Apache Derby .9'

Tuning Derby

Version
Derby Document build:
December 11, 2006, 7:11:29 AM (PST)

Copyright

Contents

10707 o)V A 4 [0 1| ST PRPTPPPP 5
ADOUL TNIS QUIAE...eeiiiiieiii ettt et e e s sabnee s 6
PUrpose Of thiS QUITE........eiiiiii e 6

F N T 1T=T o [=T PO P PP PP PP PPPRURTRR 6

HOW this guide IS OrganiZed.........coooiiiiiiiiiii e 6
WOorking With Derby PrOPertiES.. ..o e e e e e e e enaanes 7
PrOPEITIES OVEIVIEBW .. .uiiiiiiiiiiiiee e e e e ettt e e e e e s e s s e e e e e e e e e e s s s snsb s rneeeeaeeeeeenannns 7
Yoo 0TI o) il o] (o] 0 1= 1 1= SRS 7
Persistence Of PrOPEITIES.oiii it 7
Precedence Of PrOPEITIES.ouiiiiiiiiieiiii et e 7

Dynamic Versus StatiC PrOPEItIES.eeeeiiuiiiieeiiiiiee ettt et e e et e e rbreeee e 8

Ways of setting Derby properties........oo i 8
SYSIEM-WIAE PrOPEITIES. ..o ittt e e e e e e e e e e e e e e aaaees 8
Database-Wide PrOPErtiES.......ccuuuiiiiiieee e e et e e s e e e e e e e e e s e e sanneees 9

In a client/Server eNVIrONMENT..........ccviireieiiee e 10

Dynamic or static changes t0 Properties........veeeeeiiiiccciiiiieirieee e seerieeeeeee e 10
Properties Case STUAYuuii ittt e e sbbe e e e 10
Performance tips and trHiCKS.......oiii i 13
L AL 11 L TP PP P PP PPPRPPON 13

Use prepared statements with substitution parameters............ccccooeviiviieeeeeennn. 13

Create indexes, and make sure they are being used............cccocveeeiiiieiiiiniiinnns 13

Increase the size of the data page cache...........ccoccceviii i, 13

Tune the size of database PAGES.......uuuriiiiiie i 14

AVOId EXPENSIVE QUETIES. .. .eueiveieeieeeeeeesesiiiteeieeeeeeeeaaeeessssssentaeerrereeaeeesanannsnnrnnes 15

Use the appropriate getXXX and setXXX methods for the type............cceevnnee 15

Tune database booting/class 10ading..........occveiieiiiiiieii e 16

Avoid inserts in autocommit mode if POSSIbIE..........coociiiiiiiiii 16

Y (oY g] o U URT TP OPPR 17

Shut down the SYStem ProPerly........c..euuiiiiiiiiieii e 17

Put Derby first in your classpath..........cccccvvivieeiii i 17

Tuning databases and apPliCAtIONS.......iiiiiii i 18
Application and database deSigN ISSUES.......uuuiiiiieieeeeiiiiriiiiieer e e e 18
Avoiding table scans of large tables...........ccooiiiiii 18

Avoiding compiling SQL StatemMENTS........ccoviuiriieiiiiiiee e 20

Shielding users from Derby class-loading events............cccccceviiiiiieciiiiiee e 22
Analyzing statement EXECULIONciiii it 23
Working with RUNTIMeSTatiStICS......oiiiiiiiieiiieie e 23
OVBIVIBW. ..ttt ettt ettt ekt e bt e sk e e kb e e e s hb et e s b e e e ssbe e e nnbe e e snreeesnneeens 23

How you use the RUNTIMESTATISTICS attribute.............cooocciiiiiiieiieeeeeeies 24

Analyzing the INfOrmMation.............uueviiiiie e 24

DML statements and perfOrmManCe........oouueii oot 28
Performance and optimization...........coocuuiiiiiiiiie e 28

Index use and aCCESS PALNS.ooiuiiiiiiiiiie e 28

JOINS aNd PEITOIMEANCE.....ciiii i e e e e e 33

Derby's cost-based optimization.............c..uuuiiiiiiiiiiii e 34

Locking and PerfOrManCe........uuueiiiiieei i a e e ae e 39
Transaction-based |0CK eSCalation............ccccovveeiiieeiiiee e 39

LOCK TABLE StatE@MENL........ccvriiieiiiieiie et 40
Non-cost-based OptiMiZatioNS.......ccueiiiiiiiiie e 40
Non-cost-based sort avoidance (tuple filtering)..........ocoovveiiiiiiiiii e 40

The MIN() and MAX() OptimMIZatioNS...........eeeeiiiiiiiieiiiiiee e 41
Overriding the default optimizer behavior..........ccce 42
Selectivity and cardinality StatiSTICSuuuuiiiiiiiiiiiii e 45
Determinations of rows scanned from disk for atable scan...........ccccceevveenen 45

How the optimizer determines the number of rows in atable...........cccccccoeonns 45
Estimations of rows scanned from disk for an index scan............ccccovcvverneeennn. 45

Copyright

Queries with a known search condition...............c.eeevvviiiiiiniiii s 45
Queries with an unknown search condition.............ccceceiieiiiiiiieeeeeee, 46
Statistics-based versus hard-wired selectivity.........ccccooniiiiiiii 46
Selectivity from cardinality StatiStiCS.......uuuviiiieeiiiiiiiceeecee e 46
Selectivity from hard-wired assumMpPtions..........cccceeeeiveeeeiiiiiiiiiiieeee e 46
What are cardinality StatiStiCS?.....ccoiiiiiiiieeeec e 47
Working with cardinality StatiStiCS.......ccoviiiiiiiiiiiii e 47
When cardinality statistics are automatically updated..............ccoccuvveiiiiiiieeennnns 48
When cardinality StatiSticS go Stale..........cueiiiiiiiiiiiiiiiee e 48
DT o) VA o1 o o =T & A =2 TP PR 49
Scope Of DErbY PrOPertiES. ..o 49
(31T o) VA o1 0] o 1=T 4 A= UUSEPURR 49
derby.authentication.ldap.searchAUuthDN............ccccccoeeiiii i 50
derby.authentication.ldap.searchAuthPW............ccccoeiiiiiii e, 51
derby.authentication.ldap.searchBase...........cccoocuvviiiiiiiiiiinie e 51
derby.authentication.ldap.searcChFilter...........ccccccoiiiiii e 52
derby.authentiCation.ProVIOEN..........cooi it 53
derby.authentiCatioN.SEIVETcooi it 54
derby.connection.require AUtNENtICAtION...........cooiiiiiiiiiiiii e 54
derby.database.defaultConnectionMOode.............cceeeviiiiiiiiiiiiiiieeee e 55
derby.database.forceDatabaseLock...........ccuvveviiieeiiiiiii e 56
derby.database.fUllACCESSUSEIS........uuuiiiiiiiiie e 56
derby.database.propertieSONIY.......c..ueiiiiiiiiiiieie e 57
derby.database.readOnNlYACCESSUSEIS......couiiiiiiiiiiiiiiieeeee e e 57
derby.database.SQIAUINONZAtION.cuviiiiiiiie e 58
derby.infolog.apPENG........cooii e 59
derby.language.logQUEINYPIAN. ... 59
derby.language.logStateMENtTEXL.......uuiiiiie i 60
derby.locks.deadloCKTIMEOUL..........eviiiieeee i e e e e e e 60

(o [T o)V [oTod 1S oY= To | [0 Tl g I = Uo = TSRS 60
derby.locks.escalationThreshold..............coooiiiiiiiiii e 61
derbY.JOCKS. MONITON. ... eeiiiieiieee ettt 62
derby.JoCKS.WAITTIMEOUL.......coiiiiiie it 62
derby.storage.iNitialPages.oooi i 63
derby.storage.minimumRECOrdSIZe..........cccuuiiiiiiiiiie e 63
derby.storage.pageCacheSize.ccoiiiiiiiii i 64
derby.storage.pageReSErVEdSPACE.ccoccvvviiiiiiiiie e 65
derby.StOrage.PAgESIZE.ccce e ettt e e 65
derby.storage.temMpPDIFECIONY.........uviiiiiiiiiee e 66
derby.stream.error.field...........c..oooiiiiiii 67
derby.Stream.error.file..........oouiiii i 67
derby.stream.error.Method.eoiiiiii i 68
derby.stream.error.logSeverityLeVel. ... 68
derby.system.durability.............eeiieiiiiiii e ——— 69
derby.SYStEM.NOME.uiiiiiicice e 70
derby.USEr.USEINGIME. ... e e e e e e e e e e e annnnes 70
Internal language tranSformMatioNS.........ooiiiiii i 72
Predicate transformMationS..... ... 72
BETWEEN transformations..........couiiiiooiiiiiiiiieiieee e 73
LIKE transSfOrmMationsS.c..uuuiiiiieieiaeee ettt e e e e e e e e e eienes 73
Static IN predicate transSformations...........ooceuiiiiiiiiiie s 74

OR tranSfOrMELIONS.uviiiiiiiiiie e snnaee e 75
TrANSIIVE ClOSUIE..ciiiiiiiiii et s e b e e s e e e e ennees 75
Transitive ClosSure 0N JOiN CIAUSES..........uuiiiiiiieeeee e e e e e 75
Transitive Closure on Search CIaUSES...........oooiiiiiiiiiiiiieiiiieee e 76
VIieW tranSfOrmMatioNS. . ..o e 77
VIEW FlATENING. ...t 77
Predicates pushed into views or derived tables..............ccceeiiiiniiiiieee. 77
Subquery processing and transformationS.......cccccoooviiiiiiiiiiiiee e 78

Copyright

MALEHALIZALION.ce it e e 78
Flattening a subquery into a Normal jOiN..........cccuuveiiiiiiiii e 79
Flattening a subquery into an EXISTS JOIN........oooiiiiiiiiiiiiiiiee e 81
Flattening VALUES SUDQUETIES.cccooiiiiiiiiiiiieeee ettt e e ennnes 82
DISTINCT elimination in IN, ANY, and EXISTS subqueries.........cccccccceeereiiinnnns 82
INJANY subguery transformation............ccoooiiiiiiiiiieiiicce e 82
Outer join tranSfOrMatioNS.....oouuiiiii e 83
Yo A= 1Yo o - Vg Yo =T PRSPPI 83
DISTINCT elimination based on a uniqueness condition..............ccccoeevveeeeenenee. 83
Combining ORDER BY and DISTINCTcuutiiiiiiiiiee i esiiie e esivee e 84
Combining ORDER BY and UNION..........ooiiiiiiiiiiiiiieee e 84

FaXo o 1g=To b 1= o] oY od=ror=] [Yo [SRRSO 85
COUNT(NonNUlableColumMN)......uuuiiiiieee e e e 85

LI 16 L= (=T S T PP PRSPPI 86

Copyright
Apache Software FoundationTuning DerbyApache Derby

Copyright

Copyright

Apache Derby

Copyright 2004, 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

Purpose of this guide

This guide, Tuning Derby, explains how to set properties to configure and tune systems,
databases, specific tables and indexes, and queries. This guide also provides
performance tuning tips and an in-depth study of query optimization and performance
issues.

Audience

This book is a reference for Derby users, typically application developers. Derby users
who are not familiar with the SQL standard or the Java programming language will
benefit from consulting books on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Derby Developer's Guide. This book is for users who
want to optimize and tune their application's performance.

How this guide is organized
This guide includes the following sections:
* Working with Derby properties

An overview of how you set properties.
« Performance tips and tricks

Quick tips on how to improve the performance of Derby applications.
« Tuning databases and applications

A more in-depth discussion of how to improve the performance of Derby
applications.

« DML statements and performance

An in-depth study of how Derby executes queries, how the optimizer works, and
how to tune query execution.

« Selectivity and cardinality statistics
« Internal language transformations

Reference on how Derby internally transforms some SQL statements for
performance reasons. Not of interest to the general user.

Copyright

Working with Derby properties

Properties overview

Derby lets you configure behavior or attributes of a system, a specific database, or a
specific conglomerate (a table or index) through the use of properties.

Examples of behavior or attributes that you can configure are:
« Whether to authorize users
» Page size of tables and indexes
« Where and whether to create an error log
« Which databases in the system to boot

Scope of properties
You use properties to configure a Derby system, database, or conglomerate.
« system-wide

Most properties can be set on a system-wide basis; that is, you set a property for
the entire system and all its databases and conglomerates, if this is applicable.
Some properties, such as error handling and automatic booting, can be configured
only in this way, since they apply to the entire system. (For information about the
Derby system, see the Derby Developer's Guide.)

When you change these properties, they affect any tables or indexes created after
this change.

» database-wide

Some properties can also be set on a database-wide basis. That is, the property is
true for the selected database only and not for the other databases in the system
unless it is set individually within each of them.

When you change these properties, they affect any tables or indexes created after
this change.

» conglomerate-specific

Beginning with Derby properties relating to conglomerates cannot be specified as
part of the create-statement for the object. These properties (for example,
derby.storage.pageSize) must be set at the database level prior to executing the
create-statement. These storage-related properties take effect when you create a
table or index, and cannot be changed during the lifetime of the conglomerate

Persistence of properties

A database-wide property always has persistence. That is, its value is stored in the
database. Typically, it is in effect until you explicitly change the property or until you set a
system-wide property with precedence over database-wide properties (see Precedence
of properties).

A system-wide property might have persistence, depending on how you set it. If you set it
programmatically, it persists only for the duration of the JVM of the application that set it.
If you set it in the derby.properties file, a property persists until:

e That value is changed

e The file is removed from the system

« The database is booted outside of that system

Precedence of properties

Copyright

The search order for properties is:
1. System-wide properties set programmatically (as a command-line option to the JVM
when starting the application or within application code)
2. Database-wide properties
3. System-wide properties set in the derby.properties file

This means, for example, that system-wide properties set programmatically override
database-wide properties and system-wide properties set in the derby.properties file, and
that database-wide properties override system-wide properties set in the derby.properties
file.

Protection of database-wide properties

There is one important exception to the search order for properties described above:
When you set the derby.database.propertiesOnly property to true, database-wide
properties cannot be overridden by system-wide properties.

This property ensures that a database's environment cannot be modified by the
environment in which it is booted. Any application running in an embedded environment
can set this property to t r ue for security reasons.

Dynamic versus static properties

Most properties are dynamic; that means you can set them while Derby is running, and
their values change without requiring a reboot of Derby. In some cases, this change
takes place immediately; in some cases, it takes place at the next connection.

Some properties are static, which means changes to their values will not take effect while
Derby is running. You must restart or set them before (or while) starting Derby.

For more information, see Dynamic or static changes to properties.

Ways of setting Derby properties

This section covers the different ways of setting properties.

System-wide properties

You can set system-wide properties programmatically (as a command-line option to the
JVM when starting the application or within application code) or in the text file
derby.properties.

Changing the system-wide properties programmatically

You can set properties programmatically-either in application code before booting the
Derby driver or as a command-line option to the JVM when booting the application that
starts up Derby. When you set properties programmatically, these properties persist only
for the duration of the application. Properties set programmatically are not written to the
derby.properties file or made persistent in any other way by Derby.

Note: Setting properties programmatically works only for the application that starts up
Derby; for example, for an application in an embedded environment or for the application
server that starts up a server product. It does not work for client applications connecting
to a server that is running.

As a parameter to the JVM command line:
You can set system-wide properties as parameters to the JVM command line when
starting up the application or framework in which Derby is embedded.
« IBM Application Developer Kits
With the IBM® SDK, you set JVM system properties by using a -D flag on the Java
command line. For example:

Copyright

java - Dderby. system hone=C: \ hone\ Der b\t/:\T
- Dder by: st or age. pageSi ze=8192 JDBCTest

For other JVMs, see the JVM-specific documentation on setting system properties.

