e e s eaaaees 157
SYSCOLPERMS ...ttt e et e e e e st e e e e s ssbr e e e e s asbaeeeeaanes 158
SYSCOLUMNS ...ttt e e s st e e e e st b e e e s asbseeeesanssaeeas 158
SYSCONGLOMERATES. ...ttt et e e st e e e s snbaeeaeeanes 159
SYSCONSTRAINTS. ...ttt e e e st e e e e e sbbee e e e s nnees 160
SYSDEPENDS ... oottt e e e st e e e et e e e s nbr e e e s atreeeeeeane 160
SYSFILES. .t 161
SYSFOREIGNKEYS. ..ottt e e e e e e e et e e e e e e e e e eeeeees 161
0 251 1 = S T PRSP 162
SYSROUTINEPERMS ...ttt ettt 162
SYSSCHEMASttt e e e e e e e st e e e e e sntb e e e e e ssbaeaeeennnees 163
SYSSTATISTICS. ..ot e e e e e e et e e e e asbee e e e ennnees 163
SYSSTATEMENTS ..ttt e et e e e s srba e e e e s sbbeeeeeaanes 163
SYSTABLEPERMS. ...ttt e e 164
SYSTABLES. ... 165
SYSTRIGGERS. ... e e e e e e e et eeeees 165
SYSVIEWS. ...ttt e et e e e e e e e e e e et ae e e e e an e e e e e annees 166
Derby exception messages and SQL STAteS........cooiuiiiiiiiiiiiiiei e 167
SQL error messages and eXCePLIONS......uiiiii it e e 167
JDBEC REFEIBNCE. ...ttt et e e e e e e e et eeeeeaaaaeeas 199
Core JDBC java.sql Classes, Interfaces, and Methods............ccccccviininn, 199
[V =To | A= R 199
java.sql.DriverManager.getCoNNECION.......cuiviieeeii i e e 200
Derby database connection URL SYNtaX.........cccouruiiiieiiiiiieeeniiiieee e 200
Syntax of database connection URLSs for applications with embedded databases
.. 201
Additional SQL SYNTAX.......oi ittt e e e e e e e e e e aaees 201
Attributes of the Derby database connection URLccccceeiiiiniiiiiiiiiiennennn. 201
java.sql.Driver.getPropertyInfo ... 202
2 \VZ= B=Yo | @4 Y o1 a =13 4 To] o SRR 203
java.sgl.Connection.setTransactionlsolationccccccveeeeieiiivciiiiieeeeeee e 203
java.sgl.Connection.SetREAAONIYccuviiiiiiiiiiie e 203
java.sgl.Connection.iSREAAONIYoviiiiiiiiiiiii e 203
Connection functionality NOt SUPPOIEM..........ccoiiiiiiiiiiiiiiiie e 203
java.sql.DatabaseMetabDataooouiiiiiiiiiiiee e 204
DatabaseMetaData reSUlt SEIS..........uuiiiiiiiiiiiiiiiee e 204
getProcedureColumnsgetProcedureColumns.........ccvveveeeiieiiiiiiiiiiieeeeeeee e e 204
Parameters to getProcedureColUMNS..........ccooviiiiiiiiiiiiccee e 204
Columns in the ResultSet returned by getProcedureColumns...........c.ccccoeneee 204
DatabaseMetaData functionality not supported..........ccoccveeeeiiiiiiieeinniieee e 205
JAVA.SOLSTAtEIMENT ... 206
RESUILSEL ODJECESeiiiiiiiiiiie et 206
java.sql.CallableStatementuuiiiiiiiiii e 206
CallableStatements and OUT Parametersooooiiiiiiiieiiieeee e 207
CallableStatements and INOUT Parameterscccccevvvveveeeiiiiiineessniiee e 207
JAVAL.SOL.SQLEXCEPTION oveiiiieiee et a e 208
java.sql.PreparedStatementooovciiiiieiiicce e 208
Prepared statements and streaming COIUMNScoocoveiiiiiiiieeeniniieeee e 208
JAVA.SOLRESUITSEL ...eeiiiiiiieiie e 210
ResultSets and streaming COIUMNScuviiiiiiiiiiien e 210
java.sql.ResultSetMetaDataccccuuuiiiiiiiiiieeee e 211
JAVA.SOL.SQLWAINING ooiiiiiiiiiiteee ettt e e e e e e e e e e e neees 211

Copyright

JAVA.SOLSQLXML ..ttt 211
Mapping of java.sql.Types t0 SQL tYPeS......uuuiiiiiiiiiiiiiiiiiiieieee e 211
java.sql.Blob and java.sql.ClIob ... 212
N [0] (< F PP PP T TP PRT 214
2 \VZ= B=Yo | I @4 Y o1 a =13 4 To] o PR 214
JAVALSOLRESUILSEL e 215
JAVA.SOLSTALEIMENT ..ot 216
java.sgl.PreparedStatementooii i 216
java.sgl.CallableStatement 217
java.sql.DatabaseMetaData...........oooiiiiiiiiiiiiiee e 217
java.sql.ResultSetMetaData.ccccuuiiiiiiiiiiiee e 217
java.sql.BatchUpdateEXCEPtiON........ccoiiiiiiiiieeec e 217
JDBC Package for Connected Device Configuration/Foundation Profile
(OS] 3 G 1) T PP 217
JDBC 3.0-0N1Y FEALUIES .ot 218
JAVA.SOLCONNECTION ..eeeiiiiiiie ettt 218
java.sgl.DatabaseMetaDataeeeeiiiiiiieiiiiiiie e 218
java.sql.ParameterMetaDataoeeeii it 219
java.sql.PreparedStatemMEeNnt...........uuuiiiiiieiiee e 219
[T W= | IS T- VL= o o] | AU 219
LAY W= | IS - (=1 a1 o | P PERRRR 221
JDBC 4.0-0N1Y fEALUIES ...vvviiiiiiiie e r e e e e reeeeeee s 221
Refined subclasses of SQLEXCEPLION.........ccoiiiiiiiiiiiiieee e 222
JAVA.SOLCONNECTION. ...cciiiiiiiee ettt 222
java.sgl.DatabaseMetaData.ueveeiiiiiiieiiiiiie e 222
JAVAL SOl STALEMEBNT. ... et e e e e e e e 223
JAVAX.SOLDAASOUICE.coi ittt e e e e e e e e e 223
JDBC €SCAPE SYNTAX iiiiiiiiiii ittt 223
JDBC escape keyword for call statements............cccccvvveeeeeeee i, 224
JDBC €SCAPE SYNTAX.....eeierrieirinneneiiiaaaiaieseeeeeeeaeteteeeererereeerernrernnnn e aaaeaeaaeeees 224
JDBC escape syntax for LIKE ClauSES..........c.eeieiiiiiiiieiiiiiie e 224
JDBC escape syntax for fn KEYWOrd..........ccooiiiiiiiiiiiiiieiieee e 225
JDBC escape syntax for QULET JOINS..........ooiuiiiieiiiiiiee e 229
JDBC escape syntax for time formats.ccooeeiiiiiiiiiiiiiee e 229
JDBC escape syntax for date formats..........ccoooviiiiiiiiiiiiiiieieee e 229
JDBC escape syntax for timestamp formats........cccccceeeeeeiiiiiiiiiiiiieeeeeee e 230
Setting attributes for the database connection URLccccovveviiiee e, 231
DOOtPASSWOIATKEY ...t e e e e e e e 231
(o T LT PP PUPPPPTTRR 231
CreateFrOM=Path.........coo e 232
databaseName=nameofDatabase............ccuveiiiiiiiiiiiiiii e 232
JAtAENCIYPTIONTIIUC. ...ttt ettt e e e e e e e e e e as 233
ENCIYPLIONKEYTRKEY > .t e e e e e e e e 233
encryptionProvider=providerName.............coocciiiiiiiiieiee e 233
encryptionAlgorithm=algorithm............cooc e 234
logDevice=10gDirectoryPath.........ccccveiiiiee e 234
NEWENCIYPLIONKEY= SKEY>.....iiiiiiiiiiiiei ettt 235
NewBOootPassword = <NeW PasSWOTT>. ... 235
PASSWOId=USEIPASSWOIU....cciiiiiiiiieiiiiiiiee ettt e s 235
FESTOrEFTOM=PAN ... e 236
rollForwardRecoveryFrom=Path............ccccccoiiiiiiiii e 236
L] LU e (0NN B A U= TP PPPTRPPR 236
=T 10T Y | L SRR 237
USEITUSEINGIMIE. ...ttt e ettt e e e e e e e e r et e e e e e e s e s s bbb e e e e e e e eeeeeeaaaanne 238
(NO ALEFIDULES)..eeieii et b e e e aeees 238
J2EE Compliance: Java Transaction API and javax.sql Extensions............cccccceeenne 239
JVM and libraries for J2EE featuresS. ... 239
THE JTA AP ettt e bbe e sneeas 240
Notes on Product BENAVIOL............eeiiiiiiiiiiiiieeee e 240

Copyright

javax.sql: IDBC EXTENSIONSeeiiiiiiiiiiie ittt ettt e e e e 240
(=T o) AN = 1SRRI 242
Stand-alone tools and ULHTIES ... 242
JDBC implementation ClaSSES........cocciiiiiiiiiiiie et 242

8|11 o 1= S PP RPPTTP 242

Data SOUICE CIaSSES. ...cciiiuuiiiieiiiiiiee ettt ee e ettt e e st e e et e e e s st e e e e s sbeeeeeeanes 242
Miscellaneous utilities and iNterfaces........ccccccveee i 243
SUPPOTTEA TEITITOTIES ..eiiiiiiiiiiie ittt e e s st e e e s anneneeas 244
DErbY HMITATIONS ..ottt e et e e s annneee s 245
Limitations for database manager Values..........ccccuuiiiiiiiiiiiiiiii e 245
DATE, TIME, and TIMESTAMP liMitationS......ccccceeiiiieeeeiiiiee e siiee e 245
Limitations on identifier length ... 246
NUMENIC HMITALIONS . .cii ittt sbaeee e 246
Y o Yo TN 1T a1 = U o 0 PP 247

DY I 1T 411 = 1 o] 1T PP UUPOPPPPPRRRN 247

LI (o L=T 0 1= U TSP PP PPPPRPTRUPPPRIRt 248

Vi

Copyright
Apache Software FoundationDerby Reference ManualApache Derby

Copyright

Copyright

Apache Derby

Copyright 2004, 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

Purpose of this document

This book, the Derby Reference Manual, provides reference information about Derby. It
covers Derby's SQL language, the Derby implementation of JDBC, Derby system
catalogs, Derby error messages, Derby properties, and SQL keywords.

Audience

This book is a reference for Derby users, typically application developers. Derby users
who are not familiar with the SQL standard or the Java programming language will
benefit from consulting books on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Derby Developer's Guide.

How this guide is organized
This guide includes the following sections:
e SQL language reference

Reference information about Derby's SQL language, including manual pages for
statements, functions, and other syntax elements.

¢ SQL reserved words
SQL keywords beyond the standard SQL-92 keywords.
« Derby support for SQL-92 features
A list of SQL-92 features that Derby does and does not support.
» Derby System Tables
Reference information about the Derby system catalogs.
» Derby exception messages and SQL states
Information about Derby exception messages.
» JDBC Reference

Information about Derby's implementation of the JDBC interface including support
for JDBC 2.0 features.

 Setting attributes for the database connection URL

Information about the supported attributes to Derby's JDBC database connection
URL.

« J2EE Compliance: Java Transaction APl and javax.sql Extensions

Information about the supported attributes to Derby's support for the Java
Transaction API.

* Derby API
Notes about proprietary APls for Derby.

Copyright

SQL language reference

Derby implements an SQL-92 core subset, as well as some SQL-99 features.

This section provides an overview of the current SQL language by describing the
statements, built-in functions, data types, expressions, and special characters it contains.

Capitalization and special characters

Using the classes and methods of JDBC, you submit SQL statements to Derby as
strings. The character set permitted for strings containing SQL statements is Unicode.
Within these strings, the following rules apply:

Double quotation marks delimit special identifiers referred to in SQL-92 as delimited
identifiers.

Single quotation marks delimit character strings.

Within a character string, to represent a single quotation mark or apostrophe, use
two single quotation marks. (In other words, a single quotation mark is the escape
character for a single quotation mark.)

A double quotation mark does not need an escape character. To represent a double
guotation mark, simply use a double quotation mark. However, note that in a Java
program, a double quotation mark requires the backslash escape character.

Example:

-- a single quotation mark is the escape character
-- for a“single quotation nark

VALUES Joe''s unbrella'
ij, you don't need o escape the double quotation marks
VALUES He'said, "hello

n = stnt.execut eUpdat eg)
"UPDATE aTabl e setStringcol = 'He said, \"hello!\""");

SQL keywords are case-insensitive. For example, you can type the keyword
SELECT as SELECT, Select, select, or SELECT.

SQL-92-style identifiers are case-insensitive (see SQL92ldentifier), unless they are
delimited.

Java-style identifiers are always case-sensitive.

* is a wildcard within a SelectExpression. See The * wildcard. It can also be the
multiplication operator. In all other cases, it is a syntactical metasymbol that flags
items you can repeat O or more times.

% and __ are character wildcards when used within character strings following a
LIKE operator (except when escaped with an escape character). See Boolean
expression.

Two dashes (--) and a newline character delimit a comment, as per the SQL-92
standard. The two dashes start the comment and the newline character ends the
comment.

SQL identifiers

An identifier is the representation within the language of items created by the user, as
opposed to language keywords or commands. Some identifiers stand for dictionary
objects, which are the objects you create- such as tables, views, indexes, columns, and
constraints- that are stored in a database. They are called dictionary objects because
Derby stores information about them in the system tables, sometimes known as a data
dictionary. SQL also defines ways to alias these objects within certain statements.

Each kind of identifier must conform to a different set of rules. Identifiers representing
dictionary objects must conform to SQL-92 identifier rules and are thus called

10

Copyright

SQL92ldentifiers.

Rules for SQL92 identifiers

Ordinary identifiers are identifiers not surrounded by double quotation marks. Delimited
identifiers are identifiers surrounded by double quotation marks.

An ordinary identifier must begin with a letter and contain only letters, underscore
characters (), and digits. The permitted letters and digits include all Unicode letters and
digits, but Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

A delimited identifier can contain any characters within the double quotation marks. The
enclosing double quotation marks are not part of the identifier; they serve only to mark its
beginning and end. Spaces at the end of a delimited identifier are insignificant
(truncated). Derby translates two consecutive double quotation marks within a delimited
identifier as one double quotation mark-that is, the "translated" double quotation mark
becomes a character in the delimited identifier.

Periods within delimited identifiers are not separators but are part of the identifier (the
name of the dictionary object being represented).

So, in the following example:
"A. B"

is a dictionary object, while
"A"."B"

is a dictionary object qualified by another dictionary object (such as a column named "B"
within the table "A").

SQL92Identifier

An SQL92Identifier is a dictionary object identifier that conforms to the rules of SQL-92.
SQL-92 states that identifiers for dictionary objects are limited to 128 characters and are
case-insensitive (unless delimited by double quotes), because they are automatically
translated into uppercase by the system. You cannot use reserved words as identifiers
for dictionary objects unless they are delimited. If you attempt to use a name longer than
128 characters, SQLException X0X11 is raised.

Derby defines keywords beyond those specified by the SQL-92 standard (see SQL
reserved words).

Example

-- the view name is stored in the

-- system cat al ogs as. ANl DENTI FI ER

CREATE VI EW Anl dentifier (RECElIVED) AS VALUES 1

-- the view nane is stored in the system

-- catalogs with case intact o

CREATE VI "ACaseSensitiveldentifier" (RECEIVED) AS VALUES 1

This section describes the rules for using SQL92ldentifiers to represent the following
dictionary objects.

Qualifying dictionary objects

Since some dictionary objects can be contained within other objects, you can qualify
those dictionary object names. Each component is separated from the next by a period.

11

Copyright

An SQL92Identifier is "dot-separated.” You qualify a dictionary object name in order to
avoid ambiguity.

column-Name

In many places in the SQL syntax, you can represent the name of a column by qualifying
it with a table-Name or correlation-Name.

In some situations, you cannot qualify a column-Name with a table-Name or a
correlation-Name, but must use a Simple-column-Name instead. Those situations are:

 creating a table (CREATE TABLE statement)
« specifying updatable columns in a cursor
« in a column's correlation name in a SELECT expression (see SelectExpression)
 in a column's correlation name in a TableExpression (see TableExpression)
You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT c11 AS col1, c12 AS col 2, ¢13 FROMt1l FOR UPDATE of c¢l11,c13

In this example, the correlation-Name col 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

[{ table-Nanme | correlation-Name } .] SQ.92ldentifier

Example

-- C.Country is a colum-Nane qualified with a
-- correl ation-Nane.

SELECT C. Country

FROM APP. Countries C

correlation-Name

A correlation-Name is given to a table expression in a FROM clause as a new name or
alias for that table. You do not qualify a correlation-Name with a schema-Name.

You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT c11 AS col1, cl12 AS col 2, c13 FROMt1l FOR UPDATE of c11,c13

In this example, the correlation-Name col 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

SQL92I denti fier

Example

-- Cis a correl ation-Nane
SELECT C. NAVE
FROM SAMP. STAFF C

new-table-Name

12

Copyright

A new-table-Name represents a renamed table. You cannot qualify a new-table-Name
with a schema-Name.

Syntax

SQL92I denti fier

Example
-- FlightBooks is a newtabl e-Nanme that does not include a schenma- Name
RENAME TABLE FLI GHTAVAI LABI LI TY TO FLI GHTAVAI LABLE

schemaName

A schemaName represents a schema. Schemas contain other dictionary objects, such as
tables and indexes. Schemas provide a way to hame a subset of tables and other
dictionary objects within a database.

You can explicitly create or drop a schema. The default user schema is the APP schema
(if no user name is specified at connection time). You cannot create objects in schemas
starting with SYS.

Thus, you can qualify references to tables with the schema name. When a schemaName
is not specified, the default schema name is implicitly inserted. System tables are placed
in the SYS schema. You must qualify all references to system tables with the SYS
schema identifier. For more information about system tables, see Derby System Tables.

A schema is hierarchically the highest level of dictionary object, so you cannot qualify a
schemaName.

Syntax

SQL92l dentifier

Example

-- SAMP. EMPLOYEE i s a tabl e- Nanme Euallfl ed by a schemaNane
SELECT COUNT(*) FROM SAMP. EMPLOY

You nmust qualify system catal og nanes with their schema, SYS
SELECT COUNT(*) F YS. SysCol umms

Simple-column-Name

A Simple-column-Name is used to represent a column when it cannot be qualified by a
table-Name or correlation-Name. This is the case when the qualification is fixed, as it is in
a column definition within a CREATE TABLE statement.

Syntax

SQL92I denti fier

Example

-- country is | e- cou - Nanme

CREATE TABLE CO\ITI NENT (COUNTRY VARCHAR; 26) NOT NULL PRI MARY KEY,
COUNTRY_I SO_CODE CHAR(2), REG ON V. (286))

synonym-Name

13

Copyright

table-Name

view-Name

index-Name

A synonym-Name represents a synonym for a table or a view. You can qualify a
synonym-Name with a schema-Name.

Syntax

[schemaNane.] SQL92l dentifier

A table-Name represents a table. You can qualify a table-Name with a schemaName.

Syntax

[schemaNane.] SQL92l dentifier

Example

SAMP. PRQJECT is a tabl e- Name that i ncl udes a schemaNane
SELECT COUNT(*) ROVI SAMVP. PRQJE

A view-Name represents a table or a view. You can qualify a view-Name with a
schema-Name.

Syntax

[schemaNane.] SQL92I dentifier

Example

-- This is ew allfledb a schenma- Nane
SELECTC&J RgJVI y RESUVE

An index-Name represents an index. Indexes live in schemas, so you can qualify their
names with schema-Names. Indexes on system tables are in the SYS schema.

Syntax

[schemaNane .] SQ.92ldentifier

Example

DROP | NDEX APP. ORI G NDEX;
-- Oiglndex is an index-Nane

W t hout chema- Nanme
CREATE | NDEX ORI G NDEX ON FLI GHTS ()

a s
ORI G_Al RPORT

constraint-Name

You cannot qualify constraint-names.

Syntax
SQL92I denti fi er

Example

14

Copyright

-- country fk2 is a constraint nanme
CREATE TABLE DETAI LED MAPS &CQJNTRY | SO CODE CHAR(2)
CONSTRAI NT country_fkZ REFERENCES COUNTRI ES)

cursor-Name

A cursor-Name refers to a cursor. No SQL language command exists to assign a name to
a cursor. Instead, you use the JDBC API to assign hames to cursors or to retrieve
system-generated names. For more information, see the Derby Developer's Guide. If you
assign a hame to a cursor, you can refer to that name from within SQL statements.

You cannot qualify a cursor-Name.

Syntax

SQ.92l dentifier

Example
st nt . execut eUpdat e(" UPDATE SAMP. STAFF SET COW = " +
"COW + 20 " + "WHERE CURRENT OF " + Result Set. get CursorNanme());

TriggerName
A TriggerName refers to a trigger created by a user.

Syntax

[schemaNane .] SQ.92l dentifier

Example

DROP TRI GGER TRI GL

Authorizationldentifier

User names within the Derby system are known as authorization identifiers. The
authorization identifier represents the name of the user, if one has been provided in the
connection request. The default schema for a user is equal to its authorization identifier.
User names can be case-sensitive within the authentication system, but they are always
case-insensitive within Derby's authorization system unless they are delimited. For more
information, see the Derby Developer's Guide.

Syntax

SQL92I denti fier

Example
CALL SYSCS_UTI L. SYSCS_SET DATABASE_PROPERTY(
' der by- dat abase. ful | AccessUsers', ' Anber, FRED)
Statements

This section provides manual pages for both high-level language constructs and parts
thereof. For example, the CREATE INDEX statement is a high-level statement that you
can execute directly via the JDBC interface. This section also includes clauses, which are

15

Copyright

not high-level statements and which you cannot execute directly but only as part of a
high-level statement. The ORDER BY and WHERE clauses are examples of this kind of
clause. Finally, this section also includes some syntactically complex portions of
statements called expressions, for example SelectExpression and TableSubquery. These
clauses and expressions receive their own manual pages for ease of reference.

Unless it is explicitly stated otherwise, you can execute or prepare and then execute all
the high-level statements, which are all marked with the word statement, via the
interfaces provided by JDBC. This manual indicates whether an expression can be
executed as a high-level statement.

The sections provide general information about statement use, and descriptions of the
specific statements.

Interaction with the dependency system

Derby internally tracks the dependencies of prepared statements, which are SQL
statements that are precompiled before being executed. Typically they are prepared
(precompiled) once and executed multiple times.

Prepared statements depend on the dictionary objects and statements they reference.
(Dictionary objects include tables, columns, constraints, indexes, views, and triggers.)
Removing or modifying the dictionary objects or statements on which they depend
invalidates them internally, which means that Derby will automatically try to recompile the
statement when you execute it. If the statement fails to recompile, the execution request
fails. However, if you take some action to restore the broken dependency (such as
restoring the missing table), you can execute the same prepared statement, because
Derby will recompile it automatically at the next execute request.

Statements depend on one another-an UPDATE WHERE CURRENT statement depends
on the statement it references. Removing the statement on which it depends invalidates
the UPDATE WHERE CURRENT statement.

In addition, prepared statements prevent execution of certain DDL statements if there are
open results sets on them.

Manual pages for each statement detail what actions would invalidate that statement, if
prepared.

Here is an example using the Derby tool ij:

CREATE TABLE nyt abl e (rrycol I NT) ;
WS i nsert ed/ updat ed/ del e

NSERT | NTO nyt abl e VALUES (1) (2), (3);
ws i nsert ed/ updat ed/ del et e
- this exanple uses the ij corrrrand pr epar e,
- whi h prepares a statene
J> prepare pl AS ' | NSERT INTO M/Tabl e VALUES (4)'

1 depends on nytabl e;

Ij> execute pl;

row i nserted/ updat ed/ del et ed o
- Derby executes it w thout reconPl l'ing
ij> CREATE I NDEX i 1 ON mnyt abl e(rryco ;
rows inserted/ updat ed/ del ete

pl is tenporarily invali dat ed because of new i ndex
execute pl;
ow | nsert ed/ updat ed/ del et ed
- Der automatical ly reconpiles pl and executes it
ij> TABLE nyt abl e

rows inserted/ updat ed/ del et ed
rby pernmits you to drop table
ecause result set of pl is closed
owever, the statement pl is tenporarily invalidated
CREATE TABLE nyt abl e (nycol ng)
ws i nserted/updat ed/ del et ed
I NSERT | NTO nyt abl e VALUES (1) (2), (3);
ws i nserted/ updat ed/ del et ed

J

ij>
Oro
ij>1
3ro
-- t
|

ij>
c

o O D'O'QO

16

Copyright

ij> execute pl;
1 row i nserted/ updat ed/ del et ed) . .
-- Because pl is invalid, Derby tries to reconpile it
-- before executi nP.
-- It is successful and executes.
i j> DROP TABLE nyt abl e;
0 rows inserted/ updated/del et ed
-- statenent pl is now invalid, . .
-- and this time the atte_ant to reconpile it
-- upon execution wll fai
i]> execute pl,)
ROR 42X05: Tabl e/ Vi ew ' MYTABLE' does not exi st.

ALTER TABLE statement

The ALTER TABLE statement allows you to:
* add a column to a table
* add a constraint to a table
« drop an existing constraint from a table
* increase the width of a VARCHAR, CHAR VARYING, and CHARACTER VARYING
column
« override row-level locking for the table (or drop the override)
» change the increment value and start value of the identity column
» change the nullability constraint for a column
» change the default value for a column

Syntax

ALTER TABLE t abl e- Nanme

ADD COLUWN col umm-definition |
ADD CONSTRAI NT cl ause 6?]
DROP { PRI MARY KEY | FOREI GN KEY constrai nt-nange UNI QUE
~ constraint-name | CHECK constraint-nane | TRAI NT
constr ai nt-nanEJvN)
ALTER % CcoL colum-al teration |
LOCKSI ZE { ROW| TABLE }

column-definition

Col umm- | evel - constrain

Si npl e- col unm- NaneDat a_TyPe])
[WTH] DEFAULT {Constant Expression | NULL }]

column-alteration

col um- Nane SET DATA TYPE VARCHAR(i nt eger% |
col um-name SET_| NCREMENT BY i nt eger - const ant |
col utm-nane RESTART W TH i nt eger - const ant |

col um- nane NOTH] NULL b

col um- nane W TH | DEFAULT defaul t-val ue

In the column-alteration, SET INCREMENT BY integer-constant, specifies the interval
between consecutive values of the identity column. The next value to be generated for
the identity column will be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY attribute.

RESTART WITH integer-constant specifies the next value to be generated for the identity
column. RESTART WITH is useful for a table that has an identity column that was
defined as GENERATED BY DEFAULT and that has a unique key defined on that
identity column. Because GENERATED BY DEFAULT allows both manual inserts and
system generated values, it is possible that manually inserted values can conflict with
system generated values. To work around such conflicts, use the RESTART WITH
syntax to specify the next value that will be generated for the identity column. Consider
the following example, which involves a combination of automatically generated data and
manually inserted data:

17

Copyright

CREATE TABLE tauto(i | NT GENERATED BY DEFAULT AS | DENTITY, k | NT)
CREATE UNI SJE I NDEX tautolnd ON tauto(i)
I NSERT | NTO tauto(k) values 1,2

The system will automatically generate values for the identity column. But now you need
to manually insert some data into the identity column:

I NSERT | NTO tauto VALUES (3,3
I NSERT | NTO tauto VALUES (4, 4
I NSERT | NTO tauto VALUES (5,5

The identity column has used values 1 through 5 at this point. If you now want the
system to generate a value, the system will generate a 3, which will result in a unique key
exception because the value 3 has already been manually inserted. To compensate for
the manual inserts, issue an ALTER TABLE statement for the identity column with
RESTART WITH 6:

ALTER TABLE tauto ALTER COLUMN i RESTART W TH 6

ALTER TABLE does not affect any view that references the table being altered. This
includes views that have an "*" in their SELECT list. You must drop and re-create those
views if you wish them to return the new columns.

Adding columns

The syntax for the column-definition for a new column is the same as for a column in a
CREATE TABLE statement. This means that a column constraint can be placed on the
new column within the ALTER TABLE ADD COLUMN statement. However, a column
with a NOT NULL constraint can be added to an existing table if you give a default value;
otherwise, an exception is thrown when the ALTER TABLE statement is executed.

Just as in CREATE TABLE, if the column definition includes a unique or primary key
constraint, the column cannot contain null values, so the NOT NULL attribute must also
be specified (SQLSTATE 42831).

Note: If a table has an UPDATE trigger without an explicit column list, adding a column to
that table in effect adds that column to the implicit update column list upon which the
trigger is defined, and all references to transition variables are invalidated so that they
pick up the new column.

Adding constraints

ALTER TABLE ADD CONSTRAINT adds a table-level constraint to an existing table. Any
supported table-level constraint type can be added via ALTER TABLE. The following
limitations exist on adding a constraint to an existing table:

* When adding a foreign key or check constraint to an existing table, Derby checks
the table to make sure existing rows satisfy the constraint. If any row is invalid,
Derby throws a statement exception and the constraint is not added.

* All columns included in a primary key must contain non null data and be unique.

ALTER TABLE ADD UNIQUE or PRIMARY KEY provide a shorthand method of
defining a primary key composed of a single column. If PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the PRIMARY KEY(C)
clause were specified as a separate clause. The column cannot contain null values,
so the NOT NULL attribute must also be specified.

For information on the syntax of constraints, see CONSTRAINT clause. Use the syntax
for table-level constraint when adding a constraint with the ADD TABLE ADD
CONSTRAINT syntax.

Dropping constraints

18

Copyright

ALTER TABLE DROP CONSTRAINT drops a constraint on an existing table. To drop an
unnamed constraint, you must specify the generated constraint name stored in
SYS.SYSCONSTRAINTS as a delimited identifier.

Dropping a primary key, unique, or foreign key constraint drops the physical index that
enforces the constraint (also known as a backing index).

Modifying columns
The column-alteration allows you to alter the named column in the following ways:
* Increasing the length of an existing VARCHAR column. CHARACTER VARYING or
CHAR VARYING can be used as synonyms for the VARCHAR keyword.

To increase the width of a column of these types, specify the data type and new
size after the column name.

You are not allowed to decrease the width or to change the data type. You are not
allowed to increase the width of a column that is part of a primary or unique key
referenced by a foreign key constraint or that is part of a foreign key constraint.

« Specifying the interval between consecutive values of the identity column.

To set an interval between consecutive values of the identity column, specify the
integer-constant. You must previously define the column with the IDENTITY
attribute (SQLSTATE 42837). If there are existing rows in the table, the values in
the column for which the SET INCREMENT default was added do not change.

« Modifying the nullability constraint of a column.

You can add the NOT NULL constraint to an existing column. To do so there must
not be existing NULL values for the column in the table.

You can remove the NOT NULL constraint from an existing column. To do so the
column must not be used in a PRIMARY KEY or UNIQUE constraint.

« Changing the default value for a column.

Setting defaults

You can specify a default value for a new column. A default value is the value that is
inserted into a column if no other value is specified. If not explicitly specified, the default
value of a column is NULL. If you add a default to a new column, existing rows in the
table gain the default value in the new column.

For more information about defaults, see CREATE TABLE statement.

Changing the lock granularity for the table

The LOCKSIZE clause allows you to override row-level locking for the specific table, if
your system uses the default setting of row-level locking. (If your system is set for
table-level locking, you cannot change the locking granularity to row-level locking,
although Derby allows you to use the LOCKSIZE clause in such a situation without
throwing an exception.) To override row-level locking for the specific table, set locking for
the table to TABLE. If you created the table with table-level locking granularity, you can
change locking back to ROW with the LOCKSIZE clause in the ALTER TABLE
STATEMENT. For information about why this is sometimes useful, see Tuning Derby.

Examples

-- Add a new columm with a colum-I|evel constraint
-- to an existing table]

-- An exception will be thrown if the table

-- contains any rows o

-- since the newcol will be initialized to NULL
-- in all existing rows in the table

19

Copyright

ALTER TABLE CI TIES ADD OOLUVN REGION VARCHAR(26)
CONSTRAI NT NEW CONSTRAI NT CHECK (REG ON | S ULL) ;

-- Add a new uni que constraint to an existi nE tabl e

-- An exception will be thrown if duplicate keys are found
ALTER TABLE SAMP. DEPARTMENT

ADD CONSTRAI NT NEW UNI QUE UNI QUE (DEPTNO) ;

-- add a new foreign key constraint to the

-- Cities table. Each row in Cties is checked

-- to nake sure it satisfied the constraints.

- - |f any rows don't satisfy the constraint, the
traint is not added

ALTER TABLE CI TIES ADD CONSTRAI NT COUNTRY

Forei gn Key (COUNTRY) REFERENCES COUNTRI ES (C(JJNTRY)

-- Add a primary key constraint to a table

- - Flrst create a new table

CREATE TABLE ACTIVITIES (CITY ID I NT NOT NULL

SEASO\I CHAR(2), ACTIVITY VARCF|AR%32) NOT NULL?

-~ You will not be able to add this constraint if the

-- colums you are including in the primary key have

-- null data or duplicate val ues)
ALTER TABLE Activities ADD PRI MARY KEY (city id, activity);

-- Drop a primary key constraint fromthe CI TIES table

ALTER TABLE Citi es DROP CONSTRAINT Cities PK;
Drop a foreign key constraint fromthe™ CITLES table
ALTER ABLE Cities CONSTRAI NT COUNTRI ES_FK;
add a DEPTNO colum with a default val ue of 1
ALTER TABLE SAMP. EMP_ACT ADD COLUWN DEPTNO I NT DEFAULT 1;
-- increase the width of a VARCHAR col u
ALTER TABLE SAWP. EMP_PHOTO ALTER PHOTO F(RMAT SET DATA TYPE VARCHAR(30);
-- _change the lock granularity of a table
ALTER TABLE SAMP. SALES LOCKSI ZE TABLE;

-- Rempbve the NOT NULL constraint fromthe MANAGER col umm
ALTER TABLE ErrpI ees ALTER COLUWN Manager NULL;

Add t L constraint to the SSN col um
ALTER TABLE Enpl oyees ALTER COLUWN ssn NOT NULL;

e the default value for the SALARY col um
ALTER T BLE Enpl oyees ALTER COLUWN Sal ary DEFAULT 1000.0

Results

An ALTER TABLE statement causes all statements that are dependent on the table
being altered to be recompiled before their next execution. ALTER TABLE is not allowed
if there are any open cursors that reference the table being altered.

CREATE statements

Use the Create statements with functions, indexes, procedures, schemas, synonyms,
tables, triggers, and views.

CREATE FUNCTION statement

The CREATE FUNCTION statement allows you to create Java functions, which you can
then use in an expression.

The function owner and the database owner automatically gain the EXECUTE privilege
on the function, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the function and database owners.

Syntax

CREATE _FUNCTI ON functi on- nane (RL_I_Functi onPar anet er]
[, FunctionParaneter]] *) URNS Dat aType [FunctionEl emrent] *

function-Name

[schemaNane.] SQ.92ldentifier

20

Copyright

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

FunctionParameter

[paraneter-Nane]| DataType

PararameterName must be unique within a function.

The syntax of DataType is described in Data types.

Note: Data-types such as BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE FUNCTION statement.

FunctionElement

{LANGUAGE i\lAJAVA }.
EXTERNAL ME strin
PARAMVETER STYLE JAV,

NO S CONTAI NS S READS SQL DATA
i RETORKS| NOCL O U1 he T | CASLED N RuLL 1 NpUT }

LANGUAGE

JAVA- the database manager will call the function as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the function is executed, and takes
the following form:

cl ass_nane. net hod_nane

The External Name cannot have any extraneous spaces.

PARAMETER STYLE

JAVA - The function will use a parameter-passing convention that conforms to the Java
language and SQL Routines specification. INOUT and OUT parameters will be passed as
single entry arrays to facilitate returning values. Result sets are returned through
additional parameters to the Java method of type java.sql.ResultSet[] that are passed
single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA
Indicates whether the function issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a
different error.

NO SQL
Indicates that the function cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included in
the function. Statements that are not supported in any stored function return a
different error. This is the default value.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

21

Copyright

Specifies whether the function is called if any of the input arguments is null. The result is

the null value.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked if any of the input arguments is null. The
result is the null value.

CALLED ON NULL INPUT
Specifies that the function is invoked if any or all input arguments are null. This
specification means that the function must be coded to test for null argument values.
The function can return a null or non-null value. This is the default setting.

The function elements may appear in any order, but each type of element can only
appear once. A function definition must contain these elements:

* LANGUAGE

* PARAMETER STYLE

+ EXTERNAL NAME

Example

CREATE FUNCTI ON TO DEGREES(RADI ANS DOUBLE) RETURNS DOUBLE
PARAVETER STYLE JAVA NO S LANGUAGE JAVA
EXTERNAL NAME ' j ava. |l ang. Mat h. t oDegr ees'

CREATE INDEX statement

A CREATE INDEX statement creates an index on a table. Indexes can be on one or
more columns in the table.

Syntax

CREATE [UNI QU | NDEX i ndex- Nane
ON t abl e- Nane Si npl e- col uMm- Nane ASC | DESC]
, Sinpl e-col um-Nane [ASC | SC1] *)

The maximum number of columns for an index key in Derby is 16.
An index name cannot exceed 128 characters.

A column must not be named more than once in a single CREATE INDEX statement.
Different indexes can name the same column, however.

Derby can use indexes to improve the performance of data manipulation statements (see
Tuning Derby). In addition, UNIQUE indexes provide a form of data integrity checking.

Index names are unique within a schema. (Some database systems allow different tables
in a single schema to have indexes of the same name, but Derby does not.) Both index
and table are assumed to be in the same schema if a schema name is specified for one
of the names, but not the other. If schema names are specified for both index and table,
an exception will be thrown if the schema names are not the same. If no schema name is
specified for either table or index, the current schema is used.

By default, Derby uses the ascending order of each column to create the index.
Specifying ASC after the column name does not alter the default behavior. The DESC
keyword after the column name causes Derby to use descending order for the column to
create the index. Using the descending order for a column can help improve the
performance of queries that require the results in mixed sort order or descending order
and for queries that select the minimum or maximum value of an indexed column.

If a qualified index name is specified, the schema name cannot begin with SYS.

Indexes and constraints

22

Copyright

Unique, primary key, and foreign key constraints generate indexes that enforce or "back"
the constraint (and are thus sometimes called backing indexes). If a column or set of
columns has a UNIQUE or PRIMARY KEY constraint on it, you can not create an index
on those columns. Derby has already created it for you with a system-generated name.
System-generated names for indexes that back up constraints are easy to find by
guerying the system tables if you name your constraint. Adding a PRIMARY KEY or
UNIQUE constraint when an existing UNIQUE index exists on the same set of columns
will result in two physical indexes on the table for the same set of columns. One index is
the original UNIQUE index and one is the backing index for the new constraint.

To find out the name of the index that backs a constraint called FLIGHTS PK:

SELECT CONGLOVERATENAME FROM SYS. SYSCONGLOMERATES,
SYS. SYSCONSTRAI NTS WHERE

SYS. SYSCONGLOVERATES. TABLElI D = SYSCONSTRAI NTS. TABLEI D
AND CONSTRAI NTNAME = ' FLI GATS_PK'

CREATE | NDEX Ori PI ndex ON Flights(ori 9_ai rPort);

-- money is usually ordered fromgreatest to | east,
-- so create the index using the descendi nE or der
CREATE | NDEX PAY_DESC ON SAMP. EMPLOYEE (SALARY) ;

-- use a larger page size for the index

cal |
SYSCS UTI L. SYSCS SET_DATABASE PR(PERTYE‘ der by. st or age. pageSi ze' , ' 8192");
CREATE | NDEX | XSALE ON SAMP. SALES (SALES);

cal |
SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(' der by. st or age. pageSi ze' , NULL) ;

Page size and key size

Note: The size of the key columns in an index must be equal to or smaller than half the
page size. If the length of the key columns in an existing row in a table is larger than half
the page size of the index, creating an index on those key columns for the table will fail.
This error only occurs when creating an index if an existing row in the table fails the
criteria. After an index is created, inserts may fail if the size of their associated key
exceeds the criteria.

Statement dependency system

Prepared statements that involve SELECT, INSERT, UPDATE, UPDATE WHERE
CURRENT, DELETE, and DELETE WHERE CURRENT on the table referenced by the
CREATE INDEX statement are invalidated when the index is created. Open cursors on
the table are not affected.

CREATE PROCEDURE statement

The CREATE PROCEDURE statement allows you to create Java stored procedures,
which you can then call using the CALL PROCEDURE statement.

The procedure owner and the database owner automatically gain the EXECUTE privilege
on the procedure, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the procedure and database owners.

Syntax

CREATE PROCEDURE procedure-Nanme ([ProcedureParaneter
[, ProcedureParaneter]] *)
[ProcedureEl enent] *

procedure-Name

[schemaNane.] SQ.92ldentifier

If schema-Name is not provided, the current schema is the default schema. If a qualified

23

Copyright

procedure name is specified, the schema name cannot begin with SYS.

ProcedureParameter
[{ IN] QUT | INOQUT }] [paraneter-Nane] DataType

The default value for a parameter is IN. ParameterName must be unique within a
procedure.

The syntax of DataType is described in Data types.

Note: Data-types such as BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE PROCEDURE statement.

ProcedureElement

LADYNAM C] RESUI}_T SETS | NTEGER

NGUAGE
stri n
PARANETER STYLE JA
}{ SQL | I\/DDIFIESSQ_DATA|CG\ITAINSSQ_| READS SQL DATA }

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure. Default is
no (zero) dynamic result sets.

LANGUAGE

JAVA- the database manager will call the procedure as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the procedure is executed, and takes
the following form:

cl ass_nane. net hod_nane

The External Name cannot have any extraneous spaces.

PARAMETER STYLE

JAVA - The procedure will use a parameter-passing convention that conforms to the
Java language and SQL Routines specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values. Result sets are returned
through additional parameters to the Java method of type java.sql.ResultSet [] that are
passed single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA
Indicates whether the stored procedure issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the stored procedure. Statements that are not supported in any stored
procedure return a different error. MODIFIES SQL DATA is the default value.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements

READS SQL DATA

24

Copyright

Indicates that some SQL statements that do not modify SQL data can be included in
the stored procedure. Statements that are not supported in any stored procedure
return a different error.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement except
statements that are not supported in stored procedures.

The procedure elements may appear in any order, but each type of element can only
appear once. A procedure definition must contain these elements:

« LANGUAGE

« PARAMETER STYLE

« EXTERNAL NAME

Example

CREATE _PROCEDURE SALES. TOTAL REVENUEEI N S_MONTH | NTEGER,

IN S YEAR | NTEGER, OUT TOTAL DEC NGU)_
PARAVETER STYLE JAVA READS SQL DATA LANGUACGE JAVA EXTERNAL NAME

' com acne. sal es. cal cul at eRevenueByMont h'
CREATE SCHEMA statement

A schema is a way to logically group objects in a single collection and provide a unique
namespace for objects.

Syntax
CREATE SCHEMA { [schermaName AUTHCORI ZATI ON user-name] | [schemaNane] |
[AUTHORI ZATI user-name | }

The CREATE SCHEMA statement is used to create a schema. A schema name cannot
exceed 128 characters. Schema names must be unique within the database.

CREATE SCHEMA examples
To create a schema for airline-related tables and give the authorization ID ani t a access
to all of the objects that use the schema, use the following syntax:

CREATE SCHEMA FLI GHTS AUTHORI ZATI ON anit a

To create a schema employee-related tables, use the following syntax:

CREATE SCHEMVA EMP

To create a schema that uses the same name as the authorization ID t akum , use the
following syntax:

CREATE SCHEMA AUTHORI ZATI ON t akumi

To create a table called avai | abi | ity inthe EMP and FLI GHTS schemas, use the
following syntax:

CREATE TABLE FLI GHTS. AVAI LABI LI TY
FLI GAT | D CHARE6 NOT NULL, SEGVENT NUMBER | NT NOT NULL,
LI GAT DATE DAT NULL, ECONOMY SEATS TAKEN I NT,
BUSI NESS SEATS AKEN I NT " FI RSTCLASS_SEATS_TAKEN | NT,
CONSTRAI NT FLT _AVAI L
PRI MARY KEY (FLCI GHT_TD SEGVENT_NUMBER, FLI GHT_DATE))

CREATE TABLE EI\/P AVAI LABI LI TY
N, (HOTEL_I D I NT NOT NULL, BOOKI NG DATE DATE NOT NULL, ROOVS_TAKEN

CONSTRAI NT HOTELAVAI L_PK PRI MARY KEY (HOTEL_I D, BOOKI NG DATE))
CREATE SYNONYM statement

25

Copyright

Use the CREATE SYNONYM statement to provide an alternate name for a table or a
view that is present in the same schema or another schema. You can also create
synonyms for other synonyms, resulting in nested synonyms. A synonym can be used
instead of the original qualified table or view name in SELECT, INSERT, UPDATE,
DELETE or LOCK TABLE statements. You can create a synonym for a table or a view
that doesn't exist, but the target table or view must be present before the synonym can
be used.

Synonyms share the same namespace as tables or views. You cannot create a synonym
with the same name as a table that already exists in the same schema. Similarly, you
cannot create a table or view with a name that matches a synonym already present.

A synonym can be defined for a table/view that does not exist when you create the
synonym. If the table or view doesn't exist, you will receive a warning message
(SQLSTATE 01522). The referenced object must be present when you use a synonym in
a DML statement.

You can create a nested synonym (a synonym for another synonym), but any attempt to
create a synonym that results in a circular reference will return an error message
(SQLSTATE 42916).

Synonyms cannot be defined in system schemas. All schemas starting with 'SYS' are
considered system schemas and are reserved by Derby.

A synonym cannot be defined on a temporary table. Attempting to define a synonym on a
temporary table will return an error message (SQLSTATE XCL51).

Syntax

CREATE SYNONYM synonym Name FOR { view Nane | tabl e-Nane }

The synonym-Name in the statement represents the synonym name you are giving the
target table or view, while the view-Name or table-Name represents the original name of
the target table or view.

Example
CREATE SYNONYM SAMP.T1 FOR SAMP. TABLEWITHLONGNAME
CREATE TABLE statement

A CREATE TABLE statement creates a table. Tables contain columns and constraints,
rules to which data must conform. Table-level constraints specify a column or columns.
Columns have a data type and can specify column constraints (column-level constraints).

The table owner and the database owner automatically gain the following privileges on
the table and are able to grant these privileges to other users:

e INSERT

o SELECT

 REFERENCES

* TRIGGER

+ UPDATE
These privileges cannot be revoked from the table and database owners.

For information about constraints, see CONSTRAINT clause.
You can specify a default value for a column. A default value is the value to be inserted
into a column if no other value is specified. If not explicitly specified, the default value of a

column is NULL. See Column default.

You can specify storage properties such as page size for a table by calling the
SYSCS_UTI L. SYSCS _SET_DATABASE PROPERTY system procedure.

26

Copyright

If a qualified table name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TABLE t abl e- Nane
{col um-definition

constraint}
, {colum-definitio

I
vel constraint}] *)

S5—

Example

, BOOKI NG_DATE DATE NOT NULL,
TAKEN | NT DEFAULT 0, PRI MARY KEY (HOTEL | D, BOOKI NG DATE));
-- the table-Tevel primry key definition al [ows you To
-- include two colums in the primary key definition
PRI MARY KEY (hotel _id, booking_dat e)é/
-- assign an identity colum aftribute to an | NTEGER
-- colum, and al so define a primary key constraint
-- _on the colum
CREATE TABLE PECPLE
PERSON | D | NT NOT NULL GENERATED ALWAYS AS | DENTI TY
TRATNT PECPLE_PK PRI MARY KEY, PERSON Vﬁ\n_RCI—|AR(26));

CREATE TABLE HOTELAVAI LABI LI TY
(HOTEL I D I NT NOT NULL

-- assign an identity colum attribute to a SMALLI
-- colum with an initial value of 5 and an increnent val ue

-- of b5.
CREATE TABLE GROUPS
GROUP | D SMALLI NT NOT NULL GENERATED ALWAYS AS | DENTI TY

ESTART‘W TH 5, | NCREMENT BY 5), ADDRESS VARCHAR(100), PHONE
VARCHAR(15)) ;

Note: For more examples of CREATE TABLE statements using the various constraints,
see CONSTRAINT clause.
column-definition:

|
[

e_

(9]

Si np ol umm- NaneDat aT%/pe_

| um-| evel -constraint]*)

W TH] DEFAULT { Constant Expression | NULL }
| gener at ed- col unm- spec

Col'um-1 evel -constraint]*

9

The syntax of Data-Type is described in Data types.

The syntaxes of Column-level-constraint and Table-level constraint are described in
CONSTRAINT clause.

Column default

For the definition of a default value, a ConstantExpression is an expression that does not
refer to any table. It can include constants, date-time special registers, current schemas,
users, and null.

generated-column-spec:

GENERATED ﬂ_ ALVWAYS | BY DEFAULT } AS | DENTITY
(START W TH I nt eger Const ant
, | NCREMENT BY IntegerConstant])] 1 1]

Identity column attributes

For SMALLINT, INT, and BIGINT columns with identity attributes, Derby automatically
assigns increasing integer values to the column. Identity column attributes behave like
other defaults in that when an insert statement does not specify a value for the column,
Derby automatically provides the value. However, the value is not a constant; Derby
automatically increments the default value at insertion time.

The IDENTITY keyword can only be specified if the data type associated with the column
is one of the following exact integer types.
e SMALLINT

27

Copyright

o INT
* BIGINT

There are two kinds of identity columns in Derby: those which are GENERATED
ALWAYS and those which are GENERATED BY DEFAULT.

GENERATED ALWAYS

An identity column that is GENERATED ALWAYS will increment the default value on
every insertion and will store the incremented value into the column. Unlike other
defaults, you cannot insert a value directly into or update an identity column that is
GENERATED ALWAYS. Instead, either specify the DEFAULT keyword when
inserting into the identity column, or leave the identity column out of the insertion

column list altogether. For example:

create tabl e ?reetl ngs

gener at ed al ways as |dent|t?/l ch char(50))

insert i nt o greetings val ues

DEFAULT

insert into greetings(ch) val ues ('bonjour');

Automatically generated values in a GENERATED ALWAYS identity column are
unique. Creating an identity column does not create an index on the column.

GENERATED BY DEFAULT

An identity column that is GENERATED BY DEFAULT will only increment and use
the default value on insertions when no explicit value is given. Unlike GENERATED
ALWAYS columns, you can specify a particular value in an insertion statement to be
used instead of the generated default value.

To use the generated default, either specify the DEFAULT keyword when inserting
into the identity column, or just leave the identity column out of the insertion column
list. To specify a value, included it in the insertion statement. For example:

create table reetings

generat ed by default as identity, ch char(50));

i
-- speci %/ vaI ue "
|nsert into

-- use generated de

greetln?é val ues (1, 'hi');

insert into greeti n?s val ues (DEFAULT, 'salut');

-- use generated d

insert into greeti ngs(ch) val ues ('bonjour');

Note that unlike a GENERATED ALWAYS column, a GENERATED BY DEFAULT
column does not guarantee uniqueness. Thus, in the above example, the hi and
sal ut rows will both have an identity value of "1", because the generated column
starts at "1" and the user-specified value was also "1". To prevent duplication,
especially when loading or importing data, create the table using the START WITH
value which corresponds to the first identity value that the system should assign. To
check for this condition and disallow it, you can use a primary key or unique
constraint on the GENERATED BY DEFAULT identity column.

By default, the initial value of an identity column is 1, and the amount of the increment is
1. You can specify non-default values for both the initial value and the interval amount
when you define the column with the key words STARTS WITH and INCREMENT BY.
And if you specify a negative number for the increment value, Derbydecrements the
value with each insert. If this value is 0, or positive, Derby increments the value with each

insert.

The maximum and minimum values allowed in identity columns are determined by the
data type of the column. Attempting to insert a value outside the range of values
supported by the data type raises an exception.

Table 1. Maximum and Minimum Values for Columns with Generated Column

Specs
Data type Maximum Value Minimum Value
SMALLINT 32767 (java.lang.Short. MAX_VALUE) -32768 (java.lang.Short.MIN_VALUE)

28

Copyright

Data type Maximum Value Minimum Value

INT 2147483647 -2147483648
(java.lang.Integer.MAX_VALUE) (java.lang.Integer.MIN_VALUE)

BIGINT 9223372036854775807 -9223372036854775808
(java.lang.Long.MAX_VALUE) (java.lang.Long.MIN_VALUE)

Automatically generated values in an identity column are unique. Use a primary key or
unigue constraint on a column to guarantee uniqueness. Creating an identity column
does not create an index on the column.

The | DENTI TY_VAL_LQOCAL function is a non-deterministic function that returns the most
recently assigned value for an identity column. See IDENTITY_VAL LOCAL for more
information.

Note: Specify the schema, table, and column name using the same case as those names
are stored in the system tables--that is, all upper case unless you used delimited
identifiers when creating those database objects.

Derby keeps track of the last increment value for a column in a cache. It also stores the
value of what the next increment value will be for the column on disk in the
AUTOINCREMENTVALUE column of the SYS.SYSCOLUMNS system table. Rolling
back a transaction does not undo this value, and thus rolled-back transactions can leave
"gaps" in the values automatically inserted into an identity column. Derby behaves this
way to avoid locking a row in SYS.SYSCOLUMNS for the duration of a transaction and
keeping concurrency high.

When an insert happens within a triggered-SQL-statement, the value inserted by the
triggered-SQL-statement into the identity column is available from Connectioninfo only
within the trigger code. The trigger code is also able to see the value inserted by the
statement that caused the trigger to fire. However, the statement that caused the trigger
to fire is not able to see the value inserted by the triggered-SQL-statement into the
identity column. Likewise, triggers can be nested (or recursive). An SQL statement can
cause trigger T1 to fire. T1 in turn executes an SQL statement that causes trigger T2 to
fire. If both T1 and T2 insert rows into a table that cause Derby to insert into an identity
column, trigger T1 cannot see the value caused by T2's insert, but T2 can see the value
caused by T1's insert. Each nesting level can see increment values generated by itself
and previous nesting levels, all the way to the top-level SQL statement that initiated the
recursive triggers. You can only have 16 levels of trigger recursion.

Example

create table gre ngs
(i int ?Soera ed by default as identity (START WTH 2, | NCREMENT BY 1),

ch char)?
-- sp eC| ue "1":)
|nsert o] greetln]gs values (1, 'hi');
-- use generat ed de

insert into greeti n?s vaI ues (DEFAULT, 'salut');
-- use generat ed de
insert into greeti ngs(ch) val ues (' bonjour');

CREATE TRIGGER statement

A trigger defines a set of actions that are executed when a database event occurs on a
specified table. A database event is a delete, insert, or update operation. For example, if
you define a trigger for a delete on a particular table, the trigger's action occurs whenever
someone deletes a row or rows from the table.

Along with constraints, triggers can help enforce data integrity rules with actions such as

cascading deletes or updates. Triggers can also perform a variety of functions such as
issuing alerts, updating other tables, sending e-mail, and other useful actions.

29

Copyright

You can define any number of triggers for a single table, including multiple triggers on the
same table for the same event.

You can create a trigger in any schema where you are the schema owner. To create a
trigger on a table that you do not own, you must be granted the TRIGGER privilege on
that table. The database owner can also create triggers on any table in any schema.

The trigger does not need to reside in the same schema as the table on which the trigger
is defined.

If a qualified trigger name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TRI GGER Tri gger Nane
AFTER | NO_CASCADE BEFORE }
I{\lSElRT DELETE | UPDATE [~ OF col umm-Name [, columm-Nane]*] }
abl e- Nane
[: Ref er enci g&(lil/ause]]_
OR EACH { l STATEMENT } MODE DB2SQL
Tri gger ed- SQL- st at enent

Before or after: when triggers fire
Triggers are defined as either Before or After triggers.

« Before triggers fire before the statement's changes are applied and before any
constraints have been applied. Before triggers can be either row or statement
triggers (see Statement versus row triggers).

* After triggers fire after all constraints have been satisfied and after the changes
have been applied to the target table. After triggers can be either row or statement
triggers (see Statement versus row triggers).

Insert, delete, or update: what causes the trigger to fire
A trigger is fired by one of the following database events, depending on how you define it
(see Syntax above):

* INSERT

* UPDATE

« DELETE

You can define any number of triggers for a given event on a given table. For update, you
can specify columns.
Referencing old and new values: the referencing clause

Many triggered-SQL-statements need to refer to data that is currently being changed by
the database event that caused them to fire. The triggered-SQL-statement might need to
refer to the new (post-change or "after") values.

Derby provides you with a number of ways to refer to data that is currently being changed
by the database event that caused the trigger to fire. Changed data can be referred to in
the triggered-SQL-statement using transition variables or transition tables. The
referencing clause allows you to provide a correlation name or alias for these transition
variables by specifying OLD/NEW AS correlation-Name .

For example, if you add the following clause to the trigger definition:

REFERENCI NG OLD AS DELETEDROW

you can then refer to this correlation name in the triggered-SQL-statement:

DELETE FROM Hot el Avai |l ability WHERE hotel _id = DELETEDROW hotel _id
The OLD and NEW transition variables map to a java.sgl.ResultSet with a single row.

30

Copyright

Note: Only row triggers (see Statement versus row triggers) can use the transition
variables. INSERT row triggers cannot reference an OLD row. DELETE row triggers
cannot reference a NEW row.

For statement triggers, transition tables serve as a table identifier for the
triggered-SQL-statement or the trigger qualification. The referencing clause allows you to
provide a correlation name or alias for these transition tables by specifying
OLD_TABLE/NEW_TABLE AS correlation-Name

For example:

REFERENCI NG OLD_TABLE AS Del et edHot el s

allows you to use that new identifier (DeletedHotels) in the triggered-SQL-statement:

DELETE FROM Hot el Avai | ability WHERE hotel _id IN
(SELECT hot el _i d FROM Del et edHot el s)

The old and new transition tables map to a java.sql.ResultSet with cardinality equivalent
to the number of rows affected by the triggering event.

Note: Only statement triggers (see Statement versus row triggers) can use the transition
tables. INSERT statement triggers cannot reference an OLD table. DELETE statement
triggers cannot reference a NEW table.

The referencing clause can designate only one new correlation or identifier and only one
old correlation or identifier. Row triggers cannot designate an identifier for a transition
table and statement triggers cannot designate a correlation for transition variables.

Statement versus row triggers
You must specify whether a trigger is a statement trigger or a row trigger:
 statement triggers

A statement trigger fires once per triggering event and regardless of whether any
rows are modified by the insert, update, or delete event.

« row triggers

A row trigger fires once for each row affected by the triggering event. If no rows are
affected, the trigger does not fire.