Using a properties object within an application or statement:

In embedded mode, your application runs in the same JVM as Derby, so you can also set
system properties within an application using a Properties object before loading the
Derby JDBC driver. The following example sets derby.system.home on Windows.

Properties = System get Properties();
p. th ("der b?/. syg%/em ho%e", " % \ dat agéses\ sanpl e");

Note: If you pass in a Properties object as an argument to the
DriverManager.getConnection call when connecting to a database, those properties are
used as database connection URL attributes, not as properties of the type discussed in
this book.

Changing the system-wide properties by using the derby.properties file

You can set persistent system-wide properties in a text file called derby.properties, which
must be placed in the directory specified by the derby.system.home property. There
should be one derby.properties file per system, not per database. The file must be
created in the system directory. In a client/server environment, that directory is on the
server. (For more information about a Derby system and the system directory, see "Derby
System" in the Derby Developer's Guide.)

Derby does not:
* Provide this file
« Automatically create this file for you
« Automatically write any properties or values to this file

Instead, you must create, write, and edit this file yourself.

The file should be in the format created by the java.util.Properties.save method.

The following is the text of a sample properties file:

der by. i nf ol og. append=t r ue
der by. st or age. pageSi ze=8192
der by. st or age. pageReser vedSpace=60

Properties set this way are persistent for the system until changed, until the file is
removed from the system, or until the system is booted in some other directory (in which
case Derby would be looking for derby.properties in that new directory). If a database is
removed from a system, system-wide properties do not "travel" with the database unless
explicitly set again.

Verifying system properties

You can find out the value of a system property if you set it programmatically. You cannot
find out the value of a system property if you set it in the derby.properties file.

For example, if you set the value of the der by. st or age. pageSi ze system-wide
property in your program or on the command line, the following code will retrieve its value
from the System Properties object:

Pr oPerti es sprops = System get Properties();
System out . PI‘I ntl n("derby. storage. pageSi ze val ue:
+" sprops. get Property("derby. storage. pageSi ze"));

Database-wide properties

Copyright

Database-wide properties, which affect a single database, are stored within the database
itself. This allows different databases within a single Derby system to have different
properties and ensures that the properties are correctly set when a database is moved
away from its original system or copied.

Note: You should use database-wide properties wherever possible for ease of
deployment.

You set and verify database-wide properties using system procedures within SQL
statements.

To set a property, you connect to the database, create a statement, and then use the
SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY procedure, passing the name of the
property and the value.

To check the current value of a property, you connect to the database, create a
statement, and then use the SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY function,
passing in the name of the property.

If you specify an invalid value, Derby uses the default value for the property.

See the Derby Reference Manual for more information on how to use these system
functions and procedures.

In a client/server environment

In a client/server environment, you must set the system properties for the server's
system. That means when you are using the derby.properties file, the file exists in the
server's derby.system.home directory. Client applications can set database-wide because
they are set via SQL statements. Client applications can set dynamic system-wide
properties in an SQL statement, as shown in the example in Using a properties object
within an application or statement.

Table 1. Summary of ways to set properties

Type of property How you set it

System-wide

« In derby.properties
¢ Programmatically (as a command-line option to the JVM
when starting the application or within application code)

Database-wide

Using system procedures and functions in an SQL statement

Dynamic or static changes to properties

Note: Properties set in the derby.properties file and on the command line of the
application that boots Derby are always static, because Derby reads this file and those
parameters only at startup.
Only properties set in the following ways have the potential to be dynamic:
« As database-wide properties
» As system-wide properties via a Properties object in the application in which the
Derby engine is embedded

See Derbhy properties, for information about specific properties.

Properties case study

Derby allows you a lot of freedom in configuring your system. This freedom can be
confusing if you do not understand how properties work. You also have the option of not
setting any and instead using the Derby defaults, which are tuned for a single-user

10

Copyright

embedded system.

Imagine the following scenario of an embedded environment:

Your system has a derby.properties file, a text file in the system directory, which you
have created and named system_directory. Your databases have also been created in
this directory. The properties file sets the following property:

« derby.storage.pageSize = 8192

You start up your application, being sure to set the derby.system.home property
appropriately:

java - Dderby. system hone=c:\system directory M/App

You then create a new table:

CREATE TABLE tablel (a INT, b VARCHAR(10))

Derby takes the page size of 8192 from the system-wide properties set in the
derby.properties file, since the property has not been set any other way.

You shut down and then restart your application, setting the value of
derby.storage.pageSize to 4096 programmatically, as a parameter to the JVM command
line:

java - Dder by. system honme=c: \system directory

- Dder by’ st or age. Page& ze= 4096 Op
CREATE TABLE anot e (a INT, b AI%CHAR(10))
The page size for the anothertable table will be 4096 bytes.

You establish a connection to the database and set the value of the page size for all new
tables to 32768 as a database-wide property:

Cal | abl eSt atenent cs =

conn. prepareCal | (" CALL SYSCS_UTI L. SYSCS SET_DATABASE PROPERTY(?, ?)");
cs.setString(l, "de b§ st or age. pageSi ze™) ;

cs.setString(2, "32768");

cs. execut e(3J

cs.cl ose();

You then create a new table that automatically inherits the page size set by the property:

CREATE TABLE table2 (a INT, b VARCHAR(10))
The page size for the table2 table is 32768 bytes.

You shut down the application, then restart, this time forgetting to set the system-wide
property programmatically (as a command-line option to the JVM):

java - Dder by. system home=c: \system directory M/App

You then create another table:

CREATE TABLE table4 (a INT, b VARCHAR(10))

Derby uses the persistent database-wide property of 32768 for this table, since the
database-wide property set in the previous session is persistent and overrides the
system-wide property set in the derby.properties file.

What you have is a situation in which three different tables each get a different page size,
even though the derby.properties file remained constant.

Remove the derby.properties file from the system or the database from its current
location (forgetting to move the file with it), and you could get yet another value for a new

11

Copyright
table.

To avoid this situation, be consistent in the way you set properties.

12

Copyright

Performance tips and tricks

This chapter lists tips for improving the performance of your Derby application. For a
more in-depth discussion of performance, see Tuning databases and applications.

The tips

» Use prepared statements with substitution parameters to save on costly compilation
time. Prepared statements using substitution parameters significantly improves
performance in applications using standard statements.

« Create indexes, and make sure they are being used. Indexes speed up queries
dramatically if the table is much larger than the number of rows retrieved.

« Increase the size of the data page cache and prime all the caches.

* Tune the size of database pages. Using large database pages has provided a
performance improvement of up to 50%. There are also other storage parameters
worth tweaking. If you use large database pages, increase the amount of memory
available to Derby.

« Avoid expensive queries.

» Use the appropriate getXXX and setXXX methods for the type.

« Tune database booting/class loading. System startup time can be improved by
reducing the number of databases in the system directory.

« Avoid inserts in autocommit mode if possible. Speed up insert performance.

These tips might solve your particular performance problem. Be sure to visit the Support
section of Derby's Web site for up-to-date performance tips and tricks.

Use prepared statements with substitution parameters

In Derby, as with most relational database management systems, performing an SQL
request has two steps: compiling the request and executing it. When you use prepared
statements (java.sql.PreparedStatement) instead of statements (java.sql.Statement) you
can help Derby avoid unnecessary compilation, which saves time. In general, any query
that you will use more than once should be a prepared statement.

For more information, see Avoiding compiling SQL statements.

Using prepared statements can result in significant performance improvement, depending
on the complexity of the query. More complex queries show greater benefit from being
prepared.

Create indexes, and make sure they are being used

By creating indexes on columns by which you often search a table, you can reduce the
number of rows that Derby has to scan, thus improving performance. Depending on the
size of the table and the number of rows returned, the improvement can be dramatic.
Indexes work best when the number of rows returned from the query is a fraction of the
number of rows in the table.

There are some trade-offs in using indexes: indexes speed up searches but slow down
inserts and updates. As a general rule, every table should have at least a primary key
constraint.

See Always create indexes for more information.

Increase the size of the data page cache

You can increase the size of a database's data page cache, which consists of the data

13

Copyright

pages kept in memory. When Derby can access a database page from the cache instead
of reading it from disk, it can return data much more quickly.

The default size of the data page cache is 1000 pages. In a multi-user environment, or in
an environment where the user accesses a lot of data, increase the size of the cache.
You configure its size with the derby.storage.pageCacheSize property. For more
information about how to set this property and how to estimate memory use, see
derby.storage.pageCacheSize.

Note: Derby can run even with a small amount of memory and even with a small data
page cache, although it might perform poorly. Increasing the amount of memory available
to Derby and increasing the size of the data page cache improve performance.

In addition, you might want to prime all the caches in the background to make queries run
faster when the user gets around to running them.

These caches include:
« The page (user data) cache (described above)

Prime this cache by selecting from much-used tables that are expected to fit into the
data page cache.

» The data dictionary cache

The cache that holds information stored in the system tables. You can prime this
cache with a query that selects from commonly used user tables.

* The statement cache

The cache that holds database-specific Statements (including
PreparedStatements). You can prime this cache by preparing common queries
ahead of time in a separate thread.

Tune the size of database pages

Stick with 4K as the page size (the default, and the size operating systems use) unless:
* You are storing large objects.
* You have very large tables (over 10,000 rows).

For very large tables, large pages reduces the number of I/Os required.
» For read-only applications, use a large page size (for example, 32K) with a
pageReservedSpace of 0.
You might need to experiment with page size to find out what works best for your
application and database.

Performance trade-offs of large pages

Using large database pages benefits database performance, notably decreasing I/O time.
Derby autotunes the database pagesize. If you have long columns, the default pagesize
for the table is set to 32K. Otherwise, the default is 4K. You can change the default
database page size with the derby.storage.pageSize property. For example:

der by. st or age. pageSi ze=8192

Note: Large database pages require more memory.

If row size is large, generally page size should be correspondingly large. If row size is
small, page size should be small. Another rough guideline is to try to have at least 10
average-sized rows per page (up to 32K).

Use a larger page size for tables with large columns or rows. Maximum page size
allowed is 32k.

14

Copyright

However, some applications involve rows whose size will vary considerably from user to
user. In that situation, it is hard to predict what effect page size will have on performance.

If a table contains one large column along with several small columns, put the large
column at the end of the row, so that commonly used columns will not be moved to
overflow pages. Do not index large columns.

Large page size for indexes improves performance considerably.

When large page size does not improve performance:
» Selective Queries

If your application's queries are very selective and use an index, large page size
does not provide much benefit and potentially degrades performance because a
larger page takes longer to read.

When large page size is not desirable:
¢ Limited memory

Large database pages reduce I/O time because Derby can access more data with
fewer 1/Os. However, large pages require more memory. Derby allocates a bulk
number of database pages in its page cache by default. If the page size is large, the
system might run out of memory.

Here's a rough guideline: If the system is running Windows 95 and has more than
32 MB (or Windows NT and has more than 64 MB), it is probably beneficial to use
8K rather than 4K as the default page size.

Use the -mx flag as an optional parameter to the JVM to give the JVM more
memory upon startup.

For example:
java -nx64 nyApp

 Limited disk space

If you cannot afford the overhead of the minimum two pages per table, keep your
page sizes small.

Avoid expensive queries
Some queries can, and should, be avoided. Two examples:

SELECT DI STI NCT nonl ndexedCol FROM HugeTabl e
SELECT * FROM HugeTabl e ORDER BY nonl ndexedCol umm

See Prevent the user from issuing expensive queries.

Use the appropriate getXXX and setXXX methods for the type

For performance reasons, use the recommended getXXX method when retrieving values,
and use the recommended setXXX method when setting values for parameters.

JDBC is permissive. It lets you use java.sql.ResultSet.getFloat to retrieve an int,
java.sgl.ResultSet.getObject to retrieve any type, and so on. (java.sgl.ResultSet and
java.sqgl.CallableStatement provide getXXX methods, and java .sqgl.PreparedStatement
and java.sql.CallableStatement provide setXXX methods.) This permissiveness is
convenient but expensive in terms of performance.

The following table shows the recommended getXXX methods for given java.sql (JDBC)

15

Copyright

types, and their corresponding SQL types.
Table 2. Mapping of java.sql.Types to SQL types

Recommended getXXX Method java.sql.Types SQL types
getlLong BIGINT BIGINT
getBytes BINARY CHAR FOR BIT DATA
getBlob BLOB BLOB
getString CHAR CHAR
getClob CLOB CLOB
getDate DATE DATE
getBigDecimal DECIMAL DECIMAL
getDouble DOUBLE DOUBLE PRECISION
getDouble FLOAT DOUBLE PRECISION
getint INTEGER INTEGER
getBinaryStream LONGVARBINARY LONG VARCHAR FOR BIT DATA
getAsciiStream, getUnicodeStream | LONGVARCHAR LONG VARCHAR
getBigDecimal NUMERIC DECIMAL
getFloat REAL REAL
getShort SMALLINT SMALLINT
getTime TIME TIME
getTimestamp TIMESTAMP TIMESTAMP
getBytes VARBINARY VARCHAR FOR BIT DATA
getString VARCHAR VARCHAR
None supported. You must use SQLXML XML
XMLSERIALIZE and then the
corresponding getXXX method.

Tune database booting/class loading

By default, Derby does not boot databases (and some core Derby classes) in the system
at Derby startup but only at connection time. For multi-user systems, you might want to
reduce connection time by booting one or all databases at startup instead.

For embedded systems, you might want to boot the database in a separate thread (either
as part of the startup, or in a connection request).

For more information, see Shielding users from Derby class-loading events.

Avoid inserts in autocommit mode if possible
Inserts can be painfully slow in autocommit mode because each commit involves an
update of the log on the disk for each INSERT statement. The commit will not return until
a physical disk write is executed. To speed things up:
* Run in autocommit false mode, execute a number of inserts in one transaction, and
then explicitly issue a commit.
« If your application allows an initial load into the table, you can use the import
procedures to insert data into a table. Derby will not log the individual inserts when
loading into an empty table using these interfaces. See the Derby Tools and Utilities

16

Copyright
Guide Guide for more information on the import procedures.

More tips

Shut down the system properly

Derby features crash recovery that restores the state of committed transactions in the
event that the database exits unexpectedly, for example during a power failure. The
recovery processing happens the next time the database is started after the unexpected
exit. Your application can reduce the amount of work that the database has to do to start
up the next time by shutting it down in an orderly fashion. See "Shutting Down Derby or
an Individual Database" in the Derby Developer's Guide.

The Derby utilities all perform an "orderly" shutdown.

Put Derby first in your classpath

The structure of your classpath can affect Derby startup time and the time required to
load a particular class.

The classpath is searched linearly, so locate Derby's libraries at the beginning of the
classpath so that they are found first. If the classpath first points to a directory that
contains multiple files, booting Derby can be very slow.

17

Copyright

Tuning databases and applications

Performance tips and tricks, provided some quick tips for improving performance. This
chapter, while covering some of the same ground, provides more background on the
basic design issues for improving performance. It also explains how to work with
RunTimeStatistics.

Application and database design issues

Things that you can do to improve the performance of Derby applications fall into three
categories.

Avoiding table scans of large tables

Derby is fast and efficient, but when tables are huge, scanning tables might take longer
than a user would expect. It's even worse if you then ask Derby to sort this data.

Things that you can do to avoid table scans fall into two categories.
Always create indexes

Have you ever thought what it would be like to look up a phone number in the phone
book of a major metropolitan city if the book were not indexed by name? For example, to
look up the phone number for John Jones, you could not go straight to the J page. You
would have to read the entire book. That is what a table scan is like. Derby has to read
the entire table to retrieve what you are looking for unless you create useful indexes on
your table.

Create useful indexes:

Indexes are useful when a query contains a WHERE clause.

Without a WHERE clause, Derby is supposed to return all the data in the table, and so a
table scan is the correct (if not desirable) behavior. (More about that in Prevent the user
from issuing expensive queries.)

Derby creates indexes on tables in the following situations:
* When you define a primary key, unique, or foreign key constraint on a table. See
"CONSTRAINT clause" in the Derby Reference Manual for more information.
« When you explicitly create an index on a table with a CREATE INDEX statement.

For an index to be useful for a particular statement, one of the columns in the statement's
WHERE clause must be the first column in the index's key.

Note: For a complete discussion of how indexes work and when they are useful, see
What is an index? and Index use and access paths.

Indexes provide some other benefits as well:
« If all the data requested are in the index, Derby does not have to go to the table at
all. (See Covering indexes.)
 For operations that require a sort (ORDER BY), if Derby uses the index to retrieve
the data, it does not have to perform a separate sorting step for some of these
operations in some situations. (See About the optimizer's choice of sort avoidance.)
Note: Derby does not support indexing on columns with data types like BLOB, CLOB,
and XML.

Make sure indexes are being used, and rebuild them:

If an index is useful for a query, Derby is probably using it. However, you need to make
sure. Analyze the way Derby is executing your application's queries. See Analyzing
statement execution for information on how to do this.

18

Copyright

In addition, over time, index pages fragment. Rebuilding indexes improves performance
significantly in these situations. To rebuild an index, drop it and then re-create it.

Think about index order:

Derby allows you to create index columns in descending order in addition to creating
them in ascending order, the default. Descending indexes provide performance benefits
for the following kinds of queries that require sorting data in descending order.

To ensure performance benefits, verify that the descending index is being used. See
Analyzing statement execution for information on how to do this.

Think about join order:
For some queries, join order can make the difference between a table scan (expensive)
and an index scan (cheap). Here's an example:

sel ect ht.hotel _id, ha.stay date, ht.depart_tine
fromhoteis ht, Hotelavallaﬁlllty ha

where ht.hotel _id = ha.hotel id and

ht . r oom nunber ~= ha room nunber

ang ht . bed_type = 'Kl NIG

an

ht . snoKi ng room =
or der by ha. stay_date

If Derby chooses Hotels as the outer table, it can use the index on Hotels to retrieve
qualifying rows. Then it need only look up data in HotelAvailability three times, once for
each qualifying row. And to retrieve the appropriate rows from HotelAvailability, it can use
an index for HotelAvailability's hotel_id column instead of scanning the entire table.

If Derby chooses the other order, with HotelAvailability as the outer table, it will have to
probe the Hotels table for every row, not just three rows, because there are no
qualifications on the HotelAvailability table.

For more information about join order, see Joins and performance.

Derby usually chooses a good join order. However, as with index use, you should make
sure. Analyze the way Derby is executing your application's queries. See Analyzing
statement execution for information on how to do this.

Decide whether a descending index would be useful:

Derby allows you to create an index that uses the descending order for a column. Such
indexes improve the performance of queries that order results in descending order or that
search for the minimum or maximum value of an indexed column. For example, both of
the following queries could benefit from indexes that use descending ordering:

-- woul d benefit froman index |ike this:

-- CREATE | NDEX c_i d_desc ON Otlte_s(mtg i d DESC)

SELECT * FROM Cities ORDER BY mtx_ld DESC

-- woul d benefit froman index |ike this:

-- CREATE INDEX f_nmiles desc on Flights(m|es DESC)

SELECT MAX(il es) FROM Fl i ght

-- would benefit froman index |ike this:) .)
b-ESSREATE INDEX arrival _time_desc ON Flights(dest_airport, arrive_tine
SELECT * FROM Fl i ghts WHERE dest _airport = "'LAX

ORDER BY ARRI VAL SC

Prevent the user from issuing expensive queries

Some applications have complete control over the queries that they issue; the queries
are built into the applications. Other applications allow users to construct queries by filling
in fields on a form. Any time you let users construct ad-hoc queries, you risk the
possibility that the query a user constructs will be one like the following:

SELECT * FROM Extrenel yHugeTabl e
ORDER BY unl ndexedCol um

19

Copyright

This statement has no WHERE clause. It will require a full table scan. To make matters
worse, Derby will then have to order the data. Most likely, the user does not want to
browse through all 100,000 rows, and does not care whether the rows are all in order.

Do everything you can to avoid table scans and sorting of large results (such as table
scans).

Some things you can do to disallow such runaway queries:

» Use client-side checking to make sure some minimal fields are always filled in.
Eliminate or disallow queries that cannot use indexes and are not optimizable. In
other words, force an optimizable WHERE clause by making sure that the columns
on which an index is built are included in the WHERE clause of the query. Reduce
or disallow DISTINCT clauses (which often require sorting) on large tables.

 For queries with large results, do not let the database do the ordering. Retrieve data
in chunks (provide a Next button to allow the user to retrieve the next chunk, if
desired), and order the data in the application.

e Do not use SELECT DISTINCT to populate lists; instead, maintain a separate table
of the unique items.

Avoiding compiling SQL statements

When you submit an SQL statement to Derby, Derby compiles and then executes the
statement. Compilation is a time-consuming process that involves several steps,
including optimization, the stage in which Derby makes its statement execution plan. A
statement execution plan includes whether to use an index, the join order, and so on.

Unless there are significant changes in the amount of data in a table or new or deleted
indexes, Derby will probably come up with the same statement execution plan for the
same statement if you submit it more than once. This means that the same statements
should share the same plan, and Derby should not recompile them. Derby allows you to
ensure this in the following ways (in order of importance):

Using the statement cache
The statement cache is enabled by default. You can use it to avoid extra compilation
overhead:

* Your application can use PreparedStatements instead of Statements.

PreparedStatements are JDBC objects that you prepare (compile) once and
execute multiple times. (See Figurel.) If your application executes statements that
are almost but not exactly alike, use PreparedStatements, which can contain
dynamic or IN parameters. Instead of using the literals for changing parameters,
use question marks (?) as placeholders for such parameters. Provide the values
when you execute the statement.

Derby supports the ParameterMetaData interface, new in JDBC 3.0. This interface
describes the number, type, and properties of prepared statement parameters. See the
Derby Developer's Guide for more information.

Figure 1. A connection need only compile a PreparedStatement once
Subsequent executions can use the same statement execution plan even if the
parameter values are different. (PreparedStatements are not shared across connections.)

20

Copyright
—— One Connection ——

mulliple execulions R e "
of the same ! ™
Prepared Statement o _______________ >
!
"""""""" Prepared Per-dalabase

Statermnant object statement cache

< Even if your statement uses Statements instead of PreparedStatements, Derby can
reuse the statement execution plan for the statements from the statement cache.
Statements from any connection can share the same statement execution plan,
avoiding compilation, by using the single-statement cache. The statement cache
maintains statement plans across connections. It does not, however, maintain them
across reboots. (See A database can reuse a statement execution plan when the
SQL text matches a prior statement exactly.)

When, in the same database, an application submits an SQL Statement that exactly
matches one already in the cache, Derby grabs the statement from the cache, even
if the Statement has already been closed by the application.

To match exactly with a statement already in the cache, the SQL Statement must
meet the following requirements:

* The text must match exactly

* The current schema must match

« The unicode flag that the statement was compiled under must match the
current connection's flag

Note: Remember that if your application executes statements that are almost but not
exactly alike, it is more efficient to use PreparedStatements with dynamic or IN
parameters.

Figure 2. A database can reuse a statement execution plan when the SQL text matches a prior statement exactly
(PreparedStatements are much more efficient.)

21

Copyright

SELECT * FROM B
mytable > . b
WHERE id= 7 Connection One >
bommmoes - [Iy =
SELECT * FROM] .
mytable =~ 0000 7T *
WHERE id = 2 Connection Twe Statermant Cache
I g
® L Each database has
SELECT * FROM e its own staternent cache
mytable
WHERE id="7 Statermant
Ohjacts

Darby must compile a statarmant aach ime you sxacula i wiliss
axactly the same statemant is already in the siatement cachs.

Shielding users from Derby class-loading events

JVMs tend to load classes as they are needed, which means the first time you need a
class in a piece of software, it takes longer to use.

Derby has three clear cases when a lot of class loading occurs:
* When the system boots

The system boots when you load the embedded driver,
org.apache.derby.jdbc.EmbeddedDriver. In a server framework, the system boots
when you start the server framework. Booting Derby loads basic Derby classes.

* When the first database boots

Booting the first database loads some more Derby classes. The default behavior is
that the first database boots when the first connection is made to it. You can also
configure the system to boot databases at startup. Depending on your application,
one or the other might be preferable.

* When you compile the first query

Compiling the first query loads additional classes.

For any of these events, you can control the impact they have on users by starting them
in separate threads while other tasks are occurring.

In addition, if you are using PreparedStatements, prepare them in a separate thread in
the background while other tasks are occurring.

Tuning tips for multi-user systems
» For concurrency, use row-level locking and the READ_COMMITTED isolation level.
» For read-only applications, use table-level locking and the READ_COMMITTED isolation level.
» Boot databases at startup to minimize the impact of connecting.

22

Copyright

Tuning tips for single-user systems

» Derby boots when you first load the embedded JDBC driver
(org.apache.derby.jdbc.EmbeddedDriver). Load this driver during the least time-sensitive portion of
your program, such as when it is booting or when you are waiting for user input. For server
frameworks, the driver is loaded automatically when the server boots.

» Boot the database at connection (the default behavior), not at startup. Connect in a background
thread if possible.

e Turn off row-level locking and use READ_COMMITTED isolation level.

Analyzing statement execution

After you create indexes, make sure that Derby is using them. In addition, you might also
want to find out the join order Derby is choosing.

A general plan of attack for analyzing your application's SQL statements:

1. Collect your application's most frequently used SQL statements and transactions
into a single test.

2. Create a benchmark test suite against which to run the sample queries. The first
thing the test suite should do is checkpoint data (force Derby to flush data to disk).
You can do that with the following JDBC code:

Cal | abl eSt at enent cs = connbﬁre areCal |

(" CALL SYSCS UTI L. SYSCS_CHECKPO NT_DATABASE() ") ;
cs. execute();

cs.close();

3. Use performance timings to identify poorly performing queries. Try to distinguish
between cached and uncached data. Focus on measuring operations on uncached
data (data not already in memory). For example, the first time you run a query,
Derby returns uncached data. If you run the same query immediately afterward,
Derby is probably returning cached data. The performance of these two otherwise
identical statements varies significantly and skews results.

4. Use RunTimeStatistics to identify tables that are scanned excessively. Check that
the appropriate indexes are being used to satisfy the query and that Derby is
choosing the best join order. You can also set derby.language.logQueryPlan to true
to check whether indexes are being used or not. This property will is print query
plans in the derby.log file. See derby.language.logQueryPlan, as well as Working
with RunTimeStatistics for more information.

5. Make any necessary changes and then repeat.

6. If changing data access does not create significant improvements, consider other
database design changes, such as denormalizing data to reduce the number of
joins required. Then review the tips in Application and database design issues.

Working with RunTimeStatistics

Derby provides a language-level tool for evaluating the performance and the execution
plans of statements, the RUNTIMESTATISTICS attribute.

Overview

When RUNTIMESTATISTICS is turned on for a connection, Derby maintains information
about the execution plan for each statement executed within the connection (except for
COMMIT) until the attribute is turned off.

For the most recently executed query, RUNTIMESTATISTICS returns information about;
« the length of the compile time and the execute time.

23

Copyright

This can help in benchmarking queries.
« the statement execution plan.

This is a description of result set nodes, whether an index was used, what the join
order was, how many rows qualified at each node, and how much time was spent in
each node. This information can help you determine whether you need to add
indexes or rewrite queries.

The exact details presented, as well as the format of presentation, can change.

How you use the RUNTIMESTATISTICS attribute
e To use the RUNTIMESTATISTICS attribute ini j , turn on and off
RUNTIMESTATISTICS using the
SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS() system procedure (see the
Derby Reference Manual for more information):

-- turn on RUNTI MESTATI STI CS for connect

CALL SYSCS_UTI L. SYSCS_SET RUNTINESTATISTICS(1);

-- execute conplex query here -- step through the result set
-- access runtine statistics infornmation:

VALUES SYSCS UTI L. SYSCS_GET RUNTI MESTATI STI CS() ;

CALL SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS(0) ;

» Turn on statistics timing using the
SYSCS_UTI L. SYSCS_SET_STATI STI CS_TI M NG system procedure (see the
Derby Reference Manual for more information). If you do not turn on statistics
timing, you will see the statement execution plan only, and not the timing
information.

CALL SYSCS UTI L. SYSCS SET RUNTI MESTATI STI CS(1) ;
CALL SYSCS_UTI L. SYSCS_SET_STATI STICS_TI M ;

Although the syntax is different, the basic steps for working with RUNTIMESTATISTICS
are the same in a Java program.

If you are working in i j , set the display width to 5000 or another high number:

Maxi munDi spl ayW dt h 5000

Analyzing the information
Statistics timing

If you are using statistics timing, RUNTIMESTATISTICS provides information about how
long each stage of the statement took. An SQL statement has two basic stages within
Derby: compilation and execution. Compilation is the work done while the statement is
prepared. Compilation is composed of the following stages: parsing, binding,
optimization, and code generation. Execution is the actual evaluation of the statement.

Statement execution plan

RUNTIMESTATISTICS also provides information about the statement execution plan.
The statement execution plan shows how long each node took to evaluate, how many
rows were retrieved, whether an index was used, and so on. If an index was used, it
shows the start and stop positions for the matching index scan. Looking at the plan can
help you determine whether to add an index or to rewrite the query.

A statement execution plan is composed of a tree of result set nodes. A result set node

represents the evaluation of one portion of the statement; it returns rows to a calling (or
parent) node and can receive rows from a child node. A node can have one or more

24

Copyright

children. Starting from the top, if a node has children, it requests rows from the children.
Usually only the execution plans of DML statements (queries, inserts, updates, and
deletes, not dictionary object creation) are composed of more than one node.