Note: An update that sets a column value to the value that it originally contained (for
example, UPDATE T SET C = C) causes a row trigger to fire, even though the value of
the column is the same as it was prior to the triggering event.

Triggered-SQL-statement
The action defined by the trigger is called the triggered-SQL-statement (in Syntax above,
see the last line). It has the following limitations:
* It must not contain any dynamic parameters (?).
* It must not create, alter, or drop the table upon which the trigger is defined.
It must not add an index to or remove an index from the table on which the trigger is
defined.
* It must not add a trigger to or drop a trigger from the table upon which the trigger is
defined.
« It must not commit or roll back the current transaction or change the isolation level.
« Before triggers cannot have INSERT, UPDATE or DELETE statements as their
action.
« Before triggers cannot call procedures that modify SQL data as their action.

The triggered-SQL-statement can reference database objects other than the table upon
which the trigger is declared. If any of these database objects is dropped, the trigger is
invalidated. If the trigger cannot be successfully recompiled upon the next execution, the
invocation throws an exception and the statement that caused it to fire will be rolled back.

31

Copyright

For more information on triggered-SQL-statements, see the Derby Developer's Guide.

Order of execution
When a database event occurs that fires a trigger, Derby performs actions in this order:
« |t fires No Cascade Before triggers.
« It performs constraint checking (primary key, unique key, foreign key, check).
« |t performs the insert, update, or delete.
« It fires After triggers.

When multiple triggers are defined for the same database event for the same table for the
same trigger time (before or after), triggers are fired in the order in which they were
created.

-- Statenents and triggers:

CREATE TRI GGER t1 NO CASCADE BEFORE UPDATE ON x
FOR EACH ROW MODE DB2SQL)
val ues app.notifyEmail (" Jerry', 'Table x is about to be updated');

CREATE TRI GGER FLI GHTSDELETE
AFTER DELETE ON FLI GATS
REFERENCI NG OLD TABLE AS DELETEDFLI| GHTS
FOR EACH STATEMENT MODE DB2S
DELETE FROM FLI GHTAVAI LABI LI VWHERE FLIGHT_ID IN
(SELECT FLI GHT_I D FROM DELETEDFLI GHTS) ;

CREATE TRI GGER FLI GHTSDELETES
AFTER DELETE ON FLI GATS
REFERENCI NG OLD AS COLD
FOR _EACH ROWN MODE DB2SQL
DELETE FROM FLI GHTAVAI LABI LI TY WHERE FLIGHT_I D = OLD. FLI GHT_I DG

Note: You can find more examples in the Derby Developer's Guide.
Trigger recursion

The maximum trigger recursion depth is 16.

Related information
Special system functions that return information about the current time or current user are
evaluated when the trigger fires, not when it is created. Such functions include:
¢ CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
SESSION_USER
USER

ReferencingClause:

REFERENCI NG
i\la[ASl correlation-Name [{ OLD | NEW} [AS]
correlatlon o
OLD TABLE | NEWTABLE} [AS] Identifier [{ OLD_ TABLE | NEW TABLE }
AS] Tdenti f| er]
CREATE VIEW statement

Views are virtual tables formed by a query. A view is a dictionary object that you can use
until you drop it. Views are not updatable.

If a qualified view name is specified, the schema name cannot begin with SYS.

The view owner automatically gains the SELECT privilege on the view. The SELECT
privilege cannot be revoked from the view owner. The database owner automatically

32

Copyright

gains the SELECT privilege on the view and is able to grant this privilege to other users.
The SELECT privilege cannot be revoked from the database owner.

The view owner can only grant the SELECT privilege to other users if the view owner
also owns the underlying objects.

If the underlying objects that the view references are not owned by the view owner, the
view owner must be granted the appropriate privileges. For example, if the authorization
ID user 2 attempts to create a view called user 2. v2 that references table user 1.t 1
and function user 1. f _abs(), then user 2 must have the SELECT privilege on table
user 1. t 1 and the EXECUTE privilege on function user 1. f _abs().

The privilege to grant the SELECT privilege cannot be revoked. If a required privilege on
one of the underlying objects that the view references is revoked, then the view is
dropped.

Syntax

CREATE VI EWV| ew Name)
[Si npl e-col utm- Nane [, Sinple-colum-Nane] *)]
AS Qery

A view definition can contain an optional view column list to explicitly name the columns
in the view. If there is no column list, the view inherits the column names from the
underlying query. All columns in a view must be uniquely named.

CREATE VI EW SAMP. V1 CO_ SUM COL_DI FF)
AS SELECT COW - BONUS
FROM SAMP. EIVPLOYEE

CREATE VI EW SAMP. VEI\/P RES (RESUME)
o AS VALUES 'DeTores M Quintana', 'Heather A N cholls', 'Bruce
amson' ;

CREATE VI EW SAMP. PROJ COVBO
PRQINO,__ PRENDATE, PRSTAFF, MAJPRQJ)
S SELECT PRQINO,_ PRENDATE, PRSTAFF, MAJPRQJ
ROM SAMP. PROJECT UNI ON_ALL
SELECT PRO]NO EMSTDATE, EMPTI ME, EMPNO
FROM SAMP. EMP_ACT
WHERE EMPNO |'S NOT NULL;

Statement dependency system

View definitions are dependent on the tables and views referenced within the view
definition. DML (data manipulation language) statements that contain view references
depend on those views, as well as the objects in the view definitions that the views are
dependent on. Statements that reference the view depend on indexes the view uses;
which index a view uses can change from statement to statement based on how the
guery is optimized. For example, given:

CREATE TABLE T1 (Cl1 DOUBLE PRECI SION);

CREATE FUNCTI ON SI N DATA DOUBLE
BLE EXTERNAL ME 'java.l ang. Mat h. sin'
LANGUAGE JAVA PARAMETER STYLE JAVA;

CREATE VIEW V1 (Cl) AS SELECT SI N(Cl) FROM T1,;

the following SELECT:

SELECT * FROM V1

is dependent on view V1, table T1, and external scalar function SIN.

DROP Statements

33

Copyright

Use Drop statements with functions, indexes, procedures, schemas, synonyms, tables,
triggers, and views.

DROP FUNCTION statement
Syntax

DROP FUNCTI ON functi on- nanme

Identifies the particular function to be dropped, and is valid only if there is exactly one
function instance with the function-name in the schema. The identified function can have
any number of parameters defined for it. If no function with the indicated name in the
named or implied schema, an error (SQLSTATE 42704) will occur. An error will also
occur if there is more than one specific instance of the function in the named or implied
schema.

DROP INDEX statement
DROP INDEX removes the specified index.

Syntax

DROP | NDEX i ndex- Nane

DROP | NDEX Ori gl ndex
DROP | NDEX Dest | ndex

Statement dependency system

If there is an open cursor on the table from which the index is dropped, the DROP INDEX
statement generates an error and does not drop the index. Otherwise, statements that
depend on the index's table are invalidated.

DROP PROCEDURE statement
Syntax

DROP PROCEDURE pr ocedur e- Nane

Identifies the particular procedure to be dropped, and is valid only if there is exactly one
procedure instance with the procedure-name in the schema. The identified procedure can
have any number of parameters defined for it. If no procedure with the indicated name in
the named or implied schema, an error (SQLSTATE 42704) will occur. An error will also
occur if there is more than one specific instance of the procedure in the named or implied
schema.

DROP SCHEMA statement

The DROP SCHEMA statement drops a schema. The target schema must be empty for
the drop to succeed.

Neither the APP schema (the default user schema) nor the SYS schema can be dropped.

Syntax

DROP SCHEMA schenmaNanme RESTRI CT
The RESTRICT keyword enforces the rule that no objects can be defined in the specified

schema for the schema to be deleted from the database. The RESTRICT keyword is
required

34

Copyright

-- Drop the SAWMP schema
-- The SAMP schenma may only be deleted fromthe database
-- if no objects are defined in the SAMP schema.

DROP SCHEMA SAMP RESTRI CT
DROP SYNONYM statement

Drops the specified synonym from a table or view.

Syntax
DROP SYNONYM synonym Nanme
DROP TABLE statement

DROP TABLE removes the specified table.

Syntax

DROP TABLE t abl e- Nanme

Statement dependency system

Triggers, constraints (primary, unique, check and references from the table being
dropped) and indexes on the table are silently dropped. The existence of an open cursor
that references table being dropped cause the DROP TABLE statement to generate an
error, and the table is not dropped.

Dropping a table invalidates statements that depend on the table. (Invalidating a

statement causes it to be recompiled upon the next execution. See Interaction with the
dependency system.)

DROP TRIGGER statement
DROP TRIGGER removes the specified trigger.

Syntax

DROP TRI GGER Tri gger Nanme

DROP TRI GGER TRI GL

Statement dependency system

When a table is dropped, all triggers on that table are automatically dropped. (You don't
have to drop a table's triggers before dropping the table.)

DROP VIEW statement
Drops the specified view.

Syntax

DROP VI EW vi ew- Nane

DROP VI EW Anl denti fi er

Statement dependency system

Any statements referencing the view are invalidated on a DROP VIEW statement. DROP
VIEW is disallowed if there are any views or open cursors dependent on the view. The

35

Copyright

view must be dropped before any objects that it is dependent on can be dropped.

GRANT statement

Use the GRANT statement to give permissions to a specific user or all users to perform
actions on database objects.

The following types of permissions can be granted:
» Delete data from a specific table.

« Insert data into a specific table.

« Create a foreign key reference to the named table or to a subset of columns from a
table.
Select data from a table, view, or a subset of columns in a table.
Create a trigger on a table.
Update data in a table or in a subset of columns in a table.
Run a specified function or procedure.

Before you issue a GRANT statement, check that the
der by. dat abase. sql Aut hori zat i on property is setto t r ue. The
der by. dat abase. sql Aut hori zat i on property enables the SQL Authorization mode.

You can grant privileges to database objects that you are authorized to grant. See the
CREATE statement for the database object that you want to grant privileges on for more
information.

The syntax that you use for the GRANT statement depends on whether you are granting
privileges to a table or to a routine.

Syntax for tables

GRANT privilege-type ON [TABLE] { table-Nane | view Nane } TO grantees

Syntax for routines

GRANT EXECUTE ON { FUNCTI ON | PROCEDURE } routine-designator TO grantees

privilege-type

t ALL PRI VI LEGES |
DELETE
| NSERT
REFERENCES [col um list] |
SELECT colum list] |
Rl GGER
) UPDATE [colum list}

Use the DELETE privilege type to grant permission to delete rows from the specified
table.

Use the INSERT privilege type to grant permission to insert rows into the specified table.
Use the REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is valid on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to grant permission to perform SELECT statements on a
table or view. If a column list is specified with the SELECT privilege, the permission is

36

Copyright

valid on only those columns. If no column list is specified, then the privilege is valid on all
of the columns in the table.

Use the TRIGGER privilege type to grant permission to create a trigger on the specified
table.

Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table. If a column list is specified, the permission applies only to the specified
columns. To update a row using a statement that includes a WHERE clause, you must
have SELECT permission on the columns in the row that you want to update.

grantees

{ authorization ID| PUBLIC} [,{ authorization ID| PUBLIC}] *

You can grant privileges for specific users or for all users. Use the keyword PUBLIC to
specify all users. When PUBLIC is specified, the privileges affect all current and future
users. The privileges granted to PUBLIC and to individual users are independent
privileges. For example, a SELECT privilege on table t is granted to both PUBLIC and to
the authorization ID har ry. The SELECT privilege is later revoked from the authorization
ID har ry, but Harry can access the table t through the PUBLIC privilege.

routine-designator

{ .
) function-nane | procedure-nane
Examples

To grant the SELECT privilege on table t to the authorization IDs mar i a and harry, use
the following syntax:

GRANT SELECT ON TABLE t TO nari a, harry

To grant the UPDATE and TRIGGER privileges on table t to the authorization IDs ani t a
and zhi , use the following syntax:

GRANT UPDATE, TRIGGER ON TABLE t TO anita, zhi

To grant the SELECT privilege on table s.v to all users, use the following syntax:

GRANT SELECT ON TABLE s.v to PUBLIC

To grant the EXECUTE privilege on procedure p to the authorization ID geor ge, use the
following syntax:

GRANT EXECUTE ON PROCEDURE p TO geor ge

RENAME statements

Use the Rename statements with indexes and tables.
RENAME INDEX statement

This statement allows you to rename an index in the current schema. Users cannot
rename indexes in the SYS schema.

Syntax

RENAME | NDEX i ndex- Nanme TO new- i ndex- Name

37

Copyright

RENAME | NDEX DESTI NDEX TO ARRI VALI NDEX

Statement dependency system

RENAME INDEX is not allowed if there are any open cursors that reference the index
being renamed.

RENAME TABLE statement

RENAME TABLE allows you to rename an existing table in any schema (except the

schema SYS).

To rename a table, you must either be the database owner or the table owner.

Syntax
RENAVE TABLE t abl e- Nane TO new Tabl e- Nane
If there is a view or foreign key that references the table, attempts to rename it will

generate an error. In addition, if there are any check constraints or triggers on the table,
attempts to rename it will also generate an error.

RENAME TABLE SAMP. EMP_ACT TO EMPLOYEE_ACT

Also see ALTER TABLE statement for more information.

Statement dependency system
If there is an index defined on the table, the table can be renamed.

The RENAME TABLE statement is not allowed if there are any open cursors that
reference the table that is being altered.

REVOKE statement

Use the REVOKE statement to remove permissions from a specific user or from all users
to perform actions on database objects.

The following types of permissions can be revoked:
« Delete data from a specific table.
« Insert data into a specific table.
« Create a foreign key reference to the named table or to a subset of columns from a
table.
Select data from a table, view, or a subset of columns in a table.
Create a trigger on a table.
Update data in a table or in a subset of columns in a table.
Run a specified routine (function or procedure).

Before you issue a REVOKE statement, check that the
der by. dat abase. sql Aut hori zati on property is setto t r ue. The
der by. dat abase. sqgl Aut hori zat i on property enables the SQL Authorization mode.

You can revoke privileges from an object if you are the owner of the object or the
database owner.

The syntax that you use for the REVOKE statement depends on whether you are
revoking privileges to a table or to a routine.

38

Copyright

Syntax for tables

REVOKE privilege-type ON[TABLE] { table-Nane | view Nane } FROM
grant ees

Revoking a privilege without specifying a column list revokes the privilege for all of the
columns in the table.

Syntax for routines

REVOKE EXECUTE ON { FUNCTI ON | PROCEDURE } routine-desi gnator FROM
grant ees RESTRI CT

You must use the RESTRICT clause on REVOKE statements for routines. The
RESTRICT clause specifies that the EXECUTE privilege cannot be revoked if the
specified routine is used in a view, trigger, or constraint, and the privilege is being
revoked from the owner of the view, trigger, or constraint.

privilege-type

ALL PRI VI LEGES |
DELETE

REFERENCES [col umm [ist] |
SELECT [colum list] |
TRI GGER .

) UPDATE [colum |ist}

Use the ALL PRIVILEGES privilege type to revoke all of the permissions from the user for
the specified table.

Use the DELETE privilege type to revoke permission to delete rows from the specified
table.

Use the INSERT privilege type to revoke permission to insert rows into the specified
table.

Use the REFERENCES privilege type to revoke permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is revoked on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to revoke permission to perform SELECT statements on
a table or view. If a column list is specified with the SELECT privilege, the permission is
revoked on only those columns. If no column list is specified, then the privilege is valid on
all of the columns in the table.

Use the TRIGGER privilege type to revoke permission to create a trigger on the specified
table.

Use the UPDATE privilege type to revoke permission to use the UPDATE statement on
the specified table. If a column list is specified, the permission is revoked only on the
specified columns.

grantees

{ authorization ID| PUBLIC} [,{ authorization ID| PUBLIC}] *

You can revoke the privileges from specific users or from all users. Use the keyword
PUBLIC to specify all users. The privileges revoked from PUBLIC and from individual

39

Copyright

users are independent privileges. For example, a SELECT privilege on table t is granted
to both PUBLIC and to the authorization ID har ry. The SELECT privilege is later
revoked from the authorization ID har r y, but the authorization ID har r y can access the
table t through the PUBLIC privilege.

Restriction: You cannot revoke the privileges of the owner of an object.

routine-designator

{
}

qual i fied-name [signature]

Cascading object dependencies

For views, triggers, and constraints, if the privilege on which the object depends on is
revoked, the object is automatically dropped. Derby does not try to determine if you have
other privileges that can replace the privileges that are being revoked. For more
information, see "SQL standard authorization" in the Derby Developer's Guide.

Limitations
The following limitations apply to the REVOKE statement:

Table-level privileges
All of the table-level privilege types for a specified grantee and table ID are stored in
one row in the SYSTABLEPERMS system table. For example, when user 2 is
granted the SELECT and DELETE privileges on table user 1. t 1, a row is added to
the SYSTABLEPERMS table. The GRANTEE field contains user 2 and the TABLEID
contains user 1. t 1. The SELECTPRIV and DELETEPRIV fields are setto Y. The
remaining privilege type fields are set to N.

When a grantee creates an object that relies on one of the privilege types, the Derby
engine tracks the dependency of the object on the specific row in the
SYSTABLEPERMS table. For example, user 2 creates the view v1 by using the
statement SELECT * FROM user 1.t 1, the dependency manager tracks the
dependency of view v1 on the row in SYSTABLEPERMS for GRANTEE(user 2),
TABLEID(user 1. t 1). The dependency manager knows only that the view is
dependent on a privilege type in that specific row, but does not track exactly which
privilege type the view is dependent on.

When a REVOKE statement for a table-level privilege is issued for a grantee and
table ID, all of the objects that are dependent on the grantee and table ID are
dropped. For example, if user 1 revokes the DELETE privilege on table t 1 from
user 2, the row in SYSTABLEPERMS for GRANTEE(user 2), TABLEID(user 1.t 1)
is modified by the REVOKE statement. The dependency manager sends a revoke
invalidation message to the view user 2. v1 and the view is dropped even though the
view is not dependent on the DELETE privilege for GRANTEE(user 2),
TABLEID(user 1.t 1).

Column-level privileges
Only one type of privilege for a specified grantee and table ID are stored in one row in
the SYSCOLPERMS system table. For example, when user 2 is granted the
SELECT privilege on table user 1. t 1 for columns c12 and c13, a row is added to the
SYSCOLPERMS. The GRANTEE field contains user 2, the TABLEID contains
user 1.t 1, the TYPE field contains S, and the COLUMNS field contains c12, c13.

When a grantee creates an object that relies on the privilege type and the subset of
columns in a table ID, the Derby engine tracks the dependency of the object on the
specific row in the SYSCOLPERMS table. For example, user 2 creates the view v1
by using the statement SELECT c11 FROM user 1.t 1, the dependency manager
tracks the dependency of view v1 on the row in SYSCOLPERMS for

40

Copyright

user 2), TABLEID(user 1. t 1), TYPE(S). The dependency manager knows that the
view is dependent on the SELECT privilege type, but does not track exactly which
columns the view is dependent on.

When a REVOKE statement for a column-level privilege is issued for a grantee, table
ID, and type, all of the objects that are dependent on the grantee, table ID, and type
are dropped. For example, if user 1 revokes the SELECT privilege on column c12 on
table user 1. t 1 from user 2, the row in SYSCOLPERMS for GRANTEE(user 2),
TABLEID(user 1. t 1), TYPE(S) is modified by the REVOKE statement. The
dependency manager sends a revoke invalidation message to the view user 2. v1
and the view is dropped even though the view is not dependent on the column c12
for GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S).

Revoke examples
To revoke the SELECT privilege on table t from the authorization IDs mari a and harry,
use the following syntax:

REVOKE SELECT ON TABLE t FROM mari a, harry

To revoke the UPDATE and TRIGGER privileges on table t from the authorization IDs
ani t a and zhi , use the following syntax:

REVOKE UPDATE, TRI GGER ON TABLE t FROM anita, zhi

To revoke the SELECT privilege on table s. v from all users, use the following syntax:

REVOKE SELECT ON TABLE s.v FROM PUBLI C

To revoke the UPDATE privilege on columns c1 and c2 of table s. v from all users, use
the following syntax:

REVOKE UPDATE (cl1,c2) ON TABLE s.v FROM PUBLIC

To revoke the EXECUTE privilege on procedure p from the authorization ID geor ge, use
the following syntax:

REVOKE EXECUTE ON PROCEDURE p FROM george RESTRI CT

SET statements

Use the Set statements with schemas and to set the current isolation level.
SET SCHEMA statement
The SET SCHEMA statement sets the default schema for a connection's session to the

designated schema. The default schema is used as the target schema for all statements
issued from the connection that do not explicitly specify a schema name.

The target schema must exist for the SET SCHEMA statement to succeed. If the schema
doesn't exist an error is returned. See CREATE SCHEMA statement.

The SET SCHEMA statement is not transactional: If the SET SCHEMA statement is part
of a transaction that is rolled back, the schema change remains in effect.

Syntax
SET SCHEVA
EJSSC emaNaNT] [=]
'<string-constant>'" } | SET CURRENT SQLID [=]
schermNarTe| USER | ? | '<string-constant>" }

41

Copyright

schemaName is an identifier with a maximum length of 128. It is case insensitive unless
enclosed in double quotes. (For example, SYS is equivalent to sYs, SYs, sys, etcetera.)

USER is the current user. If no current user is defined, the current schema defaults the
APP schema. (If a user name was specified upon connection, the user's name is the
default schema for the connection, if a schema with that name exists.)

? is a dynamic parameter specification that can be used in prepared statements. The
SET SCHEMA statement can be prepared once and then executed with different schema
values. The schema values are treated as string constants so they are case sensitive.
For example, to designate the APP schema, use the string "APP" rather than "app".

-- the following are all equivalent and will work
-- assunming a schema cal |l ed HOTEL

SET SCHEMA™HOTEL

SET SCHEMA hot el

SET CURRENT SCHEMA hot el

SET CURRENT SQLI D hot el

SET SCHEMA = hot el

SET CURRENT SCHEMA = hot el

SET CURRENT SQLI D = hot el

SET SCHEMA " EL" -- quoted identifier

tS)ET SCHEMA ' HOTEL' -- quoted string--This exanpl e produces an error
ecause

--lower case hotel won't be found

SET_SCHEMA = ' hotel'’

--This exanpl e produces an error because SQLID is not

--allowed W thout CURRENT

SET SQ.ID h?t el
e

-- This s the schema to the current user id
SET|_|eCURRENT CHEMA USER
re's a

s
S
exanpl e of usi ng set schema in an Java ﬁrogram
eme n'hoﬁ)_s = conn. Pr ?");
(1
ps. execut eUpda

e(
... do _some k
ps.setString(1,"APP");
ps. execut eUpdat e()

n
Pr epar edSt at epar eSt at enent ("set sc
g

ps.setStrin

é
el

P s.setStri ngf pP '); /lerror - string is case sensitive
/ no apP ound .
ps. setNul | (1, Types.VARCHAR); /lerror - null is not allowed
SET CURRENT ISOLATION statement
The SET CURRENT ISOLATION LEVEL statement allows a user to change the isolation

level for the user's connection. Valid levels are SERIALIZABLE, REPEATABLE READ,
READ COMMITTED, and READ UNCOMMITTED.

Issuing this command commits the current transaction, which is consistent with the
java.sgl.Connection.setTransactionLevel method.

For information about isolation levels, see "Locking, Concurrency, and Isolation" in the
Derby Developer's Guide.

Syntax

SET [CURRENT] ISOLATION [=]

R | DLRTY READ | READ UNCOWM TTED
CS | READ COW TTED | CURSOR STABI LI TY

RS
RR | REPEATABLE READ | SERI ALI ZABLE
RESET

set isolation serializable;

CALL (PROCEDURE)

42

Copyright

The CALL (PROCEDURE) statement is used to call procedures. A call to a procedure
does not return any value.

Syntax
CALL procedure-Name ([2 [, 21*])

Example

IN S YEAR | NTEGER, OUT TOTAL DECI MAL(10, 22

PARAVETER STYLE JAVA READS SQ. DATA LAl GE JAVA EXTERNAL NAME
' com acne. sal es. cal cul at eRevenueByMont h' ;

CALL SALES. TOTAL_REVENUE(?, ?, ?);

CREATE PROCEDURE SALES. TOTAL REVENUEéI N S MONTH | NTEGER,

CONSTRAINT clause

A CONSTRAINT clause is an optional part of a CREATE TABLE statement or ALTER
TABLE statement. A constraint is a rule to which data must conform. Constraint names
are optional.

A CONSTRAINT can be one of the following:
* a column-level constraint

Column-level constraints refer to a single column in the table and do not specify a
column name (except check constraints). They refer to the column that they follow.

+ atable-level constraint

Table-level constraints refer to one or more columns in the table. Table-level
constraints specify the names of the columns to which they apply. Table-level
CHECK constraints can refer to O or more columns in the table.

Column constraints include:
« NOT NULL

Specifies that this column cannot hold NULL values (constraints of this type are not
nameable).

* PRIMARY KEY

Specifies the column that uniquely identifies a row in the table. The identified
columns must be defined as NOT NULL.

Note: If you attempt to add a primary key using ALTER TABLE and any of the
columns included in the primary key contain null values, an error will be generated
and the primary key will not be added. See ALTER TABLE statement for more
information.

« UNIQUE

Specifies that values in the column must be unique. NULL values are not allowed.
+ FOREIGN KEY

Specifies that the values in the column must correspond to values in a referenced
primary key or unique key column or that they are NULL.

» CHECK

Specifies rules for values in the column.

Table constraints include:
* PRIMARY KEY

Specifies the column or columns that uniquely identify a row in the table. NULL
values are not allowed.

43

Copyright

+ UNIQUE

Specifies that values in the columns must be unique. The identified columns must
be defined as NOT NULL.

* FOREIGN KEY

Specifies that the values in the columns must correspond to values in referenced
primary key or unique columns or that they are NULL.

Note: If the foreign key consists of multiple columns, and any column is NULL, the
whole key is considered NULL. The insert is permitted no matter what is on the
non-null columns.

* CHECK

Specifies a wide range of rules for values in the table.

Column constraints and table constraints have the same function; the difference is in
where you specify them. Table constraints allow you to specify more than one column in
a PRIMARY KEY, UNIQUE, CHECK, or FOREIGN KEY constraint definition.
Column-level constraints (except for check constraints) refer to only one column.

Syntax
Primary key and unique constraints

A primary key defines the set of columns that uniquely identifies rows in a table.

When you create a primary key constraint, none of the columns included in the primary
key can have NULL constraints; that is, they must not permit NULL values.

ALTER TABLE ADD PRIMARY KEY allows you to include existing columns in a primary
key if they were first defined as NOT NULL. NULL values are not allowed. If the
column(s) contain NULL values, the system will not add the primary key constraint. See
ALTER TABLE statement for more information.

A table can have at most one PRIMARY KEY constraint, but can have multiple UNIQUE
constraints.

Foreign key constraints

Foreign keys provide a way to enforce the referential integrity of a database. A foreign
key is a column or group of columns within a table that references a key in some other
table (or sometimes, though rarely, the same table). The foreign key must always include
the columns of which the types exactly match those in the referenced primary key or
unique constraint.

For a table-level foreign key constraint in which you specify the columns in the table that
make up the constraint, you cannot use the same column more than once.

If there is a column list in the ReferencesSpecification (a list of columns in the referenced
table), it must correspond either to a unique constraint or to a primary key constraint in
the referenced table. The ReferencesSpecification can omit the column list for the
referenced table if that table has a declared primary key.

If there is no column list in the ReferencesSpecification and the referenced table has no
primary key, a statement exception is thrown. (This means that if the referenced table
has only unique keys, you must include a column list in the ReferencesSpecification.)

A foreign key constraint is satisfied if there is a matching value in the referenced unique
or primary key column. If the foreign key consists of multiple columns, the foreign key
value is considered NULL if any of its columns contains a NULL.

44

Copyright

Note: It is possible for a foreign key consisting of multiple columns to allow one of the
columns to contain a value for which there is no matching value in the referenced
columns, per the SQL-92 standard. To avoid this situation, create NOT NULL constraints
on all of the foreign key's columns.

Foreign key constraints and DML

When you insert into or update a table with an enabled foreign key constraint, Derby
checks that the row does not violate the foreign key constraint by looking up the
corresponding referenced key in the referenced table. If the constraint is not satisfied,
Derby rejects the insert or update with a statement exception.

When you update or delete a row in a table with a referenced key (a primary or unique
constraint referenced by a foreign key), Derby checks every foreign key constraint that
references the key to make sure that the removal or modification of the row does not
cause a constraint violation. If removal or modification of the row would cause a
constraint violation, the update or delete is not permitted and Derby throws a statement
exception.

Derby performs constraint checks at the time the statement is executed, not when the
transaction commits.

Backing indexes

UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints generate indexes that enforce
or "back" the constraint (and are sometimes called backing indexes). UNIQUE and
PRIMARY KEY constraints generate unique indexes. FOREIGN KEY constraints
generate non-unique indexes. Therefore, if a column or set of columns has a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint on it, you do not need to create an index on
those columns for performance. Derby has already created it for you. See Indexes and
constraints.

These indexes are available to the optimizer for query optimization (see CREATE INDEX
statement) and have system-generated names.

You cannot drop backing indexes with a DROP INDEX statement; you must drop the
constraint or the table.

Check constraints

A check constraint can be used to specify a wide range of rules for the contents of a
table. A search condition (which is a boolean expression) is specified for a check
constraint. This search condition must be satisfied for all rows in the table. The search
condition is applied to each row that is modified on an INSERT or UPDATE at the time of
the row modification. The entire statement is aborted if any check constraint is violated.

Requirements for search condition

If a check constraint is specified as part of a column-definition, a column reference can
only be made to the same column. Check constraints specified as part of a table
definition can have column references identifying columns previously defined in the
CREATE TABLE statement.

The search condition must always return the same value if applied to the same values.
Thus, it cannot contain any of the following:
* Dynamic parameters (?)
» Date/Time Functions (CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP)
e Subqueries
» User Functions (such as USER, SESSION_USER, CURRENT_USER)

45

Copyright

Referential actions

You can specify an ON DELETE clause and/or an ON UPDATE clause, followed by the
appropriate action (CASCADE, RESTRICT, SET NULL, or NO ACTION) when defining
foreign keys. These clauses specify whether Derby should modify corresponding foreign
key values or disallow the operation, to keep foreign key relationships intact when a
primary key value is updated or deleted from a table.

You specify the update and delete rule of a referential constraint when you define the
referential constraint.

The update rule applies when a row of either the parent or dependent table is updated.
The choices are NO ACTION and RESTRICT.

When a value in a column of the parent table's primary key is updated and the update
rule has been specified as RESTRICT, Derby checks dependent tables for foreign key
constraints. If any row in a dependent table violates a foreign key constraint, the
transaction is rolled back.

If the update rule is NO ACTION, Derby checks the dependent tables for foreign key
constraints after all deletes have been executed but before triggers have been executed.
If any row in a dependent table violates a foreign key constraint, the statement is
rejected.

When a value in a column of the dependent table is updated, and that value is part of a
foreign key, NO ACTION is the implicit update rule. NO ACTION means that if a foreign
key is updated with a non-null value, the update value must match a value in the parent
table's primary key when the update statement is completed. If the update does not
match a value in the parent table's primary key, the statement is rejected.

The delete rule applies when a row of the parent table is deleted and that row has
dependents in the dependent table of the referential constraint. If rows of the dependent
table are deleted, the delete operation on the parent table is said to be propagated to the
dependent table. If the dependent table is also a parent table, the action specified
applies, in turn, to its dependents.

The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values.

If the delete rule is:

NO ACTION, Derby checks the dependent tables for foreign key constraints after all
deletes have been executed but before triggers have been executed. If any row in a
dependent table violates a foreign key constraint, the statement is rejected.

RESTRICT, Derby checks dependent tables for foreign key constraints. If any row in a
dependent table violates a foreign key constraint, the transaction is rolled back.

CASCADE, the delete operation is propagated to the dependent table (and that table's
dependents, if applicable).

SET NULL, each nullable column of the dependent table's foreign key is set to null.
(Again, if the dependent table also has dependent tables, nullable columns in those
tables' foreign keys are also set to null.)

Each referential constraint in which a table is a parent has its own delete rule; all
applicable delete rules are used to determine the result of a delete operation. Thus, a row
cannot be deleted if it has dependents in a referential constraint with a delete rule of
RESTRICT or NO ACTION. Similarly, a row cannot be deleted if the deletion cascades to

46

Copyright

any of its descendants that are dependents in a referential constraint with the delete rule
of RESTRICT or NO ACTION.

Deleting a row from the parent table involves other tables. Any table involved in a delete
operation on the parent table is said to be delete-connected to the parent table. The
delete can affect rows of these tables in the following ways:

« If the delete rule is RESTRICT or NO ACTION, a dependent table is involved in the
operation but is not affected by the operation. (That is, Derby checks the values
within the table, but does not delete any values.)

« If the delete rule is SET NULL, a dependent table's rows can be updated when a
row of the parent table is the object of a delete or propagated delete operation.

« If the delete rule is CASCADE, a dependent table's rows can be deleted when a
parent table is the object of a delete.

« If the dependent table is also a parent table, the actions described in this list apply,
in turn, to its dependents.

Examples

-- _colum-1 evel rinar¥ key constraint nanmed OUT_TRAY_PK:
CREATE TABLE SAMP. QUT_TRA

ENT TI MESTAMP,

DESTI NATI ON OHAR(8)

SUBJECT CHAR(64 NULL CONSTRAI NT QUT_TRAY_PK PRI MARY KEY,
NOTE_TEXT VARCHAR(3000)

-- the table-level prinmary key definition allow you to

-- include two colums in"the primary key definition:
CREATE TABLE SAMP. SCHED

ASS CCDE CI-IA'\KF\;(I]?\I NOT NULL,
DAY SVALLI NT ULL,

STARTI NG TI ME,

ENDI NG Tl ME,

PRI MARY KEY (CLASS_CODE, DAY)

-- Use a colum-1level constraint for an arithnetic check
-- Use a table-level constraint
-- to nake sure that a enpl oyee's taxes does not

-- exceed the bonus
CREATE TABLE SAMP. EMP

EI\/PNO CHAR= G?Q NOT NULL CONSTRAI NT EMP_PK PRI MARY KEY,

FI RSTNVE 12) NOT _NULL,
M DN T vARCH&R&lZ)S NOT_NULL,
LASTNAVE VARCHAR(15) NOT NULL,

SALARY DECI NAL(S, 2)" CONSTRAI NT SAL_CK CHECK (SALARY >= 10000),
BONUS_DECI MAL(9, 2,

TAX DECI MAL(9, 2),
)QCNSTRAI NT BONUS_CK CHECK (BONUS > TAX)

-- use a check constraint to allow only appropriate
-- abbreviations for the neals
CREATE TABLE FLI GHTS

I(:LIGHT I D CHAR(6) NOT NULL ,
SEGVENT _NUMBER | NTEGER NOT NULL ,

DEST ATRPORT CHAR(3),

ARRI VE_TI NE TI ME,

MEAL CHAR(1) CONSTRAI NT MEAL CONSTRAI NT
ChEeK Ve N L S TS
;DRI MARY KEY (FLIGHT ID, SEGVENT_NUMBER)

CREATE TABLE METROPCLI TAN
EL_I D NT NOT NULL CONSTRAI NT HOTELS_PK PRI MARY KEY,

HOTEL _NAME VARO_ME&LHQI)F NOT NULL,
)C!TY_TD I NT CONSTRAI METRO_FK REFERENCES CI Tl ES

-- create a table with a table-level primary key constraint
-- and a table-level foreign key constraint
CREATE TABLE FLTAVAI L

47

Copyright

I(:LI GHT | D CHAR(6) NOT NULL,

SEGVENT _NUMBER | NOT NULL,

FLI GAT DATE_DATE NOT NULL,

ECONOWY SEATS TAKEN | NT,

BUSI NESS_SEATS_TAKEN | NT,

FI RSTCLASS SEATS TAKEN | NT,

CONSTRAI NT_FLTAVAI L_PK PRI MARY KEY (FLI GHT_I D, SEGVENT_NUVBER),
CONSTRAI NT FLTS F

FOREI GN KEY fFLTGHT I D, SEGMVENT_NUMBER)

REFERENCES Fli ght's TFLI GHT_I'D, SEGVENT _NUVBER)

add_a ue constraint to a colum
ALTER TABLE AMP. PRQJECT
ADD CONSTRAI NT P_UC UNI QUE (PROINAME) ;
-- create a table whose city_id columm references the
-- prln'ary ke?/ inthe Cities table
- - _Uusi ng?_ urm | evel foreign key constraint
CREATE TABLE

DO | D | NT NOT NULL CO\ISTRAI NT hot el s_PK PRI MARY KEY,
CONDO_NAME VARCHAR 40 NOT NUL

CITYTDINT CONST cit forel
REFERENCES Citi es G\l DELET CAE)E_G\IyUPDATE RESTRI CT

Statement dependency system

INSERT and UPDATE statements depend on all constraints on the target table.
DELETEs depend on unique, primary key, and foreign key constraints. These statements
are invalidated if a constraint is added to or dropped from the target table.

Column-level-constraint

NOT NULL | ,
£ [CONSTRAI NT const r ai nt - Nane]

CHECK (searchCondition) |
PRI MARY KEY |

REFSI%ENl:ES cl ause

) }

Table-level constraint

&CD\ISTRAI NT constrai nt - Nane]
CHECK (searchCondition) |
PRI MARY KEY (Si npl e- col um- Name , Sinple-colum-Nane]*) |
UNI E(Sl IecolurmName[\la SlrrplecolurmNarre}\l;)
”? e)

I GN KEY (Si npl e-col umm Si npl e-col um
REFERENCES cl ause

}

References specification

*

REFERENCES t abl e-Nane [(Sinple-colum-Nane [, Sinple-colum-Nane]*)
ON DELETE { NO ACTI ON RESTRI CT ETCASCADE | SET NULL}]

[ON UPDATE {NO ACTI RESTRI
ON UPDATE (j\INO ACTION | RESTRICT }] [ON DELETE
{NO ACTI RESTRI CT | CASCA ET NULL}]

searchCondition

A searchCondition is any Boolean expression that meets the requirements specified in
Requirements for search condition.

48

Copyright

If a constraint-Name is not specified, Derby generates a unique constraint name (for
either column or table constraints).

DECLARE GLOBAL TEMPORARY TABLE statement

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for
the current connection.

These tables do not reside in the system catalogs and are not persistent. Temporary
tables exist only during the connection that declared them and cannot be referenced
outside of that connection. When the connection closes, the rows of the table are deleted,
and the in-memory description of the temporary table is dropped.

Temporary tables are useful when:
« The table structure is not known before using an application.
» Other users do not need the same table structure.
« Data in the temporary table is needed while using the application.
* The table can be declared and dropped without holding the locks on the system
catalog.

Syntax

DECLARE GLGBAL TEMPORARY TABLE t abl e- Nane
{ co unn deflnltlon colunn definition] * }
HZ\I)ELETE PRI SERVE}
D [ROLLBACK DELETE ROWE]

table-Name

Names the temporary table. If a schema-Name other than SESSION is specified, an error
will occur (SQLSTATE 428EK). If the schema-Name is not specified, SESSION is
assigned. Multiple connections can define declared global temporary tables with the
same name because each connection has its own unique table descriptor for it.

Using SESSION as the schema name of a physical table will not cause an error, but is
discouraged. The SESSION schema name should be reserved for the temporary table
schema.

column-definition

See column-definition for CREATE TABLE for more information on
col umm-defi ni ti on. DECLARE GLOBAL TEMPORARY TABLE does not allow
gener at ed- col um- spec in the col um-definition.

Data type

Supported data types are:
¢ BIGINT

CHAR

DATE

DECIMAL

DOUBLE

DOUBLE PRECISION

FLOAT

INTEGER

NUMERIC

REAL

SMALLINT

TIME

TIMESTAMP

49

Copyright

« VARCHAR

ON COMMIT

Specifies the action taken on the global temporary table when a COMMIT operation is
performed.

DELETE ROWS

All rows of the table will be deleted if no hold-able cursor is open on the table. This is the
default value for ON COMMIT. If you specify ON ROLLBACK DELETE ROWS, this will
delete all the rows in the table only if the temporary table was used. ON COMMIT
DELETE ROWS will delete the rows in the table even if the table was not used (if the
table does not have hold-able cursors open on it).

PRESERVE ROWS

The rows of the table will be preserved.

NOT LOGGED

Specifies the action taken on the global temporary table when a rollback operation is
performed. When a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed, if the table was created in the unit of work (or savepoint), the table will be
dropped. If the table was dropped in the unit of work (or savepoint), the table will be
restored with no rows.

ON ROLLBACK DELETE ROWS

This is the default value for NOT LOGGED. NOT LOGGED [ON ROLLBACK DELETE
ROWS]] specifies the action that is to be taken on the global temporary table when a
ROLLBACK or (ROLLBACK TO SAVEPOINT) operation is performed. If the table data
has been changed, all the rows will be deleted.

Examples

set schema nyapp;
create table t1(cll int, cl2 date);

decl are gl obal tenP_orary table SESSION.t1(cl1ll1l int) not | ogged;
-- The SESSI ON qualification is redundant here because tenporary
-- tables can only exist in the SESSI ON schena.

decl are gl obal tenporary table t2(c21 int) not | og%ed;

P The tenporary table is not qualified here wi th SESSI ON because
enpor ar

-- tabl e)s/ can only exist in the SESSI ON schena.

insert into SESSION.t1 val ues (1); .
-- SESSION qualification is mandatory here if you want to use
-- the tenporary table, because the current schema is "nyapp."

select * fromti;)))
-- This select statenent is referenci .n]g. the " agg. t1" physi cal
-- table since the table was not qualified by SESSI ON.

Note: Temporary tables can be declared only in the SESSION schema. You should
never declare a physical schema with the SESSION name.
The following is a list of DB2 UDB DECLARE GLOBAL TEMPORARY TABLE functions
that are not supported by Derby:

* IDENTITY column-options

« IDENTITY attribute in copy-options

» AS (fullselect) DEFINITION ONLY

¢« NOT LOGGED ON ROLLBACK PRESERVE ROWS

« IN tablespace-name

* PARTITIONING KEY

50

Copyright
« WITH REPLACE

Restrictions on Declared Global Temporary Tables

Derby does not support the following features on temporary tables. Some of these
features are specific to temporary tables and some are specific to Derby.

Temporary tables cannot be specified in the following statements:
« ALTER TABLE

e CREATE INDEX

« CREATE SYNONYM

« CREATE TRIGGER

« CREATE VIEW

* GRANT

« LOCK TABLE

« RENAME

+ REVOKE

You cannot use the following features with temporary tables:

* Synonyms, triggers and views on SESSION schema tables (including physical
tables and temporary tables)

Caching statements that reference SESSION schema tables and views
Temporary tables cannot be specified in referential constraints and primary keys
Temporary tables cannot be referenced in a triggered-SQL-statement

Check constraints on columns

Generated-column-spec

Importing into temporary tables

If a statement that performs an insert, update, or delete to the temporary table
encounters an error, all the rows of the temporary table are deleted.

The following data types cannot be used with Declared Global Temporary Tables:
« BLOB

* CHAR FOR BIT DATA

+ CLOB

* LONG VARCHAR

* LONG VARCHAR FOR BIT DATA

* VARCHAR FOR BIT DATA

« XML

DELETE statement
Syntax

{ DELETE FROM t abl e- Nane

VWHERE cl ause] |
DELETE FROM t abl e- Name WHERE CURRENT OF

The first syntactical form, called a searched delete, removes all rows identified by the
table name and WHERE clause.

The second syntactical form, called a positioned delete, deletes the current row of an
open, updatable cursor. For more information about updatable cursors, see SELECT
statement.

Examples

DELETE FROM SAMP. | N_TRAY

51

Copyright

st nt . execut eUpdat e(" DELETE FROM SAVP. | N TRAY WHERE CURRENT OF " +
resul t Set . get Cur sor Nanme()) ;

Statement dependency system

A searched delete statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), and any other table named in
the WHERE clause. A CREATE or DROP INDEX statement for the target table of a
prepared searched delete statement invalidates the prepared searched delete statement.

The positioned delete statement depends on the cursor and any tables the cursor
references. You can compile a positioned delete even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned delete.

A CREATE or DROP INDEX statement for the target table of a prepared positioned
delete invalidates the prepared positioned delete statement.

FOR UPDATE clause

The FOR UPDATE clause is an optional part of a SELECT statement. Cursors are
read-only by default. The FOR UPDATE clause specifies that the cursor should be
updatable, and enforces a check during compilation that the SELECT statement meets
the requirements for an updatable cursor. For more information about updatability, see
Requirements for Updatable Cursors.

Syntax

FOR

READ ONLY | FETCH ONLY | ,
UPDATE [Si npl e-col um-Nane [, Sinple-col um-Nane]*]

Simple-column-Name refers to the names visible for the table specified in the FROM
clause of the underlying query.

Note: The use of the FOR UPDATE clause is not mandatory to obtain an updatable
JDBC ResultSet. As long as the statement used to generate the JDBC ResultSet meets
the requirements for updatable cursor, it is sufficient for the JDBC Statement that
generates the JDBC ResultSet to have concurrency mode

Resul t Set . CONCUR_UPDATABLE for the ResultSet to be updatable.

The optimizer is able to use an index even if the column in the index is being updated.
For more information about how indexes affect cursors, see Tuning Derby.

SELECT RECEI VED, SOURCE, SUBJECT, NOTE_TEXT FROM SAMP. | N_TRAY FOR UPDATE

FROM clause

The FROM clause is a mandatory clause in a SelectExpression. It specifies the tables
(TableExpression) from which the other clauses of the query can access columns for use
in expressions.

Syntax

FROM Tabl eExpression [, Tabl eExpression] *

52

Copyright

SELECT Cities.city_id

FROM Citi es

V\HERE city_id <5

- - ot her Ees of Tabl eExpreSS| ons

SELECT TABI NDEX

FROM SYS. SYSTABLES T SYS SYSOO\IGLOVERATES C
VWHERE T. TABLEID = C. TABLE

ORDER BY TABLENAME, 1 SI NDEX

- - force the join order

SELECT *

FROM Fl i ghts, FlightAvailability.)

VWHERE Fl ight Availability.flight_id = Flrghts flight_id

AND FlightAvai |l ability.segnment nunber = Flights. Segment _nunber
AND Flrghts flight_id <" 11%'

-- a Tabl eExpressi on can be a joi nOperati on. Therefore

-- you can have nultiple Jorn ogera ions in a FROM cl a

SELECT COUNTRI ES. COUNTRY, " CI T Cl TY_NAME, FLI GHTS DEST Al RPORT

\ | E
FROM COUNTRI ES LEFT OQUTER JO N CI TI ES™
ON _COUNTRI ES. COUNTRY | SO CODE = ClI TI ES. COUNTRY_I SO _CODE
LEFT QUTER JO N FLI GATS
ON Cities. AlRPORT = FLI GHTS. DEST_AI RPORT

GROUP BY clause

A GROUP BY clause, part of a SelectExpression, groups a result into subsets that have
matching values for one or more columns. In each group, no two rows have the same
value for the grouping column or columns. NULLSs are considered equivalent for grouping
purposes.

You typically use a GROUP BY clause in conjunction with an aggregate expression.

Syntax

GROUP BY colum-Nane [, columm-Nane] *

column-Name must be a column from the current scope of the query; there can be no
columns from a query block outside the current scope. For example, if a GROUP BY
clause is in a subquery, it cannot refer to columns in the outer query.

Selectltems in the SelectExpression with a GROUP BY clause must contain only
aggregates or grouping columns.

-- flnd the average flying tinmes of flights grouped by

rpor . .
SELECT AVG (flying tine orig_airport
FROM Flrght(e). e g
GROUP BY orig_airport

SELECT MAX(city_nane), region
FROM Cities, Countries)
VWHERE Citi es, count ry_1SO code = Countries.country_| SO code
GROUP BY regl on
- - rouP a smal |int
SEL CT | D, AV%SAL RY)
i D

GROUP BY ,
-- Get the AVGSALARY and EMPCOUNT col umms, and the DEPTNO col umm usi ng

t he AS cl ause
%T t he WORKDEPT col utm using the correl ati on nane OTHERS

SELECT HE S DEPT AS DEPTNO,

AVG?\‘_IQT HERS. SALARY) AS AVGSALARY,

COUNT(*) AS EMP INT

FROM SAMP. EMPLOYEE COTHERS
GROUP BY OTHERS. WORKDEPT

HAVING clause

A HAVING clause restricts the results of a GROUP BY in a SelectExpression. The
HAVING clause is applied to each group of the grouped table, much as a WHERE clause

53

Copyright

INNER JOIN

is applied to a select list. If there is no GROUP BY clause, the HAVING clause is applied
to the entire result as a single group. The SELECT clause cannot refer directly to any
column that does not have a GROUP BY clause. It can, however, refer to constants,
aggregates, and special registers.

Syntax

HAVI NG sear chCondi ti on

The searchCondition, which is a specialized booleanExpression, can contain only
grouping columns (see GROUP BY clause), columns that are part of aggregate
expressions, and columns that are part of a subquery. For example, the following query is
illegal, because the column SALARY is not a grouping column, it does not appear within
an aggregate, and it is not within a subquery:

-- SELECT COJNTS\ L
- EROVISAVP. STAF
-- GROUP

©T GAVING SALARY > 15000

Aggregates in the HAVING clause do not need to appear in the SELECT list. If the
HAVING clause contains a subquery, the subquery can refer to the outer query block if
and only if it refers to a grouping column.

-- Find the total nunber of econony seats taken on a flight,
-- grouped by airline,

-- only V\lnen the group has at |east 2 records.

SELECT SU SEATS TAKEN), Al RLI NE _FULL

FROM FLI AVAI LABTLI TY, Al RLI NES

W-IERE SUBSTR“:INIEGHTAVAI LABI LI TY. FLI GHT_ID, 1, 2) = AIRLINE
HAVI NG COUNT(*)

An INNER JOIN is a JOIN operation that allows you to specify an explicit join clause.

Syntax

Tabl eExpression [INNER] JO N Tabl eExpressi on { ON bool eanExpressi on }

You can specify the join clause by specifying ON with a boolean expression.

The scope of expressions in the ON clause includes the current tables and any tables in
outer query blocks to the current SELECT. In the following example, the ON clause refers
to the current tables:

SELECT *
FROM SAVP. EMPLOYEE | NNER JO N SAMP. STAFF
ON EMPLOYEE. SALARY < STAFF. SALARY

The ON clause can reference tables not being joined and does not have to reference
either of the tables being joined (though typically it does).

-- Join the EMP_ACT and EMPLOYEE t abl es
-- select all the colums fromthe EMP ACT table and
-- add the enpl o¥ee s surnanme (LASTNAME) from t he EMPLOYEE tabl e
-- to each row o the resul t
SELECT SAMP. EMP_ACT. *, LASTNANVE
FROM SAMP. EMP_ ACT JO N SAMP. EMPLOYEE
ON EMP_ACT. ENPNO = EMPLOYEE. EMPNO
-- Join the EMPLOYEE and DEPARTNMENT t abl es,
-- select the enployee nunber (EMPNO),
-- enpl oyee surnane” (LASTNAME),

54

Copyright

-- departnment nunber (WORKDEPT in the EMPLOYEE table and DEPTNO in the
-- DEPARTMENT t abl e)
-- and departrrent nane (DEPTNAME)
of all enpl oyees who were born (Bl RTHDATE) earlier than 1930.

SELECT EMPNO, LASTNAME, WORKDEPT, PTNAME

FROM SAMP. EI\/PLOYEE JO N SAMP. DEPARTNVENT

ON_WORKDEPT = DEPTNO

AND YEAR(BI RTHDATI3 < 1930

-- Anot her exanpl e of "generating" new data val ues,

-- using a query which selects froma VALUES cl ause (which is an
-- alternate formof a fullselect).

-- This query shows how a table can be derived called "X"

- - havi ng 2 colums "R1" and "R2" and 1 row of data

SEL
FROM (VALUES (3, 4 1, 5 2, 6
AS VA UESTABLEl(Cl) C&). ()
JO N (VALUES (3 2),
g}\l HJ AS VALUESTABL 2(01

ESTABLEL. c1 = VALUESTAB E2.cl
- - hIS results in:

-- e~ | C1 | 2
-3 4 3 2
-1 5 1 2

-- List every departnent with the enpl oyee nunber and
-- last name” of the nanager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTI\/ENT I NNER JO N EMPLOYEE
ON MGRNO = EMPNO

-- List every enpl oyee nunber and |ast nane
-- with the enpl oyee nunber and | ast name of their manager
SELECT E. EMPNO, E. LASTNAIVE M EMPNO, M LASTNAME
FROM EMPLOYEE E I NNER JO N
DEPARTNENT I NNER JO N EMPLOYEE M
ON MGRNO = M EMPNO

ON E. WORKDEPT = DEPTNO

INSERT statement

An INSERT statement creates a row or rows and stores them in the named table. The
number of values assigned in an INSERT statement must be the same as the number of
specified or implied columns.

Syntax

INSERTINTOtabIe Nane)
(Si n&le colum-Nane [, Sinple-colum-Nanme]*)]

Query can be:
« a SelectExpression
* a VALUES list
» a multiple-row VALUES expression

Single-row and multiple-row lists can include the keyword DEFAULT. Specifying
DEFAULT for a column inserts the column's default value into the column. Another
way to insert the default value into the column is to omit the column from the column
list and only insert values into other columns in the table. For more information see
VALUES Expression.

« UNION expressions

For more information about Query, see Query.

I NSERT | NTO COUNTRI ES)
VALUES (' Taiwan', 'TW, 'Asia')

-- Insert a new department into the DEPARTMENT tabl e,

55

Copyright

-- but do not assign a nmanager to the new departnent

I NSERT | NTO DEPARTVENT (DEP NO DEPTNAIVE, DEPT
VALUES (' E31', "ARCH TECTURE , ' Eo1')

-- Insert two new deRlTrtnents usi ng one st at enent

-- into the DEPARTMENT table as in the previous exanple,

-- but do not assign a nanager to the new departnent.

I NSERT | NTO DEPARTIMENT (DEPTNO, DEPT PT)

VALUES (B11' PURC]—IASI NG, 'BOl'),
(" EAT', ' DATABASE ADM NI STRATI ON', "' EO1')

me colums as the EMP_ACT table.

MA EMP_ACT with the rows fromthe EMP_ACT
wth 5[';1 pr oj ect nunberNgPROJNO)
Wi

|nE h the letters
TABLE MA EMP_ACT

EVMPNO CHAR(6) NOT NULL,

TROGRY g

) EMENDATE DATE

INSERTINTOI\/AEI\/PACT
SELECT *

ACT
VHERE SUBSTR PRO]NO 1, 2
-- Insert the DEFAULT value for the LOCATIO\I col um
| NSERT | NTO DEPARTMENT
VALUES (' E31', ' ARCH TECTURE , '00390', 'EO1', DEFAULT)

Statement dependency system

The INSERT statement depends on the table being inserted into, all of the conglomerates
(units of storage such as heaps or indexes) for that table, and any other table named in
the statement. Any statement that creates or drops an index or a constraint for the target
table of a prepared INSERT statement invalidates the prepared INSERT statement.

JOIN operation

The JOIN operations, which are among the possible TableExpressions in a FROM
clause, perform joins between two tables. (You can also perform a join between two
tables using an explicit equality test in a WHERE clause, such as "WHERE tl.coll =
t2.col2".)

Syntax

JO N Operation

The JOIN operations are:
¢ INNER JOIN

Specifies a join between two tables with an explicit join clause. See INNER JOIN.
e LEFT OUTER JOIN

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the first table. See LEFT OUTER JOIN.

* RIGHT OUTER JOIN

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the second table. See RIGHT OUTER JOIN.

In all cases, you can specify additional restrictions on one or both of the tables being
joined in outer join clauses or in the WHERE clause.

JOIN expressions and query optimization

For information on which types of joins are optimized, see Tuning Derby.

56

Copyright

LEFT OUTER JOIN

A LEFT OUTER JOIN is one of the JOIN operations that allow you to specify a join
clause. It preserves the unmatched rows from the first (left) table, joining them with a
NULL row in the shape of the second (right) table.

Syntax

Tabl eExpression LEFT [QUTER] JO N Tabl eExpr essi on

ON bool eanExpr essi on

The scope of expressions in either the ON clause includes the current tables and any
tables in query blocks outer to the current SELECT. The ON clause can reference tables
not being joined and does not have to reference either of the tables being joined (though
typically it does).

Example 1

--match cities to countries in Asia

SELECT CI TI ES. COUNTRY, CITIES. CI TY_NAME, REG ON

FROM Countri es

LEFT QUTER JON Cities

ON _CI TI ES. COUNTRY_| SO_CODE = COUNTRI ES. COUNTRY_I| SO_CODE
WHERE REG ON = ' Asi a'

-- use the synon?/rmus syntax, LEFT JON, to achieve exactly
-- the sane results as in the exanpl e above

SELECT COJNTRI ES. COUNTRY, CITIES. Cl TY_NAME, REG ON
FROM COUNTRI ES

LEFT JO N CI TI ES

ON CI Tl ES. C(JJNTRY 1 SO_CODE = COUNTRI ES. COUNTRY_| SO_CODE
VWHERE REG ON = ' Asi a'

Example 2

-- Join the EMPLOYEE and DEPARTMENT t abl es,

-- sel ect t he enpl oyee nunber (EMPNO) ,

%/ee surnane” (LASTNAME) ,

-- depar nment nunber (WORKDEPT in the EMPLOYEE table

-- and DEPTNO i n the PARTMENT t abl e

-- and departnent nane (DEPTNANME)

-- of all enployees who were born (Bl RTHDATE) earlier than 1930

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAI
FROM _SAMP. ENPLOYEE LEFT QUTER JO'N SANP DEPARTMENT
ON WORKDEPT = DEPT
AND YEAR(BI RTHDATE) < 1930

-- List every de{:)artrrent with the enpl oyee nunber and
-- last nanme” of the nmanager,
-- including depart ments wi t hout a manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMVENT LEFT QUTER JO N EMPLOYEE
ON MEGRNO = EMPNO

LOCK TABLE statement

The LOCK TABLE statement allows you to explicitly acquire a shared or exclusive table
lock on the specified table. The table lock lasts until the end of the current transaction.

To lock a table, you must either be the database owner or the table owner.

Explicitly locking a table is useful to:
« Avoid the overhead of multiple row locks on a table (in other words, user-initiated

57

Copyright

lock escalation)
» Avoid deadlocks

You cannot lock system tables with this statement.

Syntax

LOCK TABLE table-Name IN { SHARE | EXCLUSI VE } MODE

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if a transaction locks the entire Fl i ght s table in
share mode in order to read data, a particular statement might need to lock a particular
row in exclusive mode in order to update the row. However, the previous table-level lock
on the Fl i ght s table forces the exclusive lock to be table-level as well.