For example, consider the following query:

SELECT * FROM Countri es

This simple query involves one node only-reading all the data out of the Countries table.
It involves a single node with no children. This result set node is called a Table Scan
ResultSet. RUNTIMESTATISTICS text for this node looks something like this:

St at emrent Nane:

nu
Statement Text: .
~select * fromcountries
Parse Tinme: 20
Bi nd Tine: 10
Optimze Tinme: 50
Cenerate Tinme: 20
Conpi l e Time: 100
Execute Tine: 10)
Begl n Q)_IT‘PI | ation Tinmestanp : 2005-05-25 09:16: 21. 24
End_ Conpil ation Tinmestanp : 2005-05-25 09: 16: 21. 34
Begi n Execution Tinestanp : 2005-05-25 09: 16: 21. 35
End Execution Tinmestanp : 2005-05-25 09: 16: 21. 4
Statenment Execution Plan Text: . . .
Tabl e Scan ResultSet for COUNTRIES at read conmitted isol ation
| evel using instntaneous share row
| ocki ng chosen by the optim zer
Nunmber “of opens = 1
Rows seen = 114
Rows filtered = O
Fetch Size = 16

constructor time (mlliseconds) = 0
open time (mlliseconds) =0

next time (mlliseconds) = 10

close time (ml I i seconds) = 0

next tinme i Sw mlliseconds/row = 0
scan infornmation:
Bit set of colums fetched=All
Nurmber of col umms_ fet ched=3
Nurmber of pages visited=3
Nurmber of rows qualified=114
Nunmber of rows visited=114
Scan type=heap
start position:

nul | stop_ position:

nul | qualitiers:

None o)
optim zer estimated row count: 119. 00
optim zer estimated cost: 69. 35

Consider this second, more complex query:

SELECT Country
FROM Countri es)
VWHERE Regi on = 'Central Anerica'

When executed, this query involves two nodes- one to retrieve qualifying rows (the
restriction is done at this node) and one to project the requested columns. So, at bottom,
there is a TableScanResultSet for scanning the table. The qualifier (Region = 'Central
America’) is evaluated in this node. These data are passed up to the parent node, called
a Project-Restrict ResultSet, in which the rows are projected-only the country column is
needed (the first column in the table). RUNTIMESTATISTICS text for these two nodes
looks something like this:

St at ement Nane:

nu

St at ement Text : .) .
SELECT Country FROM Countries WHERE Regi on = 'Central America'

Parse_Time: 10

Bind Tinme: O

Optimze Time: 370

25

Copyright

Generate Tine: 10

Conpi | e Ti me: 390

Execute Ti me:

Be in OorrPl I atl on Tinestanp : 2005-05-25 09:20:41. 274

ation Timestanp 0 2005- 05- 25 09: 20: 41. 664
8| n Executl on Tinestanp : 2005-05-25 09:20:41.674
Execution Tinmestanp : 2005- 05- 25 09: 20: 41. 674

St atement Execution Pl an Text:

Project-Restrict ResultSet (2):

Nunber of opens = 1

Rows seen = 6

Rows filtered = 0O
restriction = fal se
proj ection = true . L
constructor time (mlliseconds) = 0
open time (mlliseconds) =0
next time (mlliseconds) =0
close time (mlliseconds) =0
restriction time (mlliseconds) = 0
projection tine (mlliseconds) = 0
opt1mi zer estimated row count: 11. 90
optim zer estimated cost: 69. 35

Source result set: i]]
I I Tabl e Scan ResultSet for COUNTRIES at read conmitted isolation
eve

usi ng i nstantaneous share row | ocki ng chosen by the optim zer
Nunber of opens =1
Rows seen =
Rows flltered =0
Fetch Size = 16

constructor time (mlliseconds) = 0
open time (mlliseconds) = 10

next time (mlliseconds) =0

close time (mlliseconds) =0

next time in mlliseconds/row = 0

scan i nfornation:
Bit set of colums fetched={0, 2}
Nurmber of col umms_ fet ched=2
Number of pages visited=3
Nurmber of rows qualified=6
Nurmber of rows visited=114
Scan type=heap
start position:

nul | sto osition:
nul | qua iers:
Col urm[O] [0] Id:

Qper at

Ordered nulls: false
Unknown return value: fals
Negat e conpari son result fal se

optim zer estimated row count: 11. 90
optim zer estimated cost: 69. 35

Other, more complex queries such as joins and unions have other types of result set
nodes.

For inserts, updates, and deletes, rows flow out of the top, where they are inserted,
updated, or deleted. For selects (queries), rows flow out of the top into a result set that is
returned to the user.

The Derby Reference Manual shows the many possible ResultSet nodes that might
appear in an execution plan.

In addition, read DML statements and performance, for more information about some of
the ways in which Derby executes statements.

Optimizer estimates

RUNTIMESTATISTICS show the optimizer estimates for a particular node. They show
the optimizer's estimated row count and the optimizer's "estimated cost."

The estimated row count is the query optimizer's estimate of the number of qualifying
rows for the table or index for the entire life of the query. If the table is the inner table of a

26

Copyright

join, the estimated row count will be for all the scans of the table, not just for a single
scan of the table.

The estimated cost consists of a number, which is a relative number; it does not
correspond directly to any time estimate. It is not, for example, the number of
milliseconds or rows. Instead, the optimizer constructs this number for each possible
access path. It compares the numbers and chooses the access path with the smallest
number.

Optimizer overrides

RUNTIMESTATISTICS provides information about user-specified optimizer hints that
were specified by using a -- DERBY-PROPERTIES clause.

The following example shows a SELECT statement in which the optimizer was forced to
use a particular index:

SELECT * FROM t1 -- DERBY- PROPERTIES index = tl1l_cl
FOR UPDATE OF c2, cl

RUNTIMESTATISTICS returns the following information about this statement:

St at emrent Nane:

nul |
Statenent Text: select * fromtl --DERBY- PROPERTIES index = tl1_cl
for update of c2, cl

Par se Ti me: 0

Execute Ti me:
8| nPllatlon Ti mestanp : nul |

ilation Timestanp : null

Be in Executlon Ti mest anp : nul |

End Execution Timestanp : II

St at ement Execution Pl an T

| ndex Row to Base Row ResuItSet for T1:

Nurmber of opens =1

Rows seen = 4

Col unns accessed from heaP io, 1, 2?
constructor time (mlliseconds) =0
open time (mlliseconds) =0
next tine | I i seconds) = 0

close tine (mlliseconds) = O
User supplied optim zer overrides on Tl are {

i ndex=T1_C1 }]]
. . Index Scan ResultSet for T1 using index T1_Cl at read
conmitted isolation |evel)) L
usi ng excl usi ve row | ocki ng chosen by the optim zer
Nunber of opens =1
Rows seen = 4
Rows filtered = 0
Fetch Size = 1

constructor time (mlliseconds) = 0
open time (mlliseconds) =0
next time (mlliseconds) =0
close time (mlliseconds) =0

. . next time in mlliseconds/row = 0

scan information:

Bit set of columms fetched=All
Nurmber of col umms fetched=2
Nurmber of del eted rows visited=0
Nurmber of pages visited=1
Nurmber of rows qualified=4
Nunmber of rows visited=4

Scan type=btree

Tree hel ght=1

start position:
None

stop position:
None

qualifiers:
None

27

Copyright

DML statements and performance

Performance and optimization

A DBMS often has a choice about the access path for retrieving data. For example, the
DBMS can use an index (fast lookup for specific entries) or scan the entire table to
retrieve the appropriate rows. In addition, in statements in which two tables are joined,
the DBMS can choose which table to examine first (join order) and how to join the tables
(join strategy). Optimization means that DBMS makes the best (optimal) choice of access
paths, join order, and join strategy. True query optimization means that the DBMS will
usually make a good choice regardless of how the query is written. The optimizer does
not necessarily make the best choice, just a good one.

Derby can use indexes to improve the performance of DML (data manipulation language)
statements such as queries, updates, and deletes. The query optimizer can make
decisions about whether to use an index for a particular table (access path) and also
makes decisions about join order, type of join, and a few other matters.

This section gives an overview of the Derby optimizer and discusses performance issues
in the execution of DML statements.

Index use and access paths

If you define an index on a column or columns, the query optimizer can use the index to
find data in the column more quickly. Derby automatically creates indexes to back up
primary key, foreign key, and unique constraints, so those indexes are always available
to the optimizer, as well as those that you explicitly create with the CREATE INDEX
command. The way Derby gets to the data-via an index or directly via the table-is called
the access path.

What is an index?

An index is a database structure that provides quick lookup of data in a column or
columns of a table.

For example, a Flights table in a travelDB database has three indexes:
« An index on the orig_airport column (called Origindex)
* An index on the dest_airport column (called Destindex)
« An index enforcing the primary key constraint on the flight_id and segment_number
columns (which has a system-generated name)

This means there are three separate structures that provide shortcuts into the Flights
table. Let's look at one of those structures, Origindex.

Origindex stores every value in the orig_airport column, plus information on how to
retrieve the entire corresponding row for each value.
» For every row in Flights, there is an entry in Origindex that includes the value of the
orig_airport column and the address of the row itself. The entries are stored in
ascending order by the orig_airport values.

When an index includes more than one column, the first column is the main one by which
the entries are ordered. For example, the index on (flight_id, segment_number) is
ordered first by flight_id. If there is more than one flight_id of the same value, those
entries are then ordered by segment_number. An excerpt from the entries in the index
might look like this:

[y

[ENENEN
QW
N RN

28

Copyright

Indexes are helpful only sometimes. This particular index is useful when a statement's
WHERE clause is looking for rows for which the value of orig_airport is some specific
value or range of values. SELECTSs, UPDATEs, and DELETESs can all have WHERE
clauses.

For example, Origindex is helpful for statements such as the following:

SELECT *
FROM Fl i ghts.
VWHERE or i g_airport

SELECT *
FROM Fl i ght's.
WHERE orig_airport < 'BBB

SELECT *
FROM Fl i ghts
WHERE orig_airport >= 'MW

' SFO

DestIndex is helpful for statements such as the following:

SELECT *
FROM Fl i ghts
WHERE desSt _airport = 'SCL'

The primary key index (on flight_id and segment_number) is helpful for statements such
as the following:

SELECT *

FROM I|gh s

WHERE flight_id = 'AA1111"

SELECT *

FROM Fl i ght's

WHERE flight_i d BETWEEN ' AA1111' AND ' AA1115'

SELECT *)

RO\/I Flight Availability AS fa, Flights AS fts
I NT_DATE

AND

ligh
WHERE f IPht date>
fts. f
AND fts. se

ht id = fa. fllgﬁt_id
gmen’[" nunber fa. segnent _nunber

The next section discusses why the indexes are helpful for these statements but not for
others.

What's optimizable?

As you learned in the previous section, Derby might be able to use an index on a column
to find data more quickly. If Derby can use an index for a statement, that statement is
said to be optimizable. The statements shown in the preceding section allow Derby to
use the index because their WHERE clauses provide start and stop conditions. That is,
they tell Derby the point at which to begin its scan of the index and where to end the
scan.

For example, a statement with a WHERE clause looking for rows for which the
orig_airport value is less than BBB means that Derby must begin the scan at the
beginning of the index; it can end the scan at BBB. This means that it avoids scanning
the index for most of the entries.

An index scan that uses start or stop conditions is called a matching index scan.

Note: A WHERE clause can have more than one part. Parts are linked with the word
AND or OR. Each part is called a predicate. WHERE clauses with predicates joined by
OR are not optimizable. WHERE clauses with predicates joined by AND are optimizable
if at least one of the predicates is optimizable. For example:

SELECT * FROM Fli ghts
WHERE flight_id ="' AA1111' AND
segnment _nunber <> 2

29

Copyright

In this example, the first predicate is optimizable; the second predicate is not. Therefore,
the statement is optimizable.

Note: In a few cases, a WHERE clause with predicates joined by OR can be transformed
into an optimizable statement. See OR transformations.

Directly optimizable predicates:
Some predicates provide clear-cut starting and stopping points. A predicate provides start
or stop conditions, and is therefore optimizable, when:

* It uses a simple column reference to a column (the name of the column, not the

name of the column within an expression or method call). For example, the
following is a simple column reference:

VWHERE orig_airport = 'SFO
The following is not:

WHERE | ower (orig_airport) = 'sfo'

It refers to a column that is the first or only column in the index.

References to contiguous columns in other predicates in the statement when there
is a multi-column index can further define the starting or stopping points. (If the
columns are not contiguous with the first column, they are not optimizable
predicates but can be used as qualifiers.) For example, given a composite index on
FlightAvailability (flight_id, segment_number, and flight_date), the following
predicate satisfies that condition:

WHERE flight _id = 'AA1200° AND segnent _nunber = 2
The following one does not:

WHERE flight_id = ' AAL1200' AND flight _date = CURRENT DATE

The column is compared to a constant or to an expression that does not include
columns in the same table. Examples of valid expressions: other_table.column_a, ?
(dynamic parameter), 7+9. The comparison must use the following operators:

o =
.

o <=
o >

o >=
e IS NULL

Indirectly optimizable predicates:

Some predicates are transformed internally into ones that provide starting and stopping
points and are therefore optimizable.

Predicates that use the following comparison operators can be transformed internally into
optimizable predicates:

 BETWEEN

* LIKE (in certain situations)

* IN (in certain situations)

For details on these and other transformations, see Internal language transformations.

Joins:

Joins specified by the JOIN keyword are optimizable. This means that Derby can use an
index on the inner table of the join (start and stop conditions are being supplied implicitly
by the rows in the outer table).

Note that joins built using traditional predicates are also optimizable. For example, the
following statement is optimizable:

30

Copyright

SELECT * FROM Countries, Cities o
WHERE Countries.country | SO code = Cities.country_| SO code

Covering indexes

Even when there is no definite starting or stopping point for an index scan, an index can
speed up the execution of a query if the index covers the query. An index covers the
query if all the columns specified in the query are part of the index. These are the
columns that are all columns referenced in the query, not just columns in a WHERE
clause. If so, Derby never has to go to the data pages at all, but can retrieve all data
through index access alone. For example, in the following queries, Origindex covers the

query:

SELECT OI’I? _airport
FROM Fl i gh

SELECT DI STINCT | ower (orig_airport) FROM Flights
FROM Fl i ght's

Derby can get all required data out of the index instead of from the table.

Note: If the query produces an updatable result set, Derby will retrieve all data from the
data pages even if there is an index that covers the query.
Single-column index examples:

The following queries do not provide start and stop conditions for a scan of Origindex, the
index on the orig_airport column in Flights. However, some of these queries allow Derby
to do an index rather than a table scan because the index covers the query.

- - Derb%/ woul d scan entire table; conparison is not with a
constant or with a colum in another table

SELECT *

FROM Fl i ght's.

V\HERE orlg airport = dest_airport) o

¥ woul d s can entire table; <> operator is not optimzable

SELECT

FROM Fl i ght s

VWHERE OI’IP airport <> 'SFO
-- not valTd operator for matchl ng i ndex scan
-- However, Derby would do an index
-- rather than a table scan because
-- index covers query
SELECT OI’I%] ai rport
FROM Fl i ght's
WHERE orig_airport <> 'SFO
-- use of "a function is not sinple columm reference
-- Derby would scan entire index, but not table
E ndex covers query)
SEL CT orl%; _airport
FROM Fl i ght's
VWHERE | ower (orig_airport) = 'sfo

Multiple-column index example:

The following queries do provide start and stop conditions for a scan of the primary key
index on the flight_id and segment_number columns in Flights:

-- the where clause conpares both colums with valid
%Trators to constants
SELE

FROM Fl i ght's

VWHERE flight_id = 'AA1115'

AND segnent nunber < 2

-- the first colum is in a valid conparison

SELECT *

FROM Fl i ghts

VWHERE flight_id < 'BB o
-- LIKE is transformed into >= and <=, providing
-- start and stop conditions

SELECT *

FROM Fl i ght's

VWHERE flight_id LIKE ' AA%

31

Copyright

The following queries do not:

-- segnent_nunber is in the index, but it's not the first colum;
-- there's no logical starting and stopping pl ace

SELECT *

FROM Fl i ght's

WHERE segnent _nunber = 2])

-- Derby woul'd scan entire table; conparison of first colum

-- is not with a constant or colum in another table

-- and no covering index applies

SELECT *

FROM Fl i ght's.
WHERE orig_airport

= dest _airport
AND segnment _nunber < 2

Useful indexes can use qualifiers

Matching index scans can use qualifiers that further restrict the result set. Remember that
a WHERE clause that contains at least one optimizable predicate is optimizable.
Nonoptimizable predicates can be useful in other ways.

Consider the following query:

SELECT *

FROM FLI GHTS,

WHERE orig_airport < 'BBB
AND orig_arrport <> 'AKL'

The second predicate is not optimizable, but the first predicate is. The second predicate
becomes a qualification for which Derby evaluates the entries in the index as it traverses
it.