If the specified lock cannot be acquired because another connection already holds a lock
on the table, a statement-level exception is raised (SQLState X0X02) after the deadlock
timeout period.

Examples
To lock the entire Fl i ght s table in share mode to avoid a large number of row locks,
use the following statement:

LOCK TABLE Flights I N SHARE MODE;
SELECT *

FROM Fl i ghts.
WHERE orig_airport > 'QOO ;

You have a transaction with multiple UPDATE statements. Since each of the individual
statements acquires only a few row-level locks, the transaction will not automatically
upgrade the locks to a table-level lock. However, collectively the UPDATE statements
acquire and release a large number of locks, which might result in deadlocks. For this
type of transaction, you can acquire an exclusive table-level lock at the beginning of the
transaction. For example:

LOCK TABLE Fli ght Avai |l ability I N EXCLUSI VE MODE;
UPDATE Fl i ght Avai l abi ity

SET econo seats_taken = (econony_seats_taken + 2)
VWHERE flight_id =" AA1265' AND flight_dafte = DATE(

UPDATE Fl i ght Avai l abi ity
SET econo seats_taken = (econony_seats
WHERE flight_id =" AA1265" AND flight_daft

UPDATE Fl i ght Avai l ability
SET econo seats_t aken = (econony
VWHERE flight_id =" AA1265" AND f

UPDATE Fl i ght Avai l ability
SET econo seats_t aken = (economnmy_s
VWHERE flight_id =" AA1265' AND fligh

2004-03-31");

taken + 2)
e = DATE(

2004-04-11");

ts taken + 2)
_date = DATE(® 2004- 04-12");

ts taken + 2)
_dafe = DATE(' 2004-04-15");

If a transaction needs to look at a table before updating the table, acquire an exclusive
lock before selecting to avoid deadlocks. For example:

LOCK TABLE Maps | N EXCLUSI VE MODE;
SELECT M’-\Xf ma%_l d) + 1 FROM Maps;
-- INSERT I NTO Maps . . .

ORDER BY clause

The ORDER BY clause is an optional element of a SELECT statement. An ORDER BY
clause allows you to specify the order in which rows appear in the ResultSet.

Syntax

58

Copyright

Query

BY { columm-Nane | Col umPosition }
ASC DESC] o
, colum-Nane | Col umPosition

[ASC| DESC] | *

ColumnPosition is an integer that identifies the number of the column in the Selectltem in
the underlying Query of the SELECT statement. ColumnPosition must be greater than 0
and not greater than the number of columns in the result table. In other words, if you want
to order by a column, that column must be in the select list.

column-Name refers to the names visible from the Selectltems in the underlying query of
the SELECT statement. An order by column does not need to be in the select list.

ASC specifies that the results should be returned in ascending order; DESC specifies
that the results should be returned in descending order. If the order is not specified, ASC
is the default.

An ORDER BY clause prevents a SELECT statement from being an updatable cursor.
(For more information, see Requirements for updatable cursors and updatable
ResultSets.)

For example, if an INTEGER column contains integers, NULL is considered greater than
1 for purposes of sorting. In other words, NULL values are sorted high.

-- order by the correl ati on nane NATI ON
SELECT CI TY NAME, COUNTRY AS NATI ON
FROM CI TI ES—

ORDER BY NATI ON

A query creates a virtual table based on existing tables or constants built into tables.

Syntax

ery YN)I'EIRSECT L DI DI STI NCT QJe y |

ery EXCEPT [ALL STI NCT_] ery

ery UNION [ALL DISTINCT] QJey|
}Sel ect Expressi on | VALUES Expression

You can arbitrarily put parentheses around queries, or use the parentheses to control the
order of evaluation of the INTERSECT, EXCEPT, or UNION operations. These
operations are evaluated from left to right when no parentheses are present, with the
exception of INTERSECT operations, which would be evaluated before any UNION or
EXCEPT operations.

Duplicates in UNION, INTERSECT, and EXCEPT ALL results

The ALL and DISTINCT keywords determine whether duplicates are eliminated from the
result of the operation. If you specify the DISTINCT keyword, then the result will have no
duplicate rows. If you specify the ALL keyword, then there may be duplicates in the
result, depending on whether there were duplicates in the input. DISTINCT is the default,
so if you don't specify ALL or DISTINCT, the duplicates will be eliminated. For example,
UNION builds an intermediate ResultSet with all of the rows from both queries and
eliminates the duplicate rows before returning the remaining rows. UNION ALL returns all
rows from both queries as the result.

Depending on which operation is specified, if the number of copies of a row in the left

59

Copyright

table is L and the number of copies of that row in the right table is R, then the number of
duplicates of that particular row that the output table contains (assuming the ALL keyword
is specified) is:

¢ UNION: (L+R).

e EXCEPT: the maximum of (L — R) and 0 (zero).

* INTERSECT: the minimum of L and R.

Examples

- - Sel ect expression
SEI LECT
FROM ORG

-S- a subquery

FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS

éE a su?query

FROM (SELECT CLASS CODE FROM CL_SCHED) AS CS (CLASS_CODE)

-- a UNI ON
- - returns aII rows from col ums DEPTNUMB and MANAGER

- - and F\ll 2) andwﬁ A(:)I_
-- DEPTNUMB and R are smal i nt col ums
SELECT DEPTNUVB, MANAGE

O ONCAL
VALUES (1 2), (3,4)

-- a val ues expre35| on
VALUES (1
e Li st the errpl oyee nunbers (EMPNO) of all enployees in the EMPLOYEE
abl e
-- whose departnment nunber (W!J?KDEPT?1 elther begl ns W|th E or
-- who are assngned to projects in the
- - whose Ngec nunber (PROINO) equals I\/A2100' MA2110', or 'MA2112'
SELECT El
FROM EMPLOYEE
VWHERE WORKDEPT LI KE ' E%
UNI ON
SELECT EMPNO
FROM EMP_ACT
VWHERE PRQJNO | N(' MA2100', ' MA2110', ' MA2112')
-- Make the same query as in t he previous exanpl e
-- and "tag" the rows fromthe EMPLOYEE table W|th enp' and
-- the rows fromthe EMP_ACT table with 'enp_act'

El
-- Unlike the result fromthe previous exanple
-- this query may return the same EMPNO nore than once,
identifying which table it cane fromby the associ ated "tag"
SELECT EMP
FROM EIVPLOYE

VWHERE WORKDEPT LI KE ' E%

UNI ON
SELECT EMPNO,_ 'enp act' FROM EMP_ACT
VWHERE PRQINO | N[MA2100', ' MAZ110', 'MA2112')
-- Make the same query as in the previous exanpl e,
-- only use UNION ALL so that no duplicate rows are elim nated
SELECT _EMPNO
FROM EMPLOYEE
VWHERE WORKDEPT LI KE ' E%
UNI ON ALL
SELECT EMPNO
FROM EMP_ACT
VWHERE PRQJNO | N(' MA2100', ' MA2110', ' MA2112')
Make the sane query as in t he previ ous exanpl e,)
only include an additional two enpl oyees currently not in any table

-- tag these rows as "new'
SELE EMPNO, ' enp'
FROM EMPLOYEE
VHERE WORKDEPT LI KE ' E%
UNI ON
SELECT EMPNO, 'enp_act'
FROM EMP_ACT
WHERE PROINO | N(' MA2100', ' MA2110', 'MA2112')

UNI ON
VALUES (' NEWAAA' , 'new), (' NEWBBB', 'new)
RIGHT OUTER JOIN

60

Copyright

A RIGHT OUTER JOIN is one of the JOIN operations that allow you to specify a JOIN
clause. It preserves the unmatched rows from the second (right) table, joining them with a
NULL in the shape of the first (left) table. A LEFT OUTER JOIN B is equivalent to B
RIGHT OUTER JOIN A, with the columns in a different order.

Syntax

Tabl eExpression RIGHT [QUTER] JO N Tabl eExpr essi on
}g\l bool eanExpr essi on

The scope of expressions in the ON clause includes the current tables and any tables in
guery blocks outer to the current SELECT. The ON clause can reference tables not being
joined and does not have to reference either of the tables being joined (though typically it
does).

Example 1

-- get all countries and corresponding cities, including
-- countries without any cities

SELECT COUNTRI ES. COUNTRY, CI TI ES. C TY_NAVE
FROM Cl TI ES

Rl GHT_OUTER JOI N COUNTRI ES

ON CI TI ES. COUNTRY_| SO CODE = COUNTRI ES. COUNTRY_| SO_CODE

-- get all countries in Africa and corresponding cities, including
-- countries without any cities

SELECT COUNTRI ES. COUNTRY, CI Tl ES. Cl TY_NAME

FROM CI Tl ES

Rl GIT_OUTER JO N COUNTRI ES

ON_CI TI ES. COUNTRY_I SO CODE = COUNTRI ES. COUNTRY_I SO_CODE
WHERE Countries.region = "'Africa'

-- use the synon?/rmus syntax, RIGHT JON, to achi eve exactly
-- the sane results as in the exanpl e above

SELECT COUNTRI ES. COUNTRY, CI Tl ES. Cl TY_NAME

FROM CI Tl ES

Rl GHT_JO N _COUNTRI ES

ON _CI TI ES. COUNTRY_I SO CODE = COUNTRI ES. COUNTRY_I SO _CODE
WHERE Countries.region = 'Africa'

Example 2

-- a Tabl eExpressi on can be a joinOperation. Therefore

-- {_ou can have nultiple join operations in a FROM cl ause
-- List every enployee nunber and | ast nane .

-- with the enpl oyee nunber and | ast nanme of their nanager

SELECT E._EMPNO, E. LASTNAVE, M EVMPNO, M LASTNANME
FROM EMPLOYEE E Rl GAT OUTER JO N
DEPARTMVENT RI GHT QUTER JO N EMPLOYEE M
ON MGRNO = M EMPNO
ON E. WORKDEPT = DEPTNO

ScalarSubquery

You can place a ScalarSubquery anywhere an Expression is permitted. A
ScalarSubquery turns a SelectExpression result into a scalar value because it returns
only a single row and column value.

The query must evaluate to a single row with a single column.

Sometimes also called an expression subquery.

Syntax

61

Copyright

(Query)
Examples
-- avg al wags returns a single value, so the subquery is
-- a Scal ar Subquery
SELECT ,
FROM STAFE

WHERE EXI STS
(SELECT AVG(BONUS + 800)
FROM EMPLOYEE
WHERE COWM < 5000
AND EMPLOYEE. LASTNAME = UPPER(STAFF. NAVE)

Introduce a way of "generating" new data val ues,]]
using a query which selects froma VALUES clause (which is an
-- alternate formof a fullselect).))
-- This query shows how a table can be derived called "X" having
-- 2 colums "R1" and "R2" and 1 row of dat a.

SELECT R1, R2

FROM (VALUES(' GROUP 1',"'GROUP 2')) AS X(R1, R2)

SelectExpression

A SelectExpression is the basic SELECT-FROM-WHERE construct used to build a table
value based on filtering and projecting values from other tables.

Syntax

SELECT [DISTINCT | ALL] Selectltem[, Selectltem]*
FROM cl ause

VWHERE cl ause]

GROUP BY cl ause]

HAVI NG cl ause]

Selectltem:
Ly
Exlabl e- Nane E correlation-Nanme } .* |
pression [AS Si npl e- col utm- Nane]

The SELECT clause contains a list of expressions and an optional quantifier that is
applied to the results of the FROM clause and the WHERE clause. If DISTINCT is
specified, only one copy of any row value is included in the result. Nulls are considered
duplicates of one another for the purposes of DISTINCT. If no quantifier, or ALL, is
specified, no rows are removed from the result in applying the SELECT clause (ALL is
the default).

A Selectltem projects one or more result column values for a table result being
constructed in a SelectExpression.

The result of the FROM clause is the cross product of the FROM items. The WHERE
clause can further qualify this result.

The WHERE clause causes rows to be filtered from the result based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result.

The GROUP BY clause groups rows in the result into subsets that have matching values
for one or more columns. GROUP BY clauses are typically used with aggregates.

If there is a GROUP BY clause, the SELECT clause must contain only aggregates or
grouping columns. If you want to include a hon-grouped column in the SELECT clause,

62

Copyright

include the column in an aggregate expression. For example:

-- List head count of each departnent,
-- the departnent nunber (DEPT), and the average departnental sal ary
(SALARY) _
-- for all departnments in the EMPLOYEE tabl e.
--IArrange the result table in ascending order by average depart nent al
sal ary.
SELEC¥' WORKDEPT, AVE SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY 1

If there is no GROUP BY clause, but a Selectltem contains an aggregate not in a
subquery, the query is implicitly grouped. The entire table is the single group.

The HAVING clause restricts a grouped table, specifying a search condition (much like a
WHERE clause) that can refer only to grouping columns or aggregates from the current
scope. The HAVING clause is applied to each group of the grouped table. If the HAVING
clause evaluates to TRUE, the row is retained for further processing. If the HAVING
clause evaluates to FALSE or NULL, the row is discarded. If there is a HAVING clause
but no GROUP BY, the table is implicitly grouped into one group for the entire table.

Derby processes a SelectExpression in the following order:
* FROM clause

WHERE clause

GROUP BY (or implicit GROUP BY)

HAVING clause

SELECT clause

The result of a SelectExpression is always a table.

When a query does not have a FROM clause (when you are constructing a value, not
getting data out of a table), you use a VALUES statement, not a SelectExpression. For
example:

VALUES CURRENT_TI MESTAMP

See VALUES Expression.

The * wildcard

* expands to all columns in the tables in the associated FROM clause.

table-Name.* and correlation-Name.* expand to all columns in the identified table. That
table must be listed in the associated FROM clause.

Naming columns

You can name a Selectltem column using the AS clause. If a column of a Selectltem is
not a simple ColumnReference expression or named with an AS clause, it is given a
generated unique name.

These column names are useful in several cases:
» They are made available on the JDBC ResultSetMetaData.
» They are used as the names of the columns in the resulting table when the
SelectExpression is used as a table subquery in a FROM clause.
» They are used in the ORDER BY clause as the column names available for sorting.

-- this exanpl e shows SELECT- FROM WHERE
th an R BY cl ause

-- and correl ati on-Names for the tables
SELECT CONSTRAI NTNAME, COLUVMNNANE

FROM SYS. SYSTABLES t, SYS. SYSCOLUWNS col ,

63

Copyright

SYS. SYSCONSTRAI NTS cons, SYS. SYSCHECKS checks
VWHERE t. TABLENAME = ' FLI GHTS' AND t. TABLEI D = col .
REFERENCEI D AND t. TABLEI D = cons. TABLEI D
AND cons. CONSTRAI NTI D = checks. CONSTRAI NTI D
ORDER BY CONSTRAI NTNAME
-- This exanpl e shows the use of the DI STINCT cl ause
SELECT DI STI ACTNO
FROM EMP_ACT ,
-- This exanple shows how to renane an expression
-- Using the EMPLOYEE table, list the departnment nunmber (WORKDEPT) and
-- maxi mum depart nental sal ary (SALARY) renanmed as BOSS
-- for all departnments whose maxi numsalary is |less than the
-- average salary in all other departnents.
SELECT KDEPT AS DPT, I\/AXCE]%ALAR AS BOSS

FROM EMPLOYEE EMP

GROUP _BY WORKDEPT

HAVI NG MAX(SALARY) < (SELECT AV%SALARY)

FROM EMPLOYEE

VWHERE NOT WORKDEPT = EMP_COR. WORKDEPT)
ORDER BY BGOSS

SELECT statement

Syntax

Quer

ORDER BY cl ause]
FOR UPDATE cl ause]
TH { RR| RS| CS| UR}

A SELECT statement consists of a query with an optional ORDER BY clause and an
optional FOR UPDATE clause. The SELECT statement is so named because the typical
first word of the query construct is SELECT. (Query includes the VALUES expression
and UNION, INTERSECT, and EXCEPT expressions as well as SELECT expressions).

The ORDER BY clause guarantees the ordering of the ResultSet. The FOR UPDATE
clause makes the result set's cursor updatable. The SELECT statement supports the
FOR FETCH ONLY clause. The FOR FETCH ONLY clause is synonymous with the FOR
READ ONLY clause.

You can set the isolation level in a SELECT statement using the WITH {RR|RS|CS|UR}
syntax.

Example

-- lists the names of the expression

- - SAL+BONUS+COW as TOTAL_PAY and

-- orders by the new name TOTAL PAY

SELEC'llz' Fl RE NMVE, SALARY+BONUS+COWM AS TOTAL_PAY

VMPLOYEE
ORDER BY TOTAL_PAY)
-- creati n? an updatabl e cursor with a FOR UPDATE cl ause
-- to updafe the start date E)lPRSTDATE) and the end date (PRENDATE)
e

-- columms in the PRQIECT ta
SELECT PRQINO, PRSTDATE, PRENDATE
FROM PROQJECT

FOR UPDATE OF PRSTDATE, PRENDATE .
-- set the isolation level to RRfor this statement only
SELECT *
FROM Fl i ghts
WHERE flight_id BETVEEN ' AA1111' AND ' AA1112'
WTH RR

A SELECT statement returns a ResultSet. A cursor is a pointer to a specific row in
ResultSet. In Java applications, all ResultSets have an underlying associated SQL
cursor, often referred to as the result set's cursor. The cursor can be updatable, that is,
you can update or delete rows as you step through the ResultSet if the SELECT
statement that generated it and its underlying query meet cursor updatability
requirements, as detailed below. The FOR UPDATE clause can be used to ensure a
compilation check that the SELECT statement meets the requiremments of a updatable
cursors, or to limit the columns that can be updated.

64

Copyright

Note: The ORDER BY clause allows you to order the results of the SELECT. Without the
ORDER BY clause, the results are returned in random order.

Requirements for updatable cursors and updatable ResultSets
Only simple, single-table SELECT cursors can be updatable. The SELECT statement for
updatable ResultSets has the same syntax as the SELECT statement for updatable
cursors. To generate updatable cursors:
* The SELECT statement must not include an ORDER BY clause.
* The underlying Query must be a SelectExpression.
* The SelectExpression in the underlying Query must not include:
« DISTINCT
* Aggregates
* GROUP BY clause
* HAVING clause
* ORDER BY clause
* The FROM clause in the underlying Query must not have:
* more than one table in its FROM clause
 anything other than one table name
» SelectExpressions
» subqueries

Note: Cursors are read-only by default. To produce an updatable cursor besides meeting
the requirements listed above, the concurrency mode for the ResultSet must be

Resul t Set . CONCUR_UPDATABLE or the SELECT statement must have FOR UPDATE
in the FOR clause (see FOR UPDATE clause).

There is no SQL language statement to assign a hame to a cursor. Instead, one can use
the JDBC API to assign names to cursors or retrieve system-generated names. For more
information, see Naming or accessing the name of a cursor in the Derby Developer's
Guide.

Statement dependency system

The SELECT depends on all the tables and views named in the query and the
conglomerates (units of storage such as heaps and indexes) chosen for access paths on
those tables. CREATE INDEX does not invalidate a prepared SELECT statement. A
DROP INDEX statement invalidates a prepared SELECT statement if the index is an
access path in the statement. If the SELECT includes views, it also depends on the
dictionary objects on which the view itself depends (see CREATE VIEW statement).

Any prepared UPDATE WHERE CURRENT or DELETE WHERE CURRENT statement
against a cursor of a SELECT depends on the SELECT. Removing a SELECT through a
java.sqgl.Statement.close request invalidates the UPDATE WHERE CURRENT or
DELETE WHERE CURRENT.

The SELECT depends on all aliases used in the query. Dropping an alias invalidates a
prepared SELECT statement if the statement uses the alias.

TableExpression

A TableExpression specifies a table or view in a FROM clause. It is the source from
which a SelectExpression selects a result.

A correlation name can be applied to a table in a TableExpression so that its columns
can be qualified with that name. If you do not supply a correlation name, the table name
gualifies the column name. When you give a table a correlation name, you cannot use
the table name to qualify columns. You must use the correlation name when qualifying
column names.

65

Copyright

No two items in the FROM clause can have the same correlation name, and no
correlation name can be the same as an unqualified table name specified in that FROM
clause.

In addition, you can give the columns of the table new names in the AS clause. Some
situations in which this is useful:
« When a VALUES expression is used as a TableSubquery, since there is no other
way to nhame the columns of a VALUES expression.
* When column names would otherwise be the same as those of columns in other
tables; renaming them means you don't have to qualify them.

The Query in a TableSubquery appearing in a Fromltem can contain multiple columns
and return multiple rows. See TableSubquery.

For information about the optimizer overrides you can specify, see Tuning Derby.

Syntax

il'abl eOr Vi ewkExpression | JO N operation

Example

-- SELECT from a Join _expression
SELECT E. EMPNO, E LASTNAMVE, M EMPNO, M LASTNAME
FROM EIVPLOYEE LEFT QUTER JO N
DEPARTMVENT | NNER JO N EMPLOYEE M
ON MGRNO = M EMPNO
ON E. WORKDEPT = DEPTNO

TableOrViewExpression
{t abl e Nama | vi ew Nane}

15 correl ati on- Nane]
[(Si nmpl e-col um-Nanme [, Sinple-colum-Nane]l*)]]]

TableSubquery

A TableSubquery is a subquery that returns multiple rows.

Unlike a ScalarSubquery, a TableSubquery is allowed only:
« as a TableExpression in a FROM clause
» with EXISTS, IN, or quantified comparisons.

When used as a TableExpression in a FROM clause, it can return multiple columns.
When used with EXISTS, it returns multiple columns only if you use * to return the
multiple columns.

When used with IN or quantified comparisons, it must return a single column.
Syntax

(Query)

Example

-- a subquery used as a Tabl eExPressi on in a FROM cl ause
EELECT Virtual Fli ghtTabI e.fligh

SELECT flight_ID, orig_airport, dest_airport

ROM Fl i ghts]

WHERE OI’I% alrloort = 'SFO OR dest_airport = '"SCL'))
AS\/rtuaI i ghtTabl e))
-- a subquery (val ues expression) used as a Tabl eExpressi on

66

Copyright

-- in a FROM cl ause
EELECT nmycol 1

(VALUES (1, 2) (3, 4
AS nytable (mycol 1 col
-- . a subquery used with EXI STS

SELECT *

FROM Fl i ght s

VWHERE EXI'STS
SELECT * FROM Fl i ghts WHERE dest_airport = 'SFO
ND orig_airport ="'GRU

- - subquer%/ used with IN

SELECT fl segnment _nunber
FROM Fl i g
VWHERE f | | %Tt idIN

SELECT Tlight ID

RG\/IFIlghts VVHERE orlg airport = 'SFO
O? gest ai rpo(rjt :t hS titied

- - subquery used wi a quantified conparison

SELECg Nﬂ y a P

CO\/M

(SELECT AVGFVEO\IUS + 800)
FROM EMPLOYEE
WHERE COWM < 5000)

UPDATE statement
Syntax

¢ UPDATE t abl e- Nane

SET col utm- Nane = Val ue
, _colum-Nanme = Value}]*
WHERE cl ause] |
UPDATE t abl e- Nane
SET col utm- Nane = Val ue
col utm- Nane = Val ue]*

) ERE CURRENT OF

The first syntactical form, called a searched update, updates the value of one or more
columns for all rows of the table for which the WHERE clause evaluates to TRUE.

The second syntactical form, called a positioned update, updates one or more columns
on the current row of an open, updatable cursor. If columns were specified in the FOR
UPDATE clause of the SELECT statement used to generate the cursor, only those
columns can be updated. If no columns were specified or the select statement did not
include a FOR UPDATE clause, all columns may be updated.

Specifying DEFAULT for the update value sets the value of the column to the default
defined for that table.

Example

-- Al the errpl ¥ es except t he manager of

-- depart nment E21' have been terrporarll reassi gned.
-- Indicate thl S by changl nP their job (JOB% o NULL and their pay
- - (SALARY, BO\IU ues to zero in the EMPLOYEE tabl e.

UPDATE EMPLOYEE
SET JOB=NULL, SALARY=0, BONUS=0, COMM=O
WHERE WORKDEPT = ' E21' AND JOB <> ' MANAGER

-- PROMOTE the job (JOB) of enployees without a specific job title to
MANAGER
UPDATE EI\/PLOYEE
SET JOB = NANAGER
WHERE JOB I'S NUL
/'l lncrease the Pro; ect staffl n PRSTAFF)S IY— 1.5 for all projects
stnt. executeU da UPDATE PRQJ ET PRSTAFF =
"PRSTAFF + 1.
"WHERE CURRENT O: + Resul t Set. get Cur sor Nane()) ;

-- Change the job (JOB) of enployee nunber (EMP ' 000290' in the
ENPLOYEE t abl eJ () M O (NO

67

Copyright

-- toits DEFAULT val ue which is NULL
UPDATE EMPLOYEE

SET JOB = DEFAULT

VWHERE EMPNO = ' 000290'

Statement dependency system

A searched update statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), all of its constraints, and any
other table named in the WHERE clause or SET expressions. A CREATE or DROP
INDEX statement or an ALTER TABLE statement for the target table of a prepared
searched update statement invalidates the prepared searched update statement.

The positioned update statement depends on the cursor and any tables the cursor
references. You can compile a positioned update even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned update.

A CREATE or DROP INDEX statement or an ALTER TABLE statement for the target
table of a prepared positioned update invalidates the prepared positioned update
statement.

Dropping an alias invalidates a prepared update statement if the latter statement uses the
alias.

Dropping or adding triggers on the target table of the update invalidates the update
statement.

Value

Expression | DEFAULT

VALUES expression

The VALUES expression allows construction of a row or a table from other values. You
use a VALUES statement when you do not have a FROM clause. This construct can be
used in all the places where a query can, and thus can be used as a statement that
returns a ResultSet, within expressions and statements wherever subqueries are
permitted, and as the source of values for an INSERT statement.

Syntax

VALUES (Val ue {, Value }*)
[E Vaue{ Value}*)]*l
VALUSVaI ue [e]* |

The first form constructs multi-column rows. The second form constructs single-column
rows, each expression being the value of the column of the row.

The DEFAULT keyword is allowed only if the VALUES expression is in an INSERT
statement. Specifying DEFAULT for a column inserts the column's default value into the
column. Another way to insert the default value into the column is to omit the column from
the column list and only insert values into other columns in the table.

Examples

-- 3 rows of 1 colum
VALUES (1),;2),(3?
-- 3 rows of 1 colum

68

Copyright

VALUES 1, 2, 3
row of 3 col urms
VAL%IES (1, 2,

VALUES (1 21) (2,22), (3,23
-- constructi ng a derived table
VALUES ('or ange or ange'), ('apple', 'red'),

(' banana', 'vyell .
'E_bll nsert two new departrrents using one statenent into the DEPARTMENT
abl e,
-- but do not assi manager to the new departnent.
| NSERT INTO DEPART NT DEPTNO, DEPTNAME, ADR/RDEPT)
VALUES (' ' SING , 'B01'),
(' E41", Bl DATABASE ADM NI STRATI 'E01')

-- insert a rowwth a DEFAULT val ue for the’ MAJPRQJ col u
I NSERT | NTO PRQJIECT (PRQINO, PRQINAME, DEPTNO, RESPEMP, PRSTDATE

MAJ PRQJ
VALUES % PL2101', ' ENSURE COMPAT PLAN , 'BO1', '000020', CURRENT DATE,
DEFAULT)

-- using a built-in function

VALUES CURRENT_DATE

- - %ttlng the value of an arbitrary expression
VALUES (3%¥29, 26.0E0/3)

-- getting a value returned by a built-in function
val ues char (1)

Value

Expression | DEFAULT

WHERE clause

A WHERE clause is an optional part of a SelectExpression,DELETE statement, or
UPDATE statement. The WHERE clause lets you select rows based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result, or, in the case of a DELETE statement, deleted, or, in the case of an UPDATE
statement, updated.

Syntax

WHERE Bool ean expression

Boolean expressions are allowed in the WHERE clause. Most of the general expressions
listed in Table of Expressions, can result in a boolean value.

In addition, there are the more common boolean expressions. Specific boolean operators
listed in Table 10, take one or more operands; the expressions return a boolean value.

Example

- d the flights where no busi ness-cl ass seats have
- n booked

FRG\/I
VHERE
OR bu
--J
-- s

--a

*
i ght Avail ability
usi ness_seats taken |I'S NULL
usi ness_seats _taken = 0
t he EMP_ACT and EMPLOYEE t abl es
ct all the colums fromthe EMP _ACT table and
d the enpl o¥ee s sur narre (LASTNAME) from t he EMPLOYEE tabl e
0 _each rowo t he resul
SELECT SAMP. E CT. *, LASTNAIVE

VWHERE EMP_ACT. EMPNO = EMPLOYEE. EMPNO
-- Deternine the enployee number and salary of sales representatives
-- along with the average sal ary and head count of their_ departnents.
I Thi s query nust first create a new col um-nane specified in the AS
cl ause
-- which is outside the fullsel ect (D .NFQ
-- in order to get the AVGSALARY and EMP! NT col ums,
-- as wel| as the DEPTNO col umm that is used in the WHERE cl ause
SELECT THI S EMP. EMPNO, THI S_EMP. SALARY, DI NFO. AVGSALARY, DI NFO. EMPCOUNT
FROM EMPLOYEE TH' S_EMP,

- fin

-be
F
i
I

|

b
0i n
ele
d

69

Copyright

(SELECT OTHERS. WORKDEPT AS DEPTNO,
AV%?T HERS. SALARY) AS AVGSALARY,
CoU E*) AS EMPCOUNT
FROM EMPLOYEE OTHERS
GROUP BY OTHERS. WORKDEPT
AS DI NFO
RE TH S_EMP. JOB = ' SALESREP'
AND THI S_EMP. WORKDEPT = DI NFO. DEPTNO

WHERE CURRENT OF clause

The WHERE CURRENT OF clause is a clause in some UPDATE and DELETE
statements. It allows you to perform positioned updates and deletes on updatable
cursors. For more information about updatable cursors, see SELECT statement.

Syntax

VHERE CURRENT OF cursor - Nane

Statement s = ¢

s. set Cur sor Nane

ResultSet rs =
"SELECT Air
"FROM Ai r

onn, createSt at ement () ;

("AirlinesResults");

conn. execut eQuery

rline, basic rate " +

| i nes FOR UPDATE OF basic_rate");

Statenment s2 = conn.createStatenent();])

s2. execut eUpdat e(" UPDATE Airlines SET basic _rate = basic_rate " +
"+ .25 ERE CURRENT OF AirlinesResults™);

Built-in functions

A built-in function is an expression in which an SQL keyword or special operator executes
some operation. Built-in functions use keywords or special built-in operators. Built-ins are
SQL92ldentifiers and are case-insensitive. Note that escaped functions like
TIMESTAMPADD and TIMESTAMPDIFF are only accessible using the JDBC escape
function syntax, and can be found in JDBC escape syntax.

Standard built-in functions

The standard built-in functions supported in Derby are as follows:

ABS or ABSVAL

ACOS

ASIN

ATAN

BIGINT

CAST

CEIL or CEILING

CHAR

Concatenation

COs

NULLIF and CASE expressions
CURRENT_DATE
CURRENT ISOLATION
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER

DATE

DAY

DEGREES

DOUBLE

70

Copyright

EXP

FLOOR

HOUR
IDENTITY_VAL_LOCAL
INTEGER
LENGTH

LN or LOG

LOG10

LOCATE

LCASE or LOWER
LTRIM

MINUTE

MOD

MONTH

Pl

RADIANS

RTRIM

SECOND
SESSION_USER
SIN

SMALLINT

SQRT

SUBSTR

TAN

TIME
TIMESTAMP
UCASE or UPPER
USER

VARCHAR

YEAR

Aggregates (set functions)

This section describes aggregates (also described as set functions in ANSI SQL-92 and
as column functions in some database literature). They provide a means of evaluating an
expression over a set of rows. Whereas the other built-in functions operate on a single
expression, aggregates operate on a set of values and reduce them to a single scalar
value. Built-in aggregates can calculate the minimum, maximum, sum, count, and
average of an expression over a set of values as well as count rows. You can also create
your own aggregates to perform other set functions such as calculating the standard
deviation.

The built-in aggregates can operate on the data types shown in Permitted Data Types for
Built-in Aggregates.
Table 2. Permitted Data Types for Built-in Aggregates

' All Types Numeric Built-in Data Types
COUNT X X
MIN ' X
MAX ' X
AVG ' X
SUM ' X

Aggregates are permitted only in the following:
* A Selectltem in a SelectExpression.

71

Copyright
* A HAVING clause.
« An ORDER BY clause (using an alias name) if the aggregate appears in the result
of the relevant query block. That is, an alias for an aggregate is permitted in an
ORDER BY clause if and only if the aggregate appears in a Selectltem in a
SelectExpression.

All expressions in Selectltems in the SelectExpression must be either aggregates or
grouped columns (see GROUP BY clause). (The same is true if there is a HAVING
clause without a GROUP BY clause.) This is because the ResultSet of a
SelectExpression must be either a scalar (single value) or a vector (multiple values), but
not a mixture of both. (Aggregates evaluate to a scalar value, and the reference to a
column can evaluate to a vector.) For example, the following query mixes scalar and
vector values and thus is not valid:

SELEOT X/lalNi(?l ing_time), flight_id
in i me), i i
FR(]VIFIightsy 25 S

Aggregates are not allowed on outer references (correlations). This means that if a
subquery contains an aggregate, that aggregate cannot evaluate an expression that
includes a reference to a column in the outer query block. For example, the following
query is not valid because SUM operates on a column from the outer query:
SELECT cl1
FROM t 1
GROUP BY c1
HAVI NG c2 >

SELECT t2.x

ROM t 2
WHERE t2.y = SUMt1.c3))

A cursor declared on a ResultSet that includes an aggregate in the outer query block is
not updatable.
This section includes the following aggregates:

« AVG

e COUNT

« MAX

* MIN
* SUM

ABS or ABSVAL

ABS or ABSVAL returns the absolute value of a numeric expression. The return type is
the type of parameter. All built-in numeric types are supported (DECIMAL, DOUBLE
PRECISION, FLOAT, INTEGER, BIGINT, NUMERIC, REAL, and SMALLINT).

Syntax

ABS(Nurer i cExpr essi on)
-- returns 3
VALUES ABS(- 3)

ACOS function

The ACOS function returns the arc cosine of a specified number.

The specified number is the cosine, in radians, of the angle that you want. The specified

72

Copyright

number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.
« If the absolute value of the specified number is greater than 1, an exception is
returned that indicates that the value is out of range (SQL state 22003).

The returned value, in radians, is in the range of zero (0) to pi. The data type of the
returned value is a DOUBLE PRECISION number.

Syntax

ACCS (number)

ASIN function

The ASIN function returns the arc sine of a specified number.

The specified number is the sine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.
« If the specified number is zero (0), the result of this function is zero with the same
sign as the specified number.
« If the absolute value of the specified number is greater than 1, an exception is
returned that indicates that the value is out of range (SQL state 22003).

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ASI N (nunber)

ATAN function

AVG

The ATAN function returns the arc tangent of a specified number.

The specified number is the tangent, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.
« If the specified number is zero (0), the result of this function is zero with the same
sign as the specified number.

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ATAN (nunber)

AVG is an aggregate function that evaluates the average of an expression over a set of
rows (see Aggregates (set functions)). AVG is allowed only on expressions that evaluate
to numeric data types.

Syntax

AVG ([DISTINCT | ALL] Expression)

73

Copyright

BIGINT

CAST

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL is
the default value if neither ALL nor DISTINCT is specified. For example, if a column
contains the values 1.0, 1.0, 1.0, 1.0, and 2.0, AVG(col) returns a smaller value than
AVG(DISTINCT caol).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not valid:

SELECT AVG (DI STINCT flying_tine), SUM (DI STINCT nil es)
FROM Fl i ght s

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to an SQL-92 numeric data type.
You can therefore call methods that evaluate to SQL-92 data types. If an expression
evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it will never
overflow). The following query, for example, returns the INTEGER 1, which might not be
what you would expect:

SELECT AVe(c1)
FROM (VALUES (1), (1), (1), (1), (2)) AS nyTable (cl)

CAST the expression to another data type if you want more precision:

SELECT AVG{CAST (c1 AS DOUBLE PRECISI O\
FROM (VALUES (1), (1), (1), (1), (2)) AS nyTable (cl)

The BIGINT function returns a 64-bit integer representation of a number or character
string in the form of an integer constant.

Syntax

Bl G NT (Char act er Expression | Nuneri cExpression)

CharacterExpression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer
constant. The character string cannot be a long string. If the argument is a
CharacterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a big integer column or variable.

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a NumericExpression, the result is the same number that would occur if the argument
were assigned to a big integer column or variable. If the whole part of the argument is
not within the range of integers, an error occurs. The decimal part of the argument is
truncated if present.

The result of the function is a big integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Using the EMPLOYEE table, select the EMPNO column in big integer form for further
processing in the application:

SELECT Bl G NT (EMPNO) FROM EMPLOYEE

74

Copyright

The CAST function converts a value from one data type to another and provides a data
type to a dynamic parameter (?) or a NULL value.

CAST expressions are permitted anywhere expressions are permitted.

Syntax

CASTAg E)atEZ(aP{/Sz)Si on | NULL | ?]

The data type to which you are casting an expression is the target type. The data type of
the expression from which you are casting is the source type.

CAST conversions among SQL-92 data types

The following table shows valid explicit conversions between source types and target
types for SQL data types. This table shows which explicit conversions between data
types are valid. The first column on the table lists the source data types. The first row lists
the target data types. A "Y" indicates that a conversion from the source to the target is
valid. For example, the first cell in the second row lists the source data type SMALLINT.
The remaining cells on the second row indicate the whether or not you can convert
SMALLINT to the target data types that are listed in the first row of the table.

Table 3. Explicit conversions between source types and target types for SQL data

types

Types
S| | B|DIR|D|F|J]C|JV|L]C|V|L|]C|B|D|T]|]T]|X
M| NJ| I E|IE|JO|L|[H]|A]J]O|H]|]A|O|L|L]|]AI|/I I M
Al T|IG|C|AJU|O|JA|R|INJA|R|IN|[O|O|T|M|M|L
L|E] I | LIBJ]A|R|C|G|R|]C|G|B|B|E|E]|E
LIG|IN|M LT H H S
| E|T| A E A|l|V]|F|A|V T
N| R L RIA|JO|R|A A
T R| R R M
C F| C P
H|{B| O|H
Al | R| A
R T R
B
D | F
Al T]|]O
T R
A| D
Al B
T |
Al T
D
A
T
A
SMALLINT Y |[Y Y |[Y |Y|Y |Y |Y |- - - - - - - - - - -
INTEGER Y |Y Y |Y Y]|Y Y |Y |- - - - - - - - - - -
BIGINT Y |[Y Y |[Y |Y|Y |Y |Y |- - - - - - - - - - -
DECIMAL Y IY Y [Y Y |Y |[Y |Y |- - - - - - - - - - -
REAL Y IY|IY Y |YI|Y |Y |- - - - - - - - - - - -

75

Copyright

Types

—AZ—r—r>ZWm
ImMmOM-AZ—
4 Z—-—0O—W
—r>»<—-—0mQg
—X>mX
m—WCOOU
—>0rmm
O>TITO
I>ITOAD>L
O>TITO
TIP>ITOIT>L
WOron
WO w

m- >0

m< —-

O
v >r>d0omZ — 4

O
I>TOII>P< OZ0r

TDP>TOIT>P OZ0r

>-H>»0 H—W
>-H>»0 H—W
DO

>—-4>»0 —H-—W

— <X

DOUBLE

FLOAT

CHAR

<[<] =<[=<
<[<] =<[=<
<[<] =<|=<
<[<] =<|[=<
<
<
<

<[=<
<[=<
<[=<

VARCHAR

<[=<|=<
<|=<|=<
<|=<|=<
<|=<|=<

LONG A D U D R N
VARCHAR

<
<
<
<
<

cHARFOrRBIT|- [- |- |- [- [- |-
DATA

vARCHARFOR[- [- [- [- - [-1-1-1-1-1[v [y IvI¥y ¥y [-1 1-
BIT DATA

LONG - -1y Iy [y Yy -1 |-
VARCHAR FOR
BIT DATA

CLOB -1 Iy Yy Iy - 1-1-1y1-1 1 |-

BLOB - -1 1-1-1-1-1-T1-1-1-1T- 1" [¥I-

<

DATE - - - - - - -

TIME - - - - - - -

<<=
<<=
_<l
<| =<
<

TIMESTAMP - - - - - - -

XML S I I U DR R T U I R e - - - |-

If a conversion is valid, CASTs are allowed. Size incompatibilities between the source
and target types might cause runtime errors.

Notes
In this discussion, the Derby SQL-92 data types are categorized as follows:

76

Copyright

* numeric
» Exact numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC)
« Approximate numeric (FLOAT, REAL, DOUBLE PRECISION)
* string
e Character string (CLOB, CHAR, VARCHAR, LONG VARCHAR)
* Bit string (BLOB, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, LONG
VARCHAR FOR BIT DATA)
 date/time
« DATE
« TIME
e TIMESTAMP

Conversions from numeric types

A numeric type can be converted to any other numeric type. If the target type cannot
represent the non-fractional component without truncation, an exception is raised. If the
target numeric cannot represent the fractional component (scale) of the source numeric,
then the source is silently truncated to fit into the target. For example, casting 763.1234
as INTEGER yields 763.

Conversions from and to bit strings

Bit strings can be converted to other bit strings, but not character strings. Strings that are
converted to bit strings are padded with trailing zeros to fit the size of the target bit string.
The BLOB type is more limited and requires explicit casting. In most cases the BLOB
type cannot be casted to and from other types.

Conversions of date/time values

A date/time value can always be converted to and from a TIMESTAMP. If a DATE is
converted to a TIMESTAMP, the TIME component of the resulting TIMESTAMP is always
00:00:00. If a TIME data value is converted to a TIMESTAMP, the DATE component is
set to the value of CURRENT_DATE at the time the CAST is executed. If a TIMESTAMP
is converted to a DATE, the TIME component is silently truncated. If a TIMESTAMP is
converted to a TIME, the DATE component is silently truncated.

SELECT CAST (miles AS I NT)

FROM Fl i ghts

-- convert tinmestanps to text

I NSERT | NTO nmyt abl e (text col umm)

VALUES (CAST { CURRENT_TI MESTAMP AS VARCHAR(100)))
-- you must_ cast NULL as a data type to use it
SELECT airline

FROM A| rI i nes

UNI ON AL

VALUES (CAST E)NULL AS CHAR(2))

-- cast a double as a deci

SELECT CAST (FLYI NG TI ME AS DECI MAL(5, 2))
FROM FLI GHTS

-- cast a SVMALLINT to a BIGQ NT
VALUES CAST (CAST (12 as SMALLI NT) as BI G NT)

Conversions of XML values

An XML value cannot be converted to any non-XML type using an explicit or implicit
CAST. Use the XMLSERIALIZE operator to convert an XML type to a character type.

CEIL or CEILING function

The CEIL and CEILING functions round the specified number up, and return the smallest
number that is greater than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of these functions is NULL.

77

Copyright

CHAR

« If the specified number is equal to a mathematical integer, the result of these
functions is the same as the specified number.

« If the specified number is zero (0), the result of these functions is zero.

« If the specified number is less than zero but greater than -1.0, then the result of
these functions is zero.

The returned value is the smallest (closest to negative infinity) double floating point value
that is greater than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

CEIL (nunber)

CEl LI NG (nunber)

The CHAR function returns a fixed-length character string representation.

The representations are:

* A character string, if the first argument is any type of character string.

» A datetime value, if the first argument is a date, time, or timestamp.

« A decimal number, if the first argument is a decimal number.

» A double-precision floating-point number, if the first argument is a DOUBLE or

REAL.

« An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT.
The first argument must be of a built-in data type. The result of the CHAR function is a
fixed-length character string. If the first argument can be null, the result can be null. If the
first argument is null, the result is the null value. The first argument cannot be an XML
value. To convert an XML value to a CHAR of a specified length, you must use the
SQL/XML serialization operator XMLSERIALIZE.

Character to character syntax

CHAR (CharacterExpression [, integer])

CharacterExpression
An expression that returns a value that is CHAR, VARCHAR, LONG VARCHAR, or
CLOB data type.

integer
The length attribute for the resulting fixed length character string. The value must be
between 0 and 254.

If the length of the character-expression is less than the length attribute of the result, the
result is padded with blanks up to the length of the result. If the length of the
character-expression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the truncated characters were all blanks and the
character-expression was not a long string (LONG VARCHAR or CLOB).

Integer to character syntax

CHAR (I nt eger Expression)

IntegerExpression
An expression that returns a value that is an integer data type (either SMALLINT,
INTEGER or BIGINT).

The result is the character string representation of the argument in the form of an SQL
integer constant. The result consists of n characters that are the significant digits that

78

Copyright

represent the value of the argument with a preceding minus sign if the argument is
negative. It is left justified.

« If the first argument is a small integer: The length of the result is 6. If the number of
characters in the result is less than 6, then the result is padded on the right with
blanks to length 6.

« If the first argument is a large integer: The length of the result is 11. If the number of
characters in the result is less than 11, then the result is padded on the right with
blanks to length 11.

« If the first argument is a big integer: The length of the result is 20. If the number of
characters in the result is less than 20, then the result is padded on the right with
blanks to length 20.

Datetime to character syntax

CHAR (Dat et i neExpressi on)

DatetimeExpression
An expression that is one of the following three data types:

» date: The result is the character representation of the date. The length of the
result is 10.

» time: The result is the character representation of the time. The length of the
result is 8.

» timestamp: The result is the character string representation of the timestamp.
The length of the result is 26.

Decimal to character
CHAR (Deci mal Expressi on)

DecimalExpression
An expression that returns a value that is a decimal data type. If a different precision
and scale is desired, the DECIMAL scalar function can be used first to make the
change.

Floating point to character syntax

CHAR (Fl oat i ngPoi nt Expr essi on)

FloatingPointExpression
An expression that returns a value that is a floating-point data type (DOUBLE or
REAL).

Use the CHAR function to return the values for EDLEVEL (defined as smallint) as a fixed
length character string:

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by four
blanks).

Concatenation

The concatenation operator, ||, concatenates its right operand to the end of its left
operand. It operates on a character or bit expression.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

t g Char act er Expr essi OntlEx OharacterExpreSS| on } |
p

Bi t Expression || Bi ressi on

79

Copyright

}
For character strings, if both the left and right operands are of type CHAR, the resulting

type is CHAR; otherwise, it is VARCHAR. The normal blank padding/trimming rules for
CHAR and VARCHAR apply to the result of this operator.

The length of the resulting string is the sum of the lengths of both operands.

For bit strings, if both the left and the right operands are of type CHAR FOR BIT DATA,
the resulting type is CHAR FOR BIT DATA, otherwise, it is VARCHAR FOR BIT DATA.

--returns superc I fr g| |'isticexbealidocious(sp?)’
VALUES 'supercalifragilistic' || 'exbealidoci ous |l " (sp?)’
-- returns NULL
VALUES CAST (null AS VARCHAR(7))|| "AString'
urns '130asdf’
VALUES 130" || *asdf’

COS function

COUNT

The COS function returns the cosine of a specified number.

The specified number is the angle, in radians, that you want the cosine for. The specified
number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.

Syntax
COS (number)

COUNT is an aggregate function that counts the number of rows accessed in an
expression (see Aggregates (set functions)). COUNT is allowed on all types of
expressions.

Syntax

COUNT ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL is
assumed if neither ALL nor DISTINCT is specified. For example, if a column contains the
values 1, 1, 1, 1, and 2, COUNT(col) returns a greater value than COUNT(DISTINCT
col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not allowed:

- guer\t/ not al |l owe)
SEL NT(DISTINCTfIylngtlne) SUM (DI STI NCT i | es)
FROM Fl i ghts

An Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. If an Expression evaluates to NULL, the
aggregate is not processed for that value.

The resulting data type of COUNT is INTEGER.

80

Copyright

-- Count the nunmber of countries in each reg| on,
-- show only regions that have at | east

SELECT COUNT (country), region

FROM Countri es

GROUP BY region

HAVI NG COUNT (country) > 1

COUNT(*)

COUNT(*) is an aggregate function that counts the number of rows accessed. No NULLs
or duplicates are eliminated. COUNT(*) does not operate on an expression.

Syntax
COUNT(*)

The resulting data type is INTEGER.

-- Count the nunber of rows in the Flights table
SELECT COUNT(*)
FROM Fl i ghts

CURRENT DATE

CURRENT DATE is a synonym for CURRENT_DATE.

CURRENT_DATE

CURRENT _DATE returns the current date; the value returned does not change if it is
executed more than once in a single statement. This means the value is fixed even if
there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_DATE

or, alternately

CURRENT DATE

-- find available future flight
SELECT * FROM Fl i ght avai | abi |ty where flight _date > CURRENT_DATE;

CURRENT ISOLATION

CURRENT ISOLATION returns the current isolation level as a char(2) value of either
"(blank), "UR", "CS", "RS", or "RR".

Syntax

CURRENT | SCLATI ON

VALUES CURRENT | SCLATI ON

CURRENT SCHEMA

81

Copyright

CURRENT SCHEMA returns the schema name used to qualify unqualified database
object references.

Note: CURRENT SCHEMA and CURRENT SQLID are synonyms.

These functions return a string of up to 128 characters.

Syntax

CURRENT SCHEMA
-- or, alternately:
CURRENT SQLI D

-- Set the nane colum default to the current schenma:

CREATE TABLE nytable (id int, name VARCHAR(128) DEFAULT CURRENT SQLI D)
-- Inserts default value of current schema value into the table:

I NSERT | NTO myt abl e(i d% VALUES (1)

-- Returns the rows with the same nane as the current schena:

SELECT nanme FROM nyt abl e WHERE nane = CURRENT SCHEMA

CURRENT TIME

CURRENT TIME is a synonym for CURRENT_TIME.

CURRENT_TIME

CURRENT_TIME returns the current time; the value returned does not change if it is
executed more than once in a single statement. This means the value is fixed even if
there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_TI ME

or, alternately

CURRENT TI ME

VALUES CURRENT TI ME
-- or, alternafely:

VALUES CURRENT TI ME

CURRENT TIMESTAMP

CURRENT TIMESTAMP is a synonym for CURRENT_TIMESTAMP.

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP returns the current timestamp; the value returned does not
change if it is executed more than once in a single statement. This means the value is
fixed even if there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_TI MESTAMP

82

Copyright

or, alternately

CURRENT TI MESTAMP

VALUES CURRENT TI MESTAMP
-- or, alternafely:

VALUES CURRENT TI MESTAMP

CURRENT_USER

DATE

DAY

CURRENT_USER returns the authorization identifier of the current user (the name of the
user passed in when the user connected to the database). If there is no current user, it
returns APP.

USER and SESSION_USER are synonyms.
These functions return a string of up to 128 characters.

Syntax

CURRENT _USER

VALUES CURRENT_USER

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to
2,932,897, a valid string representation of a date or timestamp, or a string of length 7 that
is not a CLOB, LONG VARCHAR, or XML value. If the argument is a string of length 7, it
must represent a valid date in the form yyyynnn, where yyyy are digits denoting a year,
and nnn are digits between 001 and 366, denoting a day of that year. The result of the
function is a date. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the date part of the value.
« If the argument is a number: The result is the date that is n-1 days after January 1,
0001, where n is the integral part of the number.
« If the argument is a string with a length of 7: The result is the date represented by
the string.

Syntax

DATE (expression)

This example results in an internal representation of '1988-12-25',

VALUES DATE(' 1988-12-25")

83

Copyright

The DAY function returns the day part of a value.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the day part of the value, which is an integer between 1
and 31.
« If the argument is a time duration or timestamp duration: The result is the day part
of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

DAY (expression)

val ues day(' 2006- 08-02');

The resulting value is 2.

DEGREES function

DOUBLE

The DEGREES function converts a specified number from radians to degrees.

The specified number is an angle measured in radians, which is converted to an
approximately equivalent angle measured in degrees. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from radians to degrees is not exact. You should not expect
that the COS(RADIANS(90.0)) to exactly equal 0.0.
The data type of the returned value is a DOUBLE PRECISION number.

Syntax

DEGREES (nunber)

The DOUBLE function returns a floating-point number corresponding to a:
* number if the argument is a numeric expression.
« character string representation of a number if the argument is a string expression.

Numeric to double

DOUBLE [PRECI SI ON] (Nuneri cExpression)

NumericExpression
The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a double-precision floating-point number. If the argument can
be null, the result can be null; if the argument is null, the result is the null value. The
result is the same number that would occur if the argument were assigned to a
double-precision floating-point column or variable.

Character string to double

84

Copyright

DOUBLE (StringExpression)

StringExpression
The argument can be of type CHAR or VARCHAR in the form of a numeric constant.
Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value. The result is the same number that
would occur if the string was considered a constant and assigned to a double-precision
floating-point column or variable.

EXP function

The EXP function returns e raised to the power of the specified number.

The specified number is the exponent that you want to raise e to. The specified number
must be a DOUBLE PRECISION number.

The constant e is the base of the natural logarithms.
The data type of the returned value is a DOUBLE PRECISION number.

Syntax

EXP (numnber)

FLOOR function

HOUR

The FLOOR function rounds the specified number down, and returns the largest number
that is less than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.

« If the specified number is NULL, the result of this function is NULL.

« If the specified number is equal to a mathematical integer, the result of this function
is the same as the specified number.

« If the specified number is zero (0), the result of this function is zero.

The returned value is the largest (closest to positive infinity) double floating point value
that is less than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

FLOOR (nunber)

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or

85

Copyright

timestamp: The result is the hour part of the value, which is an integer between 0
and 24.

« If the argument is a time duration or timestamp duration: The result is the hour part
of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

HOUR (expression)

Select all the classes that start in the afternoon from a table called TABLEL.

SELECT * FROM TABLEl
VWHERE HOUR(STARTI NG BETWEEN 12 AND 17

IDENTITY_VAL_LOCAL

Derby supports the IDENTITY_VAL_LOCAL function.

Syntax:

| DENTI TY_VAL_LOCAL ()

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value of an identity column for a connection, where the assignment
occurred as a result of a single row INSERT statement using a VALUES clause.

The IDENTITY_VAL_LOCAL function has no input parameters. The result is a DECIMAL
(31,0), regardless of the actual data type of the corresponding identity column.

The value returned by the IDENTITY_VAL_LOCAL function, for a connection, is the value
assigned to the identity column of the table identified in the most recent single row
INSERT statement. The INSERT statement must contain a VALUES clause on a table
containing an identity column. The assigned value is an identity value generated by
Derby. The function returns a null value when a single row INSERT statement with a
VALUES clause has not been issued for a table containing an identity column.

The result of the function is not affected by the following:
« A single row INSERT statement with a VALUES clause for a table without an
identity column
* A multiple row INSERT statement with a VALUES clause
« An INSERT statement with a fullselect

If a table with an identity column has an INSERT trigger defined that inserts into another
table with another identity column, then the IDENTITY_VAL_LOCAL() function will return
the generated value for the statement table, and not for the table modified by the trigger.

Examples:

ij>create table t1(cl int generated always as identity, c2 int);
0 rows |nserted/ugdated/deleted

ij>insert into tl(c2) values (8);

1 row inserted/ uPdat ed/ del et ed

|11 > val ues | DENTI TY_VAL_L L();

Copyright

INTEGER

1
1 row sel ected
|11 > sel ect | DENTI TY_VAL_LOCAL() +1l 2I DENTI TY_VAL_LOCAL()-1 fromt1;
2 | O
1 row sel ected
ij>insert into t1(c2) values (I DENTI TY_VAL_LOCAL());
1 row inserted/ updat ed/ del ete
ij>select * fromtil,;
1 | 2
1 8
2 1
2 rows sel ected
|1] > val ues | DENTI TY_VAL_LOCAL();

insert into t1(c2) val ues (8) (9);
ws i nserted/updat ed/ del ete
-- multi-values insert, return val ue of the function should not

@
ugs | DENTI TY_VAL_LOCAL() ;

ow sel ect ed
o]

_ﬂJ VTIVT

s e

RP<OTNTEN

row sel ect ed
j> select * fromtl;

L\
Q-

| C2

1 8
2 1
3 8
4 9
4 rows sel ect ed
ij>insert into tl1l(c2) select cl fromti;
4 rows inserted/ quat ed/ del et ed
-- insert with sub-select, return value should not change
|1] > val ues | DENTI TY_VAL_LOCAL();
2
1 row sel ected
ij>select * fromt1l,;

1 | C2
1 8
2 1
3 8
4 9
5 1
6 2
7 3
8 4
8 rows sel ected

The INTEGER function returns an integer representation of a number, character string,
date, or time in the form of an integer constant.

Syntax

I NT[EGER] (Numeri cExpression | Character Expression)

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numeric-expression, the result is the same number that would occur if the argument
were assigned to a large integer column or variable. If the whole part of the argument
is not within the range of integers, an error occurs. The decimal part of the argument
is truncated if present.

CharacterExpression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer

87

Copyright

constant. The character string cannot be a long string. If the argument is a
character-expression, the result is the same number that would occur if the
corresponding integer constant were assigned to a large integer column or variable.

The result of the function is a large integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list should also
contain the values used in the calculation and employee number (EMPNO). The list
should be in descending order of the calculated value:

SELECT | NTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

LCASE or LOWER

LENGTH

LCASE or LOWER takes a character expression as a parameter and returns a string in
which all alpha characters have been converted to lowercase.

Syntax

LCASE or LOWNER (Charact er Expressi on)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type or any
built-in type that is implicitly converted to a string (except a bit expression).

If the parameter type is CHAR or LONG VARCHAR, the return type is CHAR or LONG
VARCHAR. Otherwise, the return type is VARCHAR.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

If the CharacterExpression evaluates to null, this function returns null.

-- returns 'asdl#w
VALUES LOWER(' aSD1#wW)

SELECT LOWER(f!light_id) FROM Flights

LENGTH is applied to either a character string expression or a bit string expression and
returns the number of characters in the result.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax
LENGTH ({ CharacterExpression | BitExpression })

-- returns 20) o
VALUES LENGTH(' supercalifragilistic')

-- returns 1

VALUES LENGTH(X' FF')

-- returns 4

VALUES LENGTH(1234567890)

88

Copyright

LN or LOG function

The LN and LOG functions return the natural logarithm (base e) of the specified number.

The specified number must be a DOUBLE PRECISION number that is greater than zero
(0).
« If the specified number is NULL, the result of these functions is NULL.
« If the specified number is zero or a negative number, an exception is returned that
indicates that the value is out of range (SQL state 22003).

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

LN (nunber)

LOG (nunber)

LOG10 function

LOCATE

LTRIM

The LOG10 function returns the base-10 logarithm of the specified humber.
The specified number must be a DOUBLE PRECISION number that is greater than zero
(0).
« If the specified number is NULL, the result of this function is NULL.
« If the specified number is zero or a negative number, an exception is returned that
indicates that the value is out of range (SQL state 22003).
The data type of the returned value is a DOUBLE PRECISION number.
Syntax

LOGLO (nunber)

If a specified substring is found within a specified search string, LOCATE returns the
index at which the substring is found within the search string. If the substring is not found,
LOCATE returns 0.

Syntax

LOCATE(Char act er Expr essi on, Charact er Expression [, StartPosition])

The second CharacterExpression is the search string and is searched from the
beginning, unless startPosition is specified, in which case the search begins from position
there; the index starts with 1. It returns 0 if the string is not found.

The return type for LOCATE is an integer.

-- returns 2
VALUES LOCATE(' Il ove', 'clover')

LTRIM removes blanks from the beginning of a character string expression.

89

Copyright

MAX

MIN

Syntax

LTRI M Char act er Expr essi on)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

LTRIM returns NULL if CharacterExpression evaluates to null.

-- returns 'asdf
VALUES LTRIM"' asdf ')

MAX is an aggregate function that evaluates the maximum of the expression over a set of
values (see Aggregates (set functions)). MAX is allowed only on expressions that
evaluate to built-in data types (including CHAR, VARCHAR, DATE, TIME, CHAR FOR
BIT DATA, etc.).

Syntax

MAX ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. These
qualifiers have no effect in a MAX expression. Only one DISTINCT aggregate expression
per SelectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DI STINCT flying_time), MAX (DI STINCT niles)
FROM Fl i ght s

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

For CHAR, VARCHAR, and LONG VARCHAR, the number of blank spaces at the end of
the value can affect how MAX is evaluated. For example, if the values 'z' and 'z ' are both
stored in a column, you cannot control which one will be returned as the maximum,
because a blank space has no value.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

-- find the latest date in the FlightAvailability table

SELECT MAX (flight _date) FROM Flig _tAvallablllt%)

-- find the | ongest flight OHP! nating from each airport,

-- but only when the | ongest flight is over 10 hours
_tine), orig_airport

GROUP BY ori P_ai rport
HAVI NG MAX(flTying_tinme) > 10

MIN is an aggregate expression that evaluates the minimum of an expression over a set
of rows (see Aggregates (set functions)). MIN is allowed only on expressions that
evaluate to built-in data types (including CHAR, VARCHAR, DATE, TIME, etc.).

90

Copyright

MINUTE

MOD

Syntax

MN ([DISTINCT | ALL] Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates, but these qualifiers have
no effect in a MIN expression. Only one DISTINCT aggregate expression per
SelectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DISTINCT flying_tine), MN (DI STINCT niles)
FROM Fl i ghts

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

The type's comparison rules determine the maximum value. For CHAR, VARCHAR, and
LONG VARCHAR, the number of blank spaces at the end of the value can affect the
result.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

NOT val i d:
SELEClT dDISTINC flying_time, MN(D STINCT niles) fromFlights
SELECT COUNT(DI STINCT flying_time), MN(D STINCT niles) fromFlights
-- find the earliest date
SELECT M N (flight_date) FROM Flight Avail ability;

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the minute part of the value, which is an integer between 0
and 59.
« If the argument is a time duration or timestamp duration: The result is the minute
part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

M NUTE (expression)

-- Sel ect all classes that do not end on a full hour:
SELECT * FROM tabl el WHERE M NUTE(endi ng) < 60;

MOD returns the remainder (modulus) of argument 1 divided by argument 2. The result is

91

Copyright

MONTH

negative only if argument 1 is negative.

Syntax

nod(i nt eger _type, integer_type)

The result of the function is:
e SMALLINT if both arguments are SMALLINT.
* INTEGER if one argument is INTEGER and the other is INTEGER or SMALLINT.
» BIGINT if one integer is BIGINT and the other argument is BIGINT, INTEGER, or
SMALLINT.

The result can be null; if any argument is null, the result is the null value.

The MONTH function returns the month part of a value.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the month part of the value, which is an integer between 1
and 12.
« If the argument is a date duration or timestamp duration: The result is the month
part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

MONTH (expression)

Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE) in
DECEMBER.

SELECT * FROM EMPLOYEE
VWHERE MONTH(Bl RTHDATE) = 12

NULLIF and CASE expressions

Use the CASE and NULLIF expressions for conditional expressions in Derby.

NULLIF expression syntax

NULLIF (L, R)
The NULLIF expression is very similar to the CASE expression. For example:

NULLI F(V1, V2)
is equivalent to the following CASE expression:

CASE WHEN V1=V2 THEN NULL ELSE V1 END

CASE expression syntax

You can place a CASE expression anywhere an expression is allowed. It chooses an

92

Copyright

Pl function

expression to evaluate based on a boolean test.

CASE

VWHEN bool eanExpr essi on THEN t henExpr essi on
E VWHEN bool eanExpressi on THEN t henExpression ...
ENDLSE el seExpressi on

ThenExpression and elseExpression are both expressions that must be type-compatible.
For built-in types, this means that the types must be the same or a built-in broadening
conversion must exist between the types.

-- returns 3
VALUES CASE WHEN 1=1 THEN 3 ELSE 4 END

-- returns 7
VALUES
VWHEN 1 = 2 THEN 3
VWHEN 4 = THEN 6
ELSE 7
END

The PI function returns a value that is closer than any other value to pi.

The constant pi is the ratio of the circumference of a circle to the diameter of a circle.
The data type of the returned value is a DOUBLE PRECISION number.

Syntax
Pl ()

RADIANS function

RTRIM

The RADIANS function converts a specified number from degrees to radians.

The specified number is an angle measured in degrees, which is converted to an
approximately equivalent angle measured in radians. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from degrees to radians is not exact.
The data type of the returned value is a DOUBLE PRECISION number.

Syntax

RADI ANS (nunber)

RTRIM removes blanks from the end of a character string expression.

Syntax

RTRI M Char act er Expr essi on)

93

Copyright

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

RTRIM returns NULL if CharacterExpression evaluates to null.

-- returns ' asdf'
VALUES RTRIM"' asdf ')
-- returns 'asdf'
VALUES RTRI M "' asdf ')

SECOND

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a large integer. If the argument can be null, the result can be null. If the
argument is null, the result is 0.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the seconds part of the value, which is an integer between
0 and 59.
« If the argument is a time duration or timestamp duration: The result is the seconds
part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Syntax

SECOND (expression)
Example
The column RECEIVED (timestamp) has an internal value equivalent to

2005-12-25-17.12.30.000000. To determine return only the seconds part of the
timestamp, use the following syntax:

SECOND(RECEI VED)
The value 30 is returned.

SESSION_USER

SESSION_USER returns the authorization identifier or name of the current user. If there
is no current user, it returns APP.

USER, CURRENT_USER, and SESSION_USER are synonyms.

Syntax

SESSI ON_USER
VALUES SESSI ON_USER

SIN function

The SIN function returns the sine of a specified number.

94

Copyright

SMALLINT

SQRT

The specified number is the angle, in radians, that you want the sine for. The specified
number must be a DOUBLE PRECISION number.

« If the specified number is NULL, the result of this function is NULL.

« If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

SIN (number)

The SMALLINT function returns a small integer representation of a number or character
string in the form of a small integer constant.

Syntax

SMALLI NT (Nuneri cExpression | CharacterExpression)

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a NumericExpression, the result is the same number that would occur if the argument
were assigned to a small integer column or variable. If the whole part of the argument
is not within the range of small integers, an error occurs. The decimal part of the
argument is truncated if present.

CharacterExpression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer
constant. However, the value of the constant must be in the range of small integers.
The character string cannot be a long string. If the argument is a
CharacterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a small integer column or variable.

The result of the function is a small integer. If the argument can be null, the result can be
null. If the argument is null, the result is the null value.

Example
To determine the small integer representation of the number 32767.99, use this clause:

VALUES SMALLI NT (32767.99)
The result is 32767.
To determine the small integer representation of the number 1, use this clause:

VALUES SMALLI NT (1)
The result is 1.

Returns the square root of a floating point number; only the built-in types REAL, FLOAT,
and DOUBLE PRECISION are supported. The return type for SQRT is the type of the
parameter.

Note: To execute SQRT on other data types, you must cast them to floating point types.
Syntax

SQRT(Fl oat i ngPoi nt Expr essi on)

95

Copyright

SUBSTR

throws an exception if any row stores a negative nunber:
VALUES SQRT(3421E+09)

-- returns the square root of an | NTEGER after casting it as a
-- floati ngll point data t
SELECT SQRT(myDoubl eCol urm) FROM MyTabl e

VALUES SQRT (CAST(25 AS FLOAT));

The SUBSTR function acts on a character string expression or a bit string expression.
The type of the result is a VARCHAR in the first case and VARCHAR FOR BIT DATA in
the second case. The length of the result is the maximum length of the source type.

Syntax

SUBSTR(% CharacterEx ressi onsi
StartPosition engthO‘ ring])

The parameter startPosition and the optional parameter lengthOfString are both integer
expressions. The first character or bit has a startPosition of 1. If you specify 0, Derby
assumes that you mean 1.

The parameter characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data
type or any built-in type that is implicitly converted to a string (except a bit expression).

For character expressions, the startPosition and lengthOfString parameters refer to
characters. For bit expressions, the startPosition and lengthOfString parameters refer to
bits.

If the startPosition is positive, it refers to position from the start of the source expression
(counting the first character as 1). The startPosition cannot be a negative number.

If the lengthOfString is not specified, SUBSTR returns the substring of the expression
from the startPosition to the end of the source expression. If lengthOfString is specified,
SUBSTR returns a VARCHAR or VARBIT of length lengthOfString starting at the
startPosition. The SUBSTR function returns an error if you specify a negative number for
the parameter lengthOfString.

Examples
To return a substring of the word hel | o, starting at the second character and continuing
until the end of the word, use the following clause:

VALUES SUBSTR(' hell o', 2)

The resultis 'el | o'

To return a substring of the word hel | o, starting at the first character and continuing for
two characters, use the following clause:

VALUES SUBSTR(' hell o', 1, 2)
The result is 'he’.

TAN function

The TAN function returns the tangent of a specified number.

The specified number is the angle, in radians, that you want the tangent for. The
specified number must be a DOUBLE PRECISION number.

96

Copyright

SUM

TIME

« If the specified number is NULL, the result of this function is NULL.
« If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

TAN (nunber)

SUM is an aggregate expression that evaluates the sum of the expression over a set of
rows (see Aggregates (set functions)). SUM is allowed only on expressions that evaluate
to numeric data types.

Syntax

SUM ([DISTINCT | ALL] Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates. ALL is assumed if
neither ALL nor DISTINCT is specified. For example, if a column contains the values 1, 1,
1, 1, and 2, SUM(col) returns a greater value than SUM(DISTINCT col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not allowed:

SELECT AVG (DI STINCT flying time), SUM (DI STINCT nil es)
FROM Fl i ght's

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in numeric data type. If
an expression evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it might
overflow).

-- find all econony seats avail able;
SELECT SUM (econony_seats) FROM Airli nes;

-- use SUMon multiple colum references

-- (find the total nunmber of all seats purchased):
SELECT SUM (econony_seats_taken + busi ness_seats_taken +
firstclass _seats taKen?

as seats_taken FROM FL1 GHTAVAI LABI LI TY;

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid string representation of a time or
timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a time. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a time: The result is that time.
« If the argument is a timestamp: The result is the time part of the timestamp.
« If the argument is a string: The result is the time represented by the string.

Syntax

97

Copyright

TIME (expression)

val ues tinme(current _tinestanp)

If the current time is 5:03 PM, the value returned is 17: 03: 00.

TIMESTAMP

The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified:

« If only one argument is specified: It must be a timestamp, a valid string
representation of a timestamp, or a string of length 14 that is not a CLOB, LONG
VARCHAR, or XML value. A string of length 14 must be a string of digits that
represents a valid date and time in the form yyyyxxddhhmmss, where yyyy is the
year, xx is the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

« If both arguments are specified: The first argument must be a date or a valid string
representation of a date and the second argument must be a time or a valid string
representation of a time.

The other rules depend on whether the second argument is specified:

« If both arguments are specified: The result is a timestamp with the date specified by
the first argument and the time specified by the second argument. The microsecond
part of the timestamp is zero.

 If only one argument is specified and it is a timestamp: The result is that timestamp.

« If only one argument is specified and it is a string: The result is the timestamp
represented by that string. If the argument is a string of length 14, the timestamp
has a microsecond part of zero.

Syntax

TI MESTAMP (expression [, expression])

Examples

The second column in table r ecor ds_t abl e contains dates (such as 1998-12-25) and
the third column contains times of day (such as 17:12:30). You can return the timestamp
with this statement:

SELECT TI MESTAMP(col 2, col 3) FROM records_t abl e

The following clause returns the value 1998- 12- 25-17: 12: 30. O:

YALUES TI MESTAMP(' 1998-12-25', '17.12.30");

1998-12-25 17:12:30.0

UCASE or UPPER

UCASE or UPPER takes a character expression as a parameter and returns a string in
which all alpha characters have been converted to uppercase.

Syntax

UCASE or UPPER (Charact er Expression)

If the parameter type is CHAR , the return type is CHAR. Otherwise, the return type is
VARCHAR.

98

Copyright

Note: UPPER and LOWER follow the database locale. See territory=Il_CC for more
information about specifying locale.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

Example
To return the string aSD1#w in uppercase, use the following clause:

VALUES UPPER(' aSD1#w)
The value returned is ASD1#W

USER

USER returns the authorization identifier or name of the current user. If there is no
current user, it returns APP.

USER, CURRENT_USER, and SESSION_USER are synonyms.

Syntax

USER

VALUES USER

VARCHAR

The VARCHAR function returns a varying-length character string representation of a
character string.

Character to varchar syntax

VARCHAR (Char acter Stri ngExpressi on)

CharacterStringExpression
An expression whose value must be of a character-string data type with a maximum
length of 32,672 bytes.

Datetime to varchar syntax

VARCHAR (Dat et i meExpr essi on)

DatetimeExpression
An expression whose value must be of a date, time, or timestamp data type.

Using the EMPLOYEE table, select the job description (JOB defined as CHAR(8)) for
Dolores Quintana as a VARCHAR equivelant:

SELECT VARCHAR(JOB
FROM EMPLOYEE)
VWHERE LASTNAME = ' QUI NTANA'

XMLEXISTS operator
XMLEXISTS is an SQL/XML operator that you can use to query XML values in SQL.

The XMLEXISTS operator has two arguments, an XML query expression and a Derby
XML value.

99

Copyright

Syntax

XMLEXI STS (xquery-string-literal)
PASSI BY REF xm -val ue-expression [BY REF])

xquery-string-literal
Must be specified as a string literal. If this argument is specified as a parameter, an
expression that is not a literal, or a literal that is not a string (for example an integer),
Derby throws an error. The xquery-string-1iteral argument must also be an
XPath expression that is supported by Apache Xalan. Derby uses Apache Xalan to
evaluate all XML query expressions. Because Xalan does not support full XQuery,
neither does Derby. If Xalan is unable to compile or execute the query argument,
Derby catches the error that is thrown by Xalan and throws the error as a
SQLException. For more on XPath and XQuery expressions, see these Web sites:
http://lwww.w3.0rg/TR/xpath and http://www.w3.org/TR/xquery/.

xm - val ue- expr essi on
Must be an XML data value and must constitute a well-formed SQL/XML document.
The xm - val ue- expr essi on argument cannot be a parameter. Derby does not
perform implicit parsing nor casting of XML values, so use of strings or any other data
type results in an error. If the argument is a sequence that is returned by the
DerbyXMLQUERY operator, the argument is accepted if it is a sequence of exactly
one node that is a document node. Otherwise Derby throws an error.

BY REF
Optional keywords that describe the only value passing mechanism supported by
Derby. Since BY REF is also the default passing mechanism, the XMLEXISTS
operator behaves the same whether the keywords are present or not. For more
information on passing mechanisms, see the SQL/XML specification.

Operator results and combining with other operators
The result of the XMLEXISTS operator is a SQL boolean value that is based on the
results from evaluating the xquery-string-1iteral againstthe
xm - val ue- expr essi on. The XMLEXISTS operator returns:
UNKNOWN
When the xm - val ue- expr essi on is null.
TRUE
When the evaluation of the specified query expression against the specified xml-value
returns a non-empty sequence of nodes or values.
FALSE
When evaluation of the specified query expression against the specified xml-value
returns an empty sequence.

The XMLEXISTS operator does not return the actual results from the evaluation of the
guery. You must use the XMLQUERY operator to retrieve the actual results.

Since the result of the XMLEXISTS operator is an SQL boolean data type, you can use
the XMLEXISTS operator wherever a boolean function is allowed. For example, you can
use the XMLEXISTS operator as a check constraint in a table declaration or as a
predicate in a WHERE clause.

Examples
In the x_t abl e table, to determine if the xcol XML column for each row has an element
called st udent with an age attribute equal to 20, use this statement:

SELECT id, XMLEXISTS('//student[@ge=20]' PASSI NG BY REF xcol)
FROM x_t abl e

In the x_t abl e table, to return the ID for every row whose xcol XML column is non-null
and contains the element/ r ost er/ st udent , use this statement:

SELFg:T id FROM x_t abl e WHERE XMLEXI STS(' /roster/student' PASSI NG BY REF
XCO

100

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/

Copyright

You can create the x_t abl e table with a check constraint that limits which XML values
can be inserted into the xcol XML column. In this example, the constraint is that the
column has at least one st udent element with an age attribute with a value that is less
than 25. To create the table, use this statement:

CREATE TABLE x_table (id INT, xcol XM. CHECK (XMLEXI STS ('//student [@ge
< 25]" PASSING BY REF xcol)))

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLEXISTS operator will result
in an error.

XMLPARSE operator

XMLPARSE is a SQL/XML operator that you use to parse a character string expression
into a Derby XML value.

You can use the result of this operator temporarily or you can store the result
permanently in Derby XML columns. Whether temporary or permanent, you can use the
XML value as an input to the other Derby XML operators, such as XMLEXISTS and
XMLQUERY.

Syntax

XMLPARSE (DOCUMENT stri ng-val ue- expressi on PRESERVE WH TESPACE)
DOCUMENT

Required keyword that describes the type of XML input that Derby can parse. Derby
can only parse string expressions that constitute well-formed XML documents. This is
because Derby uses a JAXP parser to parse all string values. The JAXP parser
expects the string-value-expression to constitute a well-formed XML document. If the
string does not constitute a well-formed document, JAXP throws an error. Derby
catches the error and throws the error as a SQLEXxception.

st ring-val ue- expressi on
Any expression that evaluates to a SQL character type, such as CHAR, VARCHAR,
LONG VARCHAR, or CLOB. The st ri ng- val ue- expr essi on argument can also
be a parameter. You must use the CAST function when you specify the parameter to
indicate the type of value that is bound into the parameter. Derby must verify that the
parameter is the correct data type before the value is parsed as an XML document. If
a parameter is specified without the CAST function, or if the CAST is to a
non-character datatype, Derby throws an error.

PRESERVE WHITESPACE
Required keywords that describe how Derby handles whitespace between
consecutive XML nodes. When the PRESERVE WHITESPACE keywords are used,
Derby preserves whitespace as dictated by the SQL/XML rules for preserving
whitespace.

For more information on what constitutes a well-formed XML document, see the following
specification: http://www.w3.org/TR/REC-xml/#sec-well-formed .

Restriction: The SQL/XML standard dictates that the argument to the XMLPARSE
operator can also be a binary string. However, Derby only supports character string input
for the XMLPARSE operator.

Examples
To insert a simple XML document into the xcol XML column in the x_t abl e table, use

101

http://www.w3.org/TR/REC-xml/#sec-well-formed

Copyright

the following statement:

| NSEI(?':II-' I NTO x_t abl e VALUES
XM_PARSE(DOCUVENT

<roster>
<st udent age- '18" >AB</ st udent >
<student a 23" >BC</ st udent >
’ <st udent > GE</ st udent >
</ rost

PRESER\/E V\HI TESPACE)

To insert a large XML document into the xcol XML column in the x_t abl e table, from
JDBC use the following statement:
I NSERT | NTO x_t abl e VALUES

;(Ni_PARSE (DOCUMENT CAST (? AS CLOB) PRESERVE WH TESPACE)

You should bind into the statement using the setCharacterStream() method, or any other
JDBC setXXX method that works for the CAST target type.

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLPARSE operator will result
in an error.

XMLQUERY operator

XMLQUERY is a SQL/XML operator that you can use to query XML values in SQL.

The XMLQUERY operator has two arguments, an XML query expression and a Derby
XML value.

Syntax

XI\/LQJERY xgue% string-literal .
F xml - val ue- expr essi on
[EIVPETURNl NG SEQJENCE [BY REF]]

xquery-string-literal
Must be specified as a string literal. If this argument is specified as a parameter, an
expression that is not a literal, or a literal that is not a string (for example an
integer),Derby throws an error. The xquery-string-1iteral argument must also
be an XPath expression that is supported by Apache Xalan. Derby uses Apache
Xalan to evaluate all XML query expressions. Because Xalan does not support full
XQuery, neither does Derby. If Xalan is unable to compile or execute the query
argument, Derby catches the error that is thrown by Xalan and throws the error as a
SQLException. For more on XPath and XQuery expressions, see these Web sites:
http://lwww.w3.0rg/TR/xpath and http://www.w3.org/TR/xquery/.

xm - val ue- expressi on
Must be an XML data value and must constitute a well-formed SQL/XML document.
The xm - val ue- expr essi on argument cannot be a parameter. Derby does not
perform implicit parsing nor casting of XML values, so use of strings or any other data
type results in an error. If the argument is a sequence that is returned by a Derby
XMLQUERY operation, the argument is accepted if it is a sequence of exactly one
node that is a document node. Otherwise Derby throws an error.

BY REF
Optional keywords that describe the only value passing mechanism supported by

102

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/

Copyright

Derby. Since BY REF is also the default passing mechanism, the XMLQUERY
operator behaves the same whether the keywords are present or not. For more
information on passing mechanisms, see the SQL/XML specification.

RETURNING SEQUENCE
Optional keywords that describe the only XML type returned by the Derby
XMLQUERY operator. Since SEQUENCE is also the default return type, the
XMLQUERY operator behaves the same whether the keywords are present or not.
For more information on the different XML return types, see the SQL/XML
specification.

EMPTY ON EMPTY
Required keywords that describe the way in which XMLQUERY handles an empty
result sequence. The XMLQUERY operator returns an empty sequence exactly as
the sequence is. The XMLQUERY operator does not convert the empty sequence to
a null value. When an empty result sequence is serialized, the result is an empty
string. Derby does not consider an empty result sequence to be a well-formed XML
document.

The result of the XMLQUERY operator is a value of type XML. The result represents a
sequence of XML nodes or values. Atomic values, such as strings, can be part of the
result sequence. The result of an XMLQUERY operator is not guaranteed to represent a
well-formed XML document and it might not be possible to insert the result of an
XMLQUERY operator into an XML column. To store the result in an XML column, the
result must be a sequence with exactly one item in the sequence and the item must be a
well-formed document node. The result can be viewed only in serialized form by explicitly
using the XMLSERIALIZE operator.

Examples
In the x_t abl e table, to search the XML column xcol and return the students that have
an age attribute that is greater than 20, use the following statement:

SELECT | D,
XM_S)E(BILALIE%E% [/ student [@ 20]"' PASSI NG BY REF | EMPTY ON EMPTY)
! st uden e> ' XCO
AS VARC&AJ\R(S)) .

FROM x_t abl e

The result set for this query contains a row for every row in x_t abl e, regardless of
whether or not the XMLQUERY operator actually returns results.

In the x_t abl e table, to search the XML column xcol and return the ages for any
students named BC, use the following statement:

SELECT | D,
XMLSERI ALI ZE)
XMLQUERY(' string(//student[text() = "BC']/ @ge)' PASSI NG BY REF
xcol EMPTY EMPT
AS VARCHAR(50))
SWRO\/I Xx_table

ERE
XMLEXI STS(' //student[text() = "BC']' PASSI NG BY REF xcol)

The result set for this query contains a row for only the rows in x_t abl e that have a
student whose name is BC.

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLQUERY operator will result
in an error.

XMLSERIALIZE operator

XMLSERIALIZE is a SQL/XML operator that you can use to convert an XML type to a

103

Copyright

character type. There is no other way to convert the type of a Derby XML value.

Attention: Serialization is performed based on the SQL/XML serialization rules. These
rules, combined with the fact that Derby supports only a subset of the XMLSERIALIZE
syntax, dictate that the results of an XMLSERIALIZE operation are not guaranteed to be
in-tact copies of the original XML text. For example, assume that [xSt ri ng] is a textual
representation of a well-formed XML document. You issue the following statements:

I NSERT | NTO x_tabl e &i d, xcol)
VALUES (37 XM_PARSE(DOCUMENT ' [xString]' PRESERVE WH TESPACE)) ;

SELECT id, XM.SERI ALI ZE(xcoI AS VARCHAR(100))
FROM X _table WHERE i1d = 3;

There is no guarantee that the result of the XMLSERIALIZE operator will be identical to
the original [xSt ri ng] representation. Certain transformations can occur as part of
XMLSERIALIZE processing, and those transformations are defined in the SQL/XML
specification. In some cases the result of XMLSERIALIZE might actually be the same as
the original textual representation, but that is not guaranteed.

When an XMLSERIALIZE operator is specified as part of the top-level result set for a
query, the result can be accessed from JDBC by using whatever JDBC getXXX methods
are allowed on the st ri ng- dat a- t ype argument that is included in the
XMLSERIALIZE syntax. If you attempt to select the contents of an XML value from a
top-level result set without using the XMLSERIALIZE operator, Derby throws an error.
Derby does not implicitly serialize XML values.

Syntax

XMLSERI ALI ZE (xml - val ue- expressi on AS string-data-type)

xm - val ue- expressi on
Can be any Derby XML value, including an XML result sequence generated by the
XMLQUERY operator. The xm - val ue- expr essi on argument cannot be a
parameter.

string-data-type
Must be a SQL character string type, such as CHAR, VARCHAR, LONG VARCHAR,
or CLOB. If you specify a type that is not a valid character string type, Derby throws
an error.

Examples
In the x_t abl e table, to display the contents of the xcol XML column, use this
statement:

SELECT |
XM_SERI ALI ZE(
xcol AS CLOB)
FROM x_t abl e

To retrieve the results from JDBC, you can use the JDBC getCharacterStream() or
getString() method.

To display the results of an XMLQUERY operation, use the following statement:

SELECT | D,
XM_SERI ALI ZE
XI\/LSUERY tu nt[ge L
ASS| XCO EI\/PT ON EMPTY)
AS VARCHAR(50))
FROM x_t abl e
Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are

104

Copyright

YEAR

listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLSERIALIZE operator will
result in an error

The YEAR function returns the year part of a value. The argument must be a date,
timestamp, or a valid character string representation of a date or timestamp. The result of
the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the year part of the value, which is an integer between 1
and 9 999.
« If the argument is a date duration or timestamp duration: The result is the year part
of the value, which is an integer between -9 999 and 9 999. A nonzero result has
the same sign as the argument.

Syntax

YEAR (expression)

Select all the projects in the PROJECT table that are scheduled to start (PRSTDATE)
and end (PRENDATE) in the same calendar year.

SELECT * FROM PROJE
WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

Built-in system functions

This section describes the different built-in system functions available with Derby.

SYSCS_UTIL.SYSCS_CHECK_TABLE

The SYSCS_UTI L. SYSCS_CHECK_TABLE function checks the specified table, ensuring
that all of its indexes are consistent with the base table. If the table and indexes are
consistent, the method returns a SMALLINT with value 1. If the table and indexes are
inconsistent, the function will throw an exception.

Syntax

SMALL| NT SYSCS UTI L. SYSCS_CHECK_TABLE(| N SCHEMANAME VARCHAR(128),
I'N TABLENAME VARCHAR(128)

An error will occur if either SCHEMANAME or TABLENAME are null.

Example

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(' SALES', ' ORDERS');

SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS

The SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS function returns a
VARCHAR(32762) value representing the query execution plan and run time statistics for
a java.sgl.ResultSet. A query execution plan is a tree of execution nodes. There are a
number of possible node types. Statistics are accumulated during execution at each

105

Copyright

node. The types of statistics include the amount of time spent in specific operations, the
number of rows passed to the node by its children, and the number of rows returned by
the node to its parent. (The exact statistics are specific to each node type.)

SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS is most meaningful for DML
statements such as SELECT, INSERT, DELETE and UPDATE.

Syntax

VARCHAR(32762) SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS()

Example

VALUES SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS()

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY

The SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY function fetches the value of a
property specified by KEY of the database on the current connection.

Syntax

VARCHAR(32762) SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(| N KEY
VARCHAR(128))

An error will be returned if KEY is null.

Example

VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(' key_val ue_string');

Built-in system procedures

Some built-in procedures are not compatible with SQL syntax used by other relational
databases. These procedures can only be used with Derby.

SYSCS_UTIL.SYSCS_COMPRESS_TABLE

Use the SYSCS_UTI L. SYSCS_COVPRESS_TABLE system procedure to reclaim unused,
allocated space in a table and its indexes. Typically, unused allocated space exists when
a large amount of data is deleted from a table, or indexes are updated. By default, Derby
does not return unused space to the operating system. For example, once a page has
been allocated to a table or index, it is not automatically returned to the operating system
until the table or index is destroyed. SYSCS_UTI L. SYSCS_COVPRESS_TABLE allows you
to return unused space to the operating system.

Syntax

SYSCS UTI L. SYSCS COVPRESS TABLE (I N SCHEMANAME VARCHAR(128),
I N TABLENAME VARCHAR(128), | N SEQUENTI AL SMALLI NT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred'. Passing a null will result in an
error.

SEQUENTIAL

106

Copyright

A non-zero input argument of type SMALLINT will force the operation to run in
sequential mode, while an argument of O will force the operation not to run in
sequential mode. Passing a null will result in an error.

SQL example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

cal | SYSCS_UTI L. SYSCS_COWRESS TABLE(' US', 'CUSTOMVER , 1)

Java example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

Cal | abl eSt at enent c¢cs = conn. prepareCal |

(" CALL SYSCS UTI L. SYSCS COWPRESS TABLE(?, ?, ?2)");
cs.setString(l, "US');

cs.setString(2, "CUSTOVER');
cs.setShort (3, (short) 1);
cs. execute();

If the SEQUENTIAL parameter is not specified, Derby rebuilds all indexes concurrently
with the base table. If you do not specify the SEQUENTIAL argument, this procedure can
be memory-intensive and use a lot of temporary disk space (an amount equal to
approximately two times the used space plus the unused, allocated space). This is
because Derby compresses the table by copying active rows to newly allocated space
(as opposed to shuffling and truncating the existing space). The extra space used is
returned to the operating system on COMMIT.

When SEQUENTIAL is specified, Derby compresses the base table and then
compresses each index sequentially. Using SEQUENTIAL uses less memory and disk
space, but is more time-intensive. Use the SEQUENTIAL argument to reduce memory
and disk space usage.

SYSCS_UTI L. SYSCS COVPRESS TABLE cannot release any permanent disk space
back to the operating system until a COMMIT is issued. This means that the space
occupied by both the base table and its indexes cannot be released back to the operating
system until a COMMIT is issued. (Only the disk space that is temporarily claimed by an
external sort can be returned to the operating system prior to a COMMIT.) We
recommended you issue the SYSCS_UTI L. SYSCS_COVPRESS_TABLE procedure in
auto-commit mode.

Note: This procedure acquires an exclusive table lock on the table being compressed. All
statement plans dependent on the table or its indexes are invalidated. For information on
identifying unused space, see the Derby Server and Administration Guide.

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE

Use the SYSCS_UTI L. SYSCS | NPLACE_COWPRESS TABLE system procedure to
reclaim unused, allocated space in a table and its indexes. Typically, unused allocated
space exists when a large amount of data is deleted from a table and there has not been
any subsequent inserts to use the space created by the deletes. By default, Derby does
not return unused space to the operating system. For example, once a page has been
allocated to a table or index, it is not automatically returned to the operating system until
the table or index is destroyed. SYSCS_UTI L. SYSCS_| NPLACE_COVPRESS TABLE
allows you to return unused space to the operating system.

This system procedure can be used to force three levels of in-place compression of a

107

Copyright

SQL table: PURGE_ROWS, DEFRAGVENT _ROWS, and TRUNCATE_END. Unlike
SYSCS_UTI L. SYSCS_COVPRESS_TABLE() , all work is done in place in the existing
table/index.

Syntax

SYSCS_UTI L. SYSCS_| NPLACE COVPRESS TABLE&
TN SCHEMANAME VARCHARS- 8)
I N TABLENAMVE VARCHAR(128)
I N PURGE_ROAS SIVALLI
I N DEFRAGVENT ROAS SMALLI NT,
I'N TRUNCATE_END SMALLI NT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred’. Passing a null will result in an
error.

PURGE_ROWS
If PURGE_ROWS is set to a non-zero value, then a single pass is made through the
table which will purge committed deleted rows from the table. This space is then
available for future inserted rows, but remains allocated to the table. As this option
scans every page of the table, its performance is linearly related to the size of the
table.

DEFRAGMENT_ROWS
If DEFRAGMENT_ROWS is set to a hon-zero value, then a single defragment pass is
made which will move existing rows from the end of the table towards the front of the
table. The goal of defragmentation is to empty a set of pages at the end of the table
which can then be returned to the operating system by the TRUNCATE_END option.
It is recommended to only run DEFRAGMENT_ROWS if also specifying the
TRUNCATE_END option. The DEFRAGMENT_ROWS option scans the whole table
and needs to update index entries for every base table row move, so the execution
time is linearly related to the size of the table.

TRUNCATE_END
If TRUNCATE_END is set to a non-zero value, then all contiguous pages at the end
of the table will be returned to the operating system. Running the PURGE_ROWS
and/or DEFRAGMENT_ROWS options may increase the number of pages affected.
This option by itself performs no scans of the table.

SQL example
To compress a table called CUSTOMER in a schema called US, using all available
compress options:

cal | SYSCS_UTI L. SYSCS_| NPLACE_COVPRESS_TABLE(' US', 'CUSTOMER , 1, 1, 1);

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

cal | SYSCS_UTI L. SYSCS_| NPLACE_COWRESS _TABLE(' US', 'CUSTOMER , 0, 0, 1);
Java example

To compress a table called CUSTOMER in a schema called US, using all available
compress options:

IIabI eStatenent cs = p p eCal |
("CALL SYSCs UTIL SYSCS CE_COWPRESS TABLE(?, ?, 2, 2, 2)");
cs.setString)l_
cs.setStrin 2, CUSOVER’)
cs.setShort (3, (short) 1);
cs.setShort(4, (short) 1);

108

Copyright

cs.setShort (5, (short) 1);
cs. execute();

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

Cal | abl eSt at ement c¢s = conn. pr epar eCal |
(" CAL{_SISYSCS UTI L. SYSCS I NPLACE_ COWPRESS_TABLE(?, ?, ?, 2?2, ?2)");
cs.setString

" ys"
cs.setStrin 2 " CUSTOME
cs.setShort (3, (short O
cs.setShort (4, (short) 0);
cs.set Short (5, (short) 1);
cs. execute();

It is recommended that the SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE
procedure be issued in autocommit mode.

Note: This procedure acquires an exclusive table lock on the table being compressed. All
statement plans dependent on the table or its indexes are invalidated. For information on
identifying unused space, see the Derby Server and Administration Guide.

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS

The SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS() system procedure turns a
connection's runtime statistics on or off. By default, the runtime statistics are turned off.
When the runti mest ati sti cs attribute is turned on, Derby maintains information
about the execution plan for each statement executed within the connection (except for
COMMIT) until the attribute is turned off. To turn the runt i mest ati sti cs attribute off,
call the procedure with an argument of zero. To turn the r unt i nest ati sti cs on, call
the procedure with any non-zero argument.

For statements that do not return rows, the object is created when all internal processing
has completed before returning to the client program. For statements that return rows,
the object is created when the first next () call returns O rows orifa cl ose() call is
encountered, whichever comes first.

Syntax

SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS(I N SMALLI NT ENABLE)

Example

-- establish a connection

-- turn on RUNTI MESTATI STI C for connect

CALL SYSCS UTI L. SYSCS_SET RUNTINESTATISTICS(l)
-- execute conpl ex query here

-- step throug the result sets

-- access runtinme statistics informati

CALL SYSCS UTI L. SYSCS_SET RUNTINESTATISTICS(O)

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING

Statistics timing is an attribute associated with a connection that you turn on and off by
using the SYSCS_UTI L. SYSCS_SET_STATI STI CS_TI M NG system procedure.
Statistics timing is turned off by default. Turn statistics timing on only when the

runti mestati stics attribute is already on. Turning statistics timing on when the
runti mestati stics attribute is off has no effect.

Turn statistics timing on by calling this procedure with a non-zero argument. Turn
statistics timing off by calling the procedure with a zero argument.

109

Copyright

When statistics timing is turned on, Derby tracks the timings of various aspects of the
execution of a statement. This information is included in the information returned by the
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function. When statistics
timing is turned off, the SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system
function shows all timing values as zero.

Syntax

SYSCS_UTI L. SYSCS_SET_STATI STI CS_TI M NG(I N SMALLI NT ENABLE)

Example

To turn the runt i nest ati sti cs attribute and then the statistics timing attribute on:

CALL SYSCS UTI L. SYSCS SET_RUNTI MESTATI STI CS(1) ;
CALL SYSCS_UTI L. SYSCS_SET_STATI STICS_TI M 13 :

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY

Use the SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY system procedure to set or
delete the value of a property of the database on the current connection.

If "VALUE" is not null, then the property with key value "KEY" is set to "VALUE". If
"VALUE" is null, then the property with key value "KEY" is deleted from the database
property set.

Syntax

SYSCS UTI L SYSCS CET_DATABASE_PROPERTY(| N KEY VARCHAR(128),
I'N VACUE VARCHAR[32672))

This procedure does not return any results.

JDBC example

Set the der by. | ocks. deadl ockTi meout property to a value of 10:

IIabI eStatenment cs = conn. BAepa
("CALL SYSCS UTI L. SYSCS SET_DATABASE PR(PERTY(’7 2");
cs.setString l derby Tocks. deadl ockTi meout ") ;
cs.setStri n
cs. execut e(
cs.cl ose();

SQL example
Set the der by. | ocks. deadl ockTi neout property to a value of 10:

CALL SYSCS _UTI L. SYSCS_SET DATABASE PROPERTY
(' derby. | ocks. deadl ockTi neout', '10');

SYSCS_UTIL.SYSCS_FREEZE_DATABASE

The SYSCS_UTI L. SYSCS_FREEZE DATABASE system procedure temporarily freezes
the database for backup.

Syntax

SYSCS_UTI L. SYSCS_FREEZE DATABASE()

110

Copyright

No result set is returned by this procedure.

Example

String backupdi rect ory = "c: /rrybackups/ + JCal endar . get Today() ;
Cal | abl eSt at emen conn. B Cal |

("CALL SYSCs UTI L SYSCS FRE E ATABASE())

cs. execute()T

cs.close();

/1 user supplied code to take full backup of backuPdl rectory"
I/ now unfreeze the database once backup has conpl e

Cal | abl eSt at enent cs = conn. E E

("CALL SYSCS_UTI L. SYSCS_UNFREEZ DATABASE()")

cs. execute()]
cs.close();

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE

The SYSCS_UTI L. SYSCS_UNFREEZE DATABASE system procedure unfreezes a
database after backup.

Syntax

SYSCS_UTI L. SYSCS_UNFREEZE_DATABASE()
No result set is returned by this procedure.

Example

String backupdirecto
Cal | abl eSt at enent cs
("CALL SYSCS UTI L. SYS
cs. execute()T
cs.close();)
[] user supplied code to take full backup of backupdl rectory"
/1 now unfreeze the database once backup has conpl et ed:

Cal | abl eSt at ement c¢s = conn. E E

(" CALL SYSCS UTI L. SYSCS UNFREEZ DATABASE());

Cs. execute()T

cs.close();

c /rrybackups/ + JCal endar . get Today() ;

P BATABASE(F

ry
SCS_F

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE

The SYSCS_UTI L. SYSCS_CHECKPO NT_DATABASE system procedure checkpoints the
database by flushing all cached data to disk.

Syntax
SYSCS_UTI L. SYSCS CHECKPO NT_DATABASE()
No result is returned by this procedure.

JDBC example

Cal | abl eSt at ement c¢s = connd% OP

("CALL SYSCS_UTI L. SYSCS CHE NT DATABASE())
cs. execute();

cs.close();

SQL Example

CALL SYSCS_UTI L. SYSCS_CHECKPO NT_DATABASE() ;

SYSCS_UTIL.SYSCS_BACKUP_DATABASE

111

Copyright

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE system procedure backs up the
database to a specified backup directory.

Syntax

SYSCS_UTI L. SYSCS_BACKUP_DATABASE(| N BACKUPDI R VARCHAR())

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user . di r, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

JDBC example

The following example backs up the database to the c: / backupdi r directory:

Cal | abl eSt at ement c¢s = conn. Ba reCal |

(" CALL SYSCS UTI L. SYSCS BACK P ATABASE(?) ") ;
cs.setStrin 'c: / backupdir'

cs. execut e(3J

cs.cl ose();

SQL example

The following example backs up the database to the c: / backupdi r directory:

CALL SYSCS_UTI L. SYSCS_BACKUP_DATABASE(' c: / backupdir'):

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE NOWAI T system procedure backs up the
database to a specified backup directory.

If there are any transactions in progress with unlogged operations at the start of the
backup, the SYSCS_UTI L. SYSCS_BACKUP_DATABASE NOWAI T system procedure
returns an error immediately, instead of waiting for those transactions to complete.

Syntax

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_NOMAI T(1 N BACKUPDI R VARCHAR())

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user . di r, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

JDBC example

The following example backs up the database to the c: / backupdi r directory:

Cal | abl eSt at ement c¢s = conn. areCal |

(" CALL SYSCS UTI L SYSCS BACKI P ATABASE NOWAI T(?)");
cs.setStrin "c: / backupdir'

cs. execut e(3J

cs. cl ose(

112

Copyright
SQL example

The following example backs up the database to the c: / backupdi r directory:

CALL SYSCS_UTI L. SYSCS_BACKUP_DATABASE_NOWAI T(' c: / backupdir');

SYSCS_UTIL.SYSCS BACKUP_DATABASE_AND ENABLE_LOG_ARCHIVE_MODE

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHI VE_MODE
system procedure backs up the database to a specified backup directory and enables the
database for log archive mode.

Syntax

SYSCS_UTI L. SYSCS BACKUP DATABASE AND ENABLE | OG ARCHI VE MODE
(' N BACKUPDI R VARCHAR(32672), | N SMACLI NT DELETE_ARCHI VED_LOG FI LES)

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user . di r, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, online archived log files that were created before this backup will be
deleted. The log files are deleted only after a successful backup.

JDBC example
The following example backs up the database to the c: / backupdi r directory:

CaIIabIeStatenent cS = conn, BA
CA!_L SYSCS_UTI L. SYSCS BACK P TABASE AND_ENABLE _LOG_ARCHI VE_MODE(?,

cs. setEnrlng(l
cs.setInt(2, 0);
cs. execut e();

"c:/backupdir");

SQL examples

The following example backs up the database to the c: / backupdi r directory, enables
log archive mode, and does not delete any existing online archived log files:

(S);(SCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE(' c: / backupdi '

The following example backs up the database to the c: / backupdi r directory and, if this
backup is successful, deletes existing online archived log files:

%(scs_Uﬂ L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE(' c: / backupdi '

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT

The

SYSCS_UTI L. SYSCS_BACKUP_DATABASE _AND ENABLE LOG ARCHI VE_MODE _NOWAI T
system procedure backs up the database to a specified backup directory and enables the
database for log archive mode. This procedure returns an error if there are any

113

Copyright

transactions in progress that have unlogged operations at the start of the backup, instead
of waiting for those transactions to complete.

Syntax

SYSCS UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE_NOWAI T
fl N _BACKUPDI R_VARCHAR(32672) ,
N SMALLI NT DELETE_ARCHI VED _LOG FI LES)

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user . di r, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

DELETE_ARCHIVED _LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, online archived log files that were created before this backup will be
deleted. The log files are deleted only after a successful backup.

JDBC example

The following example backs up the database to the c: / backupdi r directory and
enables log archive mode:

Cal | abl eSt at enment cs = conn. prepareCal |
%;@C_S_UTI L. SYSCS_BACKUP_DATABASE_AND_ENABLE L OG ARCHI VE_MODE_NOWAI T(?,
cs.setString(1

cs.setInt(2, 0);
cs. execut e();

"c:/backupdir");

SQL examples

The following example backs up the database to the c: / backupdi r directory, enables
log archive mode, and does not delete any existing online archived log files:

g;(scs_un L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE_NOWMAI T(' ¢: / backupdir',

The following example backs up the database to the c: / backupdi r directory and, if this
backup is successful, deletes existing online archived log files:

%(scs_un L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE_NOMAI T(' ¢: / backupdir',

SYSCS_UTIL.SYSCS DISABLE_LOG_ARCHIVE_MODE

The SYSCS_UTI L. SYSCS_DI SABLE LOG _ARCHI VE_MODE system procedure disables
the log archive mode and deletes any existing online archived log files if the
DELETE_ARCHI VED LOG FI LES input parameter is hon-zero.

Syntax

SYSCS _UTI L. SYSCS DI SABLE LOG ARCHI VE_MODE(| N SMALLI NT
DELETE_ARCHI VED LOG FI LES)

No result is returned from the procedure.

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a

114

Copyright

non-zero value, then all existing online archived log files are deleted. If the parameter
value is zero, then exiting online archived log files are not deleted.

JDBC example

The following example disables log archive mode for the database and deletes any
existing log archive files.

Cal | abl eSt at enment c¢s = conn. Brepar eCal |

("CALL SYSCS UTI L. SYSCS DI SABLE_LOG ARCHI VE_MODE(?) ") ;
cs.setlnt(1, 1);

cs. execut e(};
cs.cl ose();

SQL examples

The following example disables log archive mode for the database and retains any
existing log archive files:

CALL SYSCS UTI L. SYSCS DI SABLE LOG ARCHI VE_MODE
DELETE_ARCH VED_LOG FTLES(0);

The following example disables log archive mode for the database and deletes any
existing log archive files:

CALL SYSCS UTI L. SYSCS DI SABLE LOG ARCHI VE_MODE
DELETE_ARCHI VED_LOG FTLES(1);

SYSCS_UTIL.SYSCS_EXPORT TABLE

The SYSCS_UTI L. SYSCS_EXPCORT_TABLE system procedure exports all of the data
from a table to an operating system file in a delimited data file format.

Syntax

SYSCS_UTI L. SYSCS EXPORT TABLE |(:I N_SCHENMANANVE VARCHAR(128),
I N TABLENAME VARCHAR } 28) | LENAVE VARCHAR 3267 z
I N COLUWNDELI M TER R(1) I N CHARACTERDELI M R(1),

I N CODESET VARCHAR(128

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema name of the
table. Passing a NULL value will use the default schema name.
TABLENAME
An input argument of type VARCHAR(128) that specifies the name of the table/view
from which the data is to be exported. Passing a null will result in an error.
FILENAME
An input argument of type VARCHAR(32672) that specifies the name of the file to
which data is to be exported. If the complete path to the file is not specified, the
export procedure uses the current directory and the default drive as the destination. If
the name of a file that already exists is specified, the export procedure overwrites the
contents of the file; it does not append the information. Passing a null will result in an
error.
COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).
CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.

115

Copyright

Passing a NULL value will use the default value; the default value is a double
quotation mark ().
CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified
code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.
If you create a schema or table name as a non-delimited identifier, you must pass the
name to the export procedure using all upper-case characters. If you created a schema,
table, or column name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Example
The following example shows how to export information from the STAFF table in a
SAMPLE database to the nyfi |l e. del file.

CAH_ SYSIC|S)_UTI L. SYSCS_EXPORT_TABLE (null, 'STAFF , 'nyfile.del', null,
nu nu

For more information on exporting, see the Derby Tools and Utilities Guide.

SYSCS_UTIL.SYSCS_EXPORT_QUERY

The SYSCS_UTI L. SYSCS_EXPORT_QUERY system procedure exports the results of a
SELECT statement to an operating system file in a delimited data file format.

Syntax

SYSCS_UTI L. SYSCS_EXPORT ERYF\II N_SELECTSTATENENT VARCHAR(32672),
[N FI LENAVE VARCHAR(3267 COLUMNDEL| M TER CHAR 3
I N CHARACTERDELI M TER (1), I'N CODESET VARCHAR(128)}

No result is returned from the procedure.

SELECTSTATEMENT
An input argument of type VARCHAR(32672) that specifies the select statement
(query) that will return the data to be exported. Passing a NULL value will result in an
error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the name of the file to
which data is to be exported. If the complete path to the file is not specified, the
export procedure uses the current directory and the default drive as the destination. If
the name of a file that already exists is specified, the export procedure overwrites the
contents of the file; it does not append the information. Passing a null will result in an
error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
guotation mark ().

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified

116

Copyright

code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.

Example

The following example shows how to export the information about employees in
Department 20 from the STAFF table in the SAMPLE database to the nyfi | e. del file.

CALL SYSCS UTI L. SYSCS EXPORT_QUERY(' sel ect * fromstaff where dept =20',

‘c:/outputTawards.del™, null7 null, null);

For more information on exporting, see the Derby Tools and Utilities Guide.

SYSCS_UTIL.SYSCS_IMPORT_TABLE

The SYSCS_UTI L. SYSCS_| MPORT_TABLE system procedure imports data from an input
file into all of the columns of a table. If the table receiving the imported data already
contains data, you can either replace or append to the existing data.

Syntax

GRS ST oI LSS 129
| N COLUVNDELI M%R(1?, I N CHARACTERDELI M TER craxh(1),
I N CODESET VARCHAR(128), | N REPLACE SMALLI NT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the table
into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains the
data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark ().

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.

REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data. The
table definition and the index definitions are not changed. INSERT mode adds the
imported data to the table without changing the existing table data. Passing a NULL

117

Copyright

will result in an error.
If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all upper-case characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Example

The following example imports data into the st af f table from a delimited data file called
nyfil e. del with the percentage character (%) as the string delimiter, and a semicolon
(;) as the column delimiter:

CALL SYSCS UTI L. SYSCS | MPORT_TABLE
(nul'l, "STAFF', 'c:/output/nyfile.del', '";', "%, null,0);

For more information on importing, see the Derby Tools and Utilities Guide.

SYSCS_UTIL.SYSCS_IMPORT_DATA

The SYSCS_UTI L. SYSCS_| MPORT_DATA system procedure imports data to a subset of
columns in a table. You choose the subset of columns by specifying insert columns. This
procedure is also used to import a subset of column data from a file by specifying column
indexes.

Syntax

SYSCS UTI L. SYSCS | MPORT DATA (| N _SCHENVANAME VARCHA)7
I N TABLENAME VARCHAR 128) I N | NSERTCOLUMWNS VARCHAR 326 2%
I N COLUMNI NDEXES V, '%P I N FI LENAME V,

I N COLUVNDELI M TER CHAR(? CHARACTERDEL| M TER (1)
I N CODESET VARCHAR(128), 1N REPLACE SVALL) NT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the table
into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

INSERTCOLUMNS
An input argument of type VARCHAR (32762) that specifies the column names
(separated by commas) of the table into which the data is to be imported. Passing a
NULL value will import the data into all of the columns of the table.

COLUMNINDEXES
An input argument of type VARCHAR (32762) that specifies the indexes (humbered
from 1 and separated by commas) of the input data fields to be imported. Passing a
NULL value will use all of the input data fields in the file.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains the
data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double

118

Copyright

guotation mark ().

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data in
the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.

REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data. The
table definition and the index definitions are not changed. You can only use the
REPLACE mode if the table exists. INSERT mode adds the imported data to the table
without changing the existing table data. Passing a NULL will result in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must

pass the name to the import procedure using all upper-case characters. If you created a

schema, table, or column name as a delimited identifier, you must pass the name to the

import procedure using the same case that was used when it was created.

Example
The following example imports some of the data fields from a delimited data file called
dat a. del into the st af f table:

CALL SYSCS UTI L. SYSCS | MPORT DATA
(NULL, ' STAFF', null,™1,3,47, 'data.del’', null, null, null,O0)

For more information on importing, see the Derby Tools and Utilities Guide.

Data types

This section describes the data types used in Derby.

Built-In type overview

The SQL type system is used by the language compiler to determine the compile-time
type of an expression and by the language execution system to determine the runtime
type of an expression, which can be a subtype or implementation of the compile-time
type.

Each type has associated with it values of that type. In addition, values in the database or
resulting from expressions can be NULL, which means the value is missing or unknown.
Although there are some places where the keyword NULL can be explicitly used, it is not
in itself a value, because it needs to have a type associated with it.

The syntax presented in this section is the syntax you use when specifying a column's
data type in a CREATE TABLE statement.

Numeric types

Numeric types used in Derby.

Numeric type overview
Numeric types include the following types, which provide storage of varying sizes:
* Integer numerics
« SMALLINT (2 bytes)
* INTEGER (4 bytes)
* BIGINT (8 bytes)
» Approximate or floating-point numerics

119

Copyright
* REAL (4 bytes)
« DOUBLE PRECISION (8 bytes)
* FLOAT (an alias for DOUBLE PRECISION or REAL)
» Exact numeric
« DECIMAL (storage based on precision)
* NUMERIC (an alias for DECIMAL)

Numeric type promotion in expressions

In expressions that use only integer types, Derby promotes the type of the result to at
least INTEGER. In expressions that mix integer with non-integer types, Derby promotes
the result of the expression to the highest type in the expression. Type Promotion in
Expressions shows the promotion of data types in expressions.

Table 4. Type Promotion in Expressions

Largest Type That Appears in Expression Resulting Type of Expression
DOUBLE PRECISION DOUBLE PRECISION
REAL DOUBLE PRECISION
DECIMAL DECIMAL
BIGINT BIGINT
INTEGER INTEGER
SMALLINT INTEGER
For example:

-- returns doubl e precision
VALUES 1 + 1 0e0
-- returns a deci nmal
VALUES 1 + 0
ninte

or
VALUES" CAST (1 ASPNT) + cAST (1 AS INT)

ol

Storing values of one numeric data type in columns of another numeric data type

An attempt to put a floating-point type of a larger storage size into a location of a smaller
size fails only if the value cannot be stored in the smaller-size location. For example:

create table nytable (r REAL, d DOUBLE PRECI SI ON);

0 rows inse rted/u dated/del et ed

I NSERT | NTO n‘g ?3 val ues ES 4028236E38, 3.4028235E38);
ERROR X0X41: he nunber ' 3.4028236 i's outside the range for
the data type REAL.

You can store a floating point type in an INTEGER column; the fractional part of the
number is truncated. For example:

INSERT I NTO myt abl e(i nt eger _col um) val ues (1. 09e0);
row i nsert ed/ updat ed/d I eted

SELECT i nt eger _col um

FRO\/I myt abl e;

Integer types can always be placed successfully in approximate numeric values, although
with the possible loss of some precision.

Integers can be stored in decimals if the DECIMAL precision is large enough for the
value. For example:

120

Copyright

ij>insert into abl e (deci mal _col unm)

ALUES (555555555 666666 666) .

ERROR X0Y21: The nunber '55555555556666666666' is outside the
range of the target DECI MAL/ NUMERI C(5, 2) dat at ype.

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. For example:

I NSERT | NTO nyt abl e (_colum) val ues 2147483648;
ERROR 22003: The resulting value is outside the range for the
data type | NTEGER

Note: When truncating trailing digits from a NUMERIC value, Derby rounds down.
Scale for decimal arithmetic

SQL statements can involve arithmetic expressions that use decimal data types of
different precisions (the total number of digits, both to the left and to the right of the
decimal point) and scales (the number of digits of the fractional component). The
precision and scale of the resulting decimal type depend on the precision and scale of the
operands.

Given an arithmetic expression that involves two decimal operands:
« Ip stands for the precision of the left operand
* rp stands for the precision of the right operand
« Is stands for the scale of the left operand
* rs stands for the scale of the right operand

Use the following formulas to determine the scale of the resulting data type for the
following kinds of arithmetical expressions:
< multiplication

Is+rs
« division
-lpt+lis-rs
* AVG()
max(max(ls, rs), 4)
« all others

max(ls, rs)

For example, the scale of the resulting data type of the following expression is 27:

11.0/1111. 33
I =

o/
31 3+1-2=27

Use the following formulas to determine the precision of the resulting data type for the
following kinds of arithmetical expressions:
< multiplication

Ip+rp
* addition
2*(p-s)+s
* division

Ip-Is+rp+max(Is+rp-rs+1,4)

121

Copyright

« all others

max(lp - Is, rp - rs) + 1 + max(ls, rs)

Data type assighments and comparison, sorting, and ordering

Table 5. Assignments allowed by Derby
This table displays valid assignments between data types in Derby. A "Y" indicates that
the assignment is valid.

Types

4Z—-rrr>»>0n

IAmoOm-dZ—

4Z2—-0O—-W

—r><—0mo

—X>mZX

mrrwCOOU

—>0rm

I>TO

TD>TOAO>L

I>ITOAA>< OZ2Z0r

—-—T XVOM XVP>IO

>—2>0

TDP>TODP>L

O

>—-4>»0 H-—

TOTMm XVWP>PITOAOP OZ0r

>—-4>»0 H-—

WOr o

WOrw

m-— >0

ms — -

v >dH0om — 4

<X

SMALL INT

INTEGER

BIGINT

DECIMAL

REAL

DOUBLE

FLOAT

<[=<[=<|=<|=<|=<]|=<

<[=<|=<[=<|=<[=<]|=<

<|[=<[=<|=<|=<|=<]|=<

<[=<|=<[=<|=<[=<]|=<

<|[=<[=<|=<|=<[=<]|=<

<|=<[=<|=<|=<|=<]|=<

<|<|=<[=<[=<|=<]|=<

CHAR

VARCHAR

<| =<

<[=<

<[=<

LONG
VARCHAR

<|=<|=<

<<=

<|=<|=

<|=<|=<

CHAR FOR BIT
DATA

VARCHAR FOR
BIT DATA

LONG

122

Copyright

Types
S| I1|B|D|R|[D|F|]C|V]|]L|C|IV|L|IC|B|D|T|T]|]X
MIN|IT|E|E|]O|JL|H]|]A|J]O|H]|JA]J]O|JL|JLJA]Il]I1]|M
A|T|G|C|AJU|J]O|JA|R|IN|JA|R|IN|J]O|O|T|M|[M|L
LIE|J]I|]I|]L|B|J]A|JR|C|G|R|]C|G|B|B|E]|E]|E
LIG|N|M L| T H H S
I1TEIT]|A E A|lV|IF|A|V T
N| R L RIA|O|R|A A
T R|R R M
C F|C P
Hl{B| O| H
Al Il R|A
R|I T R
B
D| I | F
Al T]O
T R
A| D
Al B
T |
Al T
D
A
T
A
VARCHAR FOR
BIT DATA
CLOB - -1 - - - Y IY 1Y (- or-o1- (1Y (- t- 1- 1- |-
BLOB PR IR I IS ER IS I IR IS ISR IR I I R 20 T I I
DATE - - - - - - - Y Iy -t ot -t -ty (- 1- |-
TIME - -1 - - - Y Iy -ttt - -ty (- |-
TIME STAMP |- |- |- |- |- |- |- IYIY |- |- |- |- "|- |- |- |- [|Y |-
XML PR IEE IR IR IER IR T I I I I I I I I I I I 'Y

Table 6. Comparisons allowed by Derby
This table displays valid comparisons between data types in Derby. A "Y" indicates that
the comparison is allowed.