» The following comparisons are valid qualifiers:

o <
o <=
« >
o >=
* IS NULL
« BETWEEN
e LIKE
o <>
* ISNOT NULL
« The qualifier's reference to the column does not have to be a simple column
reference; you can put the column in an expression.
» The qualifier's column does not have to be the first column in the index and does
not have to be contiguous with the first column in the index.

When atable scan Is better

Sometimes a table scan is the most efficient way to access data, even if a potentially
useful index is available. For example, if the statement returns virtually all the data in the
table, it is more efficient to go straight to the table instead of looking values up in an
index, because then Derby is able to avoid the intermediate step of retrieving the rows
from the index lookup values.

For example:

SELECT *
FROM Fl i ghts.
WHERE dest _airport < 'Z

In the Flights table, most of the airport codes begin with letters that are less than Z.
Depending on the number of rows in the table, it is probably more efficient for Derby to go
straight to the table to retrieve the appropriate rows. However, for the following query,
Derby uses the index:

SELECT *
FROM Fl i ghts

32

Copyright

VWHERE dest _airport < 'B

Only a few flights have airport codes that begin with a letter less than B.

Indexes have a cost for inserts, updates, and deletes

Derby has to do work to maintain indexes. If you insert into or delete from a table, the
system has to insert or delete rows in all the indexes on the table. If you update a table,
the system has to maintain those indexes that are on the columns being updated. So
having a lot of indexes can speed up select statements, but slow down inserts, updates,
and deletes.

Note: Updates and deletes with WHERE clauses can use indexes for scans, even if the
indexed column is being updated.

Joins and performance

Joins, SQL statements in which Derby selects data from two or more tables using one or
more key columns from each table, can vary widely in performance. Factors that affect
the performance of joins are join order, indexes, and join strategy.

Join order overview

The Derby optimizer usually makes a good choice about join order. This section
discusses the performance implications of join order.

In a join operation involving two tables, Derby scans the tables in a particular order.
Derby accesses rows in one table first, and this table is now called the outer table.

Then, for each qualifying row in the outer table, Derby looks for matching rows in the
second table, which is called the inner table.

Derby accesses the outer table once, and the inner table probably many times
(depending on how many rows in the outer table qualify).

This leads to a few general rules of thumb about join order:
« If the join has no restrictions in the WHERE clause that would limit the number of
rows returned from one of the tables to just a few, the following rules apply:

« If only one table has an index on the joined column or columns, it is much
better for that table to be the inner table. This is because for each of the many
inner table lookups, Derby can use an index instead of scanning the entire
table.

 Since indexes on inner tables are accessed many times, if the index on one
table is smaller than the index on another, the table with the smaller one
should probably be the inner table. That is because smaller indexes (or tables)
can be cached (kept in Derby's memory, allowing Derby to avoid expensive
I/O for each iteration).

< On the other hand, if a query has restrictions in the WHERE clause for one table
that would cause it to return only a few rows from that table (for example, WHERE
flight_id = 'AA1111"), it is better for the restricted table to be the outer table. Derby
will have to go to the inner table only a few times anyway.
Consider:

SELECT *

FROM huge_t abl
WHERE huge_t ab
AND huge_tabl e.

e, small _table
I e.unique_colum =1)
ot her _colum = snal | _t abl e. non_uni que_col um

« In this case, the qualification huge_table.unique_column = 1 (assuming a unique
index on the column) qualifies only one row, so it is better for huge_table to be the
outer table in the join.

Join strategies

33

Copyright

The most common join strategy in Derby is called a nested loop. For each qualifying row
in the outer table, Derby uses the appropriate access path (index or table) to find the
matching rows in the inner table.

Another type of join in Derby is called a hash join. For joins of this type, Derby constructs
a hash table representing all the selected columns of the inner table. For each qualifying
row in the outer table, Derby does a quick lookup on the hash table to get the inner table
data. Derby has to scan the inner table or index only once, to build the hash table.

Nested loop joins are preferable in most situations.

Hash joins are preferable in situations in which the inner table values are unique and
there are many qualifying rows in the outer table. Hash joins require that the statement's
WHERE clause be an optimizable equijoin:
* It must use the = operator to compare column(s) in the outer table to column(s) in
the inner table.
« References to columns in the inner table must be simple column references. Simple
column references are described in Directly optimizable predicates.

The hash table for a hash join is held in memory and if it gets big enough, it will spill to
the disk. The optimizer makes a very rough estimate of the amount of memory required
to make the hash table. If it estimates that the amount of memory required would exceed
the system-wide limit of memory use for a table, the optimizer chooses a nested loop join
instead.

If memory use is not a problem for your environment, set this property to a high number;
allowing the optimizer the maximum flexibility in considering a join strategy queries
involving large queries leads to better performance. It can also be set to smaller values
for more limited environments.

Note: Derby allows multiple columns as hash keys.

Derby's cost-based optimization

The query optimizer makes cost-based decisions to determine:

* Which index (if any) to use on each table in a query (see About the optimizer's
choice of access path)

* The join order (see About the optimizer's choice of join order)

» The join strategy (see About the optimizer's choice of join strategy)

» Whether to avoid additional sorting (see About the optimizer's choice of sort
avoidance)

« Automatic lock escalation (see About the system's selection of lock granularity)

« Whether to use bulk fetch (see About the optimizer's selection of bulk fetch)

About the optimizer's choice of access path

The optimizer's choice of access path can depend on the number of rows it will have to
read. It tries to choose a path that requires the fewest number of rows read. For joins, the
number of rows read also depends heavily on the join order (discussed in About the
optimizer's choice of join order.)

How does the optimizer know how many rows a particular access path will read? The
answer: sometimes it knows exactly, and sometimes it has to make an educated guess.
See Selectivity and cardinality statistics.

About the optimizer's choice of join order

The optimizer chooses the optimal join order as well as the optimal index for each table.
The join order can affect which index is the best choice. The optimizer can choose an
index as the access path for a table if it is the inner table, but not if it is the outer table
(and there are no further qualifications).

The optimizer chooses the join order of tables only in simple FROM clauses. Most joins

34

Copyright

using the JOIN keyword are flattened into simple joins, so the optimizer chooses their join
order.

The optimizer does not choose the join order for outer joins; it uses the order specified in
the statement.

When selecting a join order, the optimizer takes into account:

» The size of each table

» The indexes available on each table

« Whether an index on a table is useful in a particular join order

* The number of rows and pages to be scanned for each table in each join order
Note: Derby does transitive closure on qualifications. For details, see Transitive closure.

Join order case study:
For example, consider the following situation:
The Flights table (as you know) stores information about flight segments. It has a primary

key on the flight_id and segment_number columns. This primary key constraint is backed
up by a unique index on those columns.

The FlightAvailability table, which stores information about the availability of flight
segments on particular days, can store several rows for a particular row in the Flights
table (one for each date).

You want to see information about all the flights, and you issue the following query:

SELECT *

FROM Fl i ght Avai | abi lit fa, Flights AS fts
WHERE fa.flight id = f s ght_ld
AND f a. segnment _nunber f . Segment _numnber

First imagine the situation in which there are no useful indexes on the FlightAvailability
table.

Using the join order with FlightAvailability as the outer table and Flights as the inner table
is cheaper because it allows the flight_id/segment_number columns from
FlightAvailability to be used to probe into and find matching rows in Flights, using the
primary key index on Flights.flight_id and Flights.segment_number.

This is preferable to the opposite join order (with Flights as the outer table and
FlightAvailability as the inner table) because in that case, for each row in Flights, the
system would have to scan the entire FlightAvailability table to find the matching rows
(because there is no useful index- an index on the flight_id/segment_number columns).

Second, imagine the situation in which there is a useful index on the FlightAvailability
table (this is actually the case in the sample database). FlightAvailability has a primary
key index on flight_id, segment_number, and booking_date. In that index, the
flight_id-segment_number combination is not unique, since there is a one-to-many
correspondence between the Flights table and the FlightAvailability table. However, the
index is still very useful for finding rows with particular flight_id/segment_number values.

You issue the same query:

SELECT *

FROM Fl i ght Avai | abi lit AS a, Flights AS fts
WHERE fa.flight id = fts.fl ght_ld
AND f a. segnent _nunmber = fts. Segment _nunber

Although the difference in cost is smaller, it is still cheaper for the Flights table to be the
inner table, because its index is unique, whereas FlightAvailability's index is not. That is
because it is cheaper for Derby to step through a unique index than through a non-unique

35

Copyright

index.
About the optimizer's choice of join strategy

The optimizer compares the cost of choosing a hash join (if a hash join is possible) to the
cost of choosing a nested loop join and chooses the cheaper strategy. For information
about when hash joins are possible, see Join strategies.

In some cases, the size of the hash table that Derby would have to build is prohibitive
and can cause the JVM to run out of memory. For this reason, the optimizer has an upper
limit on the size of a table on which it will consider a hash join. It will not consider a hash
join for a statement if it estimates that the size of the hash table would exceed the
system-wide limit of memory use for a table, the optimizer chooses a nested loop join
instead. The optimizer's estimates of size of hash tables are approximate only.

About the optimizer's choice of sort avoidance

Some SQL statements require that data be ordered, including those with ORDER BY,
GROUP BY, and DISTINCT. MIN() and MAX() aggregates also require ordering of data.

Derby can sometimes avoid sorting steps for:
 statements with ORDER BY

See Cost-based ORDER BY sort avoidance

Derby can also perform the following optimizations, but they are not based on cost:
« sort avoidance for DISTINCT and GROUP BYs

See Non-cost-based sort avoidance (tuple filtering)
 statements with a MIN() aggregate
See The MIN() and MAX() optimizations

Cost-based ORDER BY sort avoidance:

Usually, sorting requires an extra step to put the data into the right order. This extra step
can be avoided for data that are already in the right order. For example, if a single-table
guery has an ORDER BY on a single column, and there is an index on that column,
sorting can be avoided if Derby uses the index as the access path.

Where possible, Derby's query compiler transforms an SQL statement internally into one
that avoids this extra step. For information about internal transformations, see Sort
avoidance. This transformation, if it occurs, happens before optimization. After any such
transformations are made, the optimizer can do its part to help avoid a separate sorting
step by choosing an already sorted access path. It compares the cost of using that path
with the cost of sorting. Derby does this for statements that use an ORDER BY clause in
the following situations:

» The statements involve tables with indexes that are in the correct order.

» The statements involve scans of unique indexes that are guaranteed to return only

one row per scan.

ORDER BY specifies a priority of ordering of columns in a result set. For example,
ORDER BY X, Y means that column X has a more significant ordering than column Y.

The situations that allow Derby to avoid a separate ordering step for statements with
ORDER BY clauses are:
 Index scans, which provide the correct order.

-- covering index)))
SELECT flight_id FROM Flights ORDER BY flight _id

« The rows from a table when fetched through an index scan.

- if Derby wuses the index on orig_airport
- to access the data, it can avoidthe sort
- required by the final ORDER BY

36

Copyright

SELECT orig airport, mles
FROM FLI GH%S 8

WHERE orig_airport < 'DDD
ORDER BY orig_airport

The rows from a join when ordered by the indexed column or columns in the outer
table.

-- if Derby <chooses Cities as the outer table, it
-- can avoid a separate sorting step
SELECT * FROM cities, countries .
WHERE ci ti es. count rY | SO code = countries.country_ | SO code
AND cities.country 1SO code < ' DD
R BY cities.country_| SO code

Result sets that are guaranteed to return a single row. They are ordered on all of
their columns (for example, if there are equality conditions on all the columns in a
unique index, all the columns returned for that table can be considered ordered,
with any priority of ordering of the columns).

-- query will only return one row, so that rowis
-- "in order" for” ANY col um

SELECT mi | es

FROM Fl i ghts

VWHERE flight_id = 'US1381' AND segnent _nunber = 2
ORDER BY ni |l €s

Any column in a result set that has an equality comparison with a constant. The
column is considered ordered with no priority to its ordering.

-- The conparison of segnment _nunber

-- to a constant neans that Tt is always correctl

-- ordered. Using the index on (flight_id, segment_nunber)
-- as the access path neans

-- that the ordering will be correct for the ORDER BY
-- clause in this query. The sane thing would be true if
-- flight_id were conpared to a constant instead.

SELECT segnment _nunber, flight_id

FROM Fl i ght s

VWHERE segnent _nunber =2) .

ORDER BY segnent _nunber, flight _id

And because of transitive closure, this means that even more complex statements
can avoid sorting. For example:

-- transitive closure nmeans that Derby will

-- add this clause: .

-- AND countries.country | SO code = 'CL', which neans

-- that the orderi ng colum Ts now conpared to a constant,
-- and sorting can be avoi ded.

SELECT * F cities, countries

VWHERE ci t

i es. count rY | SO code = 'CL"
AND cities.country_1SO code = countries.country_| SO code
ORDER BY countries-country_I SO code

For more information about transitive closure and other statement transformations,
see Internal language transformations.

About the system's selection of lock granularity

When a system is configured for row-level locking, it decides whether to use table-level
locking or row-level locking for each table in each DML statement. The system bases this
decision on the number of rows read or written for each table, and on whether a full
conglomerate scan is done for each table.

Note: When you have turned off row-level locking for your system, Derby always uses
table-level locking.

The first goal of the system's decision is concurrency; wherever possible, the system
chooses row-level locking. However, row-level locking uses a lot of resources and might
have a negative impact on performance. Sometimes row-level locking does not provide
much more concurrency than table-level locking. In those situations, the system might
choose to escalate the locking scheme from row-level locking to table-level locking to

37

Copyright

improve performance. For example, if a connection is configured for
TRANSACTION_SERIALIZABLE isolation, the system chooses table-level locking for the
following statement:

SELECT *)
FRG\/IFIlghtAvallablllt¥ S a Flights AS fts
WHERE fts.flight_id = af g d

AND fts.segnent _nunber fa.se

gn{ent _nunber

To satisfy the isolation requirements, Derby would have to lock all the rows in both the
FlightAvailability and the Flights tables. Locking both the tables would be cheaper, would
provide the same isolation, and would allow the same concurrency.

Note: You can force lock escalation for specific tables when you alter them with the
LOCKSIZE clause. For these tables, Derby always chooses table-level locking. For more
information, see the Derby Reference Manual.

How the system makes its decision if it has a choice:
If the lock granularity (whether to lock rows or entire tables) is not forced by the user, the
system makes a decision using the following rules:

» For SELECT statements running in READ_COMMITTED isolation, the system
always chooses row-level locking.

« If the statement scans the entire table or index and it does not meet the criteria
above, the system chooses table-level locking. (A statement scans the entire table
whenever it chooses a table as the access path.)

« If a statement partially scans the index, the system uses row-level locking, until the
number of rows touched on a table reaches lock escalation threshold. It is then
escalated to a table lock. (You can configure this threshold humber; see Lock
escalation threshold.)

e For SELECT, UPDATE, and DELETE statements, the number of rows touched
is different from the number of rows read. If the same row is read more than
once, it is considered to have been touched only once. Each row in the inner
table of a join can be read many times, but can be touched at most one time.

Lock escalation threshold:

The system property derby.locks.escalationThreshold determines the threshold for
number of rows touched for a particular table above which the system will escalate to
table-level locking. The default value of this property is 5000. For large systems, set this
property to a higher value. For smaller systems, lower it.

This property also sets the threshold for transaction-based lock escalation (see
Transaction-based lock escalation).
Note: For more information about lock escalation, see Locking and performance.

About the optimizer's selection of bulk fetch

When Derby retrieves data from a conglomerate, it can fetch more than one row at a
time. Fetching more than one row at a time is called bulk fetch. By default, Derby fetches
16 rows at a time.