123

Copyright

X =4

F—ZSWUnkFF<=Q0

F—>Suw

Q<+ W

YIY [|Y

YIY |Y

nJ10m

O10m

4020 ><xoIqxy uLox om-—+

O <

>SICXOICK Lo m—F O<C<E<

OI<KxY LOXx m—F ACHFI

140Z20 ><<xoIgw

>SIXxOI<CXx

OI<Cx

L1O0<H

OO0 Dmauw

X Ww<g 4

QWO —=<-

m—0—Z+

—ZFFWouw

N==< 41—+

Y Y [Y Y |Y]Y |Y
Y Y [Y Y [|Y]Y |Y
Y [Y Y Y |Y]Y |Y
Y Y [Y Y |Y]Y |Y
Y |[Y Y |Y Y]Y |Y
Y Y [Y Y [|Y]Y |Y
Y Y [Y Y |Y]Y |Y

Types

SMALL INT
INTEGER

BIGINT

DECIMAL
REAL

DOUBLE
FLOAT
CHAR

VARCHAR
LONG

VARCHAR

CHAR FOR BIT

DATA

VARCHAR FOR
BIT DATA
LONG

VARCHAR FOR
BIT DATA
CLOB

BLOB

DATE

TIME

TIME STAMP

124

Copyright

Types

S| I|B|D|IR|D|JF|[C|V|L|]C|V|L|C|B|D|T]|T]|]X
MIN|I|E|JE|JO|L|H|JA|O|H|A|JO|L|LJA] I|IT]|M
Al T|G|IC|AJU|O|A|R|IN|JA|JR|N|O|O|T|M|[M]L
LIE]J]I]IT]J]L]IB]J]A|JR|C|G|IR|C|G|B|B|E| E|E
LIG|N|M L| T H H S
I'TE|T]A E AlV|IF|A]YV T
N| R L RIA|O|R]A A
T R|R R M
C F|C P

H|B|O|H

Al T R|A

R| T R

B

D| I | F

AlT]|O

T R

Al D

Al B

T 1

AT

D

A

T

A
XML -

BIGINT

BIGINT provides 8 bytes of storage for integer values.

Syntax

Bl G NT

Corresponding compile-time Java type

java.lang.Long

JDBC metadata type (java.sql.Types)
BIGINT

Minimum value
-9223372036854775808 (java.lang.Long.MIN_VALUE)

Maximum value
9223372036854775807 (java.lang.Long.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules

shown in Numeric type promotion in expressions.

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. Integer types can always
successfully be placed in approximate numeric values, although with the possible loss of

125

Copyright

BLOB

CHAR

some precision. BIGINTs can be stored in DECIMALSs if the DECIMAL precision is large
enough for the value.

9223372036854775807

A BLOB (binary large object) is a varying-length binary string that can be up to
2,147,483,647 characters long. Like other binary types, BLOB strings are not associated
with a code page. In addition, BLOB strings do not hold character data.

The length is given in bytes for BLOB unless one of the suffixes K, M, or G is given,
relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.
Note: Length is specified in bytes for BLOB.

Syntax

{ BLOB | BINARY LARGE OBJECT } [(length [{K|M|G}])]

Default
A BLOB without a specified length is defaulted to two gigabytes (2,147,483,647).

Corresponding compile-time Java type
java.sql.Blob

JDBC metadata type (java.sql.Types)
BLOB

Use the getBlob method on the java.sql.ResultSet to retrieve a BLOB handle to the
underlying data.

Related information

see java.sgl.Blob and java.sql.Clob

create table pictures(name varchar(32) not null primary key, pic
bl ob(16M) p ((32) p y Key, p
--find II otyeplctures))

sel ect |l ength(pic name from pictures where nane |ike ' % ogo% ;
--find all image doubl es (bl ob conparsi onsz)

sel ect a.nanme as doubl e _one, b.nane as doubl e_two

frompictures as a, picfures as b

where a. narre < b. nane

and a. BIC b. pi c

order by 1, 2;

CHAR provides for fixed-length storage of strings.

Syntax
CHAR[ACTER] [(I ength)]

length is an unsigned integer constant. The default length for a CHAR is 1.

126

Copyright
Corresponding compile-time Java type
java.lang.String

JDBC metadata type (java.sql.Types)

CHAR

Derby inserts spaces to pad a string value shorter than the expected length. Derby
truncates spaces from a string value longer than the expected length. Characters other
than spaces cause an exception to be raised. When binary comparison operators are

applied to CHARSs, the shorter string is padded with spaces to the length of the longer
string.

When CHARs and VARCHARSs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR.

Implementation-defined aspects

The only limit on the length of CHAR data types is the value
java.lang.Integer. MAX_VALUE.

-- within a string constant use two single quotation marks
-- to reﬁresent a single quotation mark or apostrophe
VALUES 'hello this is Joe''s string'

CHAR FOR BIT DATA

A CHAR FOR BIT DATA type allows you to store byte strings of a specified length. It is
useful for unstructured data where character strings are not appropriate.

Syntax
{ CHAR | CHARACTER }[(length)] FOR BI T DATA
length is an unsigned integer literal designating the length in bytes.

The default length for a CHAR FOR BIT DATA type is 1., and the maximum size of length
is 254 hytes.

JDBC metadata type (java.sql.Types)

BINARY

CHAR FOR BIT DATA stores fixed-length byte strings. If a CHAR FOR BIT DATA value
is smaller than the target CHAR FOR BIT DATA, it is padded with a 0x20 byte value.

Comparisons of CHAR FOR BIT DATA and VARCHAR FOR BIT DATA values are
precise. For two bit strings to be equal, they must be exactly the same length. (This
differs from the way some other DBMSs handle BINARY values but works as specified in
SQL-92))

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

CREATE TABLE t (b CHAR(2) FOR BI T DATA):
REERT INTO ¢ VALUSS (X ?I)E');)

127

Copyright

CLOB

SELECT *
FROM t
o yi el ds the fol |l owi ng out put

A CLOB (character large object) value can be up to 2,147,483,647 characters long. A
CLOB is used to store unicode character-based data, such as large documents in any
character set.

The length is given in number characters for both CLOB, unless one of the suffixes K, M,
or G is given, relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.

Length is specified in characters (unicode) for CLOB.
Syntax

{CLOB | CHARACTER LARGE OBJECT} [(length [{K [M|G])]

Default
A CLOB without a specified length is defaulted to two gigabytes (2,147,483,647).

Corresponding Compile-Time Java Type

java.sql.Clob

JDBC Metadata Type (java.sql.Types)
CLOB

Use the getClob method on the java.sql.ResultSet to retrieve a CLOB handle to the
underlying data.

Related Information

See java.sql.Blob and java.sql.Clob.

i mport java.sql.*;
?Ub|IC class clob
public statlc void main(String[] args) {

try {
. String url =
"j dbc: der by: cl obberycl ob; create=true";

Cl ass. f or Nane(" or g. apache der b%/ j dbc. EnbeddedDri ver") . newl nst ance();
Connec | on conn =
Dri ver Manager . get Connecti on(url

Statenment s = conn.createStatenent();
s. execut eUpdat e(" CREATE TABLE docunent s (id INT, text CLOB(64

conn. commit ();
[l --- add a

fil
java.io.File file
int fileLength =

KD

= new]avaloFlle(asciifile.txt");
(int) file.length();

[l - first, create an input stream

ava. i o. InputStreamfln = new java.io.Fileln utStrean(flle)
r epar edSt at emen EJ = conn, prepareSt at ement (" | NSERT

I NTO docunent s VAL ES (?, ?2)");

ps.setint(1, 1477);

/1l - set the value of the input paraneter to the input stream

128

Copyright

DATE

DECIMAL

ps.setAsciiStrean(2, fin, filelLength);
ps. execute();
conn. commi t (J;

/[l --- reading the col ums
ResuItSet rs =_s.executeQuery("SELECT text FROM docunents
WHERE id = 1477"
while (rs. nexb(L
j ava. sq ob aclob = rs.getd ob(1);
1a)[/a i 0. putStreamlp rs.getAscli Strean(1);
int c = re
while (c Q 0y
Syste mot prlnt((char)c)
=ip.re

g)/stemout print("\n");

} ca%ch (Exception e? E
System out . print "Error! "+e);

DATE provides for storage of a year-month-day in the range supported by java.sql.Date.

Syntax

DATE

Corresponding compile-time Java type

java.sgl.Date

JDBC metadata type (java.sql.Types)
DATE

Dates, times, and timestamps must not be mixed with one another in expressions.

Any value that is recognized by the java.sqgl.Date method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for DATE:

rmy - mm dd
dd/ yyyy
dd. mm yyyy

The first of the three formats above is the java.sqgl.Date format.

The year must always be expressed with four digits, while months and days may have
either one or two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES DATE(' 1994- 02-23")
VALUES ' 1993- 09-01'

DECIMAL provides an exact numeric in which the precision and scale can be arbitrarily
sized. You can specify the precision (the total number of digits, both to the left and the

129

Copyright

DOUBLE

right of the decimal point) and the scale (the number of digits of the fractional
component). The amount of storage required is based on the precision.
Syntax

{ DECIMAL | DEC } [(precision [, scale])]

The precision must be between 1 and 31. The scale must be less than or equal to the
precision.

If the scale is not specified, the default scale is 0. If the precision is not specified, the
default precision is 5.

An attempt to put a numeric value into a DECIMAL is allowed as long as any
non-fractional precision is not lost. When truncating trailing digits from a DECIMAL value,
Derby rounds down.

For example:

-- this cast loses only fractional Br eci sion
\1/al ues cast (1.798765 AS deci mal (5, ;

1.79
-- this cast does not fit
vaI ues cast (1798765 AS deC| mal (5,2));

ERROR 22003: The resulting value i s outside the range
for the data type DECI MAL/ NUMERI C(5, 2) .

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

When two decimal values are mixed in an expression, the scale and precision of the
resulting value follow the rules shown in Scale for decimal arithmetic.

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata type (java.sql.Types)
DECIMAL

VALUES 123. 456

VALUES 0. 001

Integer constants too big for BIGINT are made DECIMAL constants.

The DOUBLE data type is a synonym for the DOUBLE PRECISION data type.

Syntax

DOUBLE

130

Copyright

DOUBLE PRECISION

FLOAT

The DOUBLE PRECISION data type provides 8-byte storage for numbers using IEEE
floating-point notation.

Syntax

DOUBLE PREC!I SI ON

or, alternately

DOUBLE
DOUBLE can be used synonymously with DOUBLE PRECISION.

Limitations
DOUBLE value ranges:

e Smallest DOUBLE value: -1.79769E+308

« Largest DOUBLE value: 1.79769E+308

« Smallest positive DOUBLE value: 2.225E-307
« Largest negative DOUBLE value: -2.225E-307

These limits are different from the j ava. | ang. Doubl eJava type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception.

Numeric floating point constants are limited to a length of 30 characters.

-- this exanple will fail because the constant is too |ong:
val ues 01234567890123456789012345678901e0;

Corresponding compile-time Java type
java.lang.Double

JDBC metadata type (java.sql.Types)
DOUBLE

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Examples

3421E+09
425. 43E9
9 0

4356267544. 32333E+30

The FLOAT data type is an alias for a REAL or DOUBLE PRECISION data type,
depending on the precision you specify.

131

Copyright

INTEGER

Syntax

FLOAT [(precision)]

The default precision for FLOAT is 53 and is equivalent to DOUBLE PRECISION. A
precision of 23 or less makes FLOAT equivalent to REAL. A precision of 24 or greater
makes FLOAT equivalent to DOUBLE PRECISION. If you specify a precision of 0, you
get an error. If you specify a negative precision, you get a syntax error.

JDBC metadata type (java.sql.Types)
REAL or DOUBLE

Limitations

If you are using a precision of 24 or greater, the limits of FLOAT are similar to the limits of
DOUBLE.

If you are using a precision of 23 or less, the limits of FLOAT are similar to the limits of
REAL.

INTEGER provides 4 bytes of storage for integer values.

Syntax

{ INTEGER | INT }

Corresponding Compile-Time Java Type

java.lang.Integer

JDBC Metadata Type (java.sql.Types)
INTEGER

Minimum Value
-2147483648 (java.lang.Integer.MIN_VALUE)

Maximum Value
2147483647 (java.lang.Integer.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

3453
425

LONG VARCHAR

The LONG VARCHAR type allows storage of character strings with a maximum length of
32,700 characters. It is identical to VARCHAR, except that you do not have to specify a
maximum length when creating columns of this type.

132

Copyright

Syntax

LONG VARCHAR

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)
LONGVARCHAR

When you are converting from Java values to SQL values, no Java type corresponds to
LONG VARCHAR.

LONG VARCHAR FOR BIT DATA

NUMERIC

REAL

The LONG VARCHAR FOR BIT DATA type allows storage of bit strings up to 32,700
bytes. It is identical to VARCHAR FOR BIT DATA, except that you do not have to specify
a maximum length when creating columns of this type.

Syntax

LONG VARCHAR FOR BI T DATA

JDBC metadata type (java.sql.Types)
LONGVARBINARY

NUMERIC is a synonym for DECIMAL and behaves the same way. See DECIMAL.

Syntax

NUMERI C [(precision [, scale])]

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata Ttype (java.sql.Types)
NUMERIC

123. 456
. 001

The REAL data type provides 4 bytes of storage for numbers using IEEE floating-point
notation.

Syntax
REAL

Corresponding compile-time Java type

133

Copyright

java.lang.Float

JDBC metadata type (java.sql.Types)
REAL

Limitations
REAL value ranges:

» Smallest REAL value: -3.402E+38

e Largest REAL value: 3.402E+38

» Smallest positive REAL value: 1.175E-37
» Largest negative REAL value: -1.175E-37

These limits are different from the j ava. | ang. Fl oat Java type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception. The arithmetic operations take
place with double arithmetic in order to detect under flows.

Numeric floating point constants are limited to a length of 30 characters.

-- this exanple will fail because the constant is too |ong
val ues 01234567890123456789012345678901€0;

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Constants always map to DOUBLE PRECISION; use a CAST to convert a constant to a
REAL.

SMALLINT
SMALLINT provides 2 bytes of storage.

Syntax

SMALLI NT

Corresponding compile-time Java type

java.lang.Short

JDBC metadata type (java.sql.Types)
SMALLINT

Minimum value
-32768 (java.lang.Short. MIN_VALUE)

Maximum value
32767 (java.lang.Short. MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules

134

Copyright

shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data

type.
Constants in the appropriate format always map to INTEGER or BIGINT, depending on
their length.
TIME
TIME provides for storage of a time-of-day value.
Syntax
TI ME
Corresponding compile-time Java type
java.sgl.Time
JDBC metadata type (java.sql.Types)
TIME
Dates, times, and timestamps cannot be mixed with one another in expressions except
with a CAST.
Any value that is recognized by the java.sgl.Time method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for TIME:
hh: 1SS
hh. m . ss]
hh[:m {AM | PM
The first of the three formats above is the java.sql.Time format.
Hours may have one or two digits. Minutes and seconds, if present, must have two digits.
Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.
Examples
VALUES TI I\/EE)' 15: 09: 02")
VALUES ' 15: 09: 02
TIMESTAMP

TIMESTAMP stores a combined DATE and TIME value to be stored. It permits a
fractional-seconds value of up to nine digits.

Syntax

TI MESTAMP

Corresponding compile-time Java type

java.sql.Timestamp

JDBC metadata type (java.sql.Types)

135

Copyright

VARCHAR

TIMESTAMP

Dates, times, and timestamps cannot be mixed with one another in expressions.

Derby supports the following formats for TIMESTAMP:

9y~ mm da-nf -t - <<t Annnnn) |

The first of the two formats above is the java.sgl. Timestamp format.

The year must always have four digits. Months, days, and hours may have one or two
digits. Minutes and seconds, if present, must have two digits. Nanoseconds, if present
may have between one and six digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES ' 1960-01-01 23: 03: 20
VALUES TINESTANP{ 1962- 09- 23 03: 23: 34. 234")
VALUES TI MESTAMP(' 1960- 01- 01 23: 03: 20")

VARCHAR provides for variable-length storage of strings.

Syntax

{ VARCHAR | CHAR VARYI NG | CHARACTER VARYI NG } (I engt h)

length is an unsigned integer constant, and it must not be greater than the constraint of
the integer used to specify the length, the value java.lang.Integer. MAX_VALUE.

The maximum length for a VARCHAR string is 32,672 characters.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)
VARCHAR

Derby does not pad a VARCHAR value whose length is less than specified. Derby
truncates spaces from a string value when a length greater than the VARCHAR expected
is provided. Characters other than spaces are not truncated, and instead cause an
exception to be raised. When binary comparison operators are applied to VARCHARS,
the lengths of the operands are not altered, and spaces at the end of the values are
ignored.

When CHARs and VARCHARSs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR, not VARCHAR.

VARCHAR FOR BIT DATA

The VARCHAR FOR BIT DATA type allows you to store binary strings less than or equal

136

Copyright

to a specified length. It is useful for unstructured data where character strings are not
appropriate (e.g., images).

Syntax
{ VARCHAR | CHAR VARYI NG | CHARACTER VARYING } (length) FOR BI T DATA

length is an unsigned integer literal designating the length in bytes.

Unlike the case for the CHAR FOR BIT DATA type, there is no default length for a
VARCHAR FOR BIT DATA type. The maximum size of the length value is 32,672 bytes.

JDBC metadata type (java.sql.Types)
VARBINARY

VARCHAR FOR BIT DATA stores variable-length byte strings. Unlike CHAR FOR BIT
DATA values, VARCHAR FOR BIT DATA values are not padded out to the target length.

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

The type of a byte literal is always a VARCHAR FOR BIT DATA, not a CHAR FOR BIT
DATA.

XML data type

The XML data type is used for Extensible Markup Language (XML) documents.

The XML data type is used:
» To store XML documents that conform to the SQL/XML definition of a well-formed
XML(DOCUMENT(ANY)) value.
» Transiently for XML(SEQUENCE) values, that might not be well-formed
XML(DOCUMENT(ANY)) values.

Note: For an application to retrieve, update, query, or otherwise access an XML data
value, the application must have classes for a JAXP parser and for Xalan in the
classpath. Derby issues an error if either the parser or Xalan is not found.

Because none of the JDBC-side support for SQL/XML is implemented in Derby, it is not
possible to bind directly into an XML value or to retrieve an XML value directly from a
result set using JDBC. Instead, you must bind and retrieve the XML data as Java strings
or character streams by explicitly specifying the appropriate XML operators, XMLPARSE
and XMLSERIALIZE, as part of your SQL queries.

Syntax

XML

Corresponding compile-time Java type

None

The Java type for XML values is java.sql.SQLXML. However, the java.sgl.SQLXML type
is not supported by Derby.

JDBC metadata type (java.sql.Types)
None

137

Copyright

The metadata type for XML values is SQLXML. However, the SQLXML type is not
supported by Derby.

To retrieve XML values from a Derby database using JDBC, use the XMLSERIALIZE
operator in the SQL query. For example:

SELECT XMLSERI ALl ZE (xcol as CLOB) FROM nyXn Tabl e

Then retrieve the XML value by using the getXXX method that corresponds to the target
serialization type, in this example CLOB data types.

To store an XML value into a Derby database using JDBC, use the XMLPARSE operator
in the SQL statement. For example:

I NSERT | NTO r’d Tabl egXCOI VALUES XM.PARSE%
DOCUMENT ST (? A) PRESERVE WH TESPACE)

Then use any of the setXXX methods that are compatible with String types, in this
example use the PreparedStatement.setString or
PreparedStatement.setCharacterStream method calls to bind the operator.

SQL expressions

Syntax for many statements and expressions includes the term Expression, or a term for
a specific kind of expression such as TableSubquery. Expressions are allowed in these
specified places within statements. Some locations allow only a specific type of
expression or one with a specific property. Table of Expressions, lists all the possible
SQL expressions and indicates where they are allowed.

If not otherwise specified, an expression is permitted anywhere the word Expression
appears in the syntax. This includes:

SelectExpression

- UPDATE statement (SET portion)

VALUES Expression

WHERE clause

Of course, many other statements include these elements as building blocks, and so
allow expressions as part of these elements.
Table 7. Table of Expressions

Expression Type Explanation

Gengeral
expiessions

Column reference

Allowed in SelectExpressions, UPDATE
statements, and the WHERE clauses of You must qualify the column-Name by the table
data manipulation statements. name or correlation name if it is ambiguous.

A column-Name that references the value of the
column made visible to the expression containing the
Column reference.

The qualifier of a column-Name must be the
correlation name, if a correlation name is given to a
table that is in a FROM clause. The table name is no
longer visible as a column-Name qualifier once it has
been aliased by a correlation name.

Constant

Most built-in data types typically have constants
associated with them (as shown in Data types).

NULL

NULL is an untyped constant representing the

12920

LIU

Copyright

Expression Type

Explanation

Allowed in CAST expressions or in INSERT
VALUES lists and UPDATE SET clauses.
Using it in a CAST expression gives it a
specific data type.

unknown value.

Dynamic parameter

Allowed anywhere in an expression where
the data type can be easily deduced. See
Dynamic parameters.

A dynamic parameter is a parameter to an SQL
statement for which the value is not specified when
the statement is created. Instead, the statement has
a question mark (?) as a placeholder for each
dynamic parameter. See Dynamic parameters.

Dynamic parameters are permitted only in prepared
statements. You must specify values for them before
the prepared statement is executed. The values
specified must match the types expected.

CAST expression

Lets you specify the type of NULL or of a dynamic
parameter or convert a value to another type. See
CAST.

scalar subquery

Subquery that returns a single row with a single
column. See ScalarSubquery.

table subquery

Allowed as a tableExpression in a FROM
clause and with EXISTS, IN, and quantified
comparisons.

Subquery that returns more than one column and
more than one row. See TableSubquery.

Conditional expression

A conditional expression chooses an expression to
evaluate based on a boolean test.

Boo
exp

ean
essions

Nuneric

exp

essions

+, -, *, /, unary + and - expressions

+, - *l

/, unary + and -

Evaluate the expected math operation on the
operands. If both operands are the same type, the
result type is not promoted, so the division operator
on integers results in an integer that is the truncation
of the actual numeric result. When types are mixed,
they are promoted as described in Data types.

Unary + is a noop (i.e., +4 is the same as 4). Unary -
is the same as multiplying the value by -1, effectively
changing its sign.

Returns the average of a set of numeric values. AVG

AVG

! SUM Returns the sum of a set of numeric values. SUM

! Returns the number of characters in a character or
LENGTH bit string. See LENGTH.
LOWER See LCASE or LOWER.

139

Copyright

Expression Type

Explanation

COUNT

Returns the count of a set of values. See COUNT,
COUNT(®).

Cha

facter

expiessions

A CHAR or VARCHAR value that uses
wildcards.

Used in a LIKE pattern.

The wildcards % and _ make a character string a
pattern against which the LIKE operator can look for
a match.

Concatenation expression

In a concatenation expression, the concatenation
operator, "[|", concatenates its right operand to the
end of its left operand. Operates on character and bit
strings. See Concatenation.

Built-in string functions

The built-in string functions act on a String and return
a string. See LTRIM, LCASE or LOWER, RTRIM,
SUBSTR, and UCASE or UPPER

USER functions

User functions return information about the current
user as a String. See CURRENT_USER,
SESSION_USER, and USER

Datg

/time

expiessions

CURRENT_DATE

Returns the current date. See CURRENT _DATE.

CURRENT_TIME

Returns the current time. See CURRENT_TIME.

CURRENT_TIMESTAMP

Returns the current timestamp. See
CURRENT_TIMESTAMP.

Expression precedence

Boo

Precedence of operations from highest to lowest is:
* (), ?, Constant (including sign), NULL, ColumnReference, ScalarSubquery, CAST
e« LENGTH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, and

other built-ins
unary + and -
*. 1, || (concatenation)
binary + and -

NOT
AND
OR

comparisons, quantified comparisons, EXISTS, IN, IS NULL, LIKE, BETWEEN, IS

You can explicitly specify precedence by placing expressions within parentheses. An
expression within parentheses is evaluated before any operations outside the

parentheses are applied to it.

Example

(3:4)79

age < 16 OR age > 65) AND enpl oyed = TRUE

lean expression

140

Copyright

Boolean expressions are allowed in WHERE clauses and in check constraints. Boolean
expressions in check constraints have limitations not noted here; see CONSTRAINT
clause for more information. Boolean expressions in a WHERE clause have a highly
liberal syntax; see WHERE clause, for example.

A boolean expression can include a boolean operator or operators. These are listed in
SQL Boolean Operators.
Table 8. SQL Boolean Operators

Operator Explanation and Example Syntax
AND, OR, NOT Evaluate any operand(s) that are boolean
expressions Expression AND
. pression |
(orig_airport ='SFO) OR Expressi on OR
?aest airport = 'GRU) ExeSSI on |
-- returns true) pressi on
Comparisons <, =, >, <=, >=, <> are applicable to all of the _
built-in types. FXF” ession
<
DATEE 1998-02-26') < =
ATE(' 1998-03-01') >
-- returns true <:|
>=
<>
Expr essi on
IS NULL, IS NOT NULL | Test whether the result of an expression is null
Expression IS NOT
or not. WG []
WHERE M ddl eName | S NULL
LIKE Attempts to match a character expression to a)
character pattern, which is a character string Char ﬁllcotl'er EXPf ession
that includes one or more wildcards. ar act er Expr essi on
WthWI dCard
% matches any number (zero or more) of [ESCAPE

characters in the qorrespondmg position in first | . escapeCharact er ']
character expression.

_ matches one character in the corresponding
position in the character expression.

Any other character matches only that
character in the corresponding position in the
character expression.

city LIKE ' Sant _

To treat % or _ as constant characters, escape
the character with an optional escape
character, which you specify with the ESCAPE

clause.
SELECT a FRO\/I t abA V\HERE a
| KE ' %_' ESCAPE
BETWEEN Tests whether the first operand is between the
i Expr essi on NOT
second and third operands. The second SA0ag Exp£ oS oh
operand must be less than the third operand. AND Expr essi on

Applicable only to types to which <= and >=

141

Copyright

Operator Explanation and Example Syntax

can be applied.

VWHERE bookl ng dat e BETWEEN
DATE(' 1998- 02-26') AND
DATE("' 1998 03-01'

IN Operates on table subquery or list of values.

Returns TRUE if the left expression's value is
in the result of the table subquery or in the list
of values. Table subquery can return multiple Tabl eSquuelr\kijI

. Expr essi on
rows but must return a single column. PN Expr ess| on

ExPressi on [NOT]

[, pression]*)
WHERE book| ng date NOT IN }
f ooki ng _date FROM
I6I§)te Book| ngs WHERE roons_avail able =
EXISTS Operates on a table subquery. Returns TRUE
i NOT] EXI STS
if the table subquery returns any rows, and [|'abl]eSubquer y

FALSE if it returns no rows. Table subquery
can return multiple columns (only if you use *
to denote multiple columns) and rows.

WHERE EXI STS
SELECT *
ROM Fl i ghts
WHERE dest _airport = 'SFO
AND orig_airport = 'GRU)

Quantified comparison | A quantified comparison is a comparison B _
= = >= i ressi on
gfesr(a)tl\%z(;b;ii:a <=, >=, <>) with ALL or ANY rpar i sonGper at or

ALL
Operates on table subqueries, which can ANY
return multiple rows but must return a single SCvE
column. %’abl eSubquery

If ALL is used, the comparison must be true for
all values returned by the table subquery. If
ANY or SOME is used, the comparison must
be true for at least one value of the table
subquery. ANY and SOME are equivalent.

VWHERE nornal _rate < ALL
(SELECT budget /550 FROM Gr oups)

Dynamic parameters

You can prepare statements that are allowed to have parameters for which the value is
not specified when the statement is prepared using PreparedStatement methods in the

JDBC API. These parameters are called dynamic parameters and are represented by a
?.

The JDBC API documents refer to dynamic parameters as IN, INOUT, or OUT
parameters. In SQL, they are always IN parameters.

New: Derby supports the interface ParameterMetaData, new in JDBC 3.0. This interface
describes the number, type, and properties of prepared statement parameters. See the
Derby Developer's Guide for more information.

You must specify values for them before executing the statement. The values specified

142

Copyright

must match the types expected.

Dynamic parameters example

Prepar edSt atenment ps2 = conn. pre;])_areSt at ement (

DATE Hot el AvallablllwI r oomns avallable =" +
" roorrs avai | able - 7 hotel 7d =72 "

ND book| ng_dat e BETWEEN ‘7 AND ?"7;

h| s sanpl e code sets the val ues of dynami c paraneters

to be the values of program variables

ps2.setlnt (1, nunmber Roomns

ps2. set | nt

t heHot el . ho% el ld);

2,
ps2. set Datesi arrival);

ps2. set Dat e

departure);

updat eCount ps2. execut eUpdat e();

Where dynamic parameters are allowed

You can use dynamic parameters anywhere in an expression where their data type can
be easily deduced.

1.

Use as the first operand of BETWEEN is allowed if one of the second and third
operands is not also a dynamic parameter. The type of the first operand is assumed
to be the type of the non-dynamic parameter, or the union result of their types if
both are not dynamic parameters.

WHERE ? BETWEEN DATEE) 1996- 01 01') AND ?
-- types assuned to be DATES

Use as the second or third operand of BETWEEN is allowed. Type is assumed to
be the type of the left operand.

WHERE DATE(' 1996- 01- 01" ?D BETV\EEN ? AND ?
-- types assuned to be DATE

Use as the left operand of an IN list is allowed if at least one item in the list is not
itself a dynamic parameter. Type for the left operand is assumed to be the union
result of the types of the non-dynamic parameters in the list.

WHERE ? NOT IN (?, Santlago)
-- types assuned to be CHAR

Use in the values list in an IN predicate is allowed if the first operand is not a
dynamic parameter or its type was determined in the previous rule. Type of the
dynamic parameters appearing in the values list is assumed to be the type of the
left operand.

WHERE Fl oat Col unm IN (?, ?)
-- types assuned to be FLOAT

For the binary operators +, -, *, /, AND, OR, <, >, =, <>, <=, and >=, use of a
dynamic parameter as one operand but not both is permitted. Its type is taken from
the other side.

WHERE ? < CURRENT_TI MESTAMP
-- type assuned to be a TI MESTAWP

Use in a CAST is always permitted. This gives the dynamic parameter a type.

CALL val ueOf (CAST (? AS VARCHAR(10)))

Use on either or both sides of LIKE operator is permitted. When used on the left, the
type of the dynamic parameter is set to the type of the right operand, but with the
maximum allowed length for the type. When used on the right, the type is assumed
to be of the same length and type as the left operand. (LIKE is permitted on CHAR
and VARCHAR types; see Concatenation for more information.)

WHERE ? LIKE ' Santi %
-- type assuned to be CHARWlth a |l ength of
-- java.l ang. I nt eger. MAX_VALU

A ? parameter is allowed by itself on only one side of the || operator. That is, "? || ?"

143

Copyright

10.

11.

12.

13.

14.

15.

is not allowed. The type of a ? parameter on one side of a || operator is determined
by the type of the expression on the other side of the || operator. If the expression
on the other side is a CHAR or VARCHAR, the type of the parameter is VARCHAR
with the maximum allowed length for the type. If the expression on the other side is
a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA type, the type of the
parameter is VARCHAR FOR BIT DATA with the maximum allowed length for the

type.

SELECT BI Tcol um || ?

FROM User Tabl e o

-- Type assuned to be CHAR FOR BI T DATA of |ength specified for
Bl Tcol um

In a conditional expression, which uses a ?, use of a dynamic parameter (which is
also represented as a ?) is allowed. The type of a dynamic parameter as the first
operand is assumed to be boolean. Only one of the second and third operands can
be a dynamic parameter, and its type will be assumed to be the same as that of the
other (that is, the third and second operand, respectively).

SELECT c1 IS NULL ? ? : cl)]
-- allows you to specify a "default" value at execution time
-- dynam ¢’ paraneter assunmed to be the tyBe of cl

-- y?utﬁannot have dynami c paraneters on both sides

-- 0 e :

A dynamic parameter is allowed as an item in the values list or select list of an
INSERT statement. The type of the dynamic parameter is assumed to be the type of
the target column.

I NSERT | NTO t VALUES (?)

-- d¥namc paramet er assuned to be the type
-- of the only colum in table t

I NSERT | NTO t ~ SELECT ?

FROM t 2

-- not all owed

A ? parameter in a comparison with a subquery takes its type from the expression
being selected by the subquery. For example:

SELECT *
FROM t abl
WHERE ? = (SELECT x FROM t ab2)

SELECT *

FROM t abl

WHERE ? = ANY (SELECT x FROM tab?2) , ,
-- In both cases, the type of the dynam c paranmeter is
-- assuned to be the sane as the type of tab2.x.

A dynamic parameter is allowed as the value in an UPDATE statement. The type of
the dynamic parameter is assumed to be the type of the column in the target table.
UPDATE t2 SET c2 =? -- type is assuned to be type of c2

Dynamic parameters are allowed as the operand of the unary operators - or +. For
example:

CREATE TABLE t1 (c11 INT, cl12 SMALLINT, c13 DOUBLE, cl14 CHAR(3))
SELECT * FROMt1 WHERE c11 BETWEEN -? AND +?

-— The type of both of the unary operators is INT

-- based on the context in which they are used (that is,

-- because cl11l is INT, the unary paranmeters also get the

-- type INT

LENGTH allow a dynamic parameter. The type is assumed to be a maximum length
VARCHAR type.

SELECT LENGTH(?)
Qualified comparisons.

? = SOME (SELECT 1 FROMt)
-- is valid. Dynanmi c paraneter assuned to be | NTEGER type

144

Copyright

1 = SOME (SELECT ? FROM t)
-- is valid. Dynam c paraneter assuned to be | NTEGER type.

16. A dynamic parameter is allowed as the left operand of an IS expression and is
assumed to be a boolean.

Once the type of a dynamic parameter is determined based on the expression it is in, that

expression is allowed anywhere it would normally be allowed if it did not include a
dynamic parameter.

145

Copyright

SQL reserved words

This section lists all the Derby reserved words, including those in the SQL-92 standard.
Derby will return an error if you use any of these keywords as an identifier name unless
you surround the identifier name with quotes (). See Rules for SQL92 identifiers.
ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BIGINT
BIT
BOOLEAN
BOTH
BY
CALL
CASCADE
CASCADED
CASE
CAST
CHAR
CHARACTER
CHECK
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
CREATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
CURSOR
DEALLOCATE
DEC
DECIMAL
DECLARE

146

Copyright

DEFAULT
DEFERRABLE
DEFERRED
DELETE
DESC
DESCRIBE
DIAGNOSTICS
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE

END
END-EXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXPLAIN
EXTERNAL
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FOUND
FROM
FULL
FUNCTION
GET
GETCURRENTCONNECTION
GLOBAL
GO

GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IMMEDIATE
IN
INDICATOR
INITIALLY
INNER
INOUT
INPUT
INSENSITIVE
INSERT
INT
INTEGER
INTERSECT
INTO

IS
ISOLATION
JOIN

KEY

147

Copyright

LAST
LEFT

LIKE
LOWER
LTRIM
MATCH
MAX

MIN
MINUTE
NATIONAL
NATURAL
NCHAR
NVARCHAR
NEXT

NO

NOT

NULL
NULLIF
NUMERIC
OF

ON

ONLY
OPEN
OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS
PAD
PARTIAL
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
READ
REAL
REFERENCES
RELATIVE
RESTRICT
REVOKE
RIGHT
ROLLBACK
ROWS
RTRIM
SCHEMA
SCROLL
SECOND
SELECT
SESSION_USER
SET
SMALLINT
SOME
SPACE
SQL
SQLCODE

148

Copyright

SQLERROR
SQLSTATE
SUBSTR
SUBSTRING
SUM
SYSTEM_USER
TABLE
TEMPORARY

TIMEZONE_HOUR
TIMEZONE_MINUTE

TO
TRANSACTION
TRANSLATE
TRANSLATION
TRUE

UNION
UNIQUE
UNKNOWN
UPDATE
UPPER

USER

USING
VALUES
VARCHAR
VARYING
VIEW
WHENEVER
WHERE

WITH

WORK

WRITE

XML
XMLEXISTS
XMLPARSE
XMLQUERY
XMLSERIALIZE
YEAR

149

Copyright

Derby support for SQL-92 features

There are four levels of SQL-92 support:
* SQL92E

Entry
e SQL92T
Transitional, a level defined by NIST in a publication called FIPS 127-2
* SQL92|
Intermediate
* SQL92F
Full
Table 9. Support for SQL-92 Features: Basic types

Feature Source Derby
SMALLINT SQL92E yes
INTEGER SQL92E yes
DECIMAL(p,s) SQL92E yes
NUMERIC(p,s) SQL92E yes
REAL SQL92E yes
FLOAT(p) SQL92E yes
DOUBLE PRECISION SQL92E yes
CHAR(n) SQL92E yes

Table 10. Support for SQL-92 Features: Basic math operations

Feature Source Derby

+,% -, /, unary +, unary - SQL92E yes

Table 11. Support for SQL-92 Features: Basic comparisons

Feature Source Derby

<, >, <= >=, <> = SQL92E yes

Table 12. Support for SQL-92 Features: Basic predicates

Feature Source Derby

BETWEEN, LIKE, NULL SQL92E yes

Table 13. Support for SQL-92 Features: Quantified predicates

Feature Source Derby

IN, ALL/SOME, EXISTS SQL92E yes

Table 14. Support for SQL-92 Features: schema definition

150

Copyright

Feature Source Derby
tables SQL92E yes
views SQL92E yes
privileges SQL92E yes
Table 15. Support for SQL-92 Features: column attributes
Feature Source Derby
default values SQL92E yes
nullability SQL92E yes
Table 16. Support for SQL-92 Features: constraints (non-deferrable)
Feature Source Derby
NOT NULL SQL92E yes (not stored in
SYSCONSTRAINTS)
UNIQUE/PRIMARY KEY SQL92E yes
FOREIGN KEY SQL92E yes
CHECK SQL92E yes
View WITH CHECK OPTION SQL92E no, since views are not updatable

Table 17. Support

for SQL-92 Features: Cursors

Feature Source Derby
DECLARE, OPEN, FETCH, SQL92E done through JDBC
CLOSE
UPDATE, DELETE CURRENT SQL92E yes

Table 18. Support for SQL-92 Features: Dynamic SQL 1

Feature Source Derby
ALLOCATE / DEALLOCATE / SQL92T done through JDBC
GET / SET DESCRIPTOR
PREPARE / EXECUTE / SQL92T done through JDBC
EXECUTE IMMEDIATE
DECLARE, OPEN, FETCH, SQL92T done through JDBC
CLOSE, UPDATE, DELETE
dynamic cursor
DESCRIBE output SQL92T done through JDBC

Table 19. Support

for SQL-92 Features: Basic infor

mation schema

Feature Source Derby
TABLES SQL92T SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS
VIEWS SQL92T SYS.SYSTABLES,

151

Copyright

Feature

Source

Derby

SYS.SYSVIEWS,
SYS.SYSCOLUMNS

COLUMNS

SQL92T

SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS

Table 20. Support

for SQL-92 Features: Basic schema manipulation

Feature Source Derby
CREATE / DROP TABLE SQL92T yes
CREATE / DROP VIEW SQL92T yes
GRANT / REVOKE SQL92T no
ALTER TABLE ADD COLUMN SQL92T yes
ALTER TABLE DROP COLUMN | SQL92T no

Table 21. Support for SQL-92 Features: Joined table

Feature Source Derby
INNER JOIN SQL92T yes
natural join SQL92T no
LEFT, RIGHT OUTER JOIN SQL92T yes
join condition SQLO2T yes
named columns join SQL92T yes

Table 22. Support for SQL-92 Features: Joined table

Feature Source Derby
simple DATE, TIME, SQL92T yes, not INTERVAL
TIMESTAMP, INTERVAL
datetime constants SQL92T yes
datetime math SQL92T can do with Java methods
datetime comparisons SQL92T yes
predicates: OVERLAPS SQL92T can do with Java methods

Table 23. Support

for SQL-92 Features: VARCHAR

Feature Source Derby
LENGTH SQLO2T yes
concatenation (||) SQL92T yes

Table 24. Support for SQL-92 Features: Transaction isolation

Feature Source Derby

READ WRITE / READ ONLY SQL92T through JDBC, database
properties, and storage media.

RU, RC, RR, SER SQL92T yes

152

Copyright

Table 25. Support for SQL-92 Features: Multiple schemas per user

Feature

Source

Derby

SCHEMATA view

SQL92T

SYS.SYSSCHEMAS

Table 26. Support

for SQL-92 Features: Privilege tables

Feature Source Derby
TABLE_PRIVILEGES SQL92T no
COLUMNS_PRIVILEGES SQLO2T no
USAGE_PRIVILEGES SQL92T no

Table 27. Support for SQL-92 Features: Table operations

Feature Source Derby
UNION relaxations SQL92I yes
EXCEPT SQL92I yes
INTERSECT SQL92I yes
CORRESPONDING SQL92I no

Table 28. Support

for SQL-92 Features: Schema definition statement

Feature Source Derby
CREATE SCHEMA SQL92I yes, partially
Table 29. Support for SQL-92 Features: User authorization
Feature Source Derby
SET SESSION SQL92I use set schema
AUTHORIZATION
CURRENT_USER SQL92I yes
SESSION_USER SQL92| yes
SYSTEM_USER SQL92I no
Table 30. Support for SQL-92 Features: Constraint tables
Feature Source Derby
TABLE CONSTRAINTS SQL92| SYS.SYSCONSTRAINTS
REFERENTIAL CONSTRAINTS | SQL92I SYS.SYSFOREIGNKEYS
CHECK CONSTRAINTS SQL92I SYS.SYSCHECKS

Table 31. Support for SQL-92 Features: Documentation schema

Feature Source Derby
SQL_FEATURES SQL92I/FIPS 127-2 use JDBC DatabaseMetaData
SQL_SIZING SQL92I/FIPS 127-2 use JDBC DatabaseMetaData

153

Copyright

Table 32. Support for SQL-92 Features: Full DATETIME

Feature Source Derby
precision for TIME and SQL92F yes
TIMESTAMP
Table 33. Support for SQL-92 Features: Full character functions
Feature Source Derby
POSITION expression SQL92F use Java methods or LOCATE
UPPER/LOWER functions SQL92F yes

Table 34. Support

for SQL-92 Features: Miscellaneous

Feature Source Derby

Delimited identifiers SQL92E yes

Correlated subqueries SQL92E yes

Insert, Update, Delete statements| SQL92E yes

Joins SQL92E yes

Where qualifications SQL92E yes

Group by SQL92E yes

Having SQL92E yes

Aggregate functions SQL92E yes

Order by SQL92E yes

Select expressions SQL92E yes

Select * SQL92E yes

SQLCODE SQL92E no, deprecated in SQL-92

SQLSTATE SQL92E yes

UNION, INTERSECT, and SQL92T yes

EXCEPT in views

Implicit numeric casting SQL92T yes

Implicit character casting SQL92T yes

Get diagnostics SQL92T use JDBC SQLExceptions

Grouped operations SQL92T yes

Quialified * in select list SQL92T yes

Lowercase identifiers SQL92T yes

nullable PRIMARY KEYs SQL92T no

Multiple module support SQL92T no (not required and not part of
JDBC)

Referential delete actions SQL92T CASCADE, SET NULL,
RESTRICT, and NO ACTION.

CAST functions SQL92T yes

INSERT expressions SQLI2T yes

Explicit defaults SQL92T yes

Keyword relaxations SQL92T yes

154

Copyright

Feature Source Derby

Domain definition SQL92I no

CASE expression SQL92| partial support

Compound character string SQL92I use concatenation

constants

LIKE enhancements SQL92I yes

UNIQUE predicate SQL92| no

Usage tables SQL92| SYS.SYSDEPENDS

Intermediate information schema | SQL92I use JDBC DatabaseMetaData
and Derby system tables

Subprogram support SQL92I not relevant to JDBC, which is
much richer

Intermediate SQL Flagging SQL92| no

Schema manipulation SQL92| yes

Long identifiers SQL92I yes

Full outer join SQL92I no

Time zone specification SQL92| no

Scrolled cursors SQL92| partial (scrollable insensitive
result sets through JDBC 2.0)

Intermediate set function support | SQL92I partial

Character set definition SQL92| supports Java locales

Named character sets SQL92| supports Java locales

Scalar subquery values SQL92I yes

Expanded null predicate SQL92| yes

Constraint management SQL92| yes (ADD/DROP CONSTRAINT)

FOR BIT DATA types SQL92F yes

Assertion constraints SQL92F no

Temporary tables SQL92F IBM specific syntax only

Full dynamic SQL SQL92F no

Full value expressions SQL92F yes

Truth value tests SQL92F yes

Derived tables in FROM SQL92F yes

Trailing underscore SQL92F yes

Indicator data types SQL92F not relevant to JDBC

Referential name order SQL92F no

Full SQL Flagging SQL92F no

Row and table constructors SQL92F yes

Catalog name qualifiers SQL92F no

Simple tables SQL92F no

Subqueries in CHECK SQL92F no, but can do with Java methods

Union join SQL92F no

Collation and translation SQL92F Java locales supported

155

Copyright

Feature Source Derby
Referential update actions SQL92F RESTRICT and NO ACTION.
Can do others with triggers.
ALTER domain SQL92F no
INSERT column privileges SQL92F no
Referential MATCH types SQL92F no
View CHECK enhancements SQL92F no, views not updateable
Session management SQL92F use JDBC
Connection management SQL92F use JDBC
Self-referencing operations SQL92F yes
Insensitive cursors SQL92F Yes through JDBC 2.0
Full set function SQL92F partially
Catalog flagging SQL92F no
Local table references SQL92F no
Full cursor update SQL92F no

156

Copyright

Derby System Tables

Derby includes system tables.

You can query system tables, but you cannot alter them.

All of the above system tables reside in the SYS schema. Because this is not the default
schema, qualify all queries accessing the system tables with the SYS schema name.

The recommended way to get more information about these tables is to use an instance
of the Java interface java.sgl.DatabaseMetaData.

SYSALIASES
Describes the procedures and functions in the database.

Column Name | Type Length [Nullability | Contents

ALIASID CHAR 36 false unique identifier for the alias

ALIAS VARCHAR 128 false alias

SCHEMAID CHAR 36 true reserved for future use

JAVACLASSNAM LONGVARCHAR 255 false the Java class name

ALIASTYPE CHAR false 'F' (function)'P' (procedure)

NAMESPACE CHAR false 'F' (function)'P' (procedure)

SYSTEMALIAS | BOOLEAN ' false true (system supplied or

built-in alias)
false (alias created by a
user)

ALIASINFO ' true A Java interface that
org.apachg.derby. encapsulates the additional
catalog.AliasInfo: information that is specific to

an alias
This class is not part of the
public API
SPECIFICNAME | VARCHAR 128 false system-generated identifier

SYSCHECKS
Describes the check constraints within the current database.

Column Name Type Length | Nullability | Contents

CONSTRAINTID CHAR 36 false unique identifier for the
constraint

CHECKDEFINITION LONG VARCHAR ' false text of check constraint
definition

REFERENCEDCOLUMNS | org.apache.derby.catalo| false description of the columns

ReferencedColumns:

referenced by the check

157

Copyright

Column Name Type Length | Nullability | Contents

This class is not part of constraint

the public API.

SYSCOLPERMS

The SYSCOLPERMS table stores the column permissions that have been granted but
not revoked.

All of the permissions for one (GRANTEE, TABLEID, TYPE, GRANTOR) combination are
specified in a single row in the SYSCOLPERMS table. The keys for the SYSCOLPERMS
table are:

« Primary key (GRANTEE, TABLEID, TYPE, GRANTOR)

« Unique key (COLPERMSID)

» Foreign key (TABLEID references SYS.SYSTABLES)

Column Name Type Length Nullability Contents

COLPERMSID CHAR 36 false Used by the dependency manager to
track the dependency of a view,
trigger, or constraint on the column
level permissions.

GRANTEE VARCHA| 30 false The authorization ID of the user to
whom the privilege was granted.
GRANTOR VARCHA| 30 false The authorization ID of the user who

granted the privilege. Privileges can
be granted only by the object owner.

TABLEID CHAR 36 false The unique identifier for the table on
which the permissions have been
granted.

TYPE CHAR 1 false The type of column permission:

S for SELECT
U for UPDATE
R for REFERENCES

COLUMNS org.apachf ' false A list of columns to which the privilege
applies.

This class is not part of the public API.

SYSCOLUMNS
Describes the columns within all tables in the current database:

Column Name Type Length | Nullable | Contents

REFERENCEID CHAR 36 false Identifier for table (join
with
SYSTABLES.TABLEID)

COLUMNNAME CHAR 128 false column or parameter
name

158

Copyright

Column Name

Type

Length

Nullable

Contents

COLUMNNUMBER

INT

false

the position of the column
within the table

COLUMNDATATYPE

org.apache.derby.catal
TypeDescriptor

This class is not part
of the public API.

false

system type that
describes precision,
length, scale, nullability,
type name, and storage
type of data

COLUMNDEFAULT

java.io.Serializable

true

for tables, describes
default value of the
column. The toString()
method on the object
stored in the table returns
the text of the default
value as specified in the
CREATE TABLE or
ALTER TABLE
statement.

COLUMNDEFAULTID

CHAR

36

true

unique identifier for the
default value

AUTOINCREMENT
COLUMNVALUE

BIGINT

true

what the next value for
column will be, if the
column is an identity
column

AUTOINCREMENT
COLUMNSTART

BIGINT

true

initial value of column (if
specified), if it is an
identity column

AUTOINCREMENT
COLUMNINC

BIGINT

true

amount column value is
automatically
incremented (if specified),
if the column is an identity
column

SYSCONGLOMERATES

Describes the conglomerates within the current database. A conglomerate is a unit of

storage and is either a table or an index.

Column Name

Type

Length

Nullable

Contents

SCHEMAID

CHAR

36

false

schema id for the
conglomerate

TABLEID

CHAR

36

false

identifier for table (join
with
SYSTABLES.TABLEID

CONGLOMERATENUMBER

BIGINT

false

conglomerate id for
the conglomerate
(heap or index)

CONGLOMERATENAME

VARCHAR

128

true

index name, if
conglomerate is an
index, otherwise the
table ID

ISINDEX

BOOLEAN

false

whether or not

159

Copyright

Column Name Type Length Nullable | Contents
conglomerate is an
index

DESCRIPTOR ' true system type describing

org.apache.derby. the index
catalog.IndexDescriptg

This class is not part

of the public API.

ISCONSTRAINT BOOLEAN 1 true whether or not
conglomerate is a
system-generated
index enforcing a
constraint

CONGLOMERATEID CHAR 36 false unique identifier for the
conglomerate

SYSCONSTRAINTS

Describes the information common to all types of constraints within the current database
(currently, this includes primary key, unique, foreign key, and check constraints).

Column Name Type Length Nullable | Contents

CONSTRAINTID CHAR 36 false unigue identifier for constraint

TABLEID CHAR 36 false identifier for table (join with
SYSTABLES.TABLEID)

CONSTRAINTNAME VARCHAR 128 false constraint name (internally
generated if not specified by user)

TYPE CHAR 1 false P (primary key), U (unique), C
(check), or F (foreign key)

SCHEMAID CHAR 36 false identifier for schema that the
constraint belongs to (join with
SYSSCHEMAS.SCHEMAID)

STATE CHAR false E for enabled, D for disabled

REFERENCECOUNT INTEGER false the count of the number of foreign
key constraints that reference this
constraint; this number can be
greater than zero only for
PRIMARY KEY and UNIQUE
constraints

SYSDEPENDS

The SYSDEPENDS table stores the dependency relationships between persistent
objects in the database.

Persistent objects can be dependents or providers. Dependents are objects that depend
on other objects. Providers are objects that other objects depend on.

« Dependents are views, constraints, or triggers.

* Providers are tables, conglomerates, constraints, or privileges.

160

Copyright

Column Name Type Length Nullable Contents
DEPENDENTID CHAR 36 false A unique identifier for
the dependent.
DEPENDENTFINDER org.apache.derby.catalo| 1 false A system type that
DependableFinder: describes the view,
This class is not part of constraint, or trigger
the public API. that is the dependent.
PROVIDERID CHAR 36 false A unique identifier for
the provider.
PROVIDERFINDER org.apache.derby.catalo| 1 false A system type that
DependableFinder This describes the table,
class is not part of the conglomerate,
public API. constraint, and
privilege that is the
provider
SYSFILES
Describes jar files stored in the database.
Column Name Type Length Nullability Contents
FILEID CHAR 36 false unique identifier for the jar
file
SCHEMAID CHAR 36 false ID of the jar file's schema
(join with SYSSCHEMAS.
SCHEMAID)
FILENAME VARCHAR 128 false SQL name of the jar file
GENERATIONID BIGINT ' false Generation number for the
file. When jar files are
replaced, their generation
identifiers are changed.

SYSFOREIGNKEYS

Describes the information specific to foreign key constraints in the current database.

Derby generates a backing index for each foreign key constraint; the name of this index
is the same as SYSFOREIGNKEYS.CONGLOMERATEID.

Column Name

Type Length

Nullability

Contents

CONSTRAINTID

CHAR 36 false

unique identifier for the foreign key
constraint (join with
SYSCONSTRAINTS.
CONSTRAINTID)

CONGLOMERATEID

CHAR 36 false

unique identifier for index backing up
the foreign key constraint (join with
SYSCONGLOMERATES.
CONGLOMERATEID)

161

Copyright

Column Name Type Length Nullability Contents

KEYCONSTRAINTID CHAR 36 false unique identifier for the primary key or
unigue constraint referenced by this
foreign key
(SYSKEYS.CONSTRAINTID or
SYSCONSTRAINTS.
CONSTRAINTID)

DELETERULE CHAR 1 false R for NO ACTION (default), S for
RESTRICT, C for CASCADE, U for
SET NULL

UPDATERULE CHAR 1 false R for NO ACTION(default), S for
restrict

SYSKEYS

Describes the specific information for primary key and unique constraints within the
current database. Derby generates an index on the table to back up each such
constraint. The index name is the same as SYSKEYS.CONGLOMERATEID.

Column Name Type Length Nullable | Contents

CONSTRAINTID CHAR 36 false unigue identifier for constraint

CONGLOMERATEID CHAR 36 false unique identifier for backing
index

SYSROUTINEPERMS

The SYSROUTINEPERMS table stores the permissions that have been granted to
routines.

Each routine EXECUTE permission is specified in a row in the SYSROUTINEPERMS
table. The keys for the SYSROUTINEPERMS table are:

« Primary key (GRANTEE, ALIASID, GRANTOR)

 Unique key (ROUTINEPERMSID)

» Foreign key (ALIASID references SYS.SYSALIASES)

The column information for the SYSTABLEPERMS table is listed in the following table:

Column Name Type Length Nullability Contents

ROUTINEPERMSID CHAR 36 false Used by the dependency manager to
track the dependency of a view,
trigger, or constraint on the routine

level permissions.

The authorization ID of the user to
whom the privilege is granted.

GRANTEE VARCHA] 30 false

The authorization ID of the user who
granted the privilege. Privileges can
be granted only by the object owner.

GRANTOR VARCHA] 30 false

ALIASID CHAR 36 false The ID of the object of the required

permission. If PERMTYPE=E' the
ALIASID is a reference to the

162

Copyright

Column Name

Type

Length

Nullability

Contents

SYS.SYSALIASES table. Otherwise
the ALIASID is a reference to the
SYS.SYSTABLES table.

GRANTOPTION

CHAR 1

false

Specifies if the GRANTEE is the
owner of the routine. Valid values are
Y and N.

SYSSCHEMAS
Describes the schemas within the current database.
Column Name Type Length Nullability | Contents
SCHEMAID CHAR 36 false unique identifier for the schema
SCHEMANAME VARCHAR 128 false schema name
AUTHORIZATIONID VARCHAR 128 false the authorization identifier of the
owner of the schema

SYSSTATISTICS

Describes the schemas within the current database.

Column Name Type Length Nullability | Contents
STATID CHAR 36 false unique identifier for the statistic
REFERENCEID CHAR 36 false the conglomerate for which the
statistic was created (join with
SYSCONGLOMERATES.
CONGLOMERATEID)
TABLEID CHAR 36 false the table for which the information
is collected
CREATIONTIMESTAMP | TIMESTAMP | ' false time when this statistic was
created or updated
TYPE CHAR 1 false type of statistics
VALID BOOLEAN ' false whether the statistic is still valid
COLCOUNT INTEGER ' false number of columns in the statistic
STATISTICS ' true statistics information
org.apache.
derby.catalog.
Statistics:
This class is
not part of the
public API.
SYSSTATEMENTS

Contains one row per stored prepared statement.

163

Copyright

Column Name Type Length | Nullability | Contents

STMTID CHAR 36 false unique identifier for the
statement

STMTNAME VARCHAR 128 false name of the statement

SCHEMAID CHAR 36 false the schema in which the
statement resides

TYPE CHAR 1 false always 'S'

VALID BOOLEAN ' false TRUE if valid, FALSE if
invalid

TEXT LONG VARCHAR ' false text of the statement

LASTCOMPILED TIMESTAMP ' true time that the statement
was compiled

COMPILATION SCHEMAID CHAR 36 false id of the schema
containing the statement

USINGTEXT LONG VARCHAR ' true text of the USING clause
of the CREATE
STATEMENT and ALTER
STATEMENT statements

SYSTABLEPERMS

The SYSTABLEPERMS table stores the table permissions that have been granted but

not revoked.

All of the permissions for one (GRANTEE, TABLEID, GRANTOR) combination are

specified in a single row in the SYSTABLEPERMS table. The keys for the

SYSTABLEPERMS table are:
» Primary key (GRANTEE, TABLEID, GRANTOR)
« Unique key (TABLEPERMSID)
» Foreign key (TABLEID references SYS.SYSTABLES)

The column information for the SYSTABLEPERMS table is listed in the following table:

Column Name

Type Length

Nullability

Contents

TABLEPERMSID

CHAR 36

false

Used by the dependency manager to
track the dependency of a view,
trigger, or constraint on the table level
permissions.

GRANTEE

VARCHA] 30

false

The authorization ID of the user to
whom the privilege is granted.

GRANTOR

VARCHA] 30

false

The authorization ID of the user who
granted the privilege. Privileges can
be granted only by the object owner.

TABLEID

CHAR 36

false

The unique identifier for the table on
which the permissions have been
granted.

SELECTPRIV

CHAR 1

false

Specifies if the SELECT permission is
granted. Valid values are Y and N.

DELETEPRIV

CHAR 1

false

Specifies if the DELETE permission is

164

Copyright

Column Name Type Length Nullability Contents
granted. Valid values are Y and N.

INSERTPRIV CHAR 1 false Specifies if the INSERT permission is
granted. Valid values are Y and N.

UPDATEPRIV CHAR 1 false Specifies if the UPDATE permission is
granted. Valid values are Y and N.

REFERENCEPRIV CHAR 1 false Specifies if the REFERENCE
permission is granted. Valid values
are Y and N.

TRIGGERPRIV CHAR 1 false Specifies if the TRIGGER permission
is granted. Valid values are Y and N.

SYSTABLES
Describes the tables and views within the current database.

Column Name Type Length Nullable Contents

TABLEID CHAR 36 false unigue identifier for table or view

TABLENAME VARCHAR 128 false table or view name

TABLETYPE CHAR 1 false 'S' (system table), 'T' (user table), or 'V'

(view)
SCHEMAID CHAR 36 false schema id for the table or view
LOCK CHAR 1 false Indicates the lock granularity for the table

GRANULARITY

T

(table level locking)

IRI

(row level locking, the default)

SYSTRIGGERS

Describes the database's triggers.

Column Name Type Length| Nullabilit] Contents

TRIGGERID CHAR 36 false unique identifier for the trigger

TRIGGERNAME VARCHAR 128 false name of the trigger

SCHEMAID CHAR 36 false id of the trigger's schema (join
with SYSSCHEMAS.
SCHEMAID)

CREATIONTIMESTAMP TIMESTAMP ' false time the trigger was created

EVENT CHAR 1 false ‘U’ for update, 'D' for delete, 'I'
for insert

FIRINGTIME CHAR false ‘B’ for before 'A' for after

TYPE CHAR false 'R' for row, 'S' for statement

STATE CHAR false 'E' for enabled, 'D' for
disabled

TABLEID CHAR 36 false id of the table on which the

165

Copyright

Column Name

Type Length| Nullabilit

Contents

trigger is defined

WHENSTMTID

CHAR 36 true

used only if there is a WHEN
clause (not yet supported)

ACTIONSTMTID

CHAR 36 true

id of the stored prepared
statement for the
triggered-SQL-statement (join
with SYSSTATEMENTS.
STMTID)

REFERENCEDCOLUMNS

org.apache.derby.cata true
ReferencedColumns:
This class is not part

of the public API.

descriptor of the columns
referenced by UPDATE
triggers

TRIGGERDEFINITION

LONG VARCHAR ' true

text of the action SQL
statement

REFERENCINGOLD

BOOLEAN ' true

whether or not the
OLDREFERENCINGNAME, if
non-null, refers to the OLD
row or table

REFERENCINGNEW

BOOLEAN ' true

whether or not the
NEWREFERENCINGNAME,
if non-null, refers to the NEW
row or table

OLDREFERENCINGNAME

VARCHAR 128 true

pseudoname as set using the
REFERENCING OLD AS
clause

NEWREFERENCINGNAME

VARCHAR 128 true

pseudoname as set using the
REFERENCING NEW AS
clause

Any SQL text that is part of a triggered-SQL-statement is compiled and stored in
SYSSTATEMENTS. ACTIONSTMTID and WHENSTMTID are foreign keys that
reference SYSSTATEMENTS.STMTID. The statements for a trigger are always in the
same schema as the trigger.

SYSVIEWS
Describes the view definitions within the current database.

Column Name Type Length Nullability | Contents

TABLEID CHAR 36 false unique identifier for the view
(called TABLEID since it is
joined with column of that
name in SYSTABLES)

VIEWDEFINITION LONG VARCHAR ' false text of view definition

CHECKOPTION CHAR 1 false 'N' (check option not
supported yet)

COMPILATION CHAR 36 false id of the schema containing

SCHEMAID the view

166

Copyright

Derby exception messages and SQL states

The JDBC driver returns SQLExceptions for all errors from Derby. If the exception
originated in a user type but is not itself an SQLEXxception, it is wrapped in an
SQLException. Derby-specific SQLExceptions use SQLState class codes starting with X.
Standard SQLState values are returned for exceptions where appropriate.

Unimplemented aspects of the JDBC driver return a SQLException with a SQLState
starting with OA. If your application runs on JDK 1.6 or higher, then the exception class is
java.sql.SQLFeatureNotSupportedException. These unimplemented parts are for
features not supported by Derby.

Derby supplies values for the message and SQLState fields. In addition, Derby
sometimes returns multiple SQLExceptions using the nextException chain. The first
exception is always the most severe exception, with SQL-92 Standard exceptions
preceding those that are specific to Derby.

For information on processing SQLExceptions, see the Derby Developer's Guide.

SQL error messages and exceptions

The following tables list SQLStates for exceptions. Exceptions that begin with an X are
specific to Derby.

Table 35. Class 01: Warning

SQLSTATH Message Text

01001 An attempt to update or delete an already deleted row was made: No row was updated or
deleted.

01003 Null values were eliminated from the argument of a column function.

01006 Privilege not revoked from <authorizationID>.

0100E XX Attempt to return too many result sets.

01500 The constraint <constraintName> on table <tableName> has been dropped.

01501 The view <viewName> has been dropped.

01502 The trigger <triggerName> on table <tableName> has been dropped.

01503 The column <columnName> on table <tableName> has been modified by adding a not null
constraint.

01504 The new index is a duplicate of an existing index: <indexName>.

01505 The value <valueName> may be truncated.

01522 The newly defined synonym '<synonymName>' resolved to the object '<objectName>'
which is currently undefined.

01J01 Database '<databaseName>' not created, connection made to existing database instead.

01J02 Scroll sensitive cursors are not currently implemented.

01J04 The class '<className>' for column '<columnName>' does not implement
java.io.Serializable or java.sql.SQLData. Instances must implement one of these interfaces
to allow them to be stored.

01J05 Database upgrade succeeded. The upgraded database is now ready for use. Revalidating

stored prepared statements failed. See next exception for details of failure.

167

Copyright

SQLSTATE Message Text
01J06 ResultSet not updatable. Query does not qualify to generate an updatable ResultSet.
01J07 ResultS_etHoIdabiIity restricted to ResultSet. CLOSE_CURSORS_AT_COMMIT for a global
transaction.
01J08 Unable to open resultSet type <resultSetType>. ResultSet type <resultSetType> opened.
01J10 Scroll sensitive result sets are not supported by server; remapping to forward-only cursor
01J12 Unable to obtain message text from server. See the next exception. The stored procedure
SYSIBM.SQLCAMESSAGE is not installed on the server. Please contact your database
administrator.
01J13 Number of rows returned (<number>) is too large to fit in an integer; the value returned will
be truncated.
01J14 SQL authorization is being used without first enabling authentication.
Table 36. Class 04: Database authentication
SQLSTATH Message Text
04501 Database connection refused.
Table 37. Class 07: Dynamic SQL Error
SQLSTATH Message Text
07000 At least one parameter to the current statement is uninitialized.
07004 Parameter <parameterName> is an <procedureName> procedure parameter and must be
registered with CallableStatement.registerOutParameter before execution.
07009 No input parameters.
Table 38. Class 08: Connection Exception
SQLSTATE Message Text
08000 Connection closed by unknown interrupt.
08000 Cannot close a connection with an active transaction. The transaction remains open and
the connection was not closed.
08001 A connection could not be established because the security token is larger than the
maximum allowed by the network protocol.
08001 A connection could not be established because the user id has a length of zero or is larger
than the maximum allowed by the network protocol.
08001 A connection could not be established because the password has a length of zero or is
larger than the maximum allowed by the network protocol.
08001 Required property <propertyName> not set.
08001 <error> : Error connecting to server <serverName> on port <portNumber> with message
<messageText>.
08001 SocketException: '<error>'
08001 Unable to open stream on socket: '<error>',
08001 User id length (<number>) is outside the range of 1 to <number>.
08001 Password length (<value>) is outside the range of 1 to <number>.
08001 User id can not be null.
08001 Password can not be null.

168

Copyright

SQLSTATE

Message Text

08001

A connection could not be established because the database name '<databaseName>' is
larger than the maximum length allowed by the network protocol.

08003 No current connection.
08003 getConnection() is not valid on a closed PooledConnection.
08003 Lob method called after connection was closed
08003 The underlying physical connection is stale or closed.
08004 Connection refused : <connectionName>
08004 Connection authentication failure occurred. Reason: <reasonText>.
08004 The connection was refused because the database <databaseName> was not found.
08006 An error occurred during connect reset and the connection has been terminated. See
chained exceptions for details.
08006 Database '<databaseName>' shutdown.
Table 39. Class 0A: Feature not supported
SQLSTATE Message Text
0A000 Feature not implemented: <featureName>.
0A000 The DRDA command <commandName> is not currently implemented. The connection has
been terminated.
0AQ00 JDBC method is not yet implemented.
0A000 JDBC method <methodName> is not supported by the server. Please upgrade the server.
0A000 resultSetHoldability property <propertyName> not supported
0A000 cancel() not supported by the server.
0A000 Security mechanism '<mechanismName>' is not supported.
0A000 The data type '<datatypeName>' is not supported.
Table 40. Class 21: Cardinality Violation
SQLSTATE Message Text
21000 Scalar subquery is only allowed to return a single row.
Table 41. Class 22: Data Exception
SQLSTATE Message Text
22001 A truncation error was encountered trying to shrink <value> '<value>' to length <value>.
22003 The resulting value is outside the range for the data type <datatypeName>.
22003 Year (<value>) exceeds the maximum '<value>'.
22003 Decimal may only be up to 31 digits.
22003 Overflow occurred during numeric data type conversion of '<datatypeName>' to
<datatypeName>.
22004 The length (<number>) exceeds the maximum length for the data type (<datatypeName>).
22005 Unable to convert a value of type '<typeName>' to type '<typeName>' : the encoding is not
supported.
22005 The required character converter is not available.

169

Copyright

SQLSTATE Message Text

22005 Unicode string cannot convert to Ebcdic string

22005 Unrecognized JDBC type. Type: <typeName>, columnCount: <value>, columnindex:
<value>.

22005 Invalid JDBC type for parameter <parameterName>.

22005 Unrecognized Java SQL type <datatypeName>.

22005 An attempt was made to get a data value of type '<datatypeName>' from a data value of
type '<datatypeName>'.

22007 The string representation of a datetime value is out of range.

22007 The syntax of the string representation of a datetime value is incorrect.

22008 '<argument>' is an invalid argument to the <functionName> function.

2200L Values assigned to XML columns must be well-formed DOCUMENT nodes.

2200M Failed to parse XMLPARSE operand; see next exception for details.

2200V Invalid context item for <operatorName> operator; context items must be well-formed
DOCUMENT nodes.

2200W XQuery serialization error: Attempted to serialize one or more top-level Attribute nodes.

22011 The second or third argument of the SUBSTR function is out of range.

22012 Attempt to divide by zero.

22013 Attempt to take the square root of a negative number, '<value>".

22014 The start position for LOCATE is invalid; it must be a positive integer. The index to start the
search from is '<index>'. The string to search for is '<index>'. The string to search from is
'<index>'.

22015 Invalid data conversion: requested conversion would result in a loss of precision of <value>

22015 The '<functionName>' function is not allowed on the following set of types. First operand is
of type '<typeName>'. Second operand is of type '<typeName>'. Third operand (start
position) is of type '<typeName>'.

22018 Invalid character string format for type <typeName>.

22019 Invalid escape sequence, '<sequenceName>'. The escape string must be exactly one
character. It cannot be a null or more than one character.

22025 Escape character must be followed by escape character, ' ', or '%'. It cannot be followed by
any other character or be at the end of the pattern.

22027 The built-in TRIM() function only supports a single trim character. The LTRIM() and
RTRIM() built-in functions support multiple trim characters.

22028 The string exceeds the maximum length of <number>.

22501 An ESCAPE clause of NULL returns undefined results and is not allowed.

Table 42. Class 23: Constraint Violation

SQLSTATH Message Text

23502 Column '<columnName>' cannot accept a NULL value.

23503 <value> on table '<tableName>' caused a violation of foreign key constraint
'<constraintName>' for key <keyName>. The statement has been rolled back.

23505 The statement was aborted because it would have caused a duplicate key value in a unique
or primary key constraint or unique index identified by '<value>' defined on '<value>".

23513 The check constraint '<constraintName>' was violated while performing an INSERT or

UPDATE on table '<tableName>'.

170

Copyright

Table 43. Class 24: Invalid Cursor State

SQLSTATE Message Text
24000 Invalid cursor state - no current row.
24501 The identified cursor is not open.

Table 44. Class 25: Invalid Transaction State

SQLSTATE Message Text

25000 Invalid transaction state.

25001 Cannot close a connection while a transaction is still active.

25501 Unable to set the connection read-only property in an active transaction.

25502 An SQL data change is not permitted for a read-only connection, user or database.

25503 DDL is not permitted for a read-only connection, user or database.

25505 A read-only user or a user in a read-only database is not permitted to disable read-only
mode on a connection.

Table 45. Class 28: Invalid Authorization Specification

SQLSTATE Message Text

28501 Invalid database authorization property '<value>=<value>".

28502 The user name '<authorizationID>' is not valid.

28503 User(s) '<authorizationIlD>' must not be in both read-only and full-access authorization lists.

28504 Repeated user(s) '<authorizationID>'" in access list '<listName>',

28505 Internal Error: invalid <authorizationID> id in statement permission list.

28506 User '<authorizationID>' does not have <permissionType> permission on table
'<schemaNamet>'.'<tableName>',

28507 User '<authorizationID>" does not have <permissionType> permission on table
‘<schemaNamet>'.'<tableName>' for grant.

28508 User '<authorizationID>' does not have <permissionType> permission on column
‘<columnName>' of table '<schemaName>'.'<tableName>".

28509 User '<authorizationID>" does not have <permissionType> permission on column
‘<columnName>' of table '<schemaName>'".'<tableName>' for grant.

2850A User '<authorizationID>' does not have execute permission on <objectName>
‘<schemaName>'.'<tableName>'.

2850B User '<authorizationID>' does not have execute permission on <objectName>
'<schemaName>'.'<tableName>'. for grant.

2850C User '<authorizationID>' is not the owner of <objectName>
'<schemaName>'.'<tableName>".

2850D User '<authorizationID>' can not perform the operation in schema '<schemaName>'.

2850E User '<authorizationID>' can not create schema '<schemaName>'. Only database owner
could issue this statement.

2850F Specified grant or revoke operation is not allowed on object '<objectName>".

2850G User '<authorizationID>' does not have <permissionName> permission on object

'<schemaName>'.'<objectName>"'.

Table 46. Class 2D: Invalid Transaction Termination

171

Copyright

SQLSTATE Message Text
2D521 setAutoCommit(true) invalid during global transaction.
2D521 COMMIT or ROLLBACK invalid for application execution environment.
Table 47. Class 38: External Function Exception
SQLSTATE Message Text
38000 The exception '<exception>' was thrown while evaluating an expression.
38001 The external routine is not allowed to execute SQL statements.
38002 The routine attempted to modify data, but the routine was not defined as MODIFIES SQL
DATA.
38004 The routine attempted to read data, but the routine was not defined as READS SQL DATA.
Table 48. Class 39: External Routine Invocation Exception
SQLSTATH Message Text
39004 A NULL value cannot be passed to a method which takes a parameter of primitive type
'<type>'.
Table 49. Class 3B: Invalid SAVEPOINT
SQLSTATE Message Text
3B001 SAVEPOINT, <savepoint> does not exist or is not active in the current transaction.
3B002 The maximum number of savepoints has been reached.
3B501 A SAVEPOINT with the passed name already exists in the current transaction.
3B502 A RELEASE or ROLLBACK TO SAVEPOINT was specified, but the savepoint does not
exist.
Table 50. Class 40: Transaction Rollback
SQLSTATE Message Text
40001 A lock could not be obtained due to a deadlock, cycle of locks and waiters is: <value>. The
selected victim is XID : <value>.
40XCO0 Dead statement. This may be caused by catching a transaction severity error inside this
statement.
40XDO0 Container has been closed.
40XD1 Container was opened in read-only mode.
40XD2 Co_ntainer <containerName> cannot be opened; it either has been dropped or does not
exist.
40XL1 A lock could not be obtained within the time requested
40XL2 A lock could not be obtained within the time requested. The lockTable dump is:
<tableDump>
40XTO0 An internal error was identified by RawStore module.
40XT1 An exception was thrown during transaction commit.
40XT2 An exception was thrown during rollback of a SAVEPOINT.
40XT4 An attempt was made to close a transaction that was still active. The transaction has been

172

Copyright

SQLSTATE Message Text
aborted.

40XT5 Exception thrown during an internal transaction.

40XT6 Database is in quiescent state, cannot activate transaction. Please wait for a moment till it
exits the quiescent state.

40XT7 Operation is not supported in an internal transaction.

Table 51. Class 42: Syntax Error or Access Rule Violation

SQLSTATH Message Text

42000 Syntax error or access rule violation; see additional errors for details.

42601 In an ALTER TABLE statement, the column '<columnName>' has been specified as NOT
NULL and either the DEFAULT clause was not specified or was specified as DEFAULT
NULL.

42601 ALTER TABLE statement cannot add an IDENTITY column to a table.

42605 The number of arguments for function '<functionName>'is incorrect.

42606 An invalid hexadecimal constant starting with '<number>' has been detected.

42610 All the arguments to the COALESCE/VALUE function cannot be parameters. The function
needs at least one argument that is not a parameter.

42611 The length, precision, or scale attribute for column, or type mapping '<value>' is not valid.

42613 Multiple or conflicting keywords involving the '<clause>' clause are present.

42621 A check constraint or generated column that is defined with '<value>' is invalid.

42622 The name '<name>' is too long. The maximum length is '<number>'.

42734 Name '<name>' specified in context '<context>' is not unigue.

42802 The number of values assigned is not the same as the number of specified or implied
columns.

42803 An expression containing the column '<columnName>' appears in the SELECT list and is
not part of a GROUP BY clause.

42815 The replacement value for '<value>' is invalid.

42815 The data type, length or value of arguments '<value>' and '<value>' is incompatible.

42818 Comparisons between '<value>' and 'valuel>' are not supported.

42820 The floating point literal '<string>' contains more than 30 characters.

42821 Columns of type '<type>' cannot hold values of type '<type>'.

42824 An operand of LIKE is not a string, or the first operand is not a column.

42831 '‘<columnName>' cannot be a column of a primary key or unique key because it can contain
null values.

42834 SET NULL cannot be specified because FOREIGN KEY '<key>' cannot contain null values.

42837 ALTER TABLE '<tableName>' specified attributes for column '<columnName>' that are not
compatible with the existing column.

42846 Cannot convert types '<type>' to '<type>'.

42877 A qualified column name '<columnName>' is not allowed in the ORDER BY clause.

42884 No authorized routine named '<routineName>' of type '<type>' having compatible
arguments was found.

42886 '<value>' parameter '<value>' requires a parameter marker '?".

42894 DEFAULT value or IDENTITY attribute value is not valid for column '<columnName>'.

173

Copyright

SQLSTATE Message Text

428C1 Only one identity column is allowed in a table.

428EK The qualifier for a declared global temporary table name must be SESSION.

42903 Invalid use of an aggregate function.

42908 The CREATE VIEW statement does not include a column list.

42915 Foreign Key '<key>' s invalid because '<value>".

42916 Synonym '<synonym2>' cannot be created for '<synonym1>' as it would result in a circular
synonym chain.

42939 An object cannot be created with the schema name '<schemaNamet>'.

42962 Long column type column or parameter '<columnName>' not permitted in declared global
temporary tables or procedure definitions.

42972 An ON clause associated with a JOIN operator is not valid.

42995 The requested function does not apply to global temporary tables.

42X01 Syntax error: <error>.

42X02 <value>.

42X03 Column name '<columnName>' is in more than one table in the FROM list.

42X04 Column '<columnName>' is either not in any table in the FROM list or appears within a join
specification and is outside the scope of the join specification or appears in a HAVING
clause and is not in the GROUP BY list. If this is a CREATE or ALTER TABLE statement
then '<columnName>' is not a column in the target table.

42X05 Table/View '<objectName>' does not exist.

42X06 Too many result columns specified for table '<tableName>'.

42X07 Null is only allowed in a VALUES clause within an INSERT statement.

42X08 The constructor for class ‘<className>' cannot be used as an external virtual table
because the class does not implement '<constructorName>".

42X09 The table or alias name '<tableName>' is used more than once in the FROM list.

42X10 '<tableName>' is not an exposed table name in the scope in which it appears.

42X12 Column name '<columnName>' appears more than once in the CREATE TABLE statement.

42X13 Column name '<columnName>' appears more than once times in the column list of an
INSERT statement.

42X14 ‘<columnName>' is not a column in table or VTI '<value>'.

42X15 Column name '<columnName>' appears in a statement without a FROM list.

42X16 Column name '<columnName>' appears multiple times in the SET clause of an UPDATE
statement.

42X17 In the Properties list of a FROM clause, the value '<value>' is not valid as a joinOrder
specification. Only the values FIXED and UNFIXED are valid.

42X19 The WHERE or HAVING clause or CHECK CONSTRAINT definition is a '<value>'
expression. It must be a BOOLEAN expression.

42X23 Cursor <cursorName> is not updatable.

42X25 The '<functionName>' function is not allowed on the '<1>' type.

42X26 The class '<className>' for column '<columnName>' does not exist or is inaccessible. This
can happen if the class is not public.

42X28 Delete table '<tableName>' is not target of cursor '<cursorName>"'.

42X29 Update table '<tableName>' is not the target of cursor '<cursorName>'.

42X30 Cursor '<cursorName>' not found. Verify that autocommit is OFF.

174

Copyright

SQLSTATE Message Text

42X31 Column '<columnName>' is not in the FOR UPDATE list of cursor '<cursorName>"'.

42X32 The number of columns in the derived column list must match the number of columns in
table '<tableName>'.

42X33 The derived column list contains a duplicate column name '<columnName>"'.

42X34 There is a ? parameter in the select list. This is not allowed.

42X35 It is not allowed for both operands of '<value>' to be ? parameters.

42X36 The '<operator>' operator is not allowed to take a ? parameter as an operand.

42X37 The unary '<operator>' operator is not allowed on the '<type>' type.

42X38 'SELECT * only allowed in EXISTS and NOT EXISTS subqueries.

42X39 Subquery is only allowed to return a single column.

42X40 A NOT statement has an operand that is not boolean . The operand of NOT must evaluate
to TRUE, FALSE, or UNKNOWN.

42X41 In the Properties clause of a FROM list, the property '<propertyName>' is not valid (the
property was being set to '<value>").

42X42 Correlation name not allowed for column ‘<columnName>' because it is part of the FOR
UPDATE list.

42X43 The ResultSetMetaData returned for the class/object '<className>' was null. In order to
use this class as an external virtual table, the ResultSetMetaData cannot be null.

42X44 Invalid length '<number>' in column specification.

42X45 <type> is an invalid type for argument number <value> of <value>.

42X46 There are multiple functions named '<functionName>'. Use the full signature or the specific
name.

42X47 There are multiple procedures named '<procedureName>'. Use the full signature or the
specific name.

42X48 Value '<value>' is not a valid precision for <value>.

42X49 Value '<value>' is not a valid integer literal.

42X50 No method was found that matched the method call <methodName>.<value>(<value>),
tried all combinations of object and primitive types and any possible type conversion for any
parameters the method call may have. The method might exist but it is not public and/or
static, or the parameter types are not method invocation convertible.

42X51 The class '<className>' does not exist or is inaccessible. This can happen if the class is
not public.

42X52 Calling method ('<smethodName>') using a receiver of the Java primitive type '<type>'is not
allowed.

42X53 The LIKE predicate can only have 'CHAR' or 'VARCHAR' operands. Type '<type>'is not
permitted.

42X54 The Java method '<methodName>' has a ? as a receiver. This is not allowed.

42X55 Table name '<tableName>' should be the same as '<value>".

42X56 The number of columns in the view column list does not match the number of columns in
the underlying query expression in the view definition for '<value>'.

42X57 The getColumnCount() for external virtual table '<tableName>' returned an invalid value
‘<value>'. Valid values are greater than or equal to 1.

42X58 The number of columns on the left and right sides of the <tableName> must be the same.

42X59 The number of columns in each VALUES constructor must be the same.

42X60 Invalid value '<value>' for insertMode property specified for table '<tableName>"'.

175

Copyright

SQLSTATE Message Text

42X61 Types '<type>' and '<type>' are not <value> compatible.

42X62 ‘<value>' is not allowed in the '<schemaNamet>' schema.

42X63 The USING clause did not return any results. No parameters can be set.

42X64 In the Properties list, the invalid value '<value>' was specified for the useStatistics property.
The only valid values are TRUE or FALSE.

42X65 Index '<index>' does not exist.

42X66 Column name '<columnName>' appears more than once in the CREATE INDEX statement.

42X68 No field '<fieldName>' was found belonging to class '<className>'. It may be that the field
exists, but it is not public, or that the class does not exist or is not public.

42X69 It is not allowed to reference a field (‘'<fieldName>'") using a referencing expresssion of the
Java primitive type '<type>'".

42X72 No static field '<fieldName>' was found belonging to class '<className>'. The field might
exist, but it is not public and/or static, or the class does not exist or the class is not public.

42X73 Method resolution for signature <value>.<value>(<value>) was ambiguous. (No single
maximally specific method.)

42X74 Invalid CALL statement syntax.

42X75 No constructor was found with the signature <value>(<value>). It may be that the
parameter types are not method invocation convertible.

42X76 At least one column, '<columnName>', in the primary key being added is nullable. All
columns in a primary key must be non-nullable.

42X77 Column position '<columnPosition>' is out of range for the query expression.

42X78 Column '<columnName>' is not in the result of the query expression.

42X79 Column name '<columnName>' appears more than once in the result of the query
expression.

42X80 VALUES clause must contain at least one element. Empty elements are not allowed.

42X82 The USING clause returned more than one row. Only single-row ResultSets are
permissible.

42X83 The constraints on column '<columnName>' require that it be both nullable and not nullable.

42X84 Index '<index>' was created to enforce constraint '<constraintName>'. It can only be
dropped by dropping the constraint.

42X85 Constraint '<constraintName>'is required to be in the same schema as table '<tableName>'.

42X86 ALTER TABLE failed. There is no constraint '<constraintName>' on table '<tableName>'.

42X87 At least one result expression (THEN or ELSE) of the '<expression>' expression must not
be a'?".

42X88 A conditional has a non-Boolean operand. The operand of a conditional must evaluate to
TRUE, FALSE, or UNKNOWN.

42X89 Types '<type>' and '<type>' are not type compatible. Neither type is assignable to the other
type.

42X90 More than one primary key constraint specified for table '<tableName>".

42X91 Constraint name '<constraintName>' appears more than once in the CREATE TABLE
statement.

42X92 Column name '<columnName>' appears more than once in a constraint's column list.

42X93 Table '<tableName>' contains a constraint definition with column '<columnName>' which is
not in the table.

42X94 <value> '<value>' does not exist.

176

Copyright

SQLSTATE Message Text

42X96 The database class path contains an unknown jar file '<fileName>'.

42X98 Parameters are not allowed in a VIEW definition.

42Y00 Class '<className>' does not implement org.apache.derby.iapi.db.AggregateDefinition and
thus cannot be used as an aggregate expression.

42Y01 Constraint '<constraintName>' is invalid.

42Y03 '<statement>' is not recognized as a function or procedure.

42Y04 Cannot create a procedure or function with EXTERNAL NAME ‘'<name>' because it is not a
list separated by periods. The expected format is <full java path>.<method name>.

42Y05 There is no Foreign Key named '<key>".

42Y07 Schema '<schemaNamet>' does not exist

42Y08 Foreign key constraints are not allowed on system tables.

42Y09 Void methods are only allowed within a CALL statement.

42Y10 A table constructor that is not in an INSERT statement has all ? parameters in one of its
columns. For each column, at least one of the rows must have a non-parameter.

42Y11 A join specification is required with the '<clauseName>' clause.

42Y12 The ON clause of a JOIN is a '<expressionType>' expression. It must be a BOOLEAN
expression.

42Y13 Column name '<columnName>' appears more than once in the CREATE VIEW statement.

42Y16 No public static method '<methodName>' was found in class '<className>'. The method
might exist, but it is not public, or it is not static.

42Y19 ‘<columnName>' appears multiple times in the GROUP BY list. Columns in the GROUP BY
list must be unambiguous.

42Y22 Aggregate <aggregateType> cannot operate on type <type>.

42Y23 Incorrect JDBC type info returned for column <colunmName>.

42Y24 View '<viewName>' is not updatable. (Views are currently not updatable.)

42Y25 '<tableName>' is a system table. Users are not allowed to modify the contents of this table.

42Y26 Aggregates are not allowed in the GROUP BY list.

42Y27 Parameters are not allowed in the trigger action.

42Y29 The SELECT list of a hon-grouped query contains at least one invalid expression. When the
SELECT list contains at least one aggregate then all entries must be valid aggregate
expressions.

42Y30 The SELECT list of a grouped query contains at least one invalid expression. If a SELECT
list has a GROUP BY, the list may only contain grouping columns and valid aggregate
expressions.

42Y32 Aggregator class '<className>' for aggregate '<aggregateName>' on type <type> does not
implement com.ibm.db2j.aggregates.Aggregator.

42Y33 Aggregate <aggregateName> contains one or more aggregates.

42Y34 Column name '<columnName>' matches more than one result column in table
'<tableName>"'.

42Y35 Column reference '<reference>' is invalid. When the SELECT list contains at least one
aggregate then all entries must be valid aggregate expressions.

42Y36 Column reference '<reference>' is invalid. For a SELECT list with a GROUP BY, the list
may only contain grouping columns and valid aggregate expressions.

42Y37 '<value>' is a Java primitive and cannot be used with this operator.

177

Copyright

SQLSTATE

Message Text

42Y38

insertMode = replace is not permitted on an insert where the target table, '<tableName>', is
referenced in the SELECT.

42Y39 ‘<value>' may not appear in a CHECK CONSTRAINT definition because it may return
non-deterministic results.

42Y40 '<value>' appears multiple times in the UPDATE OF column list for trigger '<triggerName>'.

42Y41 '<value>' cannot be directly invoked via EXECUTE STATEMENT because it is part of a
trigger.

42Y42 Scale '<scaleValue>' is not a valid scale for a <value>.

42Y43 Scale '<scaleValue>' is not a valid scale with precision of '<precision>".

42Y44 Invalid key '<key>' specified in the Properties list of a FROM list. The case-sensitive keys
that are currently supported are '<key>'.

42Y45 VTI '<value>' cannot be bound because it is a special trigger VTI and this statement is not
part of a trigger action or WHEN clause.

42Y46 Invalid Properties list in FROM list. There is no index '<index>' on table '<tableName>'.

42Y48 Invalid Properties list in FROM list. Either there is no named constraint '<constraintName>'
on table '<tableName>' or the constraint does not have a backing index.

42Y49 Multiple values specified for property key '<key>'".

42Y50 Properties list for table '<tableName>' may contain values for index or for constraint but not
both.

42Y55 '<value>' cannot be performed on '<value>' because it does not exist.

42Y56 Invalid join strategy '<strategyValue>' specified in Properties list on table '<tableName>"'.
The currently supported values for a join strategy are: 'hash' and 'nestedloop'.

42Y58 NumberFormatException occurred when converting value '<value>' for optimizer override
‘<value>'.

42Y59 Invalid value, '<value>', specified for hashlnitialCapacity override. Value must be greater
than O.

42Y60 Invalid value, '<value>', specified for hashLoadFactor override. Value must be greater than
0.0 and less than or equal to 1.0.

42Y61 Invalid value, '<value>', specified for hashMaxCapacity override. Value must be greater
than 0.

42Y62 '<statement>' is not allowed on '<viewName>' because it is a view.

42Y63 Hash join requires an optimizable equijoin predicate on a column in the selected index or
heap. An optimizable equijoin predicate does not exist on any column in table or index
'<index>'". Use the 'index’ optimizer override to specify such an index or the heap on table
'<tableName>'.

42Y64 bulkFetch value of '<value>' is invalid. The minimum value for bulkFetch is 1.

42Y65 bulkFetch is not permitted on '<joinType>' joins.

42Y66 bulkFetch is not permitted on updatable cursors.

42Y67 Schema '<schemaNamet>' cannot be dropped.

42Y69 No valid execution plan was found for this statement. This may have one of two causes:
either you specified a hash join strategy when hash join is not allowed (no optimizable
equijoin) or you are attempting to join two external virtual tables, each of which references
the other, and so the statement cannot be evaluated.

42Y70 The user specified an illegal join order. This could be caused by a join column from an inner
table being passed as a parameter to an external virtual table.

42Y71 System function or procedure '<procedureName>' cannot be dropped.

178

Copyright

SQLSTATE

Message Text

42Y82

System generated stored prepared statement '<statement>' that cannot be dropped using
DROP STATEMENT. It is part of a trigger.

42Y83 An untyped null is not permitted as an argument to aggregate <aggregateName>. Please
cast the null to a suitable type.

42Y84 '<value>' may not appear in a DEFAULT definition.

42Y85 The DEFAULT keyword is only allowed in a VALUES clause when the VALUES clause
appears within an INSERT statement.

42Y90 FOR UPDATE is not permitted in this type of statement.

42Y91 The USING clause is not permitted in an EXECUTE STATEMENT for a trigger action.

42Y92 <triggerName> triggers may only reference <value> transition variables/tables.

42Y93 lllegal REFERENCING clause: only one name is permitted for each type of transition
variable/table.

42Y94 An AND or OR has a non-boolean operand. The operands of AND and OR must evaluate
to TRUE, FALSE, or UNKNOWN.

42Y95 The '<operatorName>' operator with a left operand type of '<operandType>' and a right
operand type of '<operandType>' is not supported.

42Y97 Invalid escape character at line '<lineNumber>', column '<columnName>".

42702 Multiple DISTINCT aggregates are not supported at this time.

42707 Aggregates are not permitted in the ON clause.

42708 Bulk insert replace is not permitted on '<value>' because it has an enabled trigger
(<value>).

42715 Invalid type specified for column '<columnName>". The type of a column may not be
changed.

42716 Only columns of type VARCHAR may have their length altered.

42717 Invalid length specified for column '<columnName>'. Length must be greater than the
current column length.

42718 Column '<columnName>' is part of a foreign key constraint '<constraintName>'. To alter the
length of this column, you should drop the constraint first, perform the ALTER TABLE, and
then recreate the constraint.

42719 Column '<columnName>' is being referenced by at least one foreign key constraint
'<constraintName>'". To alter the length of this column, you should drop referencing
constraints, perform the ALTER TABLE and then recreate the constraints.

42720 Column '<columnName>' cannot be made nullable. It is part of a primary key, which cannot
have any nullable columns.

42721 Invalid increment specified for identity for column '<columnName>'. Increment cannot be
zero.

42722 Invalid type specified for identity column '<columnName>'. The only valid types for identity
columns are BIGINT, INT and SMALLINT.

42723 Attempt to modify an identity column '<columnName>".

42724 Overflow occurred in identity value for column '<columnName>' in table '<tableName>"'.

42725 INTERNAL ERROR identity counter. Update was called without arguments with current
value = NULL.

42726 A column, '<columnName>', with an identity default cannot be made nullable.

42727 A nullable column, '<columnName>', cannot be modified to have identity default.

42750 INTERNAL ERROR: Unable to generate code for <value>.

179

Copyright

SQLSTATE Message Text

42753 INTERNAL ERROR: Type of activation to generate for node choice <value> is unknown.

42760 <value> not allowed unless database property <propertyName> has value '<value>'.

42770 Binding directly to an XML value is not allowed; try using XMLPARSE.

42771 XML values are not allowed in top-level result sets; try using XMLSERIALIZE.

42772 XML syntax error; missing keyword(s): '<keywords>".

42773 Invalid target type for XMLSERIALIZE: '<typeName>',

42774 XML feature not supported: '<featureName>',

42775 XML query expression must be a string literal.

42776 Multiple XML context items are not allowed.

42777 Context item must have type 'XML'; '<value>' is not allowed.

42778 Failed to locate '<value>' API or implementation classes. XML operations are not permitted
unless these classes are in your classpath.

42779 Unable to determine the parameter type for XMLPARSE; try using a CAST.

42777 Encountered unexpected error while processing XML; see next exception for detalils.

42790 Class '<className>' does not return an updatable ResultSet.

42791 subquery

42792 repeatable read

42793 Constraints '<constraintName>' and '<constraintName>' have the same set of columns,
which is not allowed.

42797 Renaming column '<columnName>' will cause check constraint '<constraintName>' to
break.

42799 String or Hex literal cannot exceed 64K.

4279A read uncommitted

4279B The external virtual table interface does not support BLOB or CLOB columns. '<value>'
column '<value>',

4279D Procedures that modify SQL data are not allowed in BEFORE triggers.

4279D '<statement>' statements are not allowed in '<triggerName>' triggers.

4279E Constraint '<constraintName>' is not a <value> constraint.

4279F Too many indexes (<index>) on the table <tableName>. The limit is <number>.

42ZA0 Statement too complex. Try rewriting the query to remove complexity. Eliminating many
duplicate expressions or breaking up the query and storing interim results in a temporary
table can often help resolve this error.

42ZA1 Invalid SQL in Batch: '<batch>".

Table 52. Class 57: DRDA Network Protocol: Execution Failure

SQLSTATE Message Text

57017 There is no available conversion for the source code page, <codePage>, to the target code
page, <codePage>. The connection has been terminated.

Table 53. Class 58: DRDA Network Protocol: Protocol Error
SQLSTATE Message Text
58009 Network protocol exception: only one of the VCM, VCS length can be greater than 0. The

180

Copyright

SQLSTATE

Message Text

connection has been terminated.

58009 The connection was terminated because the encoding is not supported.

58009 Network protocol exception: actual code point, <value>, does not match expected code
point, <value>. The connection has been terminated.

58009 Network protocol exception: DDM collection contains less than 4 bytes of data. The
connection has been terminated.

58009 Network protocol exception: collection stack not empty at end of same id chain parse. The
connection has been terminated.

58009 Network protocol exception: DSS length not 0 at end of same id chain parse. The
connection has been terminated.

58009 Network protocol exception: DSS chained with same id at end of same id chain parse. The
connection has been terminated.

58009 Network protocol exception: end of stream prematurely reached while reading InputStream,
parameter #<value>. The connection has been terminated.

58009 Network protocol exception: invalid FDOCA LID. The connection has been terminated.

58009 Network protocol exception: SECTKN was not returned. The connection has been
terminated.

58009 Network protocol exception: only one of NVCM, NVCS can be non-null. The connection has
been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for RDBNAM. The
connection has been terminated.

58009 SocketException: '<error>'

58009 A communications error has been detected: <error>.

58009 An error occurred during a deferred connect reset and the connection has been terminated.
See chained exceptions for details.

58009 Insufficient data while reading from the network - expected a minimum of <number> bytes
and received only <number> bytes. The connection has been terminated.

58009 Attempt to fully materialize lob data that is too large for the JVM. The connection has been
terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for RDBCOLID. The
connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for PKGID. The
connection has been terminated.

58009 Network protocol exception: PKGNAMCSN length, <length>, is invalid at SQLAM <value>.
The connection has been terminated.

58009 A network protocol error was encountered and the connection has been terminated:
<error>.

58010 A network protocol error was encountered. A connection could not be established because
the manager <value> at level <value> is not supported by the server.

58014 The DDM command Ox<value> is not supported. The connection has been terminated.

58015 The DDM object Ox<value> is not supported. The connection has been terminated.

58016 The DDM parameter Ox<value> is not supported. The connection has been terminated.

58017 The DDM parameter value Ox<value> is not supported. An input host variable may not be

within the range the server supports. The connection has been terminated.

Table 54. Class X0: Execution exceptions

181

Copyright

SQLSTATE

Message Text

X0AO00

The select list mentions column '<columnName>' twice. This is not allowed in queries with
GROUP BY or HAVING clauses. Try aliasing one of the conflicting columns to a unique
name.

X0X02 Table '<tableName>' cannot be locked in '<smode>' mode.

X0X03 Invalid transaction state - held cursor requires same isolation level

X0X05 Table/View '<tableName>' does not exist.

X0X07 Cannot remove jar file '<fileName>' because it is on your derby.database.classpath
‘<classpath>'.

XO0XO0E The column position '<columnPosition>' listed in the auto-generated column selection array
was not found in the insert table.

XOXOF Column name '<columnName>' listed in auto-generated column selection array not found in
the insert table.

X0X10 The USING clause returned more than one row; only single-row ResultSets are
permissible.

X0X11 The USING clause did not return any results so no parameters can be set.

X0X13 Jar file '<fileName>' does not exist in schema '<schemaNamet>".

X0X57 An attempt was made to put a Java value of type '<type>' into a SQL value, but there is no
corresponding SQL type. The Java value is probably the result of a method call or field
access.

X0X60 A cursor with name '<cursorName>' already exists.

X0X61 The values for column '<columnName>' in index '<indexName>' and table
'<schemaNamet>.<tableName>' do not match for row location <location>. The value in the
index is '<value>', while the value in the base table is '<value>'. The full index key, including
the row location, is '<indexKey>'. The suggested corrective action is to recreate the index.

X0X62 Inconsistency found between table '<tableName>' and index '<indexName>'. Error when
trying to retrieve row location '<rowLocation>' from the table. The full index key, including
the row location, is '<indexKey>'. The suggested corrective action is to recreate the index.

X0X63 Got IOException '<value>'.

X0X67 Columns of type '<type>' may not be used in CREATE INDEX, ORDER BY, GROUP BY,
UNION, INTERSECT, EXCEPT or DISTINCT statements because comparisons are not
supported for that type.

X0X81 <value> '<value>' does not exist.

X0X85 Index '<indexName>' was not created because '<indexType>' is not a valid index type.

X0X86 0 is an invalid parameter value for ResultSet.absolute(int row).

X0X87 ResultSet.relative(int row) cannot be called when the cursor is not positioned on a row.

X0X95 Operation '<operationName>' cannot be performed on object '<objectName>' because
there is an open ResultSet dependent on that object.

X0X99 Index '<indexName>' does not exist.

X0Y16 '<value>' is not a view. If it is a table, then use DROP TABLE instead.

X0Y23 Operation '<operationName>' cannot be performed on object '<objectName>' because
VIEW '<viewName>' is dependent on that object.

X0Y24 Operation '<operationName>' cannot be performed on object '<objectName>' because
STATEMENT '<statement>' is dependent on that object.

X0Y25 Operation '<operationName>' cannot be performed on object '<objectName>' because

<value> '<value>' is dependent on that object.

182

Copyright

SQLSTATE Message Text
X0Y26 Index '<indexName>' is required to be in the same schema as table '<tableName>"'.
X0Y28 Index '<indexName>' cannot be created on system table '<tableName>'. Users cannot

create indexes on system tables.

X0Y32 <value> '<value>' already exists in <value> '<value>'.

X0Y38 Cannot create index '<indexName>' because table '<tableName>' does not exist.

X0yY41 Constraint '<constraintName>' is invalid because the referenced table <tableName> has no
primary key. Either add a primary key to <tableName> or explicitly specify the columns of a
unigue constraint that this foreign key references.

X0Y42 Constraint '<constraintName>' is invalid: the types of the foreign key columns do not match
the types of the referenced columns.

X0Y43 Constraint '<constraintName>' is invalid: the number of columns in <value> (<value>) does
not match the number of columns in the referenced key (<value>).

X0Y44 Constraint '<constraintName>' is invalid: there is no unique or primary key constraint on
table '<tableName>' that matches the number and types of the columns in the foreign key.

X0Y45 Foreign key constraint '<constraintName>' cannot be added to or enabled on table
<tableName> because one or more foreign keys do not have matching referenced keys.

X0Y46 Constraint '<constraintName>' is invalid: referenced table <tableName> does not exist.

X0Y54 Schema '<schemaNamet>' cannot be dropped because it is not empty.

X0Y55 The number of rows in the base table does not match the number of rows in at least 1 of
the indexes on the table. Index '<indexName>' on table '<schemaNamet>.<tableName>"'
has <number> rows, but the base table has <number> rows. The suggested corrective
action is to recreate the index.

X0Y56 '<value>' is not allowed on the System table '<tableName>"'.

X0Y57 A non-nullable column cannot be added to table '<tableName>' because the table contains
at least one row. Non-nullable columns can only be added to empty tables.

X0Y58 Attempt to add a primary key constraint to table '<tableName>' failed because the table
already has a constraint of that type. A table can only have a single primary key constraint.

X0Y59 Attempt to add or enable constraint(s) on table '<tableName>' failed because the table
contains <rowName> row(s) that violate the following check constraint(s):
<constraintName>.

X0Y63 The command on table '<tableName>' failed because null data was found in the primary
key or unigue constraint/index column(s). All columns in a primary or unique index key must
not be null.

X0Y66 Cannot issue commit in a nested connection when there is a pending operation in the
parent connection.

X0Y67 Cannot issue rollback in a nested connection when there is a pending operation in the
parent connection.

X0Y68 <value> '<value>' already exists.

X0Y69 <value> is not supported in trigger <triggerName>.

X0Y70 INSERT, UPDATE and DELETE are not permitted on table <tableName> because trigger
<triggerName> is active.

X0Y71 Transaction manipulation such as SET ISOLATION is not permitted because trigger
<triggerName> is active.

X0Y72 Bulk insert replace is not permitted on '<value>' because it has an enabled trigger
(<value>).

X0Y77 Cannot issue set transaction isolation statement on a global transaction that is in progress

because it would have implicitly committed the global transaction.

183

Copyright

SQLSTATE Message Text

X0Y78 Statement.executeQuery() cannot be called with a statement that returns a row count.

X0Y78 <value>.executeQuery() cannot be called because multiple result sets were returned. Use
<value>.execute() to obtain multiple results.

X0Y78 <value>.executeQuery() was called but no result set was returned. Use
<value>.executeUpdate() for non-queries.

X0Y79 Statement.executeUpdate() cannot be called with a statement that returns a ResultSet.

X0Y80 ALTER table '<tableName>' failed. Null data found in column '<columnName>'.

X0Y83 WARNING: While deleting a row from a table the index row for base table row <rowName>
was not found in index with conglomerate id <id>. This problem has automatically been
corrected as part of the delete operation.

Table 55. Class XBCA: CacheService

SQLSTATH Message Text

XBCAO Cannot create new object with key <key> in <cache> cache. The object already exists in
the cache.

Table 56. Class XBCM: ClassManager

SQLSTATE Message Text

XBCM1 Java linkage error thrown during load of generated class <className>.

XBCM2 Cannot create an instance of generated class <className>.

XBCM3 Method <methodName>() does not exist in generated class <className>.

XBCM4 Java class file format limit(s) exceeded: <value> in generated class <className>.

Table 57. Class XBCX: Cryptography

SQLSTATE Message Text

XBCXO0 Exception from Cryptography provider. See next exception for details.

XBCX1 Initializing cipher with illegal mode, must be either ENCRYPT or DECRYPT.

XBCX2 Initializing cipher with a boot password that is too short. The password must be at least
<number> characters long.

XBCX5 Cannot change boot password to null.

XBCX6 Cannot change boot password to a non-string serializable type.

XBCX7 Wrong format for changing boot password. Format must be : old_boot_password,
new_boot_password.

XBCX8 Cannot change boot password for a hon-encrypted database.

XBCX9 Cannot change boot password for a read-only database.

XBCXA Wrong boot password.

XBCXB Bad encryption padding '<value>' or padding not specified. 'NoPadding' must be used.

XBCXC Encryption algorithm '<algorithmName>' does not exist. Please check that the chosen
provider '<providerName>' supports this algorithm.

XBCXD The encryption algorithm cannot be changed after the database is created.

XBCXE The encryption provider cannot be changed after the database is created.

XBCXF The class '<className>' representing the encryption provider cannot be found.

184

Copyright

SQLSTATE Message Text

XBCXG The encryption provider '<providerName>' does not exist.

XBCXH The encryptionAlgorithm '<algorithmName>'" is not in the correct format. The correct format
is algorithm/feedbackMode/NoPadding.

XBCXI The feedback mode '<mode>' is not supported. Supported feedback modes are CBC, CFB,
OFB and ECB.

XBCXJ The application is using a version of the Java Cryptography Extension (JCE) earlier than
1.2.1. Please upgrade to JCE 1.2.1 and try the operation again.

XBCXK The given encryption key does not match the encryption key used when creating the
database. Please ensure that you are using the correct encryption key and try again.

XBCXL The verification process for the encryption key was not successful. This could have been
caused by an error when accessing the appropriate file to do the verification process. See
next exception for details.

XBCXM The length of the external encryption key must be an even number.

XBCXN The external encryption key contains one or more illegal characters. Allowed characters for
a hexadecimal number are 0-9, a-f and A-F.

XBCXO Cannot encrypt the database when there is a global transaction in the prepared state.

XBCXP Cannot re-encrypt the database with a new boot password or an external encryption key
when there is a global transaction in the prepared state.

XBCXQ Cannot configure a read-only database for encryption.

XBCXR Cannot re-encrypt a read-only database with a new boot password or an external
encryption key .

XBCXS Cannot configure a database for encryption, when database is in the log archive mode.

XBCXT Cannot re-encrypt a database with a new boot password or an external encryption key,
when database is in the log archive mode.

XBCXU Encryption of an un-encrypted database failed: <failureMessage>

XBCXV Encryption of an encrypted database with a new key or a new password failed:
<failureMessage>

Table 58. Class XBM: Monitor

SQLSTATE Message Text

XBMO01 Startup failed due to an exception. See next exception for details.

XBMO02 Startup failed due to missing functionality for <value>. Please ensure your classpath
includes the correct Derby software.

XBMO5 Startup failed due to missing product version information for <value>.

XBMO06 Startup failed. An encrypted database cannot be accessed without the correct boot
password.

XBMO7 Startup failed. Boot password must be at least 8 bytes long.

XBMO08 Could not instantiate <value> StorageFactory class <value>.

XBMOG Failed to start encryption engine. Please make sure you are running Java 2 and have
downloaded an encryption provider such as jce and put it in your class path.

XBMOH Directory <directoryName> cannot be created.

XBMOI Directory <directoryName> cannot be removed.

XBMO0J Directory <directoryName> already exists.

XBMOK Unknown sub-protocol for database name <databaseName>.

185

Copyright

SQLSTATE

Message Text

XBMOL

Specified authentication scheme class <className> does implement the authentication
interface <interfaceName>.

XBMOM Error creating instance of authentication scheme class <className>.

XBMON JDBC Driver registration with java.sql.DriverManager failed. See next exception for details.

XBMOP Service provider is read-only. Operation not permitted.

XBMOQ File <fileName> not found. Please make sure that backup copy is the correct one and it is
not corrupted.

XBMOR Unable to remove File <fileName>.

XBMOS Unable to rename file '<fileName>' to '<fileName>"

XBMOT Ambiguous sub-protocol for database name <databaseName>.

XBMOU No class was registered for identifier <identifierName>.

XBMOV An exception was thrown while loading class <className> registered for identifier
<identifierName>.

XBMOW | An exception was thrown while creating an instance of class <className> registered for
identifier <identifierName>.

XBMOX Supplied territory description '<value>' is invalid, expecting In[_CO[_variant]] In=lower-case
two-letter ISO-639 language code, CO=upper-case two-letter ISO-3166 country codes, see
java.util.Locale.

XBMOY Backup database directory <directoryName> not found. Please make sure that the
specified backup path is right.

XBMO0Z Unable to copy file '<fileName>' to '<fileName>'. Please make sure that there is enough
space and permissions are correct.

Table 59. Class XCL: Execution exceptions

SQLSTATE Message Text

XCLO1 Result set does not return rows. Operation <operationName> not permitted.

XCLO05 Activation closed, operation <operationName> not permitted.

XCLO7 Cursor '<cursorName>' is closed. Verify that autocommit is OFF.

XCLO8 Cursor '<cursorName>' is not on a row.

XCLO9 An Activation was passed to the '<methodName>' method that does not match the
PreparedStatement.

XCL10 A PreparedStatement has been recompiled and the parameters have changed. If you are
using JDBC you must prepare the statement again.

XCL12 An attempt was made to put a data value of type '<datatypeName>' into a data value of
type '<datatypeName>'.

XCL13 The parameter position '<parameterPosition>' is out of range. The number of parameters
for this prepared statement is '<number>'.

XCL14 The column position '<columnPosition>' is out of range. The number of columns for this
ResultSet is '<number>'.

XCL15 A ClassCastException occurred when calling the compareTo() method on an object
'<object>". The parameter to compareTo() is of class '<className>'.

XCL16 ResultSet not open. Operation '<operation>' not permitted. Verify that autocommit is OFF.

XCL16 ResultSet not open. Verify that autocommit is OFF.

XCL17 Statement not allowed in this database.

186

Copyright

SQLSTATE Message Text

XCL18 Stream of column value in result cannot be retrieved twice

XCL19 Missing row in table '<tableName>' for key '<key>'.

XCL20 Catalogs at version level '<versionNumber>' cannot be upgraded to version level
‘<versionNumber>',

XCL21 You are trying to execute a Data Definition statement (CREATE, DROP, or ALTER) while
preparing a different statement. This is not allowed. It can happen if you execute a Data
Definition statement from within a static initializer of a Java class that is being used from
within a SQL statement.

XCL22 Parameter <parameterName> cannot be registered as an OUT parameter because it is an
IN parameter.

XCL23 SQL type number '<type>'is not a supported type by registerOutParameter().

XCL24 Parameter <parameterName> appears to be an output parameter, but it has not been so
designated by registerOutParameter(). If it is not an output parameter, then it has to be set
to type <type>.

XCL25 Parameter <parameterName> cannot be registered to be of type <type> because it maps to
type <type> and they are incompatible.

XCL26 Parameter <parameterName> is not an output parameter.

XCL27 Return output parameters cannot be set.

XCL30 An |OException was thrown when reading a '<value>' from an InputStream.

XCL31 Statement closed.

XCL33 The table cannot be defined as a dependent of table <tableName> because of delete rule
restrictions. (The relationship is self-referencing and a self-referencing relationship already
exists with the SET NULL delete rule.)

XCL34 The table cannot be defined as a dependent of table <tableName> because of delete rule
restrictions. (The relationship forms a cycle of two or more tables that cause the table to be
delete-connected to itself (all other delete rules in the cycle would be CASCADE)).

XCL35 The table cannot be defined as a dependent of table <tableName> because of delete rule
restrictions. (The relationship causes the table to be delete-connected to the indicated table
through multiple relationships and the delete rule of the existing relationship is SET NULL.).

XCL36 The delete rule of foreign key must be <value>. (The referential constraint is
self-referencing and an existing self-referencing constraint has the indicated delete rule (NO
ACTION, RESTRICT or CASCADE).)

XCL37 The delete rule of foreign key must be <value>. (The referential constraint is
self-referencing and the table is dependent in a relationship with a delete rule of
CASCADE.)

XCL38 the delete rule of foreign key must be <ruleName>. (The relationship would cause the table
to be delete-connected to the same table through multiple relationships and such
relationships must have the same delete rule (NO ACTION, RESTRICT or CASCADE).)

XCL39 The delete rule of foreign key cannot be CASCADE. (A self-referencing constraint exists
with a delete rule of SET NULL, NO ACTION or RESTRICT.)

XCL40 The delete rule of foreign key cannot be CASCADE. (The relationship would form a cycle
that would cause a table to be delete-connected to itself. One of the existing delete rules in
the cycle is not CASCADE, so this relationship may be definable if the delete rule is not
CASCADE.)

XCL41 The delete rule of foreign key cannot be CASCADE. (The relationship would cause another
table to be delete-connected to the same table through multiple paths with different delete
rules or with delete rule equal to SET NULL.)

XCL42 CASCADE

187

Copyright

SQLSTATE Message Text

XCL43 SET NULL

XCL44 RESTRICT

XCL45 NO ACTION

XCL46 SET DEFAULT

XCL47 Use of '<value>' requires database to be upgraded from version <versionNumber> to
version <versionNumber> or later.

XCL48 TRUNCATE TABLE is not permitted on '<value>' because unique/primary key constraints
on this table are referenced by enabled foreign key constraints from other tables.

XCL49 TRUNCATE TABLE is not permitted on '<value>' because it has an enabled DELETE
trigger (<value>).

XCL50 Upgrading the database from a previous version is not supported. The database being
accessed is at version level '<versionNumber>', this software is at version level
‘<versionNumber>',

XCL51 The requested function can not reference tables in SESSION schema.

XCL52 The statement has been cancelled or timed out.

Table 60. Class XCW: Upgrade unsupported

SQLSTATH Message Text

XCWO00 Unsupported upgrade from '<value>' to '<value>'.

Table 61. Class XCX: Internal Utility Errors

SQLSTATH Message Text

XCXAO Invalid identifier.

XCXBO0 Invalid database classpath: '<classpath>'.

XCXCO0 Invalid id list.

XCXEO You are trying to do an operation that uses the territory of the database, but the database
does not have a territory.

Table 62. Class XCY: Derby Property Exceptions

SQLSTATE Message Text

XCYO00 Invalid value for property '<value>'='<value>'.

XCY02 The requested property change is not supported '<value>'='<value>'.

XCYO03 Required property '<propertyName>' has not been set.

XCY04 Invalid syntax for optimizer overrides. The syntax should be -- DERBY-PROPERTIES
propertyName = value [, propertyName = value]*

Table 63. Class XCZ: org.apache.derby.database.UserUtility

SQLSTATE Message Text

XCZ00 Unknown permission '<permissionName>'.

XCz01 Unknown user '<authorizationID>".

XCz02 Invalid parameter '<value>'='<value>',

188

Copyright

Table 64. Class XD00: Dependency Manager

SQLSTATE Message Text
XD003 Unable to restore dependency from disk. DependableFinder = '<value>'. Further
information: '<value>".
XD004 Unable to store dependencies.
Table 65. Class XIE: Import/Export Exceptions
SQLSTATE Message Text
XIEO1 Connection was null.
XIEO3 Data found on line <lineNumber> for column <columnName> after the stop delimiter.
XIEO4 Data file not found: <fileName>
XIEQ5 Data file cannot be null.
XIEO6 Entity name was null.
XIEQ7 Field and record separators cannot be substrings of each other.
XIEO8 There is no column named: <columnName>.
XIEQ9 The total number of columns in the row is: <number>.
XIEOB Column '<columnName>' in the table is of type <type>, it is not supported by the
import/export feature.
XIEOD Cannot find the record separator on line <lineNumber>.
XIEOE Read endOfFile at unexpected place on line <lineNumber>.
XIEOI An |OException occurred while writing data to the file.
XIEQJ A delimiter is not valid or is used more than once.
XIEOK The period was specified as a character string delimiter.
XIEOM Table '<tableName>' does not exist.
Table 66. Class XJ: Connectivity Errors
SQLSTATE Message Text
XJ0o04 Database '<databaseName>' not found.
XJoos Cannot rollback or release a savepoint when in auto-commit mode.
XJ009 Use of CallableStatement required for stored procedure call or use of output parameters:
<value>
XJ010 Cannot issue savepoint when autoCommit is on.
XJo11 Cannot pass null for savepoint name.
XJ012 '<value>' already closed.
XJ013 No ID for named savepoints.
XJ014 No name for un-named savepoints.
XJO015 Derby system shutdown.
XJ016 Method '<methodName>' not allowed on prepared statement.
XJo17 No savepoint command allowed inside the trigger code.
XJo18 Column name cannot be null.
XJ020 Object type not convertible to TYPE '<typeName>', invalid java.sql.Types value, or object

was null.