Bulk fetch is faster than retrieving one row at a time when a large number of rows qualify
for each scan of the table or index. Bulk fetch uses extra memory to hold the pre-fetched
rows, so it should be avoided in situations in which memory is scarce.

Bulk fetch is automatically turned off for updatable cursors, for hash joins, for statements
in which the scan returns a single row, and for subqueries. It is useful, however, for table
scans or index range scans:

SELECT *
FROM Fl i ght s
WHERE i Fes > 4

SELECT *
FROM Fl i ghts

38

Copyright

The default size for bulk fetch (16 rows) typically provides good performance.

Locking and performance

Row-level locking improves concurrency in a multi-user system. However, a large
number of row locks can degrade performance. About the system's selection of lock
granularity discussed the way the optimizer makes some compile-time decisions about
escalating row locks to table locks for performance reasons. This section discusses ways
in which the Derby system and the user can make similar lock escalations.

Transaction-based lock escalation

The optimizer makes its decisions for the scope of a single statement at compile time; the
runtime overrides are also for the scope of a single statement. As you know, a
transaction can span several statements. For connections running in
TRANSACTION_SERIALIZABLE isolation and for connections that are doing a lot of
inserts or updates, a transaction can accumulate a number of row locks even though no
single statement would touch enough rows to make the optimizer choose table-level
locking for any single table.

However, during a transaction, the Derby system tracks the number of locks for all tables
in the transaction, and when this number exceeds a threshold number (which you can
configure; see Lock escalation threshold), the system attempts to escalate locking for at
least one of the tables involved from row-level to table-level locking.

The system attempts to escalate to table-level locking for each table that has a
burdensome number of locks by trying to obtain the relevant table lock. If the system can
lock the table without waiting, the system locks the entire table and releases all row locks
for the table. If the system cannot lock the table without waiting, the system leaves the
row locks intact.

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if you have a table called Hotels that contained
several thousand rows and a transaction locks the entire table in share mode in order to
read data, it might later need to lock a particular row in exclusive mode in order to update
the row. However, the previous table-level lock on Hotels forces the exclusive lock to be
table-level as well.

This transaction-based runtime decision is independent of any compilation decision.

If when the escalation threshold was exceeded the system did not obtain any table locks
because it would have had to wait, the next lock escalation attempt is delayed until the
number of held locks has increased by some significant amount, for example from 5000
to 6000.

Here are some examples assuming the escalation threshold is 5000:
« Single table holding the majority of the locks

Table Number of row locks Promote?
Hotels 4853 yes
Countries 3 no
Cities 12 no

« Two tables holding the majority of the locks

39

Copyright

Table Number of row locks Promote?
Hotels 2349 yes
Countries 3 no
Cities 1800 yes
« Many tables holding a small number of locks

Table Number of row locks Promote?
table001 279 no
table002 142 no
table003 356 no
table004 79 no
table194 384 no
table195 416 no

LOCK TABLE statement

In addition, you can explicitly lock a table for the duration of a transaction with the LOCK
TABLE statement. This is useful if you know in advance that an entire table should be
locked and want to save the resources required for obtaining row locks until the system
escalates the locking. For information about this feature, see "LOCK TABLE statement"
in the Derby Reference Manual.

Non-cost-based optimizations

The optimizer makes some non-cost-based optimizations, which means that it does not
consider them when determining the access path and join order. If all the conditions are
right, it makes the optimizations after the access path and join order are determined.

Non-cost-based sort avoidance (tuple filtering)

In most cases, Derby needs to perform two separate steps for statements that use
DISTINCT or GROUP BY: first sorting the selected columns, then either discarding
duplicate rows or aggregating grouped rows. Sometimes it is able to avoid sorting for
these statements with tuple filtering. Tuple filtering means that the rows are already in a
useful order. For DISTINCT, Derby can simply filter out duplicate values when they are
found and return results to the user sooner. For GROUP BY, Derby can aggregate a
group of rows until a new set of rows is detected and return results to the user sooner.

These are non-cost-based optimizations; the optimizer does not yet consider the cost of
these optimizations.

The examples in this section refer to the following tables:

CREATE TABLE t1(cl INT, c2 INT, c¢3 INT, c4 INT)
CREATE INDEX i1 ON t1(cl

CREATE INDEX i1 2 3 4 ON t1(cl, c2, c3, c4)
DISTINCT

Tuple filtering is applied for a DISTINCT when the following criteria are met:
* The SELECT list is composed entirely of simple column references and constants.
« All simple column references come from the same table and the optimizer has

40

Copyright

chosen the table in question to be the outermost table in the query block.

» The optimizer has chosen an index as the access path for the table in question.

* The simple column references in the SELECT list, plus any simple column
references from the table that have equality predicates on them, are a prefix of the
index that the optimizer selected as the access path for the table.

Note: The set of column references must be an in-order prefix of the index.

Here is the most common case in which tuple filtering will be applied:

SELECT DI STINCT c1 FROMt1

Equality predicates allow tuple filtering on the following:

SELECT DI STI NCT c2
FROM t
V\HERE Cl =5

SELECT DI STI NCT c2, c4
FROM t 1

WHERE c1 = 5 and c3 = 7

-- the colums don't have to be in the
-- same order as the index

SELECT DI STINCT c2, cl1

FROM t 1

Quick DISTINCT scans:
Derby can use a hash table instead of a sorter to eliminate duplicates when performing a
DISTINCT in the following cases:

* There is a single table in the query block.

* An ORDER BY clause is not merged into the DISTINCT.

 All entries in the SELECT list are simple column references.

« There are no predicates in the query block.

This technique allows for minimal locking when performing the scan at the READ
COMMITTED isolation level.
Note: This technique appears in RunTimeStatistics as a DistinctScanResultSet.

GROUP BY
Tuple filtering is applied for a GROUP BY when the following criteria are met:
* All grouping columns come from the same table and the optimizer has chosen the
table in question to be the outermost table in the query block.
» The optimizer has chosen an index as the access path for the table in question.
» The grouping columns, plus any simple column references from the table that have
equality predicates on them, are a prefix of the index that the optimizer selected as
the access path for the table.

Here is the most common case in which tuple filtering will be applied:

SELECT max(c2) FROMt1l GROUP BY c1l

Equality predicates allow tuple filtering on the following:

SELECT c2, SUM c3)

FROM t 1

WHERE c1 = 5 GROUP BY c2

SELECT nmax(c4)

FROM t 1

WHERE c1 = 5 AND c3 = 6 GROUP BY c2

The MIN() and MAX() optimizations

The optimizer knows that it can avoid iterating through all the source rows in a result to
compute a MIN() or MAX() aggregate when data are already in the right order. When
data are guaranteed to be in the right order, Derby can go immediately to the smallest
(minimum) or largest (maximum) row.

41

Copyright

The following conditions must be true:
* The MIN() or MAX() is the only entry in the SELECT list.
* The MIN() or MAX() is on a simple column reference, not on an expression.
» For MAX(), there must not be a WHERE clause.
e For MIN():
« The referenced table is the outermost table in the optimizer's chosen join order
for the query block.
» The optimizer chose an index containing the referenced column as the access
path.
» The referenced column is the first key column in that index OR the referenced
column is a key column in that index and equality predicates exist on all key
columns prior to the simple column reference in that index.

For example, the optimizer can use this optimization for the following queries (if the
optimizer uses the appropriate indexes as the access paths):

FROM Flights

-- index on orig_ai

SELECT mi | es

\lj\l'-IEREFI Lpots t (SELECT M N(ori i t)
orig_airport = orig_airpor

FROM Fl i g% g)] = 2

-- index on segment nunber, flight_id

SELECT M N(segment _nunber)

FROM Fl i ght's

VWHERE flight_id = 'AA1111"

SELECT *

FROM Fl i ghts

WHERE segnent _nunber = (SELECT M N(segnent _numnber)

FROM Fl i ghts °

VWHERE flight_id = ' AA1111")

The optimizer decides whether to implement the optimization after choosing the plan for
the query. The optimizer does not take this optimization into account when costing the
plan.

Overriding the default optimizer behavior

You can override the default behavior of the Derby query optimizer by including a
--DERBY-PROPERTIES clause and an associated property as a comment within an SQL
statement.

Because optimizer overrides are expressed as comments, they must be included at the
end of a line. You can specify optimizer override properties for an entire FROM clause,
for tables in the FROM clause, or for both.

The syntax for a FROM clause property is:

FROM [-- DERBY- PROPERTI ES oinOrder = { FIXED | UNFIXED }]
Tabl eExpr essi on abl eExpr essi on] *

The syntax for table optimizer override properties, which must be included at the end of a
TableExpression, is:

{tabl e-Name | view Name }
AS] correl ation-Nane
Si e- col umm- Nane , Si npl e-col um- Nare] ?\la
. -- RBY- PROPERTI ES { constraint = constral nt me | index =
i ndex-Nanme | joinStrategy = { NESTEDLOOP | HASH }

The space between -- and DERBY-PROPERTIES is optional.

42

Copyright

> Important: Make sure that you adhere to the correct syntax when using the

--DERBY-PROPERTIES clause. Failure to do so can cause the parser to interpret it as a

comment and ignore it. To verify that the parser interpreted your overrides correctly, you

can use RunTimeStatistics. See Optimizer overrides for more information.

The following four properties are available for use in a --DERBY-PROPERTIES clause:

constraint
To force the use of the index that enforces a primary key, a foreign key, or unique
constraint, use the constraint property and specify the unqualified name of the
constraint. The constraint property can be used only within a TableExpression, and it
can be specified only on base tables; it cannot be specified on views or derived
tables.

index
The index property is similar to the constraint property. To force use of a particular
index, specify the unqualified index name. To force a table scan, specify null for the
index name. The index property can be used only within a TableExpression, and it
can be specified only on base tables; it cannot be specified on views or derived
tables.

joinOrder
Use the joinOrder property to override the optimizer’s choice of join order for two
tables. When the value FIXED is specified, the optimizer will choose the order of
tables as they appear in the FROM clause as the join order. Valid values for the
joinOrder property include FIXED and UNFIXED. The joinOrder property can be used
with a FROM clause.

joinStrategy
Use the joinStrategy property to override the optimizer’s choice of join strategy. The
two types of join strategy are called nested loop and hash. In a nested loop join
strategy, for each qualifying row in the outer table, Derby uses the appropriate access
path (index or table scan) to find the matching rows in the inner table. In a hash join
strategy, Derby constructs a hash table that represents the inner table. For each
qualifying row in the outer table, Derby does a quick lookup on the hash table to find
the matching rows in the inner table. Derby needs to scan the inner table or index
only once to create the hash table. The --DERBY-PROPERTIES parameter must
immediately follow the inner table.

Typically, you will use the joinStrategy property only in conjunction with the joinOrder
property. Specifying a join strategy without knowing the join order can result in
less-than-optimal performance.

Valid values include HASH and NESTEDLOOP. The joinStrategy property can be
used only within a TableExpression.

The following examples illustrate the use of the --DERBY-PROPERTIES clause:
constraint

CREATEZTABLE tl (cl int, c2 int, c3 int, CONSTRAINT consl PRI MARY KEY
c C
fNSERT”\ITOtl VALUES k 2, 2, 2), (3, 3, 3), (4, 4, 4
SELECT * FROMt1 --DER Y— PRCP | ES const ral nt =cons1

FOR UPDATE

index
CR%ATEZTABLE tl (clint, c2int, c3 int, CONSTRAINT consl PRI MARY KEY
C C
fNSERT ot1l VALUES(l 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
CREATE | NDEX t1 c1 ON t 1(cl j
SELECT * FROM t T --DERBY- PROPERTI ES i ndex=t 1_c1
joinOrder

CREATE TABLE t1 (cl int, c2 int, c3 int, CONSTRAINT consl PRI MARY KEY

cl, c2
EATE ABLE t2 (cl1 int not null, c2 int not null, c3 int, CONSTRAI NT
cons2 UNIQUE (cl1, c2))

43

Copyright

I NSERT I NTO t1 VALUES 1, 1), (2, 2, 2), (3, 3, 3), (4,
| NSERT INTO t2 VALUES 1, 1), (2, 2, 2), (3, 3, 3), (4,
SELECT * FROM - - DERBY- RCPERTI S j o1 nOr der =FI XED

tl1, t2
WHERE t1.cl=t2.cl
joinStrategy

CREATE TABLE t1 (cl int, c2 int, c3 int, CONSTRAINT consl PRI MARY KEY

cl, c2
EATE }%BLE t2 (clint not null, ¢c2 int not null, c3 int,
cons2 UNI cl,

C
P REERT I'NFO ¢ VALUEQ 2, 3, 3, 3), (4,
I NSERT | NTO t 2 VALUES L (2 2 3 3 3) (4
SELECT * FROM - - DERBY- ROPERﬂ SJOI nor dot ZF1 XED
t1 a, tl b --DERBY- PROPERTIES j 0i nSt r at egy=NESTEDLOOP

MHERE a.cl=b.cl

44

CONSTRAI NT

i

Copyright

Selectivity and cardinality statistics
The optimizer determines the number of rows that will be scanned from disk when
deciding on an access path for a particular table (whether to use an index or to scan the
table).
» The optimizer knows "exactly" the number of rows that will be scanned from disk for
table scans (see Determinations of rows scanned from disk for a table scan).
» For index scans, the optimizer must estimate the number of rows that will be
scanned from disk. (see Estimations of rows scanned from disk for an index scan).
Derby might be able to use cardinality statistics to make a better estimate of the
number of rows that will be scanned from disk as described in this chapter.

Determinations of rows scanned from disk for a table scan

For table scans, the optimizer does not need to estimate the number of rows that will be
scanned from disk during the scan; the number of rows that will be scanned from disk will
be equal to the number of rows in the table, as described below.

How the optimizer determines the number of rows in a table

The optimizer uses a stored row count to determine the number of rows in a table, which
is maintained automatically by the system.

Normally, an updated value is stored in the database whenever the database goes
through an orderly shutdown (as long as the database is not read-only). Stored row
counts become inaccurate if there is a non-orderly shutdown (for example, a power
failure or other type of system crash).

You can correct the optimizer's row count without shutting down the system; Derby sets
the stored row count for a table to the correct value whenever a query that does a full
scan on the base conglomerate finishes. For example, executing the following query sets
the row count for table Flights to the correct value:

SELECT * FROM Fl i ghts

Derby also sets the stored row count on a table to the correct value whenever a user
creates a new index or primary key, unique, or foreign key constraint on the table. This
value is not guaranteed to be written to disk.

Estimations of rows scanned from disk for an index scan

When an index is available, the optimizer has to estimate the number of rows that will be
scanned from disk. The accuracy of this estimate depends on the type of query being
optimized.

Queries with a known search condition

When the exact start and stop conditions are known at compilation time, the optimizer
uses the index itself to make a very precise estimate of the number of rows that will be
scanned from disk. An example of a query with a known search condition:

SELECT *
FROM Fl i ght's.
WHERE orig_airport = 'SFO

The search value, 'SFO', is known. The optimizer will be able to make an accurate

45

Copyright

estimate of the cost of using the index orig_index.

In addition, if the index is unique, and the WHERE clause involves an = or IS NULL
comparison to all the columns in the index, the optimizer knows that only a single row will
be scanned from disk. For example:

- - theres uni que kV\}ﬁl on ci
SELECT * FR(]\/IOtles ERE ci =1

Queries with an unknown search condition

Queries sometimes have an unknown search condition, such as in the case when the
statement's WHERE clause involves dynamic parameters that are known only at
execution time and not at compilation time, or when the statement involves a join. For
example:

am c paraneters
SELE%:T .
FROM Fl i ght's
WHERE orig_airport = ?

rol | back

-- joins

SELECT * FROM Countries, Cities o

WHERE Countries.country | SO code = Cities.country_| SO code
-- conpl ex search conditions

SELECT * FROM Countri es)]
WHERE region = (select region from Countries where country = 'Spain')

In the above SELECT statements, the optimizer cannot get enough useful information
from the index about how many rows will be returned by a particular access path.
However, it can often make a good guess by looking at a table's selectivity for a particular
WHERE clause.