189

Copyright

SQLSTATE Message Text

XJ021 Type is not supported.

XJ022 Unable to set stream: '<name>'.

XJ023 Input stream did not have exact amount of data as the requested length.

XJ025 Input stream cannot have negative length.

XJ028 The URL '<urlValue>' is not properly formed.

XJ030 Cannot set AUTOCOMMIT ON when in a nested connection.

XJ040 Failed to start database '<databaseName>', see the next exception for details.

XJo41 Failed to create database '<databaseName>', see the next exception for details.

XJo42 ‘<value>' is not a valid value for property '<propertyName>"'.

XJ0o44 '<value>' is an invalid scale.

XJ045 Invalid or (currently) unsupported isolation level, '<levelName>', passed to
Connection.setTransactionlsolationLevel(). The currently supported values are
java.sqgl.Connection. TRANSACTION_SERIALIZABLE,
java.sgl.Connection. TRANSACTION_REPEATABLE_READ,
java.sgl.Connection. TRANSACTION_READ_COMMITTED, and
java.sgl.Connection. TRANSACTION_READ_UNCOMMITTED.

XJ049 Conflicting create attributes specified.

XJo4B Batch cannot contain a command that attempts to return a result set.

XJo4ac CallableStatement batch cannot contain output parameters.

XJ056 Cannot set AUTOCOMMIT ON when in an XA connection.

XJ057 Cannot commit a global transaction using the Connection, commit processing must go thru
XAResource interface.

XJ058 Cannot rollback a global transaction using the Connection, commit processing must go thru
XAResource interface.

XJ059 Cannot close a connection while a global transaction is still active.

XJO5B JDBC attribute '<attributeName>' has an invalid value '<value>', valid values are '<value>'.

XJosC Cannot set holdability ResultSet.HOLD_CURSORS_OVER_COMMIT for a global
transaction.

XJ0o61 The '<methodName>' method is only allowed on scroll cursors.

XJ062 Invalid parameter value '<value>' for ResultSet.setFetchSize(int rows).

XJ063 Invalid parameter value '<value>' for Statement.setMaxRows(int maxRows). Parameter
value must be >= 0.

XJ064 Invalid parameter value '<value>' for setFetchDirection(int direction).

XJ065 Invalid parameter value '<value>' for Statement.setFetchSize(int rows).

XJ066 Invalid parameter value '<value>' for Statement.setMaxFieldSize(int max).

XJ067 SQL text pointer is null.

XJ068 Only executeBatch and clearBatch allowed in the middle of a batch.

XJ069 No SetXXX methods allowed in case of USING execute statement.

XJO70 Negative or zero position argument '<argument>' passed in a Blob or Clob method.

XJ0o71 Negative length argument '<argument>' passed in a BLOB or CLOB method.

XJ0o72 Null pattern or searchStr passed in to a BLOB or CLOB position method.

XJ0o73 The data in this BLOB or CLOB is no longer available. The BLOB/CLOB's transaction may

be committed, or its connection is closed.

190

Copyright

SQLSTATE Message Text

XJ074 Invalid parameter value '<value>' for Statement.setQueryTimeout(int seconds).

XJO76 The position argument '<positionArgument>' exceeds the size of the BLOB/CLOB.

XJo77 Got an exception when trying to read the first byte/character of the BLOB/CLOB pattern
using getBytes/getSubString.

XJ078 Offset '<value>' is either less than zero or is too large for the current BLOB/CLOB.

XJ079 The length specified '<snumber>' exceeds the size of the BLOB/BLOB.

XJ080 USING execute statement passed <number> parameters rather than <number>.

XJos1 Conflicting create/restore/recovery attributes specified.

XJ081 Invalid value '<value>' passed as parameter '<parameterName>' to method
‘'<methodName>"'

XJ085 Stream has already been read and end-of-file reached and cannot be re-used.

XJ086 This method cannot be invoked while the cursor is not on the insert row or if the
concurrency of this ResultSet object is CONCUR_READ_ONLY.

XJoss Invalid operation: wasNull() called with no data retrieved.

XJ089 Invalid method call: parameter 1 is an integer OUT parameter returned by the stored
procedure, use getint call.

XJ090 Invalid parameter: calendar is null.

XJ091 Invalid argument: parameter index <indexNumber> is not an OUT or INOUT parameter.

XJ092 _Parameter 1 is the return clause of the stored procedure call. It can only be registered as an
integer type.

XJ093 Length of BLOB/CLOB, <number>, is too large. The length cannot exceed <number>.

XJ094 This object is already closed.

XJ095 An attempt to execute a privileged action failed.

XJ096 A resource bundle could not be found in the <packageName> package for <value>

XJ097 Cannot rollback or release a savepoint that was not created by this connection.

XJ098 The auto-generated keys value <value> is invalid

XJ099 The Reader/Stream object does not contain length characters

XJ100 The scale supplied by the registerOutParameter method does not match with the setter
method. Possible loss of precision!

XJ102 Can not perform an insert at the current position.

XJ103 Table name can not be null

XJ104 Shared key length is invalid: <value>.

XJ105 DES key has the wrong length, expected length <number>, got length <number>.

XJ106 No such padding

XJ107 Bad Padding

XJ108 lllegal Block Size

XJ110 Primary table name can not be null

XJ111 Foreign table name can not be null

XJ112 Security exception encountered, see next exception for details.

XJ113 Unable to open file <fileName> : <error>

XJ114 Invalid cursor name '<cursorName>'

XJ115 Unable to open resultSet with requested holdability <value>.

191

Copyright

SQLSTATE Message Text

XJ116 No more than <number> commands may be added to a single batch.

XJ117 Batching of queries not allowed by J2EE compliance.

XJ118 Query batch requested on a non-query statement.

XJ121 Invalid operation at current cursor position.

XJ122 No updateXXX methods were called on this row.

XJ123 This method must be called to update values in the current row or the insert row.

XJ124 Column not updatable.

XJ125 This method should only be called on ResultSet objects that are scrollable (type
TYPE_SCROLL_INSENSITIVE).

XJ126 This method should not be called on sensitive dynamic cursors.

XJ128 Unable to unwrap for '<value>'

XJ200 Exceeded maximum number of sections <value>

XJ202 Invalid cursor name '<cursorName>'.

XJ203 Cursor name '<cursorName>' is already in use

XJ204 Unable to open result set with requested holdability <holdValue>.

XJ206 SQL text '<value>' has no tokens.

XJ207 executeQuery method can not be used for update.

XJ208 Non-atomic batch failure. The batch was submitted, but at least one exception occurred on
an individual member of the batch. Use getNextException() to retrieve the exceptions for
specific batched elements.

XJ209 The required stored procedure is not installed on the server.

XJ210 The load module name for the stored procedure on the server is not found.

XJ211 Non-recoverable chain-breaking exception occurred during batch processing. The batch is
terminated non-atomically.

XJ212 Invalid attribute syntax: <attributeSyntax>

XJ213 The tracelLevel connection property does not have a valid format for a number.

XJ214 An 1O Error occurred when calling free() on a CLOB or BLOB.

XJ215 You cannot invoke other java.sql.Clob/java.sqgl.Blob methods after calling the free() method.

Table 67. Class XN: Network Client Exceptions

SQLSTATH Message Text

XNOO01 Connection reset is not allowed when inside a unit of work.

XNO0O08 Query processing has been terminated due to an error on the server.

XNO0O09 Error obtaining length of BLOB/CLOB object, exception follows.

XNO10 Procedure name can not be null.

XNO11 Procedure name length <number> is not within the valid range of 1 to <number>.

XNO012 On <operatingSystemName> platforms, XA supports version <versionNumber> and above,
this is version <versionNumber>

XNO013 Invalid scroll orientation.

XNO014 Network protocol error: encountered an IOException, parameter #<value>. Remaining data
has been padded with 0x0. Message: <messageText>.

XNO15 Network protocol error: the specified size of the InputStream, parameter #<value>, is less

192

Copyright

SQLSTATE

Message Text

than the actual InputStream length.

XNO16 Network protocol error: encountered error in stream length verification, parameter
#<value>. Message: <messageText>.
XNO17 Network protocol error: end of stream prematurely reached, parameter #<value>.
Remaining data has been padded with 0x0.
XNO018 Network protocol error: the specified size of the Reader, parameter #<value>, is less than
the actual InputStream length.
XNO019 Error executing a <value>, server returned <value>.
Table 68. Class XSAIl: Store - access.protocol.interface
SQLSTATE Message Text
XSAI2 The conglomerate (<value>) requested does not exist.
XSAI3 Feature not implemented.
Table 69. Class XSAM: Store - AccessManager
SQLSTATE Message Text
XSAMO Exception encountered while trying to boot module for ‘<value>'.
XSAM2 There is no index or conglomerate with conglom id ‘<conglomID>' to drop.
XSAM3 There is no index or conglomerate with conglom id ‘<conglomID>".
XSAM4 There is no sort called '<sortName>".
XSAMS Scan must be opened and positioned by calling next() before making other calls.
XSAM6 Record <recordNumber> on page <pageNumber> in container <containerName> not found.
Table 70. Class XSAS: Store - Sort
SQLSTATE Message Text
XSASO A scan controller interface method was called which is not appropriate for a scan on a sort.
XSAS1 An attempt was made to fetch a row before the beginning of a sort or after the end of a sort.
XSAS3 The type of a row inserted into a sort does not match the sort's template.
XSAS6 Could not acquire resources for sort.
Table 71. Class XSAX: Store - access.protocol.XA statement
SQLSTATE Message Text
XSAXO0 XA protocol violation.
XSAX1 An attempt was made to start a global transaction with an Xid of an existing global
transaction.
Table 72. Class XSCB: Store - BTree
SQLSTATE Message Text
XSCBO Could not create container.
XSCB1 Container <containerName> not found.
XSCB2 The required property <propertyName> not found in the property list given to

193

Copyright

SQLSTATE

Message Text

createConglomerate() for a btree secondary index.

XSCB3 Unimplemented feature.
XSCB4 A method on a btree open scan has been called prior to positioning the scan on the first row
(i.e. no next() call has been made yet). The current state of the scan is (<value>).
XSCB5 During logical undo of a btree insert or delete the row could not be found in the tree.
XSCB6 Limitation: Record of a btree secondary index cannot be updated or inserted due to lack of
space on the page. Use the parameters derby.storage.pageSize and/or
derby.storage.pageReservedSpace to work around this limitation.
XSCB7 An internal error was encountered during a btree scan - current_rh is null = <value>,
position key is null = <value>.
XSCB8 The btree conglomerate <value> is closed.
XSCB9 Reserved for testing.
Table 73. Class XSCGO: Conglomerate
SQLSTATE Message Text
XSCGO Could not create a template.
Table 74. Class XSCH: Heap
SQLSTATH Message Text
XSCHO Could not create container.
XSCH1 Container <containerName> not found.
XSCHA4 Conglomerate could not be created.
XSCH5 In a base table there was a mismatch between the requested column number <number>
and the maximum number of columns <number>.
XSCH®6 The heap container with container id <containerIlD> is closed.
XSCH7 The scan is not positioned.
XSCHS8 The feature is not implemented.
Table 75. Class XSDA: RawStore - Data.Generic statement
SQLSTATE Message Text
XSDA1 An attempt was made to access an out of range slot on a page
XSDA2 An attempt was made to update a deleted record
XSDA3 Limitation: Record cannot be updated or inserted due to lack of space on the page. Use the
parameters derby.storage.pageSize and/or derby.storage.pageReservedSpace to work
around this limitation.
XSDA4 An unexpected exception was thrown
XSDA5 An attempt was made to undelete a record that is not deleted
XSDA6 Column <columnName> of row is null, it needs to be set to point to an object.
XSDA7 Restore of a serializable or SQLData object of class <className>, attempted to read more
data than was originally stored
XSDAS8 Exception during restore of a serializable or SQLData object of class <className>
XSDA9 Class not found during restore of a serializable or SQLData object of class <className>

194

Copyright

SQLSTATE

Message Text

XSDAA

lllegal time stamp <value>, either time stamp is from a different page or of incompatible
implementation

XSDAB cannot set a null time stamp

XSDAC Attempt to move either rows or pages from one container to another.

XSDAD Attempt to move zero rows from one page to another.

XSDAE Can only make a record handle for special record handle id.

XSDAF Using special record handle as if it were a normal record handle.

XSDAG The allocation nested top transaction cannot open the container.

XSDAI Page <page> being removed is already locked for deallocation.

XSDAJ Exception during write of a serializable or SQLData object

XSDAK Wrong page is gotten for record handle <value>.

XSDAL Record handle <value> unexpectedly points to overflow page.

XSDAM Exception during restore of a SQLData object of class <className>. The specified class
cannot be instantiated.

XSDAN Exception during restore of a SQLData object of class <className>. The specified class
encountered an illegal access exception.

Table 76. Class XSDB: RawStore - Data.Generic transaction

SQLSTATE Message Text

XSDBO Unexpected exception on in-memory page <page>

XSDB1 Unknown page format at page <page>

XSDB2 Unknown container format at container <containerName> : <value>

XSDB3 Container information cannot change once written: was <value>, now <value>

XSDB4 Page <page> is at version <versionNumber>, the log file contains change version
<versionNumber>, either there are log records of this page missing, or this page did not get
written out to disk properly.

XSDB5 Log has change record on page <page>, which is beyond the end of the container.

XSDB6 Another instance of Derby may have already booted the database <databaseName>.

XSDB7 WARNING: Derby (instance <value>) is attempting to boot the database <databaseName>
even though Derby (instance <value>) may still be active. Only one instance of Derby
should boot a database at a time. Severe and non-recoverable corruption can result and
may have already occurred.

XSDB8 WARNING: Derby (instance <value>) is attempting to boot the database <databaseName>
even though Derby (instance <value>) may still be active. Only one instance of Derby
should boot a database at a time. Severe and non-recoverable corruption can result if 2
instances of Derby boot on the same database at the same time. The
db2j.database.forceDatabaselLock=true property has been set, so the database will not
boot until the db.Ick is no longer present. Normally this file is removed when the first
instance of Derby to boot on the database exits, but it may be left behind in some
shutdowns. It will be necessary to remove the file by hand in that case. It is important to
verify that no other VM is accessing the database before deleting the db.Ick file by hand.

XSDB9 Stream container <containerName> is corrupt.

XSDBA Attempt to allocate object <object> failed.

Table 77. Class XSDF: RawStore - Data.Filesystem statement

195

Copyright

SQLSTATE Message Text

XSDFO Could not create file <fileName> as it already exists.

XSDF1 Exception during creation of file <fileName> for container

XSDF2 Exception during creation of file <fileName> for container, file could not be removed. The
exception was: <value>.

XSDF3 Cannot create segment <segmentName>.

XSDF4 Exception during remove of file <fileName> for dropped container, file could not be
removed <value>.

XSDF6 Cannot find the allocation page <page>.

XSDF7 Newly created page failed to be latched <value>

XSDF8 Cannot find page <page> to reuse.

XSDFB Operation not supported by a read only database

XSDFD Different page image read on 2 I/Os on Page <page>, first image has incorrect checksum,
second image has correct checksum. Page images follows: <value><value>

XSDFF The requested operation failed due to an unexpected exception.

XSDFH Cannot backup the database, got an I/O Exception while writing to the backup container file
<fileName>.

XSDFI Error encountered while trying to write data to disk during database recovery. Check that
the database disk is not full. If it is then delete unnecessary files, and retry connecting to the
database. It is also possible that the file system is read only, or the disk has failed, or some
other problem with the media. System encountered error while processing page <page>.

Table 78. Class XSDG: RawStore - Data.Filesystem database

SQLSTATE Message Text

XSDGO Page <page> could not be read from disk.

XSDG1 Page <page> could not be written to disk, please check if disk is full.

XSDG2 Invalid checksum on Page <page>, expected=<value>, on-disk version=<value>, page
dump follows: <value>

XSDG3 Meta-data for Container <containerName> could not be accessed

XSDG5 Database is not in create mode when createFinished is called.

XSDG6 Data segment directory not found in <value> backup during restore. Please make sure that
backup copy is the right one and it is not corrupted.

XSDG7 Directory <directoryName> could not be removed during restore. Please make sure that
permissions are correct.

XSDGS8 Unable to copy directory '<directoryName>' to '<value>' during restore. Please make sure
that there is enough space and permissions are correct.

Table 79. Class XSLA: RawStore - Log.Generic database exceptions

SQLSTATE Message Text

XSLAO Cannot flush the log file to disk <value>.

XSLAL Log Record has been sent to the stream, but it cannot be applied to the store (Object
<object>). This may cause recovery problems also.

XSLA2 System will shutdown, got I/O Exception while accessing log file.

XSLA3 Log Corrupted, has invalid data in the log stream.

196

Copyright

SQLSTATE

Message Text

XSLA4

Cannot write to the log, most likely the log is full. Please delete unnecessary files. It is also
possible that the file system is read only, or the disk has failed, or some other problems with
the media.

XSLA5 Cannot read log stream for some reason to rollback transaction <0>.

XSLA6 Cannot recover the database.

XSLA7 Cannot redo operation <operation> in the log.

XSLAS8 Cannot rollback transaction <value>, trying to compensate <value> operation with <value>

XSLAA The store has been marked for shutdown by an earlier exception.

XSLAB Cannot find log file <logfileName>, please make sure your logDevice property is properly
set with the correct path separator for your platform.

XSLAC Database at <value> have incompatible format with the current version of software, it may
have been created by or upgraded by a later version.

XSLAD log Record at instant <value> in log file <logfileName> corrupted. Expected log record
length <value>, real length <value>.

XSLAE Control file at <value> cannot be written or updated.

XSLAF A Read Only database was created with dirty data buffers.

XSLAH A Read Only database is being updated.

XSLAI Cannot log the checkpoint log record

XSLAJ The logging system has been marked to shut down due to an earlier problem and will not
allow any more operations until the system shuts down and restarts.

XSLAK Database has exceeded largest log file number <value>.

XSLAL log record size <value> exceeded the maximum allowable log file size <number>. Error
encountered in log file <logfileName>, position <value>

XSLAM Cannot verify database format at <value> due to IOException.

XSLAN Database at <value> has an incompatible format with the current version of the software.
The database was created by or upgraded by version <versionNumber>.

XSLAO Recovery failed unexpected problem <value>.

XSLAP Database at <value> is at version <versionNumber>. Beta databases cannot be upgraded,

XSLAQ cannot create log file at directory <directoryName>.

XSLAR Unable to copy log file '<logfileName>' to '<value>' during restore. Please make sure that
there is enough space and permissions are correct.

XSLAS Log directory <directoryName> not found in backup during restore. Please make sure that
backup copy is the correct one and it is not corrupted.

XSLAT The log directory '<directoryName>' exists. The directory might belong to another database.
Check that the location specified for the logDevice attribute is correct.

Table 80. Class XSLB: RawStore - Log.Generic statement exceptions

SQLSTATE Message Text

XSLB1 Log operation <logOperation> encounters error writing itself out to the log stream, this could
be caused by an errant log operation or internal log buffer full due to excessively large log
operation.

XSLB2 Log operation <logOperation> logging excessive data, it filled up the internal log buffer.

XSLB4 Cannot find truncationLWM <value>.

XSLB5 lllegal truncationLWM instant <value> for truncation point <value>. Legal range is from

197

Copyright

SQLSTATE

Message Text

<value> to <value>.

XSLB6 Trying to log a O or -ve length log Record.
XSLB8 Trying to reset a scan to <value>, beyond its limit of <value>.
XSLB9 Cannot issue any more change, log factory has been stopped.
Table 81. Class XSRS: RawStore - protocol.Interface statement
SQLSTATE Message Text
XSRSO0 Cannot freeze the database after it is already frozen.
XSRS1 Cannot backup the database to <value>, which is not a directory.
XSRS4 Error renaming file (during backup) from <value> to <value>.
XSRS5 Error copying file (during backup) from <path> to <path>.
XSRS6 Cannot create backup directory <directoryName>.
XSRS7 Backup caught unexpected exception.
XSRS8 Log Device can only be set during database creation time, it cannot be changed on the fly.
XSRS9 Record <recordName> no longer exists
XSRSA Cannot backup the database when unlogged operations are uncommitted. Please commit
the transactions with backup blocking operations.
XSRSB Backup cannot be performed in a transaction with uncommitted unlogged operations.
XSRSC Cannot backup the database to <directoryLocation>, it is a database directory.
Table 82. Class XSTA2: XACT_TRANSACTION_ACTIVE
SQLSTATE Message Text
XSTA2 A transaction was already active, when attempt was made to make another transaction
active.
Table 83. Class XSTB: RawStore - Transactions.Basic system
SQLSTATE Message Text
XSTBO An exception was thrown during transaction abort.
XSTB2 Cannot log transaction changes, maybe trying to write to a read only database.
XSTB3 Cannot abort transaction because the log manager is null, probably due to an earlier error.
XSTB5 Creating database with logging disabled encountered unexpected problem.
XSTB6 Cannot substitute a transaction table with another while one is already in use.
Table 84. Class XXXXX: No SQLSTATE
SQLSTATE Message Text
XXXXX Normal database session close.

198

Copyright

JDBC Reference

Derby comes with a built-in JDBC driver.

That makes the JDBC API the only API for working with Derby databases. The driver is a
native protocol all-Java driver (type number four of types defined by Sun).

This section provides reference information about Derby's implementation of the JDBC
API and documents the way it conforms to the JDBC 2.0, 3.0, and 4.0 APIs.

See the Derby Developer's Guide for task-oriented instructions on working with the driver.

Note that an application run on Java SE 6 uses the JDBC4 versions of Derby's JDBC
drivers. In that environment, Derby's two JDBC drivers, the embedded driver and the
network client driver, implement an early access (late beta) version of the JDBC4
specification. It is possible that the final version of the JDBC4 specification may differ
from the early access version available when this manual was written. We expect such
discrepancies to be minor. These discrepancies, if any, are documented in the 10.2
Release Notes.

This JDBC driver implements the standard JDBC interface defined by Sun. When
invoked from an application running in the same JVM as Derby, the JDBC driver supports
connections to a Derby database in embedded mode. No network transport is required to
access the database. In client/server mode, the client application dispatches JDBC
requests to the JDBC server over a network; the server, in turn, which runs in the same
JVM as Derby, sends requests to Derby through the embedded JDBC driver.

The Derby JDBC implementation provides access to Derby databases and supplies all
the required JDBC interfaces. Unimplemented aspects of the JDBC driver return an
SQLException with a message stating "Feature not implemented" and an SQLState of
XJZZ7Z. These unimplemented parts are for features not supported by Derby.

Core JDBC java.sql Classes, Interfaces, and Methods

This section details Derby's implementation of the following java.sql classes, interfaces,
and methods:

* java.sgl.Driver
java.sqgl.DriverManager.getConnection
java.sql.Driver.getPropertylnfo
java.sgl.Connection
java.sgl.DatabaseMetaData
java.sqgl.Statement
java.sgl.PreparedStatement
java.sgl.CallableStatement
java.sgl.ResultSet
java.sgl.ResultSetMetaData
java.sql.SQLException
java.sgl.SQLWarning
Mapping of java.sgl.Types to SQL types

java.sql.Driver

The class that loads Derby's local JDBC driver is the class
org.apache.derby.jdbc.EmbeddedDriver. Listed below are some of the ways to create
instances of that class. Do not use the class directly through the java.sql.Driver interface.
Use the DriverManager class to create connections.

« If your application runs on JDK 1.6 or higher, you do not need to do any of the

199

Copyright

following. The EmbeddedDriver will load automatically when your application asks
for its first Connection.

» Class.forName("org.apache.derby.jdbc.EmbeddedDriver")

Our recommended manner, because it ensures that the class is loaded in all JVMs
by creating an instance at the same time.

« new org.apache.derby.jdbc.EmbeddedDriver()

Same as Class.forName("org.apache.derby.jdbc.EmbeddedDriver"), except that it
requires the class to be found when the code is compiled.

 Class c = org.apache.derby.jdbc.EmbeddedDriver.class

This is also the same as Class.forName("org.apache.derby.jdbc.EmbeddedDriver"),
except that it requires the class to be found when the code is compiled. The
pseudo-static field class evaluates to the class that is named.

 Setting the System property jdbc.drivers

To set a System property, you alter the invocation command line or the system
properties within your application. It is not possible to alter system properties within
an applet.

java -Djdbc.drivers=org. apache. derby. j dbc. EnbeddedDri ver
appl i cati onCl ass

The actual driver that gets registered in the DriverManager to handle the jdbc:derby:
protocol is not the class org.apache.derby.jdbc.EmbeddedDriver; that class simply
detects the type of Derby driver needed and then causes the appropriate Derby driver to
be loaded.

The only supported way to connect to a Derby system through the jdbc:derby: protocol is
using the DriverManager to obtain a driver (java.sql.Driver) or connection
(java.sql.Connection) through the getDriver and getConnection method calls.

java.sql.DriverManager.getConnection

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object. The standard way to obtain a Connection object is to call
the method DriverManager.getConnection, which takes a String containing a database
connection URL. A JDBC database connection URL (uniform resource locator) provides
a way of identifying a database.

DriverManager.getConnection can take one argument besides a database connection
URL, a Properties object. You can use the Properties object to set database connection
URL attributes.

You can also supply strings representing user names and passwords. When they are
supplied, Derby checks whether they are valid for the current system if user
authentication is enabled. User names are passed to Derby as authorization identifiers,
which are used to determine whether the user is authorized for access to the database
and for determining the default schema. When the connection is established, if no user is
supplied, Derby sets the default user to APP, which Derby uses to name the default
schema. If a user is supplied, the default schema is the same as the user name.

Derby database connection URL syntax
200

Copyright

A Derby database connection URL consists of the basic database connection URL
followed by an optional subsubprotocol and optional attributes.

This section provides reference information only. For a more complete description,
including examples, see "Connecting to Databases" in Chapter 1 of the Derby
Developer's Guide.

Syntax of database connection URLs for applications with embedded databases

For applications with embedded databases, the syntax of the database connection URL
is
j dbc: derby: [subsubprotocol:][databasenane][;attributes]*

« jdbc:derby:

In JDBC lingo, derby is the subprotocol for connecting to a Derby database. The
subprotocol is always derby and does not vary.

 subsubprotocol:

subsubprotocol, which is not typically specified, specifies where Derby looks for a
database: in a directory, in a classpath, or in a jar file. It is used only in rare
instances, usually for read-only databases. subsubprotocol is one of the following:

* directory
« classpath: Databases are treated as read-only databases, and all
databaseNames must begin with at least a slash, because you specify them
"relative"” to the classpath directory or archive. (You do not have to specify
classpath as the subsubprotocol; it is implied.)
« jar Databases are treated as read-only databases.
jar: requires an additional element immediately before the databaseName:

(pat hToAr chi ve)

pathToArchive is the path to the jar or zip file that holds the database and includes
the name of the jar or zip file.

See the Derby Developer's Guide for examples of database connection URLSs for
read-only databases.
» databaseName
Specify the databaseName to connect to an existing database or a new one.
You can specify the database name alone, or with a relative or absolute path. See

"Standard Connections-Connecting to Databases in the File System" in Chapter 1
of the Derby Developer's Guide.

 attributes

Specify 0 or more database connection URL attributes as detailed in Attributes of
the Derby database connection URL.

Additional SQL syntax
Derby also supports the following SQL standard syntax to obtain a reference to the
current connection in a database-side JDBC procedure or method:

jdbc: defaul t: connecti on

201

Copyright

Attributes of the Derby database connection URL

You can supply an optional list of attributes to a database connection URL. Derby
translates these attributes into properties, so you can also set attributes in a Properties
object passed to DriverManager.getConnection. (You cannot set those attributes as
system properties, only in an object passed to the DriverManager.getConnection
method.)

These attributes are specific to Derby and are listed in Setting attributes for the database
connection URL.

Attribute name/value pairs are converted into properties and added to the properties

provided in the connection call. If no properties are provided in the connection call, a
properties set is created that contains only the properties obtained from the database
connection URL.

import java.util.Properties;

Connecti on conn = Driver Manager. ?et Connect i on(
{ dbc: der by: sanpl eDB; creat e=true"); .

-- setting an attribute In a Properties object

Properties Props = new Properties();

myProps. put (“create”, "true");)

Connecti on conn = Driver Manager . get Connecti on(
"j dbc: der by: sanpl eDB", nyProps);

- - passing user nanme and password)

Connection conn = Driver nager. get Connect i on(
"j dbc: der by: sanpl eDB", "dba", "password");

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute or
corresponding value, it is simply ignored. (Derby does provide a tool for parsing the
correctness of attributes. For more information, see the Derby Tools and Utilities Guide.)

java.sql.Driver.getPropertyinfo

To get the DriverPropertylnfo object, request the JDBC driver from the driver manager:

java.sql . DriverManager. getDriver("jdbc: derby:").
get Propertyl nfo{URL, Prop)

Do not request it from org.apache.derby.jdbc.EmbeddedDriver, which is only an
intermediary class that loads the actual driver.

This method might return a DriverPropertylnfo object. In a Derby system, it consists of an
array of database connection URL attributes. The most useful attribute is
databaseName=nameofDatabase, which means that the object consists of a list of
booted databases in the current system.

For example, if a Derby system has the databases toursDB and flightsDB in its system
directory, all the databases in the system are set to boot automatically, and a user has
also connected to a database A: / dbs/ t our s94, the array returned from
getPropertylnfo contains one object corresponding to the databaseName attribute. The
choices field of the DriverPropertylnfo object will contain an array of three Strings with the
values toursDB, flightsDB, and A: / dbs/ t our s94. Note that this object is returned only if
the proposed connection objects do not already include a database name (in any form) or
include the shutdown attribute with the value true.

202

Copyright

For more information about java.sql.Driver.getPropertylnfo, see "Offering Connection
Choices to the User" in Chapter 8 of the Derby Developer's Guide.

java.sql.Connection

A DerbyConnection object is not garbage-collected until all other JDBC objects created
from that connection are explicitly closed or are themselves garbage-collected. Once the
connection is closed, no further JDBC requests can be made against objects created
from the connection. Do not explicitly close the Connection object until you no longer
need it for executing statements.

A session-severity or higher exception causes the connection to close and all other JDBC
objects against it to be closed. System-severity exceptions cause the Derby system to
shut down, which not only closes the connection but means that no new connections
should be created in the current JVM.

java.sgl.Connection.setTransactionlsolation

java.sgl.Connection. TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sgl.Connection.TRANSACTION_READ_COMMITTED, and

java.sgl.Connection. TRANSACTION_READ_UNCOMMITTED transaction isolations are
available from a Derby database.

TRANSACTION_READ_COMMITTED is the default isolation level.

Changing the current isolation for the connection with setConnection commits the current
transaction and begins a new transaction, per the JDBC standard.

java.sgl.Connection.setReadOnly
java.sgl.Connection.setReadOnly is supported.

See the section Differences using the Connection.setReadOnly method in the Derby
Reference Manual for more information.

java.sgl.Connection.isReadOnly

If you connect to a read-only database, the appropriate isReadOnly DatabaseMetaData
value is returned. For example, Connections set to read-only using the setReadOnly
method, Connections for which the user has been defined as a readOnlyAccess user
(with one of the Derby properties), and Connections to databases on read-only media
return true.

Connection functionality not supported

Derby does not use catalog names. In addition, the following optional methods raise
"Feature not supported" exceptions:

« createArrayOf(java.lang.String, java.lang.Object[])
» createNClob()

» createSQLXML()

 createStruct(java.lang.String, java.lang.Object[])

203

Copyright

getTypeMap()

prepareStatement(java.lang.String, int[])
prepareStatement(java.lang.String, java.lang.String[])
setTypeMap(java.util.Map)

java.sgl.DatabaseMetaData

This section discuss java.sgl.DatabaseMetaData functionality in Derby.

DatabaseMetaData result sets

DatabaseMetaData result sets do not close the result sets of other statements, even
when auto-commit is set to true.

DatabaseMetaData result sets are closed if a user performs any other action on a JDBC
object that causes an automatic commit to occur. If you need the DatabaseMetaData
result sets to be accessible while executing other actions that would cause automatic
commits, turn off auto-commit with setAutoCommit(false).

getProcedureColumns

Derby supports Java procedures. Derby allows you to call Java procedures within SQL
statements. Derby returns information about the parameters in the getProcedureColumns
call. If the corresponding Java method is overloaded, it returns information about each
signature separately. Derby returns information for all Java procedures defined by
CREATE PROCEDURE.

getProcedureColumns returns a ResultSet. Each row describes a single parameter or
return value.

Parameters to getProcedureColumns
The JDBC API defines the following parameters for this method call:

 catalog
always use null for this parameter in Derby.
» schemaPattern
Java procedures have a schema.
» procedureNamePattern
a String object representing a procedure name pattern.
e column-Name-Pattern

a String object representing the name pattern of the parameter names or return
value names. Java procedures have parameter names matching those defined in
the CREATE PROCEDURE statement. Use "%" to find all parameter names.

Columns in the ResultSet returned by getProcedureColumns

Columns in the ResultSet returned by getProcedureColumns are as described by the
API. Further details for some specific columns:
e PROCEDURE_CAT

204

Copyright

always "null" in Derby

PROCEDURE_SCHEM

schema for a Java procedure

PROCEDURE_NAME

the name of the procedure

COLUMN_NAME

the name of the parameter (see column-Name-Pattern)
COLUMN_TYPE

short indicating what the row describes. Always is
DatabaseMetaData.procedureColumnin for method parameters, unless the
parameter is an array. If so, it is DatabaseMetaData.procedureColumninOut. It
always returns DatabaseMetaData.procedureColumnReturn for return values.

TYPE_NAME
Derby-specific name for the type.
NULLABLE

always returns DatabaseMetaData.procedureNoNulls for primitive parameters and
DatabaseMetaData.procedureNullable for object parameters

REMARKS

a String describing the java type of the method parameter
COLUMN_DEF

a String describing the default value for the column (may be null)
SQL_DATA_TYPE

reserved by JDBC spec for future use

SQL_DATETIME_SUB

reserved by JDBC spec for future use

CHAR_OCTET_LENGTH

the maximum length of binary and character based columns (or any other datatype
the returned value is a NULL)

ORDINAL_POSITION

the ordinal position, starting from 1, for the input and output parameters for a
procedure.

IS_NULLABLE

a String describing the parameter's nullability (YES means parameter can include
NULLsS, NO means it can't)

SPECIFIC_NAME

the name which uniquely identifies this procedure within its schema
METHOD_ID

a Derby-specific column.

PARAMETER_ID

a Derby-specific column.

205

Copyright

DatabaseMetaData functionality not supported

In the current release, Derby does not provide all of the DatabaseMetaData functionality.
The following JDBC requests result in empty result sets, in the format required by the
JDBC API:

» getColumnPrivileges

» getTablePrivileges

Derby does not implement privileges, and thus has no information to provide for these
calls.

getBestRowldentifier looks for identifiers in this order:
« a primary key on the table
e a unique constraint or unique index on the table
« all the columns in the table

Because of this last choice, it will always find a set of columns that identify a row.
However, if there are duplicate rows in the table, use of all columns might not necessarily
identify a unique row in the table.

java.sql.Statement

Derby does not implement the JDBC 1.2 setEscapeProcessing method of
java.sgl.Statement. In addition, the following optional methods raise "Feature not
supported” exceptions:

e cancel()

» execute(java.lang.String, int[])

« execute(java.lang.String, String[])

« executeUpdate(java.lang.String, int[])

» executeUpdate(java.lang.String, String[])

ResultSet objects

An error that occurs when a SELECT statement is first executed prevents a ResultSet
object from being opened on it. The same error does not close the ResultSet if it occurs
after the ResultSet has been opened.

For example, a divide-by-zero error that happens while the executeQuery method is
called on a java.sgl.Statement or java.sql.PreparedStatement throws an exception and
returns no result set at all, while if the same error happens while the next method is
called on a ResultSet object, it does not cause the result set to be closed.

Errors can happen when a ResultSet is first being created if the system partially executes
the query before the first row is fetched. This can happen on any query that uses more
than one table and on queries that use aggregates, GROUP BY, ORDER BY, DISTINCT,
INTERSECT, EXCEPT, or UNION.

Closing a Statement causes all open ResultSet objects on that statement to be closed as
well.

The cursor name for the cursor of a ResultSet can be set before the statement is
executed. However, once it is executed, the cursor name cannot be altered.

206

Copyright

java.sql.CallableStatement

Derby supports all the JDBC 1.2 methods of CallableStatement:
 getBoolean()

getByte()

getBytes()

getDate()

getDouble()

getFloat()

getint()

getLong()

getObiject()

getShort()

getString()

getTime()

getTimestamp()

registerOutParamter()

wasNull()

CallableStatements and OUT Parameters

Derby supports OUT parameters and CALL statements that return values, as in the
following example:

Cal | abl eSt at ement c¢s =_conn. prepar eCal | F\IT
"? = CALL etDrlverT [ie(cast (? as INT))"

CS. regl st er Qut Par anet er{ Types. INTEGER)

cs.seflnt(2, 35)

cs. executeUpdat e()

Note: Using a CALL statement with a procedure that returns a value is only supported
with the ? = syntax.

Register the output type of the parameter before executing the call.

CallableStatements and INOUT Parameters

INOUT parameters map to an array of the parameter type in Java. (The method must
take an array as its parameter.) This conforms to the recommendations of the SQL
standard.

Given the following example:

Cal | abl eSt at ement cal |
"{CALL doubl eMyI nt (

/[for inout ﬁar aneters,

/1 regl ster the outparane

call. i ster OJt Par anet er

call. se Int(1

cal | . execute();

int retval = call.getInt(1);

= conn. prepareCal | (
2})

It]good practice to

%ri be ore settln?thelnput val ue

Types. | NTEGER

The method doublelt should take a one-dimensional array of i nt s. Here is sample
source code for that method:

publlcostatlzc void doubleMyInt(int[] i) {
/ rby returns the first element of the array.*/

Note: The return value is not wrapped in an array even though the parameter to the
method is.

207

Copyright

Table 85. INOUT Parameter Type Correspondence

Array Type for Method
JDBC Type Parameter Value and Return Type
BIGINT long(] long
BINARY byte[l[] byte]]
BIT boolean(] boolean
DATE java.sql.Date[] java.sql.Date
DOUBLE double(] double
FLOAT double(] double
INTEGER int[] int
LONGVARBINARY byte[l[] byte]]
REAL float[] float
SMALLINT short]] short
TIME java.sgl.Time[] java.sgl.Time
TIMESTAMP java.sql.Timestamp[] java.sql.Timestamp
VARBINARY byte[l[] byte]]
OTHER yourType[] yourType
JAVA_OBJECT (only valid in yourType[] yourType
Java2/JDBC 2.0 environments)

Register the output type of the parameter before executing the call. For INOUT

parameters, it is good practice to register the output parameter before setting its input

value.

java.sgl.SQLException

Derby supplies values for the getMessage(), getSQLState(), and getErrorCode() calls of
SQLExceptions. In addition, Derby sometimes returns multiple SQLEXxceptions using the
nextException chain. The first exception is always the most severe exception, with
SQL-92 Standard exceptions preceding those that are specific to Derby. For information
on processing SQLExceptions, see "Working with Derby SQLExceptions in an
Application" in Chapter 5 of the Derby Developer's Guide.

java.sql.PreparedStatement

Derby provides all the required JDBC 1.2 type conversions and additionally allows use of
the individual setXXX methods for each type as if a setObject(Value, JIDBCTypeCode)
invocation were made.

This means that setString can be used for any built-in target type.

The setCursorName method can be used on a PreparedStatement prior to an execute
request to control the cursor name used when the cursor is created.

Prepared statements and streaming columns

208

Copyright

setXXXStream requests stream data between the application and the database.

JDBC allows an IN parameter to be set to a Java input stream for passing in large
amounts of data in smaller chunks. When the statement is executed, the JDBC driver
makes repeated calls to this input stream, reading its contents and transmitting those
contents as the parameter data.

Derby supports the three types of streams that JDBC 1.2 provides. These three streams
are:
 setBinaryStream

for streams containing uninterpreted bytes
» setAsciiStream

for streams containing ASCII characters
 setUnicodeStream

for streams containing Unicode characters

JDBC 2.0 and JDBC 3.0 require that you specify the length of the stream and Derby
enforces this requirement if your application runs on JDK 1.5 or earlier. If your application
runs on JDK 1.6, then Derby exposes a JDBC 4.0 implementation, which lets you use the
streaming interfaces without having to specify the stream length. The stream object
passed to these three methods can be either a standard Java stream object or the user's
own subclass that implements the standard java.io.InputStream interface.

According to the JDBC standard, streams can be stored only in columns of the data types
shown in Streamable JDBC Data Types. Streams cannot be stored in columns of the
other built-in data types or of user-defined data types.

Table 86. Streamable JDBC Data Types

Column Values Type Correspondent| AsciiStream | UnicodeStream BinaryStream

CLOB

java.sql.Clob

CHAR

VARCHAR

LONGVARCHAR '

BINARY

BLOB

java.sql.Blob

VARBINARY

LONGVARBINARY '

XXX X| X]|>X]|X]X
XXX X X|X]|X]|X

x| x| x| x

A large X indicates the preferred target data type for the type of stream. (See Mapping of
java.sgl.Types to SQL Types.)

Note: If the stream is stored in a column of a type other than LONG VARCHAR or LONG
VARCHAR FOR BIT DATA, the entire stream must be able to fit into memory at one time.
Streams stored in LONG VARCHAR and LONG VARCHAR FOR BIT DATA columns do
not have this limitation.

The following example shows how a user can store a streamed java.io.File in a LONG
VARCHAR column:

Statenent s = conn.createStatenment();

209

Copyright

S. executel,Pdate(CREATE TABLE atable (a INT, b LONG VARCHAR) ") ;
conn. conmi
java.io. F|Ie flle = new java. i o. Flle(“derby txt");
int fileLength = (int) file.length
[/l first, create an |nput stream]
jpava i 0. InputStreamfln = new java.io. FilelnputStrean(file);
repar edSt atenent ps = conn.pre ar est at errent?

RT I NTO at abl e VALUES ?
ps. setlnt(l
Il set the vaiue of the input ararreter to the input stream
ps.setAsciiStream(2, fin, filelLength
ps. execut e()
conn. conmi t)

java.sgl.ResultSet

A positioned update or delete issued against a cursor being accessed through a
ResultSet object modifies or deletes the current row of the ResultSet object.

Some intermediate protocols might pre-fetch rows. This causes positioned updates and
deletes to operate against the row the underlying cursor is on, and not the current row of
the ResultSet.

Derby provides all the required JDBC 1.2 type conversions of the getXXX methods.

JDBC does not define the sort of rounding to use for ResultSet.getBigDecimal. Derby
uses java.math.BigDecimal. ROUND_HALF_DOWN.

ResultSets and streaming columns

If the underlying object is itself an OutputStream class, getBinaryStream returns the
object directly.

To get a field from the ResultSet using streaming columns, you can use the
getXXXStream methods if the type supports it. See Streamable JDBC Data Types for a
list of types that support the various streams. (See also Mapping of java.sgl.Types to
SQL Types.)

You can retrieve data from one of the supported data type columns as a stream, whether
or not it was stored as a stream.

The following example shows how a user can retrieve a LONG VARCHAR column as a

stream:
/] retrieve data as a stream
ResultSet rs = s. executeQuery("SELECT b FROM at abl e") ;
while (rs.next()) {
[/l use a java.lo.lnputStreamto get the data
java.io.lnputStreamip = rs.getAscii Strean(l);
[/tprocess the stream-this i's just a generic way to// print the data
int c;
int columsSi ze = O;
Pyteg] gou}f = new byt e[128] ;
or (.,
Int’ size = |p read(buff)
if (size ==
br eak;
col umSi ze += si ze .
String chunk = new Strl ng(buff, 0, size);
) Syst em out . pri nt (chunk) ;

rs.close();

210

Copyright

s.close();
conn.comm t ();

java.sgl.ResultSetMetaData

Derby does not track the source or updatability of columns in ResultSets, and so always
returns the following constants for the following methods:

Method Name Value
isDefinitelyWritable false
isReadOnly false
isWritable false

java.sql.SQLWarning

Derby can generate a warning in certain circumstances. A warning is generated if, for
example, you try to connect to a database with the create attribute set to true if the
database already exists. Aggregates like sum() also raise a warning if NULL values are
encountered during the evaluation.

All other informational messages are written to the Derby system's derby.log file.

java.sql.SQLXML

In JDBC 4.0, java.sql.SQLXML is the mapping for the SQL XML data type. However,
Derby defines the XML data type and operators only in the SQL layer. There is no
JDBC-side support for the XML data type and operators

You cannot instantiate a java.sql.SQLXML object in Derby, or bind directly into an XML
value or retrieve an XML value directly from a result set. You must bind and retrieve the
XML data as Java strings or character streams by explicitly specifying the XML operators,
XMLPARSE and XMLSERIALIZE, as part of your SQL queries.

Additionally, Derby does not provide JDBC metatadata support for the XML data type.

Mapping of java.sql.Types to SQL types

In Derby, the java.sql.Types are mapped to SQL data types

The following table shows the mapping of java.sql.Types to SQL types.
Table 87. Mapping of java.sql.Types to SQL Types

java.sql.Types SQL Types

BIGINT BIGINT

BINARY CHAR FOR BIT DATA
BIT1 CHAR FOR BIT DATA
BLOB BLOB (JDBC 2.0 and up)
CHAR CHAR

CLOB CLOB (JDBC 2.0 and up)

211

Copyright

java.sql.Types SQL Types

DATE DATE

DECIMAL DECIMAL

DOUBLE DOUBLE PRECISION

FLOAT DOUBLE PRECISION2

INTEGER INTEGER

LONGVARBINARY LONG VARCHAR FOR BIT DATA
LONGVARCHAR LONG VARCHAR

NULL Not a data type; always a value of a particular type
NUMERIC DECIMAL

REAL REAL

SMALLINT SMALLINT

SQLXML3 XML

TIME TIME

TIMESTAMP TIMESTAMP

VARBINARY VARCHAR FOR BIT DATA
VARCHAR VARCHAR

Notes:

1. BIT is only valid in JDBC 2.0 and earlier environments.

2. Values can be passed in using the FLOAT type code; however, these are stored as
DOUBLE PRECISION values, and so always have the type code DOUBLE when
retrieved.

3. SQLXML is only valid in JDBC 4.0 and later environments. SQLXML corresponds to
the SQL type XML in Derby. However, Derby does not recognize the
java.sql.Types.SQLXML data type and does not support any JDBC-side operations
for the XML data type. Support for XML and the related operators is implemented
only at the SQL layer. See XML data types for more.

java.sql.Blob and java.sql.Clob

In JDBC 2.0, java.sql.Blob is the mapping for the SQL BLOB (binary large object) type;
java.sql.Clob is the mapping for the SQL CLOB (character large object) type.

java.sql.Blob and java.sql.Clob provide a logical pointer to the large object rather than a
complete copy of the objects. Derby processes only one data page into memory at a
time. The whole BLOB does not need to be processed and stored in memory just to
access the first few bytes of the LOB object

Derby now supports the built-in BLOB or CLOB data types. Derby also provides the
following support for these data types:

« BLOB FeaturesDerby supports the java.sql.Blob interface and the BLOB-related
methods in java.sql.PreparedStatement and java.sql.ResultSet. The getBlob
methods of CallableStatement are not implemented.

« CLOB FeaturesDerby supports the java.sql.Clob interface and the CLOB-related
methods in java.sql.PreparedStatement and java.sql.ResultSet. The getClob
methods of CallableStatement procedures are not implemented.

To use the java.sql.Blob and java.sql.Clob features:
« Use the SQL BLOB type for storage; LONG VARCHAR FOR BIT DATA, BINARY,

212

Copyright

and VARCHAR FOR BIT DATA types also work.

» Use the SQL CLOB type for storage; LONG VARCHAR, CHAR, and VARCHAR
types also work.

» Use the getBlob or getClob methods on the java.sgl.ResultSet interface to retrieve a
BLOB or CLOB handle to the underlying data.

* You cannot call static methods on any LOB-columns.

In addition, casting between strings and BLOBSs is not recommended because casting is
platform and database dependent.

Derby uses unicode strings (2 byte characters), while other database products may use
ASCII characters (1 byte per character). If various codepages are used, each character
might need several bytes. A larger BLOB type might be necessary to accommodate a
normal string in Derby. You should use CLOB types for storing strings.

Restrictions on BLOB, CLOB, (LOB-types):
« LOB-types cannot be compared for equality(=) and non-equality(!=, <>.
» LOB-typed values are not order-able, so <, <=, >, >= tests are not supported.
» LOB-types cannot be used in indices or as primary key columns.
« DISTINCT, GROUP BY, ORDER BY clauses are also prohibited on LOB-types.
» LOB-types cannot be involved in implicit casting as other base-types.

Derby implements all of the methods for these JDBC 2.0 interfaces except for the set and
get methods in CallableStatement interface.

Recommendations: Because the lifespan of a java.sql.Blob or java.sqgl.Clob ends when
the transaction commits, turn off auto-commit with the java.sql.Blob or java.sql.Clob
features.

Table 88. JDBC 2.0 java.sql.Blob Methods Supported

Returns Signature Implementation Notes
InputStream| getBinaryStream() '
byte[] getBytes(long pos, int length) Exceptions are raised if pos < 1, if pos is larger than the
length of the , or if length <= 0.
long length() '
long position(byte[] pattern, long Exceptions are raised if pattern == null, if start < 1, or if
start) pattern is an array of length 0.
long position(Blob pattern, long start) | Exceptions are raised if pattern == null, if start < 1, if
pattern has length 0, or if an exception is thrown when
trying to read the first byte of pattern.
Table 89. JDBC 2.0 java.sql.Clob Methods Supported
Returns Signature Implementation Notes
InputStream | getAsciiStream() '
Reader getCharacterStream() '
String getSubString(long pos, int length) Exceptions are raised if pos < 1, if pos is larger
than the length of the Clob, or if length <= 0.
long length() '
long position(Clob searchstr, long start) | Exceptions are raised if searchStr == null or start <

1, if searchStr has length 0, or if an exception is

213

Copyright

Returns Signature Implementation Notes
thrown when trying to read the first char of
searchsStr.
long position(String searchstr, long start) | Exceptions are raised if searchStr == null or start <
1, or if the pattern is an empty string.
Notes

The usual Derby locking mechanisms (shared locks) prevent other transactions from
updating or deleting the database item to which the java.sql.Blob or java.sql.Clob object
is a pointer. However, in some cases, Derby's instantaneous lock mechanisms could
allow a period of time in which the column underlying the java.sql.Blob or java.sql.Clob is
unprotected. A subsequent call to getBlob/getClob, or to a
java.sql.Blob/java.sgl.Clobmethod, could cause undefined behavior.

Furthermore, there is nothing to prevent the transaction that holds the
java.sqgl.Blob/java.sql.Clob (as opposed to another transaction) from updating the
underlying row. (The same problem exists with the getXXXStream methods.) Program
applications to prevent updates to the underlying object while a
java.sql.Blob/java.sql.Clob is open on it; failing to do this could result in undefined
behavior.

Do not call more than one of the ResultSet getXXX methods on the same column if one
of the methods is one of the following:
« getBlob
getClob
» getAsciiStream
 getBinaryStream
» getUnicodeStream

These methods share the same underlying stream; calling more than one of these
methods on the same column could result in undefined behavior. For example:

ResultSet rs = s.executeQuery("SELECT text FROM CLOBS WHERE i = 1");
whil e frs.next() {

acl ob=rs. getd _o_bgl);
) ip =rs.getAsciiStrean(l);

The streams that handle long-columns are not thread safe. This means that if a user
chooses to open multiple threads and access the stream from each thread, the resulting
behavior is undefined.

Clobs are not locale-sensitive.

java.sql.Connection

Table 90. JDBC 2.0 Connection Methods Supported

Returns Signature

Statement createStatement(int resultSetType, int
resultSetConcurrency)

PreparedStatement prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

CallableStatement prepareCall(String sql, int resultSetType, int
resultSetConcurrency

214

Copyright

Implementation notes

ResultSet. TYPE_FORWARD_ONLY and ResultSet. TYPE_SCROLL_INSENSITIVE are
the only result set types supported. If you request TYPE_SCROLL_SENSITIVE, Derby
issues an SQLWarning and returns a TYPE_SCROLL_INSENSITIVE ResultSet.

These methods support both ResultSet. CONCUR_READ_ONLY and
ResultSet. CONCUR_UPDATABLE concurrencies.

java.sgl.ResultSet
Table 91. JDBC 2.0 ResultSet Methods Supported

Returns Signature Implementation Notes

boolean absolute(int row) '

void afterLast() '

void beforeFirst() '

void beforeFirst() '

void deleteRow() After the row is deleted, the ResultSet object will be
positioned before the next row. Before issuing any
methods other than close on the ResultSet object,
the program will need to reposition the ResultSet
object.

boolean first() '

Blob getBlob(int columnindex) See java.sgl.Blob and java.sql.Clob

Blob getBlob(String column-Name)

Clob getClob(int columnindex)

Clob getClob(String column-Name)

int getConcurrency() If the Statement object has
CONCUR_READ_ONLY concurrency, then this
method will return
ResultSet. CONCUR_READ_ONLY. But if the
Statement object has CONCUR_UPDATABLE
concurrency, then the return value will depend on
whether the underlying language ResultSet is
updatable or not. If the language ResultSet is
updatable, then getConcurrency() will return
ResultSet. CONCUR_UPDATABLE. If the language
ResultSet is not updatable, then getConcurrency()
will return ResultSet. CONCUR_READ_ONLY.

int getFetchDirection() '

int getFetchSize() Always returns 1.

int getRow() '

void insertRow() '

boolean isAfterLast() '

boolean isBeforeFirst '

boolean isFirst() '

boolean isLast() '

boolean last() '

void moveToCurrentRow() '

215

Copyright

Returns Signature Implementation Notes

void moveTolnsertRow() '

boolean previous() '

boolean rowDeleted() For forward-only result sets this methods always
returns false, for scrollable result sets it returns true
if the row has been deleted.

boolean rowlnserted() Always returns false

boolean rowUpdated() For forward-only result sets this methods always
returns false, for scrollable result sets it returns true
if the row has been updated.

boolean relative(int rows) '

void setFetchDirection(int direction) '

void setFetchSize(int rows) A fetch size of 1 is the only size supported.

void updateRow() After the row is updated, the ResultSet object will be

positioned before the next row. Before issuing any
methods other than close on the ResultSet object,
the program will need to reposition the ResultSet
object.

java.sql.Statement
Table 92. JDBC2.0 java.sql.Statement Methods Supported

Returns | Signature Implementation Notes

void addBatch(String sql) '

void clearBatch() '

int[] executeBatch() '

int getFetchDirection() Method call does not throw an exception, but call
is ignored.

int getFetchSize() Method call does not throw an exception, but call
is ignored.

int getMaxFieldSize() '

void getMaxRows() '

void setEscapeProcessing(boolean enable) |

void setFetchDirection(int direction) Method call does not throw an exception, but call
is ignored.

void setFetchSize(int rows) Method call does not throw an exception, but call
is ignored.

void setMaxFieldSize(int max) Has no effect on Blobs and Clobs.

void setMaxRows() '

java.sql.PreparedStatement
Table 93. JDBC 2.0 java.sql.PreparedStatement Methods Supported

Returns

Signhature

Implementation Notes

void

addBatch()

216

Copyright

Returns Signature Implementation Notes
ResultSetMetaData getMetaData()

void setBlob(int i, Blob x)

void setClob(int i, Clob x)

java.sql.CallableStatement
Table 94. JDBC 2.0 java.sql.CallableStatements Methods Supported

Returns Signature Implementation Notes
BigDecimal getBigDecimal '

Date getDate(int, Calendar)

Time getTime(int,Calendar) '

Timestamp getTimestamp(int, Calendar)

java.sql.DatabaseMetaData

Derby implements all of the JDBC 2.0 methods for this interface.

java.sql.ResultSetMetaData

java.sql.BatchUpdateException

Derby implements all of the JDBC 2.0 methods for this interface.

Thrown if there is a problem with a batch update.

JDBC Package for Connected Device Configuration/Foundation
Profile (JSR169)

Derby supports the JDBC API defined for the Connected Device
Configuration/Foundation Profile, also known as JSR169. The features supported are a
subset of the JDBC 3.0 specification. Support for JSR169 is limited to the embedded
driver. Derby does not support using the Network Server under JSR169.

To obtain a connection under JSR169 specifications, use the

or g. apache. der by. j dbc. EnbeddedSi npl eDat aSour ce class. This class is
identical in implementation to the or g. apache. der by. j dbc. EnbeddedDat aSour ce
class. See the Derby Developer's Guide for information on using the properties of the
or g. apache. der by. j dbc. EnbeddedDat aSour ce class.

Some other features to note concerning the JSR169 implementation using Derby:
« Applications must get and set DECI MAL values using alternate JDBC get XXX and

set XXX methods, such as get String() and set String().Any alternate

method that works against a DECIMAL type with JDBC 2.0 or 3.0 will work in

JSR169.

« Java functions and procedures that use server-side JDBC parameters such as
CONTAI NS SQ., READS SQL DATA or MODI FI ES SQL DATA are not supported in

JSR169.

217

Copyright

» The standard API used to obtain a connection (j dbc: def aul t : connect i on)is
not supported in JSR169. A runtime error may occur when the routine tries to obtain
a connection using j dbc: def aul t : connecti on.

Diagnostic tables are not supported.

Triggers are not supported.

Encrypted databases are not supported.

DriverManager is not supported. You cannot use DriverManager.getConnection() to
obtain a connection.

JDBC 3.0-only features

JDBC 3.0 adds some functionality to the core API. This section documents the features
supported by Derby.
Note: These features are present only in a Java 2 version 1.4 or higher environment.

These features are:

* New DatabaseMetaData methods. See java.sql.DatabaseMetaData.

» Retrieval of parameter metadata. See java.sql.ParameterMetaData and
java.sql.PreparedStatement.

» Retrieval of auto-generated keys. See java.sql.Statement and
java.sgl.DatabaseMetaData.

e Savepoints. See java.sql.Connection.

e HOLD Cursors. See java.sql.DatabaseMetaData.

The complete list:

« java.sgl.Connection

* java.sgl.DatabaseMetaData

* java.sgl.ParameterMetaData
« java.sgl.PreparedStatement
 java.sgl.Savepoint
* java.sgl.Statement

java.sgl.Connection

Table 95. JDBC 3.0 Connection Methods Supported

Returns | Signature Implementation Notes

Savepoint| setSavepoint (String name) Creates a savepoint with the given name in the
current transaction and returns the new Savepoint
object that represents it.

Savepoint| setSavepoint () Creates an unnamed savepoint in the current
transaction and returns the new Savepoint object
that represents it.

void releaseSavepoint (Savepoint savepoint) | Removes the given Savepoint object from the
current transaction.

void rollback(Savepoint savepoint) Undoes all changes made after the given

Savepoint object was set.

java.sgl.DatabaseMetaData

Table 96. JDBC 3.0 DatabaseMetaData Methods Supported

Returns

Signature Implementation Notes

boolean

supportsSavepoints()

218

Copyright

Returns | Signature Implementation Notes
int getDatabaseMajorVersion() '

int getDatabaseMinorVersion() '

int getJDBCMajorVersion() '

int getJDBCMinorVersion() '

int getSQLStateType() '
boolean | supportsNamedParameters() '
boolean | supportsMultipleOpenResults() '
boolean | supportsGetGeneratedKeys() '
boolean | supportsResultSetHoldability(int holdability) '

int getResultSetHoldability() returns

ResultSet.HOLD_CURSORS_OVER_COMMI]

java.sgl.ParameterMetaData

ParameterMetaData is new in JDBC 3.0. It describes the number, type, and properties of
parameters to prepared statements. The method
PreparedStatement.getParameterMetaData returns a ParameterMetaData object that
describes the parameter markers that appear in the PreparedStatement object. See
java.sql.PreparedStatement for more information.

Interface ParameterMetaData methods are listed below.
Table 97. JDBC 3.0 ParameterMetaData Methods

Returns Signature Implementation Notes
int getParameterCount() '
int isNullable(int param) '
boolean isSigned(int param) '
int getPrecision(int param) '
int getScale(int param) '
int getParameterType(int param) '
String getParamterTypeName (int param) '
String getParamterClassName (int param) '
int getParameterMode (int param) '

java.sql.PreparedStatement

The method PreparedStatement.getParameterMetaData returns a ParameterMetaData
object describing the parameter markers that appear in the PreparedStatement object.
See java.sql.ParameterMetaData for more information.

Table 98. JDBC 3.0 PreparedStatement Methods

Returns

Signature

Implementation Notes

ParameterMetaData getParameterMetaData()

219

Copyright

java.sql.Savepoint

The Savepoint interface is new in JDBC 3.0. It contains new methods to set, release, or
roll back a transaction to designated savepoints. Once a savepoint has been set, the
transaction can be rolled back to that savepoint without affecting preceding work.
Savepoints provide finer-grained control of transactions by marking intermediate points
within a transaction.

Setting and rolling back to a savepoint

The JDBC 3.0 API adds the method Connection.setSavepoint, which sets a savepoint
within the current transaction. The Connection.rollback method has been overloaded to
take a savepoint argument. See java.sqgl.Connection for more information.

The code example below inserts a row into a table, sets the savepoint svpt 1, and then
inserts a second row. When the transaction is later rolled back to svpt 1, the second
insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing '1' will be added to TABLEL.

conn. set Aut oConmit (fal se); // Autoconmt nust be off to use savepoints.
Statenent stmt = conn. createSt aterrent(?;
int rows = stnt.executeUpdate("| NSERT | NTO TABLE1 (COL1) VALUES(1)");
/| set savepoi nt .

Savepoi nt svptl = conn. set SaveEm nt f\l:'I'Sl");

rows = stnt.executeUpdate("|NSERT | NTO TABLE1L (COL1) VALUES (2)");

conn. rol | back(svpt1);
conn. conmi t O);
Releasing a savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a parameter and
removes it from the current transaction. Once a savepoint has been released, attempting
to reference it in a rollback operation will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or when the entire transaction is rolled
back.

Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints created after the savepoint in question.
Rules for savepoints

The savepoint cannot be set within a batch of statements to enabled partial recovery. If a
savepoint is set any time before the method executeBatch is called, it is set before any of
the statements that have been added to the batch are executed.

A savepoint-Name can be reused after it has been released explicitly (by issuing a
release of savepoint) or implicitly (by issuing a connection commit/rollback).

Restrictions on savepoints
Derby does not support savepoints within a trigger.

Derby does not release locks as part of the rollback to savepoint.
Table 99. JDBC 3.0 Savepoint Methods

Returns Sighature Implementation Notes

int getSavepointld() Throws SQLException if this is a named savepoint. Retrieves the
generated ID for the savepoint that this Savepoint object
represents.

220

Copyright

Returns

Signature Implementation Notes

String

getSavepointName() Throws SQLException if this is an unnamed savepoint. Retrieves
the name of the savepoint that this Savepoint object represents.

java.sgl.Statement

Table 100. JDBC 3.0 Statement Methods

Returns

Signature Implementation Notes

ResultSet

getGeneratedKeys() '

Autogenerated keys

JDBC 3.0's autogenerated keys feature provides a way to retrieve values from columns
that are part of an index or have a default value assigned. Derby supports the
autoincrement feature, which allows users to create columns in tables for which the
database system automatically assigns increasing integer values. In JDBC 3.0, the
method Statement.getGeneratedKeys can be called to retrieve the value of such a
column. This method returns a ResultSet object with a column for the automatically
generated key. Calling ResultSet.getMetaData on the ResultSet object returned by
getGeneratedKeys produces a ResultSetMetaData object that is similar to that returned
by IDENTITY_VAL_LOCAL. A flag indicating that any auto-generated columns should be
returned is passed to the methods execute, executeUpdate, or prepareStatement when
the statement is executed or prepared.

Here's an example that returns a ResultSet with values for auto-generated columns in
TABLEL:

Statement stnmt = conn. creat eSt at ement (? :
int rows = stnt.executeUpdate("INSERT | NTO TABLEL (Cl11, Cl2) VALUES

1,1)",
St ?at enment . RETURN GENERATED_KEYSK) ;
Resul t Set rs = stnf. get Generat edKeys();

To use Autogenerated Keys in INSERT statements, pass the

St at ement . RETURN_GENERATED_KEYS flag to the execute or executeUpdate method.
Derby does not support passing column names or column indexes to the execute,
executeUpdate, or prepareStatement methods.

JDBC 4.0-only features

JDBC 4.0 adds some functionality to the core API. This section documents the features
supported by Derby.

Note: These features are present only in a JDK 1.6 or higher environment.

These features are:

« DataSources. To support the JDBC 4.0 ease of development, Derby introduces
new implementations of javax.sql.DataSource.

« Autoloading of JDBC drivers. In earlier versions of JDBC, applications had to
manually register drivers before requesting Connections. With JDBC 4.0,
applications no longer need to issue a Class.forName() on the driver name; instead,
the DriverManager will find an appropriate JDBC driver when the application
requests a Connection.

* SQLExceptions. JDBC 4.0 introduces refined subclasses of SQLException. See
Refined subclasses of SQLEXxception.

221

Copyright

* Wrappers. JDBC 4.0 introduces the concept of wrapped JDBC objects. This is a
formal mechanism by which application servers can look for vendor-specific
extensions inside standard JDBC objects like Connections, Statements, and
ResultSets. For Derby, this is a vacuous exercise because Derby does not expose
any of these extensions.

« Statement events. With JDBC 4.0, Connection pools can listen for Statement
closing and Statement error events. New methods were added to
javax.sgl.PooledConnection: addStatementEventListener and
removeStatementEventListener.

« Streaming APIs. JDBC 4.0 adds new overloads of the streaming methods in
CallableStatement, PreparedStatement, and ResultSet. These are the setXXX and
updateXXX methods which take java.io.InputStream and java.io.Reader arguments.
The new overloads allow you to omit the length arguments or to specify long
lengths.

* New methods. New methods were added to the following interfaces:
java.sgl.Connection,java.sql.DatabaseMetaData,java.sql.Statement.

Refined subclasses of SQLException

If your application runs on JDK 1.6 or higher, exceptions raised by Derby will generally be
one of the refined subclasses of SQLException, introduced by JDBC 4.0. These refined
exceptions are raised under the conditions described by their respective javadoc.

java.sql.SQLClientinfoException
java.sql.SQLDataException
java.sql.SQLFeatureNotSupportedException
java.sql.SQLIntegrityConstraintViolationException
java.sql.SQLInvalidAuthorizationSpecException
java.sql.SQLSyntaxErrorException
java.sql.SQLTransactionRollbackException
java.sql.SQLTransientConnectionException

java.sgl.Connection

JDBC 4.0 adds new capabilities to Connections:

» LOB creation - New methods, createBlob() and createClob() let you create empty
Blobs and Clobs, which you can then fill up before stuffing into a column.

« Ease of development - JDBC 4.0 introduces DataSet, a simple mechanism to
iterate through a table. You obtain a DataSet by passing an annotated query to your
Connection's createQueryObject method.

 Validity tracking - The isValid method tells you whether your Connection is still
alive.

java.sql.DatabaseMetaData

Derby implements all of the new metadata methods added by JDBC 4.0.

« Capability reports - JDBC 4.0 adds new methods for querying the capabilities of a
database. These include autoCommitFailureClosesAllResultSets,
providesQueryObjectGenerator, getClientinfoProperties, and
supportsStoredFunctionsUsingCallSyntax.

* Column metadata - The getColumns method reports IS_ AUTOINCREMENT =
YES if a column is generated.

e Function metadata - JDBC 4.0 adds new methods for inspecting the arguments
and return types of functions, including user-defined functions. These new methods
are getFunctions and getFunctionColumns. These methods behave similarly to
getProcedures and getProcedureColumns.

* Procedure metadata - The getProcedureColumns method reports additional
information about procedure arguments. For more information, see the javadoc for

222

Copyright
this method. The new columns in the ResultSet returned by getProcedureColumns
are;: COLUMN_DEF, SQL_DATA_TYPE, SQL_DATETIME_SUB,
CHAR_OCTET_LENGTH, ORDINAL_POSITION, IS_NULLABLE, and
SPECIFIC_NAME.
e Schema metadata - JDBC 4.0 adds a new getSchemas overload, which lets you
look up schemas based on a name pattern.

java.sgl.Statement

Derby's Statements implement the following new metadata methods added by JDBC 4.0.

« Pooling support - JDBC 4.0 adds new methods to help application servers
manage pooled Statements: isPoolable and setPoolable.

 Validity tracking - JDBC 4.0 lets you track the validity of a Statement through the
new isClosed method.

javax.sgl.DataSource

JDBC 4.0 introduces a simpler mechanism for iterating through a table. You use this
mechanism by passing an annotated query to your DataSource's createQueryObject
method. To expose this createQueryObject method, Derby adds new JDBC 4.0-specific
DataSources. Use these DataSources if your application runs on JDK 1.6 or higher.

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
org.apache.derby.jdbc.EmbeddedDataSource40
org.apache.derby.jdbc.EmbeddedDriver
org.apache.derby.jdbc.EmbeddedXADataSource40
org.apache.derby.jdbc.ClientConnectionPoolDataSource40
org.apache.derby.jdbc.ClientDataSource40
org.apache.derby.jdbc.ClientDriver
org.apache.derby.jdbc.ClientXADataSource40

JDBC escape syntax

JDBC provides a way of smoothing out some of the differences in the way different
DBMS vendors implement SQL. This is called escape syntax. Escape syntax signals that
the JDBC driver, which is provided by a particular vendor, scans for any escape syntax
and converts it into the code that the particular database understands. This makes
escape syntax DBMS-independent.

A JDBC escape clause begins and ends with curly braces. A keyword always follows the
opening curly brace:

{keyword }
Derby supports the following JDBC escape keywords, which are case-insensitive:
» JDBC escape keyword for call statements
The escape keyword for use in CallableStatements.
* JDBC escape syntax
The escape keyword for date formats.
» JDBC escape syntax for LIKE clauses
The keyword for specifying escape characters for LIKE clauses.
» JDBC escape syntax for fn keyword

The escape keyword for scalar functions.

223

Copyright
» JDBC escape syntax for outer joins
The escape keyword for outer joins.
« JDBC escape syntax for time formats
The escape keyword for time formats.
« JDBC escape syntax for timestamp formats

The escape keyword for timestamp formats.

Other JDBC escape keywords are not supported.

Note: Derby returns the SQL unchanged in the Connection.nativeSQL call, since the
escape syntax is native to SQL. In addition, it is unnecessary to call
Statement.setEscapeProcessing for this reason.

JDBC escape keyword for call statements

This syntax is supported for a java.sql.Statement and a java.sql.PreparedStatement in
addition to a CallableStatement.

Syntax

{call statenent }

-- Call a Java procedure
{ call TOURS. BOOK TOUR(?, ?) }

JDBC escape syntax

Derby interprets the JDBC escape syntax for date as equivalent to the SQL syntax for
dates.

Syntax
{d "yyyy-mmdd"}
Equivalent to

DATE(' yyyy- nm dd')
VALUES {d '1999-01-09'}

JDBC escape syntax for LIKE clauses

The percent sigh % and underscore _ are metacharacters within SQL LIKE clauses.
JDBC provides syntax to force these characters to be interpreted literally. The JDBC
clause immediately following a LIKE expression allows you to specify an escape
character:

Syntax

WHERE Char act er Expr essi on L NOT LI KE
Char act er Expr essi onWt hW | dCar d
{ ESCAPE ' escapeCharacter' }

224

Copyright

-- find all rows in which a begins with the character "%
SELECT a FROM tabA WHERE a LI KE ' $%% {escape '

-- find all rows in which a ends with the character "_"
SELECT a FROM tabA WHERE a LIKE ' %_' {escape '='}

Note: ? is not permitted as an escape character if the LIKE pattern is also a dynamic
parameter (?).

In some languages, a single character consists of more than one collation unit (a 16-bit
character). The escapeCharacter used in the escape clause must be a single collation
unit in order to work properly.

You can also use the escape character sequence for LIKE without using JDBC's curly
braces; see Boolean expression.

JDBC escape syntax for fn keyword

You can specify functions in JDBC escape syntax, by using the fn keyword.

Syntax

{fn functionCall}

where functionCall is the name of one of the following scalar functions:

abs
Returns the absolute value of a number.

abs(Numeri cExpr essi on)

The JDBC escape syntax {fn abs(NumericExpression)} is equivalent to the built-in
syntax ABSOLUTE(NumericExpression). For more information, see the ABS or
ABSVAL function.

acos
Returns the arc cosine of a specified number.

acos(numnber)
The JDBC escape syntax {fn acos(humber)} is equivalent to the built-in syntax
ACOS(number). For more information, see the ACOS function.
asin
Returns the arc sine of a specified number.

asi n(nunber)
The JDBC escape syntax {fn asin(humber)} is equivalent to the built-in syntax
ASIN(number). For more information, see the ASIN function.

atan
Returns the arc tangent of a specified number.

at an(nunber)

The JDBC escape syntax {fn atan(number)} is equivalent to the built-in syntax
ATAN(number). For more information, see the ATAN function.

ceiling

Rounds the specified number up, and returns the smallest number that is greater than

or equal to the specified number.

cei l i ng(nunber)

225

Copyright

The JDBC escape syntax {fn ceiling(number)} is equivalent to the built-in syntax
CEILING(number). For more information, see the CEIL or CEILING function function.

concat
Returns the concatenation of character strings.

concat (Char act er Expr essi on, Charact er Expr essi on)

Character string formed by appending the second string to the first string. If either
string is null, the result is NULL. The JDBC escape syntax {fn concat
(CharacterExpression, CharacterExpression) is equivalent to the built-in syntax {
CharacterExpression || CharacterExpression }. For more information, see the
Concatenation function.

cos
Returns the cosine of a specified number.

cos(numnber)
The JDBC escape syntax {fn cos(humber)} is equivalent to the built-in syntax
COS(number). For more information, see the COS function function.

degrees
Converts a specified number from radians to degrees.

degr ees(nunber)
The JDBC escape syntax {fn degrees(humber)} is equivalent to the built-in syntax
DEGREES(number). For more information, see the DEGREES function function.

exp
Returns e raised to the power of the specified number.

exp(nunber)

The JDBC escape syntax {fn exp(number)} is equivalent to the built-in syntax
EXP(number). For more information, see the EXP function function.

floor
Rounds the specified number down, and returns the largest number that is less than
or equal to the specified number.

fl oor (nunber)

The JDBC escape syntax {fn floor(number)} is equivalent to the built-in syntax
FLOOR(number). For more information, see the FLOOR function function.

locate
Returns the position in the second CharacterExpression of the first occurrence of the
first CharacterExpression. Searches from the beginning of the second
CharacterExpression, unless the startindex parameter is specified.

| ocat e(Char act er Expr essi on, Char act er Expression [, startlndex])

The JDBC escape syntax {fn locate(CharacterExpression,CharacterExpression [,
startindex])} is equivalent to the built-in syntax LOCATE(CharacterExpression,
CharacterExpression [, StartPosition]). For more information, see the LOCATE.
function

log
Returns the natural logarithm (base e) of the specified number.

| og(nunber)

226

Copyright

The JDBC escape syntax {fn log(number)} is equivalent to the built-in syntax
LOG(number). For more information, see the LN or LOG function function.

logl0
Returns the base-10 logarithm of the specified number.

| 0g10(nunber)
The JDBC escape syntax {fn log10(number)} is equivalent to the built-in syntax
LOG10(number). For more information, see the LOG10 function function.

mod
Returns the remainder (modulus) of argument 1 divided by argument 2. The result is
negative only if argument 1 is negative.

nmod(i nt eger _type, integer_type)

For more information, see the MOD function.

Returns a value that is closer than any other value to pi.

pi ()

The JDBC escape syntax {fn pi()} is equivalent to the built-in syntax PI(). For more
information, see the PI function function.

radians
Converts a specified number from degrees to radians.

radi ans(nunber)

The JDBC escape syntax {fn radians(number)} is equivalent to the built-in syntax

RADIANS(number). For more information, see the RADIANS function function.
sin

Returns the sine of a specified number.

si n(numnber)
The JDBC escape syntax {fn sin(hnumber)} is equivalent to the built-in syntax
SIN(number). For more information, see the SIN function.

sqrt
Returns the square root of floating point number.

sqrt (Fl oat i ngPoi nt Expr essi on)

The JDBC escape syntax {fn sqrt (FloatingPointExpression)} is equivalent to the
built-in syntax SQRT(FloatingPointExpression). For more information, see the SQRT
function.

substring
Forms a character string by extracting length characters from the
CharacterExpression beginning at startindex. The index of the first character in the
CharacterExpression is 1.

substri ng(Charact er Expressi on, startlndex, |ength)

tan
Returns the tangent of a specified number.

t an(nunber)

227

Copyright

The JDBC escape syntax {fn tan(number)} is equivalent to the built-in syntax
TAN(number). For more information, see the TAN function.

TIMESTAMPADD
Use the TI MESTAMPADD function to add the value of an interval to a timestamp. The
function applies the integer to the specified timestamp based on the interval type and
returns the sum as a new timestamp. You can subtract from the timestamp by using
negative integers.

The TI MESTAMPADD is a JDBC escaped function, and is only accessible by using the
JDBC escape function syntax.

TI MESTAMPADD(interval, integerExpression, timestanpExpression)

To perform TI MESTAMPADD on dates and times, it is necessary to convert the dates
and times to timestamps. Dates are converted to timestamps by putting 00:00:00.0 in
the time-of-day fields. Times are converted to timestamps by putting the current date
in the date fields.

You should not put a datetime column inside of a timestamp arithmetic function in
WHERE clauses because the optimizer will not use any index on the column.

TIMESTAMPDIFF
Use the TI MESTAMPDI FF function to find the difference between two timestamp
values at a specified interval. For example, the function can return the number of
minutes between two specified timestamps.

The TI MESTAMPDI FF is a JDBC escaped function, and is only accessible by using
the JDBC escape function syntax.

TI MESTAMPDI FF(interval, timestanpExpressionl, tinmestanpExpression2)

To perform TI MESTAMPDI FF on dates and times, it is necessary to convert the dates
and times to timestamps. Dates are converted to timestamps by putting 00:00:00.0 in
the time-of-day fields. Times are converted to timestamps by putting the current date
in the date fields.

You should not put a datetime column inside of a timestamp arithmetic function in
WHERE clauses because the optimizer will not use any index on the column.

Valid intervals for TIMESTAMPADD and TIMESTAMPDIFF

The TI MESTAMPADD and Tl MESTAMPDI FF functions are used to perform arithmetic with
timestamps. These two functions use the following valid intervals for arithmetic
operations:

SQL_TSI_DAY

SQL_TSI_FRAC_SECOND

SQL_TSI_HOUR

SQL_TSI_MINUTE

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_SECOND

SQL_TSI_WEEK

SQL_TSI_YEAR

Examples for the TIMESTAMPADD and TIMESTAMPDIFF escape functions

To return a timestamp value one month later than the current timestamp, use the
following syntax:

{fn TI MESTAMPADD(SQ._TSI _MONTH, 1, CURRENT_TI MESTAMP)}

228

Copyright

To return the number of weeks between now and the specified time on January 1, 2008,
use the following syntax:

{fn TI MESTAVPDI FF(SQL TSI WEEK, CURRENT TI MESTANP,
ti mestanp(' 2008- 0T- 01-1Z. 00. 00. 0000007))}

JDBC escape syntax for outer joins

Derby interprets the JDBC escape syntax for outer joins (and all join operations) as
equivalent to the correct SQL syntax for outer joins or the appropriate join operation.

For information about join operations, see JOIN operation.

Syntax

{oj JON operations [JON operations]* }

Equivalent to

JO N operations [JO N operations]*

—-outer join
SELECT *
FROM

{oj Countries LEFT OQUTER JO N Cities ON
(Countries.country | SO code=Cities.country_| SO code)}
- - anot her join operafion
SELECT *
FROM
0j Countries JON Cities ON
untries. country_| SO code=Ci ties.country_| SO code)}
-- a Tabl eExpression _can be a 10| n eration. Therefore
-- you can have rrultl;l)_ I\)EOI ions in a FROM cl ause
SELECT E. EMPNO, E. LASTNA| M E NO M _LASTNAVE

FROM { o] EMPLOYEE E | NNER JO N DEPARTMENT
I NNER"JO N EMPLOYEE M ON MGRNO = M EMPNO ON E. WORKDEPT = DEPTNG} ;

JDBC escape syntax for time formats
Derby interprets the JDBC escape syntax for time as equivalent to the correct SQL
syntax for times. Derby also supports the 1SO format of 8 characters (6 digits, and 2
decimal points).
Syntax
{t "hh:mm ss'}
Equivalent to

TI ME ' hh: nm ss'

Example

VALUES {t ' 20:00:03'}

JDBC escape syntax for date formats

Derby interprets the JDBC escape syntax for dates as equivalent to the correct SQL
syntax for dates.

Syntax

229

Copyright
{d "yyyy-nmdd'}
Equivalent to

DATE ' yyyy- mm dd'

Example

VALUES {d '1995-12-19'}

JDBC escape syntax for timestamp formats
Derby interprets the JDBC escape syntax for timestamp as equivalent to the correct SQL
syntax for timestamps. Derby also supports the ISO format of 23 characters (17 digits, 3
dashes, and 3 decimal points).

Syntax

{ts '"yyyy-mmdd hh:mmss.f..."'}

Equivalent to

TI MESTAMP ' yyyy-mmdd hh:mmss.f..."'

The fractional portion of timestamp constants (.f...) can be omitted.

VALUES {ts '1999-01-09 20: 11: 11. 123455'}

230

Copyright

Setting attributes for the database connection URL

Derby allows you to supply a list of attributes to its database connection URL, which is a
JDBC feature.

The attributes are specific to Derby.

You typically set attributes in a semicolon-separated list following the protocol and
subprotocol. For information on how you set attributes, see Attributes of the Derby
database connection URL. This chapter provides reference information only.

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute or
corresponding value, it is simply ignored.

bootPassword=key

Function
Specifies the key to use to :
» Encrypt a new database
» Configure an existing unencrypted database for encryption
» Boot an existing encrypted database
Specify an alphanumeric string that is at least eight characters long.

Combining with other attributes

When you create a new database, the bootPassword=key attribute must be combined
with the create=true and dataEncryption=true attributes.

When you configure an existing unencrypted database for encryption, the
bootPassword=key attribute must be combined with the dataEncryption=true attribute.

When you boot an existing encrypted database, no other attributes are necessary.

Examples

-- create a new, encrklpt ed dat abase]
j dbc: der by: newDB; cr eat e=t r ue; dat aEncrypti on=t r ue;
boot Passwor d=csever yPl ace)
-- confi gure an exi sti nE unencrypted dat abase for encryption
j dbc: der by: sal esdb; dat aEncr ypti on=t r ue; boot Passwor d=csever yPl ace
-- boot anh existing encrypted database
j dbc: der by: encr ypt edDB; boot Passwor d=csever yPl ace

create=true
Function

Creates the standard database specified within the database connection URL Derby
system and then connects to it. If the database cannot be created, the error appears in
the error log and the connection attempt fails with an SQLException indicating that the
database cannot be found.

If the database already exists, creates a connection to the existing database and an
SQLWarning is issued.

JDBC does not remove the database on failure to connect at create time if failure occurs
after the database call occurs. If a database connection URL used create=true and the
connection fails to be created, check for the database directory. If it exists, remove it and
its contents before the next attempt to create the database.

231

Copyright

Combining with other attributes

You must specify a databaseName (after the subprotocol in the database connection
URL) or a databaseName=nameofDatabase attribute with this attribute.

You can combine this attribute with other attributes. To specify a territory when creating a
database, use the territory=Il_CC attribute.

Note: If you specify create=true and the database already exists, an SQLWarning is
raised.

j dbc: der by: sanpl eDB; cr eat e=tr ue
j dbc: der by: ; dat abaseNanme=newDB; cr eat e=t r ue;

createFrom=Path

Function

You can specify the createFrom=Path attribute in the boot time connection URL to create
a database using a full backup at a specified location. If there is a database with the
same name in derby.system.home, an error will occur and the existing database will be
left intact. If there is not an existing database with the same name in the current
derby.system.home location, the whole database is copied from the backup location to
the derby.system.home location and started.

The Log files are copied to the default location. The logDevice attribute can be used in
conjunction with createFrom=Path to store logs in a different location. With
createFrom=Path you do not need to copy the individual log files to the log directory.

Combining with other attributes

Do not combine this attribute with rollforwardrecoveryFrom, restoreFrom, or create.

URL: j dbc: derby: wonbat ; cr eat eFr om=d: / backup/ wonbat

databaseName=nameofDatabase

Function

Specifies a database name for a connection; it can be used instead of specifying the
database name in after the subprotocaol.

For example, these URL (and Properties object) combinations are equivalent:
« jdbc:derby:toursDB
« jdbc:derby:;databaseName=toursDB
« jdbc:derby:(with a property databaseName and its value set to toursDB in the
Properties object passed into a connection request)

If the database name is specified both in the URL (as a subname) and as an attribute, the

database name set as the subname has priority. For example, the following database
connection URL connects to toursDB:

j dbc: der by: t our sDB; dat abaseNanme=f | i ght sDB

Allowing the database name to be set as an attribute allows the getPropertylnfo method
to return a list of choices for the database name based on the set of databases known to
Derby. For more information, see java.sql.Driver.getPropertylnfo.

Combining with other attributes

232

Copyright

You can combine this attribute with all other attributes.
j dbc: der by: ; dat abaseNanme=newDB; cr eat e=t r ue

dataEncryption=true
Function

Specifies data encryption on disk for a new database or to configure an existing
unencrypted database for encryption. For information about data encryption, see
"Encrypting Databases on Disk" in the Derby Developer's Guide.

Combining with other attributes

The dataEncryption attribute must be combined with the bootPassword=key attribute or
the newEncryptionKey= <key> attribute. You have the option of also specifying the
encryptionProvider=providerName and encryptionAlgorithm=algorithm attributes.

Examples

- encr%pt a new dat abase)
j dbc: der by: encrypt edDB; cr eat e=t r ue; dat aEncrypti on=tr ue;
boot Passwor d=cLo4u922sc23aPe)
--_configure an eX|st|n9 unencr¥pted dat abase for encryption
j dbc: der by: sal esdb; dataEncrypti on=t r ue; boot Passwor d=cLo4u922sc23aPe

encryptionKey=<key>

Function

Specifies the external key to use to:
» Encrypt a new database
» Configure an existing unencrypted database for encryption
« Boot an existing encrypted database

Your application must provide the encryption key.

Combining with other attributes
When creating a new database, you must combine the encryptionKey attribute with the
create=true and dataEncryption=true attributes.

When you configure an existing unencrypted database for encryption, the encryptionKey
attribute must be combined with the dataEncryption=true attribute.

When booting an existing encrypted database, you must also specify the
encryptionAlgorithm attribute if the algorithm that was used when the database was
created is not the default algorithm.

The default encryption algorithm used by Derby is DES/CBC/NoPadding.

Examples

-- create a new encrypted database))))
j dbc: der by: newDB; cr eat e=t r ue; dat aEncrypti on=t rue; encrypti onAl gorit hm=DES/ CBC/ NoPaddi ng;
-- configure an existi ng unencrypt ed dat abase for encryption
j dbcider by: sal esdb; dat aEncr ypti on=true; encrypti onKey=6162636465666768
-- boot an encrypted dat abase)
j dbc: der by: encrypt edDB; encrypti onKey=6162636465666768

encryptionProvider=providerName

Function

233

Copyright

Specifies the provider for data encryption. For information about data encryption, see
"Encrypting Databases on Disk" in the Derby Developer's Guide.

If this attribute is not specified, the default encryption provider is the one included in the
JVM that you are using.

Combining with other attributes

The encryptionProvider attribute must be combined with the bootPassword=key and
dataEncryption=true attributes. You can also specify the encryptionAlgorithm=algorithm
attribute.

Examples

-- Ccreate a new, enchépt ed dat abase)

j dbc: der by: encr ypt edDB; cr eat e=t r ue; dat aEncrypti on=tr ue;
encrypti onProvi der =com sun. cr \t/jpt 0. provi der . SunJCE;
encrypti onAl gorit hm=DESede/ CBC/ NoPaddi ng;
boot Passwor d=cLo4u922sc23aPe]

-- configure an existi ng dat abase for encryption
j dbc:der by: sal esdb; dat aEncrypti on=true;
encryptionProvi der=com sun. crypto. provi der. SunJCE;
encr¥)pt| onAl gori t hm=DESede/ CBCZ/ NoPaddi ng;
boot Passwor d=cLo4u922sc23aPe

encryptionAlgorithm=algorithm

Function
Specifies the algorithm for data encryption.

Use the Java conventions when you specify the algorithm, for example:

al gori t hmNane/ f eedbackMode/ paddi ng

The only padding type that is allowed with Derby is NoPadding.
If no encryption algorithm is specified, the default value is DES/CBC/NoPadding.

For information about data encryption, see "Encrypting Databases on Disk" in the Derby
Developer's Guide.

Combining with other attributes

The encryptionAlgorithm attribute must be combined with the bootPassword=key attribute
and the dataEncryption=true attribute. You have the option of also specifying the
encryptionProvider=providerName attribute to specify the encryption provider of the
algorithm.

Examples

-- encrypt a new dat abase)

j dbc® der by: encrypt edDB; cr eat e=t r ue; dat aEncrgptl on=t r ue;
encrypti onProvi der =com sun. cr \t,‘th 0. provi der . SunJCE;
encrypti onAl gorit hm=DESede/ CBC/ NoPaddi ng;
boot Passwor d=cLo4u922sc23aPe]

-- configure an existi ng dat abase for encryption
j dbc:der by: sal esdb; dat aEncrypti on=true;
encrypti onProvi der=com sun. crypto. provi der. SunJCE;
encr ypti onAl gorit hm=DESede/ CBCZ/ NoPaddi ng;
boot Passwor d=cLo4u922sc23aPe

Note: If the specified provider does not support the specified algorithm, Derby returns an
exception.

234

Copyright

logDevice=logDirectoryPath

Function

The logDirectoryPath specifies the path to the directory on which to store the database
log during database creation or restore. Even if specified as a relative path, the
logDirectoryPath is stored internally as an absolute path.

Combining with other attributes

Use in conjunction with create=true, createFrom, restoreFrom, or
rollFowardRecoveryFrom.

j dbc: der by: newDB; cr eat e=tr ue; | ogDevi ce=d: / newDBI og

newEncryptionKey= <key>

Function

Specifies a new external encryption key for an encrypted database. All of the existing
data in the database is encrypted using the new encryption key and any new data written
to the database will use this key for encryption. For more information about this attribute,
see "Encrypting databases with a new external key" in the Derby Developer's Guide.

Combining with other attributes

The newEncryptionKey attribute must be combined with the encryptionKey=<key>
attribute.

You cannot change the encryption provider or the encryption algorithm when you use the
newEncryptionKey attribute.

Example

-- specify a new encryption key for a database]
j dbc: der by: sal esdb; encrypti onKey=6162636465666768; newEncr ypt i onKey=6862636465666768

newBootPassword = <new password>

Function

Specifies a new boot password for an encrypted database. A new encryption key is
generated internally by the engine and the key is protected using the new boot password.
The newly generated encryption key encrypts the database, including the existing data.
For more information about this attribute, see "Encrypting databases with a new boot
password" in the Derby Developer's Guide.

Combining with other attributes

The newBootPassword attribute must be combined with the bootPassword=key attribute.

You cannot change the encryption provider or the encryption algorithm when you use the
newBootPassword attribute.

Example

-- specify a new boot Password for a database
j dbc: der by: sal esdb; boot Passwor d=abc1234xyz; newBoot Passwor d=newl234xyz

235

Copyright

password=userPassword

Function

A valid password for the given user name.

Combining with other attributes

Use in conjunction with user=userName.

j dbc: der by: t our sDB; user =j ack; passwor d=upTheHi | |

restoreFrom=Path

Function

You can specify the restoreFrom=Path attribute in the boot time connection URL to
restore a database using a full backup from the specified location. If a database with the
same name exists in the derby.system.home location, the whole database is deleted,
copied from the backup location, and then restarted.

The log files are copied to the same location they were in when the backup was taken.
The logDevice attribute can be used in conjunction withrestoreFrom=Path to store logs in
a different location.

Combining with other attributes
Do not combine this attribute with createFrom, rollforwardrecoveryFrom, or create.

URL: j dbc: derby: wonbat ; rest or eFr om=d: / backup/ wonbat

rollForwardRecoveryFrom=Path

Function

You can specify the rollForwardRecoveryFrom=Path in the boot time URL to restore the
database using a backup copy and perform rollforward recovery using archived and
active logs.

To restore a database using rollforward recovery, you must already have a backup copy
of the database, all the archived logs since then, and the active log files. All the log files
should be in the database log directory.

After a database is restored from full backup, transactions from the online archived logs
and the active logs are replayed.

Combining with other attributes
Do not combine this attribute with createFrom, restoreFrom, or create.

URL: jdbc: derby: wonbat ; rol | For war dRecover yFr om=d: / backup/ wornbat

shutdown=true

Function
Shuts down the specified database if you specify a databaseName. (Reconnecting to the

236

Copyright

territory=Il__

database reboots the database.)
Shuts down the entire Derby system if and only if you do not specify a databaseName

When you are shutting down a single database, it lets Derby perform a final checkpoint
on the database.

When you are shutting down a system, it lets Derby perform a final checkpoint on all
system databases, deregister the JDBC driver, and shut down within the JVM before the
JVM exits. A successful shutdown always results in an SQLException indicating that
Derby has shut down and that there is no connection. Once Derby is shut down, you can
restart it by reloading the driver. For details on restarting Derby, see "Shutting Down the
System" in Chapter 1 of the Derby Developer's Guide.

Checkpointing means writing all data and transaction information to disk so that no
recovery needs to be performed at the next connection.

Used to shut down the entire system only when it is embedded in an application.
Note: Any request to the DriverManager with a shutdown=true attribute raises an
exception.

-- shuts down entire system

j dbc: der by: ; shut down=t r ue

-- shuts down sal esDB

j dbc: der by: sal esDB; shut down=t r ue

CC

Function

When creating or upgrading a database, use this attribute to associate a non-default
territory with the database. Setting the territory attribute overrides the default system
territory for that database. The default system territory is found using
java.util.Locale.getDefault().

Specify a territory in the form Il_CC, where Il is the two letter language code, and CC is
the two letter country code.

Language codes consist of a pair of lower case letters that conform to ISO-639.
Table 101. Sample Language Codes

Language Code Description
de German

en English

es Spanish

ja Japanese

To see a full list of ISO-639 codes, go to
http://www.ics.uci.edu/publietf/http/related/iso639.txt.

Country codes consist of two uppercase letters that conform to ISO-3166.
Table 102. Sample Country Codes

Country Code

Description

DE

Germany

us

United States

237

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Copyright

Country Code Description
ES Spain

MX Mexico

JP Japan

A copy of ISO-3166 can be found at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

Combining with other attributes

The territory attribute is used only when creating a database.

In the following example, the new database has a territory of Spanish language and
Mexican nationality.

j dbc: der by: Mexi canDB; create=true;territory=es_MX

user=userName

Specifies a valid user name for the system, specified with a password. A valid user name
and password are required when user authentication is turned on.

Combining with other attributes

Use in conjunction with password=userPassword.

The following database connection URL connects the user jill to toursDB:

j dbc: der by: t our sDB; user =ji |l | ; passwor d=t oFet chAPai |

(no attributes)

If no attributes are specified, you must specify a databaseName.

Derby opens a connection to an existing database with that name in the current system
directory. If the database does not exist, the connection attempt returns an SQLException
indicating that the database cannot be found.

j dbc: der by: mydb

238

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Copyright

J2EE Compliance: Java Transaction APl and javax.sql
Extensions

J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE) J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such, it is one
part of a larger system that includes, among other things, a JNDI server, a connection
pool module, a transaction manager, a resource manager, and user applications. Within
this system, Derby can serve as the resource manager.

For more information on J2EE, see the J2EE specification available at
http://java.sun.com/j2ee/docs.html.

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support:
e JNDI support.

Allows calling applications to register names for databases and access them
through those names instead of through database connection URLSs.
Implementation of one of the JDBC extensions, javax.sgl.DataSource, provides this
support.

« Connection pooling

A mechanism by which a connection pool server keeps a set of open connections to
a resource manager (Derby). A user requesting a connection can get one of the
available connections from the pool. Such a connection pool is useful in
client/server environments because establishing a connection is relatively
expensive. In an embedded environment, connections are much cheaper, making
the performance advantage of a connection pool negligible. Implementation of two
of the JDBC extensions, javax.sgl.ConnectionPoolDataSource and
javax.sgl.PooledConnection, provide this support.

* XA support.

XA is one of several standards for distributed transaction management. It is based

on two-phase commit. The javax.sql.XAxxx interfaces, along with

java.transaction.xa package, are an abstract implementation of XA. For more

information about XA, see X/Open CAE Specification-Distributed Transaction

Processing: The XA Specification, X/Open Document No. XO/CAE/91/300 or ISBN

1 872630 24 3. Implementation of the JTA API, the interfaces of the

java.transaction.xa package

(javax.sgl.XAConnection,javax.sql. XADataSource,javax.transaction.xa.XAResource,javax.transactiol
and javax.transaction.xa.XAException), provide this support.

With the exception of the core JDBC interfaces, these interfaces are not visible to the
end-user application; instead, they are used only by the other back-end components in
the system.

Note: For information on the classes that implement these interfaces and how to use
Derby as a resource manager, see Chapter 6, "Using Derby as a J2EE Resource
Manager" in the Derby Developer's Guide.

239

http://java.sun.com/j2ee/docs.html

Copyright

JVM and libraries for J2EE features

These features require the following:
« Java 2 Platform, Standard Edition v 1.2 (J2SE) environment or greater
« javax.sql libraries

The JDBC 2.0 standard extension binaries are available from
http://java.sun.com/products/jdbc/download.html. These libraries are part of the
standard environment from Java 2 Platform, Standard Edition v 1.4 or later.

* javax.transaction.xa libraries

These libraries are part of the standard environment from Java 2 Platform, Standard
Edition v 1.4 or later.

For the JTA libraries, see http://java.sun.com/products/jta/ and download the
specification and javadoc help files for JTA interfaces.

« Derby (derby.jar)

The JTA API

The JTA API is made up of the two interfaces and one exception that are part of the
java.transaction.xa package. Derby fully implements this API.

* javax.transaction.xa.XAResource

* javax.transaction.xa.Xid

* javax.transaction.xa.XAException

Notes on Product Behavior
Recovered Global Transactions

Using the XAResource.prepare call causes a global transaction to enter a prepared state,
which allows it to be persistent. Typically, the prepared state is just a transitional state
before the transaction outcome is determined. However, if the system crashes, recovery
puts transactions in the prepared state back into that state and awaits instructions from
the transaction manager.

XAConnections, user names and passwords

If a user opens an XAConnection with a user name and password, the transaction it
created cannot be attached to an XAConnection opened with a different user name and
password. A transaction created with an XAConnection without a user name and
password can be attached to any XAConnection.

However, the user name and password for recovered global transactions are lost; any
XAConnection can commit or roll back that in-doubt transaction.

Note: Use the network client driver's XA DataSource interface
(org.apache.derby.jdbc.ClientXADataSource) when XA support is required in a remote
(client/server) environment.

javax.sql: JDBC Extensions

This section documents the JDBC extensions that Derby implements for J2EE
compliance. (For more details about these extensions, see the API documentation for
your version of the Java Development Kit, which you can find at
http://java.sun.com/javase/reference/api.jsp).

* javax.sqgl.DataSource

Derby's implementation of DataSource means that it supports JNDI; as a resource

240

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jta/
http://java.sun.com/javase/reference/api.jsp

Copyright
manager, it allows a database to be named and registered within a JNDI server.

This allows the calling application to access the database by a name (as a data
source) instead of through a database connection URL.

« javax.sgl.ConnectionPoolDataSource and javax.sql.PooledConnection

Establishing a connection to the database can be a relatively expensive operation in
client/server environments. Establishing the connection once and then using the
same connection for multiple requests can dramatically improve the performance of
a database.

The Derby implementation of Connect i onPool Dat aSour ce and

Pool edConnect i on allows a connection pool server to maintain a set of such
connections to the resource manager (Derby). In an embedded environment,
connections are much cheaper and connection pooling is not necessary.

« javax.sgl.XAConnection

An XAConnection produces an XAResource, and, over its lifetime, many
Connections. It allows for distributed transactions.

* javax.sgl.XADataSource

An XADataSource is simply a ConnectionPoolDataSource that produces
XAConnections.

In addition, Derby provides three methods for XADataSource, DataSource, and
ConnectionPoolDataSource. Derby supports a number of additional data source
properties:

« setCreateDatabase(String create)

Sets a property to create a database at the next connection. The string argument
must be "create".

 setShutdownDatabase(String shutdown)

Sets a property to shut down a database. Shuts down the database at the next
connection. The string argument must be "shutdown".

Note: Set these properties before getting the connection.

241

Copyright

Derby API

Derby provides Javadoc HTML files of API classes and interfaces in the javadoc
subdirectory.

This appendix provides a brief overview of the API. Derby does not provide the Javadoc
for the java.sql packages, the main API for working with Derby, because it is included in
the JDBC API. For information about Derby's implementation of JDBC, see JDBC
Reference.

This document divides the API classes and interfaces into several categories. The
stand-alone tools and utilities are java classes that stand on their own and are invoked in
a command window. The JDBC implementation classes are standard JDBC APls, and
are not invoked on the command-line. Instead, you invoke these only within a specified
context within another application.

Stand-alone tools and utilities

These classes are in the packages org.apache.derby.tools.
» org.apache.derby.tools.ij

An SQL scripting tool that can run as an embedded or a remote client/server
application. See the Derby Tools and Utilities Guide.

 org.apache.derby.tools.sysinfo

A command-line, server-side utility that displays information about your JVM and
Derby product. See the Derby Tools and Utilities Guide.

* org.apache.derby.tools.dblook

A utility to view all or parts of the Data Definition Language (DDL) for a given
database. See the Derby Tools and Utilities Guide.

JDBC implementation classes

JDBC driver

This is the JDBC driver for Derby:
 org.apache.derby.jdbc.EmbeddedDriver

Used to boot the embedded built-in JIDBC driver and the Derby system.
« org.apache.derby.jdbc.ClientDriver
Used to connect to the Derby Network Server in client-server mode.

See the Derby Developer's Guide.

Data Source Classes

These classes are all related to Derby's implementation of javax.sql.DataSource and
related APIs. For more information, see the Derby Developer's Guide.

Each of these classes has two variants. Use the first variant if your application runs on

JDK 1.5 or lower. Use the second variant (the one ending in "40") if your application runs
on JDK 1.6 or higher.

242

Copyright
Embedded environment:

« org.apache.derby.jdbc.EmbeddedDataSource and
org.apache.derby.jdbc.EmbeddedDataSource40

 org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

 org.apache.derby.jdbc.EmbeddedXADataSource and
org.apache.derby.jdbc.EmbeddedXADataSource40

Client-server environment
 org.apache.derby.jdbc.ClientDataSource and
org.apache.derby.jdbc.ClientDataSource40
« org.apache.derby.jdbc.ClientConnectionPoolDataSource and
org.apache.derby.jdbc.ClientConnectionPoolDataSource40
 org.apache.derby.jdbc.ClientXADataSource and
org.apache.derby.jdbc.ClientXADataSource40

Miscellaneous utilities and interfaces

» org.apache.derby.authentication.UserAuthenticator

« An interface provided by Derby. Classes that provide an alternate user
authentication scheme must implement this interface. For information about users,
see "Working with User Authentication" in Chapter 7 of the Derby Developer's
Guide.

243

Copyright

Supported territories

The following is a list of supported territories:

Territory Derby territory setting (derby.territory)
Chinese (Simplified) zh_CN
Chinese (Traditional) zh TW
Czech cs
French fr
German de DE
Hungarian hu
Italian it
Japanese ja_JP
Korean ko KR
Polish pl
Portuguese (Brazilian) pt BR
Russian ru
Spanish es

244

Copyright

Derby limitations

The section lists the limitations associated with Derby.

Limitations for database manager values
Table 103. Database manager limitations
The following table lists limitations on various Database Manager values in Derby.

procedure

Value Limit
Maximum columns in a table 1,012
Maximum columns in a view 5,000
Maximum number of parameters in a stored 90

Maximum indexes on a table

32,767 or storage capacity

Maximum tables referenced in an SQL statement
or a view

storage capacity

Maximum elements in a select list

1,012

Maximum predicates in a WHERE or HAVING
clause

storage capacity

clause

Maximum number of columns in a GROUP BY 32,677
clause
Maximum number of columns in an ORDER BY 1,012

Maximum number of prepared statements

storage capacity

Maximum declared cursors in a program

storage capacity

Maximum number of cursors opened at one time

storage capacity

Maximum number of constraints on a table

storage capacity

Maximum level of subquery nesting

storage capacity

Maximum number of subqueries in a single
statement

storage capacity

Maximum number of rows changed in a unit of
work

storage capacity

Maximum constants in a statement

storage capacity

Maximum depth of cascaded triggers

16

DATE, TIME, and TIMESTAMP limitations

The following table lists limitations on date, time, and timestamp values in Derby.
Table 104. DATE, TIME, and TIMESTAMP limitations

Value Limit
Smallest DATE value 0001-01-01
Largest DATE value 9999-12-31
Smallest TIME value 00:00:00
Largest TIME value 24:00:00

245

Copyright

Value

Limit

Smallest TIMESTAMP value

0001-01-01-00.00.00.000000

Largest TIMESTAMP value

9999-12-31-23.59.59.999999

Limitations on identifier length

Table 105. Identifier length limitations
The following table lists limitations on identifier lengths in Derby.

Identifier Maximum number of characters allowed
constraint name 128
correlation name 128
cursor name 128
data source column name 128
data source index name 128
data source name 128
savepoint name 128
schema name 128
unqualified column name 128
unqualified function name 128
unqualified index name 128
unqualified procedure name 128
parameter name 128
unqualified trigger name 128
unqualified table name, view name, stored 128
procedure name

Numeric limitations

Table 106. Numeric limitations

The following table contains limitations on numeric values in Derby.

Value

Limit

Smallest INTEGER

-2,147,483,648

Largest INTEGER

2,147,483,647

Smallest BIGINT

-9,223,372,036,854,775,808

Largest BIGINT

9,223,372,036,854,775,807

Smallest SMALLINT -32,768
Largest SMALLINT 32,767
Largest decimal precision 31,255

Smallest DOUBLE

-1.79769E+308

Largest DOUBLE

1.79769E+308

Smallest positive DOUBLE

2.225E-307

Largest negative DOUBLE

-2.225E-307

246

Copyright

Value Limit
Smallest REAL -3.402E+38
Largest REAL 3.402E+38
Smallest positive REAL 1.175E-37
Largest negative REAL -1.175E-37

String limitations

Table 107. String limitations

The following table contains limitations on string values in Derby.

Value

Maximum Limit

Length of CHAR

254 characters

Length of VARCHAR

32,672 characters

Length of LONG VARCHAR

32,700 characters

Length of CLOB

2,147,483,647 characters

Length of BLOB

2,147,483,647 characters

Length of character constant

32,672

Length of concatenated character string

2,147,483,647

Length of concatenated binary string

2,147,483,647

Number of hex constant digits

16,336

Length of DOUBLE value constant

30 characters

XML limitations

The following table lists the limitations on XML data types in Derby.

Table 108. XML limitations

Issue

Limitation

Length of XML

2,147,483,647 characters

Use of XML operators

Requires that the JAXP parser classes, such as
Apache Xerces, and Apache Xalan classes are in
the classpath. Attempts to use XML operators
without these classes in the classpath results in an
error.

247

Copyright

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

248

	Copyright
	About this guide
	Purpose of this document
	Audience
	How this guide is organized

	SQL language reference
	Capitalization and special characters
	SQL identifiers
	Rules for SQL92 identifiers
	SQL92Identifier
	Qualifying dictionary objects

	column-Name
	correlation-Name
	new-table-Name
	schemaName
	Simple-column-Name
	synonym-Name
	table-Name
	view-Name
	index-Name
	constraint-Name
	cursor-Name
	TriggerName
	AuthorizationIdentifier

	Statements
	Interaction with the dependency system
	ALTER TABLE statement
	CREATE statements
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE PROCEDURE statement
	CREATE SCHEMA statement
	CREATE SYNONYM statement
	CREATE TABLE statement
	column-definition
	generated-column-spec

	CREATE TRIGGER statement
	ReferencingClause

	CREATE VIEW statement

	DROP Statements
	DROP FUNCTION statement
	DROP INDEX statement
	DROP PROCEDURE statement
	DROP SCHEMA statement
	DROP SYNONYM statement
	DROP TABLE statement
	DROP TRIGGER statement
	DROP VIEW statement

	GRANT statement
	RENAME statements
	RENAME INDEX statement
	RENAME TABLE statement

	REVOKE statement
	SET statements
	SET SCHEMA statement
	SET CURRENT ISOLATION statement

	CALL (PROCEDURE)
	CONSTRAINT clause
	Column-level-constraint
	Table-level constraint
	References specification
	searchCondition

	DECLARE GLOBAL TEMPORARY TABLE statement
	DELETE statement
	FOR UPDATE clause
	FROM clause
	GROUP BY clause
	HAVING clause
	INNER JOIN
	INSERT statement
	JOIN operation
	LEFT OUTER JOIN
	LOCK TABLE statement
	ORDER BY clause
	Query
	RIGHT OUTER JOIN
	ScalarSubquery
	SelectExpression
	SELECT statement
	TableExpression
	TableOrViewExpression

	TableSubquery
	UPDATE statement
	Value

	VALUES expression
	Value

	WHERE clause
	WHERE CURRENT OF clause

	Built-in functions
	Standard built-in functions
	Aggregates (set functions)
	ABS or ABSVAL
	ACOS function
	ASIN function
	ATAN function
	AVG
	BIGINT
	CAST
	CEIL or CEILING function
	CHAR
	Concatenation
	COS function
	COUNT
	COUNT(*)
	CURRENT DATE
	CURRENT_DATE
	CURRENT ISOLATION
	CURRENT SCHEMA
	CURRENT TIME
	CURRENT_TIME
	CURRENT TIMESTAMP
	CURRENT_TIMESTAMP
	CURRENT_USER
	DATE
	DAY
	DEGREES function
	DOUBLE
	EXP function
	FLOOR function
	HOUR
	IDENTITY_VAL_LOCAL
	INTEGER
	LCASE or LOWER
	LENGTH
	LN or LOG function
	LOG10 function
	LOCATE
	LTRIM
	MAX
	MIN
	MINUTE
	MOD
	MONTH
	NULLIF and CASE expressions
	PI function
	RADIANS function
	RTRIM
	SECOND
	SESSION_USER
	SIN function
	SMALLINT
	SQRT
	SUBSTR
	TAN function
	SUM
	TIME
	TIMESTAMP
	UCASE or UPPER
	USER
	VARCHAR
	XMLEXISTS operator
	XMLPARSE operator
	XMLQUERY operator
	XMLSERIALIZE operator
	YEAR

	Built-in system functions
	SYSCS_UTIL.SYSCS_CHECK_TABLE
	SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS
	SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY

	Built-in system procedures
	SYSCS_UTIL.SYSCS_COMPRESS_TABLE
	SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE
	SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS
	SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING
	SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
	SYSCS_UTIL.SYSCS_FREEZE_DATABASE
	SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE
	SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
	SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE
	SYSCS_UTIL.SYSCS_EXPORT_TABLE
	SYSCS_UTIL.SYSCS_EXPORT_QUERY
	SYSCS_UTIL.SYSCS_IMPORT_TABLE
	SYSCS_UTIL.SYSCS_IMPORT_DATA

	Data types
	Built-In type overview
	Numeric types
	Numeric type overview
	Numeric type promotion in expressions
	Storing values of one numeric data type in columns of another numeric
data type
	Scale for decimal arithmetic

	Data type assignments and comparison, sorting, and ordering
	BIGINT
	BLOB
	CHAR
	CHAR FOR BIT DATA
	CLOB
	DATE
	DECIMAL
	DOUBLE
	DOUBLE PRECISION
	FLOAT
	INTEGER
	LONG VARCHAR
	LONG VARCHAR FOR BIT DATA
	NUMERIC
	REAL
	SMALLINT
	TIME
	TIMESTAMP
	VARCHAR
	VARCHAR FOR BIT DATA
	XML data type

	SQL expressions
	Expression precedence
	Example

	Boolean expression
	Dynamic parameters
	Dynamic parameters example
	Where dynamic parameters are allowed

	SQL reserved words
	Derby support for SQL-92 features
	Derby System Tables
	SYSALIASES
	SYSCHECKS
	SYSCOLPERMS
	SYSCOLUMNS
	SYSCONGLOMERATES
	SYSCONSTRAINTS
	SYSDEPENDS
	SYSFILES
	SYSFOREIGNKEYS
	SYSKEYS
	SYSROUTINEPERMS
	SYSSCHEMAS
	SYSSTATISTICS
	SYSSTATEMENTS
	SYSTABLEPERMS
	SYSTABLES
	SYSTRIGGERS
	SYSVIEWS

	Derby exception messages and SQL states
	SQL error messages and exceptions

	JDBC Reference
	Core JDBC java.sql Classes, Interfaces, and Methods
	java.sql.Driver
	java.sql.DriverManager.getConnection
	Derby database connection
URL syntax
	Syntax of database connection URLs for applications with embedded databases
	Additional SQL syntax
	Attributes of the Derby database connection URL

	java.sql.Driver.getPropertyInfo
	java.sql.Connection
	java.sql.Connection.setTransactionIsolation
	java.sql.Connection.setReadOnly
	java.sql.Connection.isReadOnly
	Connection functionality not supported

	java.sql.DatabaseMetaData
	DatabaseMetaData result sets
	getProcedureColumnsgetProcedureColumns
	Parameters to getProcedureColumns
	Columns in the ResultSet returned by getProcedureColumns
	DatabaseMetaData functionality not supported

	java.sql.Statement
	ResultSet objects

	java.sql.CallableStatement
	CallableStatements and OUT Parameters
	CallableStatements and INOUT Parameters

	java.sql.SQLException
	java.sql.PreparedStatement
	Prepared statements and streaming columns

	java.sql.ResultSet
	ResultSets and streaming columns

	java.sql.ResultSetMetaData
	java.sql.SQLWarning
	java.sql.SQLXML
	Mapping of java.sql.Types to SQL types
	java.sql.Blob and java.sql.Clob
	Notes

	java.sql.Connection
	java.sql.ResultSet
	java.sql.Statement
	java.sql.PreparedStatement
	java.sql.CallableStatement
	java.sql.DatabaseMetaData
	java.sql.ResultSetMetaData
	java.sql.BatchUpdateException
	JDBC Package for Connected Device Configuration/Foundation Profile
(JSR169)
	JDBC 3.0-only features
	java.sql.Connection
	java.sql.DatabaseMetaData
	java.sql.ParameterMetaData
	java.sql.PreparedStatement
	java.sql.Savepoint
	Setting and rolling back to a savepoint
	Releasing a savepoint
	Rules for savepoints
	Restrictions on savepoints

	java.sql.Statement
	Autogenerated keys

	JDBC 4.0-only features
	Refined subclasses of SQLException
	java.sql.Connection
	java.sql.DatabaseMetaData
	java.sql.Statement
	javax.sql.DataSource

	JDBC escape syntax
	JDBC escape keyword for call statements
	JDBC escape syntax
	JDBC escape syntax for LIKE clauses
	JDBC escape syntax for fn keyword
	JDBC escape syntax for outer joins
	JDBC escape syntax for time formats
	JDBC escape syntax for date formats
	JDBC escape syntax for timestamp formats

	Setting attributes for the database connection URL
	bootPassword=key
	create=true
	createFrom=Path
	databaseName=nameofDatabase
	dataEncryption=true
	encryptionKey=<key>
	encryptionProvider=providerName
	encryptionAlgorithm=algorithm
	logDevice=logDirectoryPath
	newEncryptionKey= <key>
	newBootPassword = <new password>
	password=userPassword
	restoreFrom=Path
	rollForwardRecoveryFrom=Path
	shutdown=true
	territory=ll_CC
	user=userName
	(no attributes)

	J2EE Compliance: Java Transaction API and javax.sql Extensions
	JVM and libraries for J2EE features
	The JTA API
	Notes on Product Behavior
	Recovered Global Transactions
	XAConnections, user names and passwords

	javax.sql: JDBC Extensions

	Derby API
	Stand-alone tools and utilities
	JDBC implementation classes
	JDBC driver
	Data Source Classes

	Miscellaneous utilities and interfaces

	Supported territories
	Derby limitations
	Limitations for database manager values
	DATE, TIME, and TIMESTAMP limitations
	Limitations on identifier length
	Numeric limitations
	String limitations
	XML limitations

	Trademarks