Selectivity refers to the fraction of rows that will be returned from the table for the
particular WHERE clause. The optimizer multiplies the number of rows in the table by the
selectivity for a particular operation. For example, if the selectivity for a particular search
operation is .10, and the table contains 100 rows, the optimizer estimates that the
operation will return 10 rows. (This is not exact; it is just a good guess.)

Statistics-based versus hard-wired selectivity

Derby determines the selectivity for a WHERE clause in one of two ways.

Selectivity from cardinality statistics

Cardinality statistics are computed by the Derby system and stored in the system tables.
For information on when these statistics get created or updated, see When cardinality
statistics are automatically updated.

Derby can use cardinality statistics if:
* The statistics exist
* The relevant columns in the WHERE column are leading columns in an index
* The columns are compared to values using only the = operator
 Statistics are not turned off in the system or query

Selectivity from hard-wired assumptions

In all other cases, Derby uses a fixed number that attempts to describe the percentage of
rows that will probably be returned; it might not correspond to the actual selectivity of the
operation in every case. It is an assumption hard-wired into the Derby system. These

46

Copyright

assumptions are shown in Selectivity for various operations for index scans when search

values are unknown in advance and statistics are not used.

Table 3. Selectivity for various operations for index scans when search values are

unknown in advance and statistics are not used

Operator Selectivity
=, >=, >, <=, <, <> when data type of parameter is a boolean .5 (50%)
other operators (except for IS NULL and IS NOT NULL) when data type of parameter | .5 (50%)
is boolean
IS NULL .1 (10%)
IS NOT NULL .9 (90%)
= .1 (10%)
> >z, <, <= .33 (3%)
<> compared to non-boolean type .9 (90%)
LIKE transformed from LIKE predicate (see LIKE transformations) 1.0 (100%)
>= and < when transformed internally from LIKE (see LIKE transformations) .25 (.5 X .5)
>= and <= operators when transformed internally from BETWEEN (see BETWEEN .25 (.5 X .5)
transformations)

What are cardinality statistics?

When Derby creates statistics for a table's index, it calculates and stores in the system
tables:
* The number of rows in the table
» The number of unique values for a set of columns for leading columns in an index
key, also known as cardinality. Leading columns refers to the first column, or the
first and second column, or the first, second, and third column of an index (and so
on). Derby cannot compute the number of columns for which a combination of the
non-leading columns is unique.

For example, consider the primary key on the table FlightAvailability:

OONSTRAI NT. FLI GHTAVAI LABI LI TY_PK Primary Key (
SEGVENT NUIVBER,
FLI GHT_DATE)

For this index, Derby keeps the following information:
» The number of rows in the table FlightAvailability
« The number of unique rows for the full key (flight_id, segment_number, flight_date)
« The number of unique rows for the key (flight_id, segment_number)
* The number of unique rows for the key (flight_id)

How does Derby use these two numbers-the number of rows in a table and the
cardinality of a particular key-to determine the selectivity of a query? Take this example:

SELECT * FROM F g s, FlightAvail b| ty
lig

WHERE Flights.flight_id = her Tabl e. ht

If the cardinality for flight_id in Flights is 250, then the selectivity of the predicate is 1/250.
The optimizer would estimate the number of rows read to be:

((Rows in Flights) * (Rows in OherTable))/250

47

Copyright

Working with cardinality statistics

Cardinality Statistics are gathered on the keys of an index when the index is created.

When cardinality statistics are automatically updated
For the following operations that you perform on a table, Derby automatically creates
statistics. Those operations are:
« (new index only) When you create a new index on an existing non-empty table.
« (new backing indexes only) When you add a primary key, unique, or foreign key
constraint to an existing non-empty table.

For other operations, Derby automatically updates statistics for the table and all indexes
on the table if they are already exist. Those operations are:
« (all indexes) When you execute SYSCS_UTIL.SYSCS _COMPRESS_TABLE.
 (index only) When you drop a column that is part of a table's index; the statistics for
the affected index are dropped, and statistics for the other indexes on the table are
updated.

When cardinality statistics go stale

As you saw in When cardinality statistics are automatically updated, cardinality statistics
are automatically updated only in limited cases. Normal insert, update, and delete
statements do not cause the statistics to be updated. This means that statistics can go
stale. Stale statistics can slow your system down, because they worsen the accuracy of
the optimizer's estimates of selectivity.

48

Copyright

Derby properties
Scope of Derby properties

A property in Derby belongs to one or more of these scopes:
» system-wide

System-wide properties apply to an entire system, including all its databases and
tables if applicable.

» Set programmatically

System-wide properties set programmatically have precedence over
database-wide properties and system-wide properties set in the
derby.properties file.

» Set in the derby.properties file

The derby.properties file is an optional file that can be created to set properties
at the system level when the Derby driver is loaded. Derby looks for this file in

the directory defined by the derby.system.home property. Any property except
derby.system.home can be set by including it in the derby.properties file.

» database-wide

A database-wide property is stored in a database and is valid for that specific
database only.

Note: Database-wide properties are stored in the database and are simpler for
deployment. System-wide parameters are probably easier for development.

For more information about scopes, precedence, and persistence, see Properties
overview

Derby properties

The Derby properties are used for configuring the system and database, as well as for
diagnostics such as logging statements, and monitoring and tracing locks.

This section includes all of the core Derby properties.

Note: When setting properties that have boolean values, be sure to trim extra spaces
around the word true. Extra spaces around the word true cause the property to be set to
false.

Derby properties summarizes the general Derby properties. In this table, S stands for
system-wide, D stands for database-wide, and C indicates the value persists with newly
created conglomerates. X means yes.

Table 4. Derby properties

Property Scope Dynamic
derby.authentication.ldap.searchAuthDN S,D '
derby.authentication.ldap.searchAuthPW S,D '
derby.authentication.ldap.searchBase S,D '
derby.authentication.ldap.searchFilter S,D '
derby.authentication.provider S,D '
derby.authentication.server S,D '
derby.connection.requireAuthentication S,D '
derby.database.defaultConnectionMode S,D X*

49

Copyright

Property Scope Dynamic
derby.database.forceDatabaselLock S '
derby.database.fullAccessUsers S,D X*
derby.database.propertiesOnly D X
derby.database.readOnlyAccessUsers S,D X*
derby.infolog.append S '
derby.language.logQueryPlan S '
derby.language.logStatementText S,D '
derby.locks.deadlockTimeout S,D X
derby.locks.deadlockTrace S,D X
derby.locks.escalationThreshold S,D X
derby.locks.monitor S,D X
derby.locks.waitTimeout S,D X
derby.storage.initialPages C '
derby.storage.minimumRecordSize S,D,C X
derby.storage.pageCacheSize S '
derby.storage.pageReservedSpace S,D,C X
derby.storage.pageSize S,D,C X
derby.storage.tempDirectory S,D X
derby.stream.error.field S '
derby.stream.error.file S '
derby.stream.error.method S '
derby.stream.error.logSeverityLevel S '
derby.system.durability S '
derby.system.home S '
derby.user.UserName S,D X

* See the main page for this property for information about when changes to the property
are dynamic.

There are additional properties associated with the Derby tools. For more information
about tool-specific properties, see the Derby Tools and Utilities Guide Guide.

derby.authentication.ldap.searchAuthDN

Along with derby.authentication.ldap.searchAuthPW, this property indicates how Derby
should bind with the LDAP directory server to do searches for user DN (distinguished
name). This property specifies the DN; derby.authentication.ldap.searchAuthPW
specifies the password to use for the search.

If these two properties are not specified, an anonymous search is performed if it is
supported.

For more information about LDAP user authentication, see "LDAP Directory Service" in
Chapter 7 of the Derby Developer's Guide.

50

Copyright
Syntax

der by. aut henti cati on. | dap. sear chAut hDn=DN

Default

If not specified, an anonymous search is performed if it is supported.

Example

-- systemw de property

der by. aut henti cati on. | daP. sear chAut hDn=
ch=guest, o=Exanpl eSi t e. com

- - dat abase-wi de propert

CALL SYSCS UTI L. SYS SET_DATABASE PROPERTY(
" der by aut henti cafii on.| dap. searchAut hDn",
' cn=guest, o=Exanpl eSite. com)

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.ldap.searchAuthPW

Along with derby.authentication.ldap.searchAuthDN, indicates how Derby should bind
with the directory server to do searches in order to retrieve a fully qualified user DN. This
property specifies the password; derby.authentication.ldap.searchAuthDN specifies the
DN to use for the search.

For more information about LDAP user authentication, see "LDAP Directory Service" in
Chapter 7 of the Derby Developer's Guide.
Default

If not specified, an anonymous search is performed if it is supported.

Example

-- systemw de property
der by. aut henti cati on. | dap. sear chAut hPW=guest Passwor d
- - dat abase-wi de propert
CALL SYSCS UTI L. SYS SET_DATABASE PROPERTY/
' der b%/. aut hent i cati on| dap. searchAut hPW ,
' guest Password')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.ldap.searchBase

Function
Specifies the root DN of the point in your hierarchy from which to begin a guest or
anonymous search for the user's DN. For example:

ou=peopl e, o=Exanpl eSite. com

When using Netscape Directory Server, set this property to the root DN, the special entry
to which access control does not apply.

51

Copyright

For more information about LDAP user authentication, see the Derby Developer's Guide.

Example

-- systemw de property

der by. aut henti cati on. | dap. sear chBase=
ou=peopl e, o=Exanpl eSi t e. com

- - dat abase-w de pro ert¥

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
" der by aut henti cati on; | dap. searchBase',
' ou=peopl e, o=Exanpl eSite. com)

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.ldap.searchFilter

Function

Specifies the search filter to use to determine what constitutes a user (and other search
predicate) for Derby searches for a full DN during user authentication.

If you set this property to derby.user, Derby looks for cached full DNs for users that you
have defined with the derby.user.UserName property. For other users, Derby performs a
search using the default search filter.

For more information about LDAP user authentication, see "LDAP Directory Service" in
Chapter 7 of the Derby Developer's Guide.

Syntax

der by. aut henti cati on. | daB. searchFilter=
searchFilter | derby. user)

Default

(&(obj ect d ass=i net Or gPer son) (ui d=user Nane))

Note: Derby automatically uses the filter you specify with ((uid=userName)) unless you
include %USERNAME% in the definition. You might want to use %USERNAME% if your
user DNs map the user name to something other than uid (for example, user).

Example

-- systemw de properties]]
der by. aut henti cati on. | dap. searchFi | t er =obj ect T ass=per son
people in the _rrarketlng depart ment
#it rby automatically adds (uid=<userName>)]
der by. aut henti cati on. | dap. searchFi | t er =(& ou=Mar ket i ng)
?Obj ect Cl ass=per son)]
al |l people but those 1 n marketing
Derby automatically adds (ui d=<user Name>))
der by. aut henti cati on. | dap. searchFi |l ter=(&(! (ou=Mar ket i ng)
i/ob{J ectd ass:)oerson))
map YJSERNAME% t o user, not uid
der by. aut henti cati on. | dap. searchFi | t er =(& (ou=Peopl e)
user :%JSERI\LAI\/ED"@)
cache user “locally and use the default for others
der by. aut henti cati on. | dap. sear chFi | t er =der by. user

-- dat abase-wi de pro ert¥
CALL SYSCS UTI L. SYS SET_DATABASE PROPERTY(

" der by aut henti cafi on| dap. searchFilter",
' obj ect Cl ass=person')

Dynamic or static

52

Copyright

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.provider
Function
Specifies the authentication provider for Derby user authentication.

Legal values include:
« LDAP

An external LDAP directory service.
e BUILTIN
Derby's simple internal user authentication repository.
* a complete Java class name
A user-defined class that provides user authentication.
When using an external authentication service provider (LDAP), you must also set:
« derby.authentication.server

When using LDAP, you can set other LDAP-specific properties. See also:
« derby.authentication.ldap.searchAuthDN
* derby.authentication.ldap.searchAuthPW
« derby.authentication.ldap.searchFilter
» derby.authentication.ldap.searchBase

Alternatively, you can write your own class to provide a different external authentication
service. This class must implement the public interface
org.apache.derby.authentication.UserAuthenticator and throw exceptions of the type
java.sql.SQLEXxception where appropriate. Using a user-defined class makes Derby
adaptable to various naming and directory services. For example, the class could allow
Derby to hook up to an existing user authentication service that uses any of the standard
directory and naming service providers to JNDI.

To enable any Derby user authentication, you must set the
derby.connection.requireAuthentication property to true.

For more information about user authentication, see the Derby Developer's Guide.

Syntax

der by. aut henti cati on. provi der={ LDAP | BU LTIN | cl assProvi der Nane }
Default

BUILTIN

Example

-- systemw de property
der by authenticati on pr ow der =LDAP

- - dat abase-wi de ¥
CALL SYSCS_UTI L. S SE DATABASE PRCPERTY(
. gSIrE 1@ ~aut henti cafi onTprovider™

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.

53

Copyright

For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.server
Function

Specifies the location of the external directory service that provides user authentication
for the Derby system as defined with derby.authentication.provider. For LDAP, specify
the host name and port number.

The server must be known on the network.

For more information about external user authentication, see "External Directory Service
in the Derby Developer's Guide.

Default
Not applicable. Note that if the protocol type is unspecified, it defaults to LDAP.

Syntax

der by. aut henti cati on. server=
“/i dap: | Idaps: | nisplus: }]
t host nane D portnunber] |

ni sSer ver Nane/ ni sDomai n

Example

-- systemw de property
##LDAP exanpl e)
der by. aut henti cati on. server =godfrey: 9090
##LDAP exanpl e]
der by. aut henti cati on. server =l dap: // godf rey: 9090
##LDAP exanpl e)
der by. aut henti cati on. server=//godfrey: 9090
##LDAP over SSL exanpl e
der by. aut henti cati on. server =| daps: // godf rey: 636/
- - dat abase-wi de pro ert¥
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
" der by-Taut hent i cafi onTserver',
' godfrey: 9090')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.connection.requireAuthentication
Function

Turns on user authentication for Derby.

When user authentication is turned on, a connection request must provide a valid user
name and password.

Derby uses the type of user authentication specified with the
derby.authentication.provider property.

For more information about user authentication, see "Working with User Authentication”

54

Copyright

in Chapter 7 of the Derby Developer's Guide.

Default

False.
By default, no user authentication is required.

Example

-- systemw de property))

der by. connecti on. requi r eAut hent i cati on=t rue

- - dat abase-wi de er cc)gert¥

CALL SYSCS _UTI L. SYSCS_SET_DATABASE PROPERTY(
! ?er byj connecti onrequi reAut henti cation”,
"true

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.database.defaultConnectionMode

Function
One of the user authorization properties.

Defines the default connection mode for users of the database or system for which this
property is set. The possible values (which are case-insensitive) are:
* noAccess

Disallows connections.
« readOnlyAccess
Grants read-only connections.
« fullAccess
Grants full access.
If the property is set to an invalid value, an exception is raised.
Note: It is possible to configure a database so that it cannot be changed (or even
accessed) using this property. If you set this property to noAccess or readOnlyAccess, be

sure to allow at least one user full access. See derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers.

For more information about user authorization, see "User Authorization" in Chapter 7 of
the Derby Developer's Guide.

CALL SYSCS UTI L. SYSCS_SET _DATABASE_PROPERTY(
' der by. dat abase. def aul't Connect i onMbde' ,
"{ noAccess | readOnl yAccess | full Access}')

Example

- - dat abase-wi de propert
CALL SYSCS UTI L. SYSCS_SET _DATABASE_PROPERTY(
' der by- dat abase. def aul't ConnectionMode', ' noAccess')
-- systemw de propert)é0 .
der by. dat abase. def aul t Connect i onMbde=noAccess

Default

fullAccess

55

Copyright

Dynamic or static

Dynamic. Current connections are not affected, but all future connections are affected.
For information about dynamic changes to properties, see Dynamic or static changes to
properties.

derby.database.forceDatabaselLock

Function

On some platforms, if set to true, prevents Derby from booting a database if a db.Ick file
is present in the database directory.

Derby attempts to prevent two JVMs from accessing a database at one time (and
potentially corrupting it) with the use of a file called db.Ick in the database directory. On
some operating systems, the use of a lock file does not guarantee single access, and so
Derby only issues a warning and might allow multiple JVM access even when the file is
present. (For more information, see "Double-Booting System Behavior" in Chapter 1 of
the Derby Developer's Guide.)

Derby provides the property derby.database.forceDatabaselLock for use on platforms that
do not provide the ability for Derby to guarantee single JVM access. By default, this
property is set to false. When this property is set to true, if Derby finds the db.Ick file
when it attempts to boot the database, it throws an exception and does not boot the
database.

Note: This situation can occur even when no other JVMs are accessing the database; in
that case, remove the db.Ick file by hand in order to boot the database. If the db.Ick file is
removed by hand while a JVM is still accessing a Derby database, there is no way for
Derby to prevent a second VM from starting up and possibly corrupting the database. In
this situation no warning message is logged to the error log.

Default

false

Example

der by. dat abase. f or ceDat abaseLock=t r ue

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.database.fullAccessUsers

Function

One of the user authorization properties. Specifies a list of users to which full (read-write)
access to a database is granted. The list consists of user names separated by commas.
Do not put spaces after commas.

When set as a system property, specifies a list of users for which full access to all the
databases in the system is granted.

See also derby.database.readOnlyAccessUsers.

A malformed list of user names raises an exception. Do not specify a user both with this
property and in derby.database.readOnlyAccessUsers.

Note: User names, called authorization identifiers, follow the rules of SQL92ldentifiers
and can be delimited. Specifying a user name that does not follow these rules raises an
exception.

56

Copyright

For more information about user authorization, see "User Authorization" in Chapter 7 of
the Derby Developer's Guide.

Syntax

- - dat abase-| evel pro
CALL SYSCS UTI L. SYSCS_
' der by. dat abase. fU
' commaSeparatedlis

ert
IoSETZDATABASE_PRODERTY(
|| AccessUsers',
tOF Users')

Example

- - dat abase-| evel property
CALL SYSCS UTI L. SY CS_SET_DATABASE_PR(PERTY;
' derb?/. dat abase. ful | AccessUsers', 'dba,fred, peter')
--system| evel Pro erty
der by. dat abase. ful | AccessUser s=dba, fred, peter

Dynamic or static

Dynamic. Current connections are not affected, but all future connections are affected.
For information about dynamic changes to properties, see Dynamic or static changes to
properties.

derby.database.propertiesOnly

Function
When set to true, this property ensures that database-wide properties cannot be
overridden by system-wide properties.

When this property is set to false, or not set, database-wide properties can be overridden
by system-wide properties (see Precedence of properties).

This property ensures that a database's environment cannot be modified by the
environment in which it is booted.

This property can never be overridden by system properties.

Default

False.

Example

CALL SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(
' der by- dat abase. properti esOnly™, 'true')

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic or static
changes to properties.

derby.database.readOnlyAccessUsers

Function

One of the user authorization properties. Specifies a list of users to which read-only
access to a database is granted. The list consists of user names separated by commas.
Do not put spaces after commas.

When set as a system property, specifies a list of users for which read-only access to all

57

Copyright

the databases in the system is granted.

See also derby.database.fullAccessUsers.

A malformed list of user names raises an exception. Do not specify a user both in this
property and in derby.database.fullAccessUsers.

Note: User names, called authorization identifiers, follow the rules of SQL92ldentifiers
and can be delimited. Specifying a user name that does not follow these rules raises an
exception.

Syntax

- - dat abase-| evel property

CALL SYSCS_UTI L. SYSCS_SET DATABASE PROPERTY(
' der by_ dat abase. readOnl yAccessUsers',
' commaSepar at edLi st Of Users')

Example

- - dat abase-1 evel property
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by, dat abase. readCnl yAccessUsers', 'ral ph, guest')
-- system| evel property
der by. dat abase. readOnl yAccessUser s=r al ph, guest

Dynamic or static

Dynamic. Current connection is not affected, but all future connections are affected. For
information about dynamic changes to properties, see Dynamic or static changes to
properties.

derby.database.sqlAuthorization

Function
One of the user authorization properties.

Enables the SQL standard authorization mode for the database or system on which this
property is set. The possible values are:
* TRUE

SQL authorization for the database or system is enabled, which allows the use of
GRANT and REVOKE statements.

* FALSE

SQL authorization for the database or system is disabled. After this property is set
to TRUE, the property cannot be set back to FALSE.

The values are not case-sensitive.

Note: If you set this property as a system property before you create the databases, all
new databases will automatically have SQL authorization enabled. If the databases
already exists, you can set this property only as a database property.

Derby uses the type of user authentication that is specified with the
der by. aut henti cati on. provi der property.

For more information about user authorization, see "User authorizations" in the Derby
Developer's Guide.

Example

-- systemw de property)
der by. dat abase. sql Aut hori zati on=true

58

Copyright

- - dat abase- Ievel groper

CALL SYSCS Ur YSCS SET DATABASE PRODERTY(

" der by™ dat abase sql Authori zation', 'true');
Default
FALSE

Dynamic or static
Static.

derby.infolog.append

Function

Specifies whether to append to or overwrite (delete and recreate) the derby.log file when
the Derby engine is started. The derby.log file is used to record errors and other
information. This information can be important when debugging problems within a
system.

You can set this property even if the file does not yet exist; Derby creates the file.

Default

False.
By default, the file is deleted and then re-created.

Example
der by. i nf ol og. append=t r ue

Scope
system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.language.logQueryPlan

Function

When this property is set to true, Derby writes the query plan information into the
derby.log file for all executed queries.

This property is useful for debugging to know what query plan was chosen by the
optimizer.

Example

der by. | anguage. | ogQuer yPl an=t r ue

Default

False.

Dynamic or static

59

Copyright

static

derby.language.logStatementText

Function

When this property is set to true, Derby writes the text and parameter values of all
executed statements to the information log at the beginning of execution. It also writes
information about commits and rollbacks. Information includes the time and thread
number.

This property is useful for debugging.

Example

der by. | anguage. | ogSt at enent Text =t r ue
- - dat abase-wi de pro ert¥
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by_l anguage. | 0gSt at ement Text', 'true')

Default

False.

Dynamic or static

static

derby.locks.deadlockTimeout

Function

Determines the number of seconds after which Derby checks whether a transaction
waiting to obtain a lock is involved in a deadlock. If a deadlock has occurred, and Derby
chooses the transaction as a deadlock victim, Derby aborts the transaction. The
transaction receives an SQLException of SQLState 40001. If the transaction is not
chosen as the victim, it continues to wait for a lock if derby.locks.waitTimeout is set to a
higher value than the value of derby.locks.deadlockTimeout.

If this property is set to a higher value than derby.locks.waitTimeout, no deadlock
checking occurs. See derby.locks.waitTimeout.

For more information about deadlock checking, see "Deadlocks" in Chapter 5 of the
Derby Developer's Guide.
Default

20 seconds.

Example

der by. | ocks. deadl ockTi meout =30

- - dat abase-wi de propert

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
" der by~l ocks. deadl"ockTi neout ', " 30")

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic or static changes to properties.

derby.locks.deadlockTrace

60

Copyright

Function

Causes a detailed list of locks at the time of a deadlock or a timeout to be written to the
error log (typically the derby.log). For a deadlock, Derby will describe the cycle of locks
which caused the deadlock. For a timeout, Derby will print the entire lock list at the time
of the timeout. This property is meaningful only if the derby.locks.monitor property is set
to true.

Note: This level of debugging is intrusive: it can alter the timing of the application, reduce
performance severely, and produce a large error log file. It should be used with care.

Default

False.

Example

-- system propert

der b%//. | ockg. dgadl %ckTr ace=true

CALL SYSCS _UTI L. SYSCS_SET_DATABASE PROPERTY(
" der by”l ocks. deadlockTrace', 'True')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic or static changes to properties.

derby.locks.escalationThreshold

Function

Used by the Derby system at runtime in determining when to attempt to escalate locking
for at least one of the tables involved in a transaction from row-level locking to table-level
locking.

A large number of row locks use a lot of resources. If nearly all the rows are locked, it
might be worth the slight decrease in concurrency to lock the entire table to avoid the
large number of row locks.

For more information, see Locking and performance.

It is useful to increase this value for large systems (such as enterprise-level servers,
where there is more than 64 MB of memory), and to decrease it for very small systems
(such as palmtops).

Syntax

der by. | ocks. escal ati onThr eshol d=nunber O Locks

Default
5000.

Minimum value
100.

Maximum value
2,147,483,647.

Example

-- systemw de property

61

Copyright

der by. | ocks. escal ati onThr eshol d=1000

-- dat abase-wi de pro ert¥

CALL SYSCS UTI L. SYS DATABASE PRCOPERTY(
1(e)(r)oy) ocks. escal'ati onThreshol'd'

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic or static changes to properties.

derby.locks.monitor

Function

Specifies that all deadlock errors are logged to the error log. If
derby.stream.error.logSeverityLevel is set to ignore deadlock errors, derby.locks.monitor
overrides it.

Default

False.

Example

-- system propert

der b%// Iockg mgnl t%r—true

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
"derby.l ocks.nonifor'T "true')™

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic or static changes to properties.

derby.locks.waitTimeout

Function

Specifies the number of seconds after which Derby aborts a transaction when it is waiting
for a lock. When Derby aborts (and rolls back) the transaction, the transaction receives
an SQLException of SQLState 40XL1.

The time specified by this property is approximate.

A zero value for this property means that Derby aborts a transaction any time it cannot
immediately obtain a lock that it requests.

A negative value for this property is equivalent to an infinite wait time; the transaction
waits forever to obtain the lock.

If this property is set to a value greater than or equal to zero but less than the value of
derby.locks.deadlockTimeout, then Derby never performs any deadlock checking.

Default

60 seconds.

Example

CALL SYSCS_UTI L. SYSCS_SET DATABASE - PROPERTY(
derbx | ocks. wai t Ti meout', '157)
S.

derby. | oc wai t Ti meout =60

62

Copyright
Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic or static changes to properties.

derby.storage.initialPages
Function

The on-disk size of a Derby table grows by one page at a time until eight pages of user
data (or nine pages of total disk use, one is used for overhead) have been allocated.
Then it will grow by eight pages at a time if possible.

A Derby table or index can be created with a number of pages already pre-allocated. To
do so, specify the property prior to the CREATE TABLE or CREATE INDEX statement.

Define the number of user pages the table or index is to be created with. The purpose of
this property is to preallocate a table or index of reasonable size if the user expects that a
large amount of data will be inserted into the table or index. A table or index that has the
pre-allocated pages will enjoy a small performance improvement over a table or index
that has no pre-allocated pages when the data are loaded.

The total desired size of the table or index should be

(1+derby. storage.initial Pages) * derby. storage. pageSi ze bytes.

When you create a table or an index after setting this property, Derby attempts to
preallocate the requested number of user pages. However, the operations do not fail
even if they are unable to preallocate the requested number of pages, as long as they
allocate at least one page.

Default
1 page.

Minimum value

The minimum number of initialPages is 1.

Maximum value

The maximum number of initialPages is 1000.

Example

-- systemw de propert
der bg. st orage. i ﬁi tlpal Pglges:30

- - dat abase-wi de propert
CALL SYSCS_UTI L, SYSCS_SET_DATABASE PROPERTY(
‘derby.storage.initialPages', '30')

derby.storage.minimumRecordSize

Indicates the minimum user row size in bytes for on-disk database pages for tables when
you are creating a table. This property ensures that there is enough room for a row to
grow on a page when updated without having to overflow. This is generally most useful
for VARCHAR and VARCHAR FOR BIT DATA data types and for tables that are updated
a lot, in which the rows start small and grow due to updates. Reserving the space at the
time of insertion minimizes row overflow due to updates, but it can result in wasted
space. Set the property prior to issuing the CREATE TABLE statement.

See also derby.storage.pageReservedSpace.

63

Copyright

Valid conglomerates

Tables only.

Default
12 bytes.

Minimum value
12 bytes.

Maximum value

derby.storage.pageSize * (1 - derby.storage.pageReservedSpace/100) " 100.
If you set this property to a value outside the legal range, Derby uses the default value.

Example

-- chan ing the defau I
derb% orage. ni ni mu
- - changi ng the def aul
CALL SYSCS_UTI L. SYSCS_

derbg/ st or age. mi

for the sgstem
cordS |ze 1

for the database

T DATABASE PR(PERTY(

t
nRec
t
SET

ni nunRecor dSi ze'

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic or static
changes to properties.

derby.storage.pageCacheSize

Function

Defines the size, in number of pages, of the database's data page cache (data pages
kept in memory).

The actual amount of memory the page cache will use depends on the following:
« the size of the cache (configured with this property, derby.storage.pageCacheSize)
« the size of the pages (configured with the derby.storage.pageSize property)
 overhead (varies with JVMs)

When increasing the size of the page cache, you typically have to allow more memory for
the Java heap when starting the embedding application (taking into consideration, of
course, the memory needs of the embedding application as well). For example, using the
default page size of 4K, a page cache size of 2000 pages will require at least 8 MB of
memory (and probably more, given the overhead).

For a simple application (no GUI), using the Sun 1.1.7 JVM on Windows NT and using
the -mx96m option (which allows 96 MB for the Java heap), it is possible to have a page
cache size of 10,000 pages (approximately 40 MB).

The minimum value is 40 pages. If you specify a lower value, Derby uses the default
value.

Default
1000 pages.

Example

64

Copyright
der by. st or age. pageCacheSi ze=160

Dynamic or static

Static. You must reboot the system for the change to take effect.

derby.storage.pageReservedSpace
Function

Defines the percentage of space reserved for updates on an on-disk database page for
tables only (not indexes); indicates the percentage of space to keep free on a page when
inserting. Leaving reserved space on a page can minimize row overflow (and the
associated performance hit) during updates. Once a page has been filled up to the
reserved-space threshold, no new rows are allowed on the page. This reserved space is
used only for rows that increase in size when updated, not for new inserts. Set this
property prior to issuing the CREATE TABLE statement.

Regardless of the value of derby.storage.pageReservedSpace, an empty page always
accepts at least one row.
Valid conglomerates

Tables only.

Default
20%.

Minimum value
The minimum value is 0% and the maximum is 100%. If you specify a value outside this
range, Derby uses the default value of 20%.

Example

-- modifying the default for the system

der by. st or age. ﬁageReser vedSpace=40

-- nodi f mg_rt e default for the database

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
: ggr;)y. st or age. pageReSer vedSpace' ,

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic or static
changes to properties.

derby.storage.pageSize
Function

Defines the page size, in bytes, for on-disk database pages for tables or indexes used
during table or index creation. Page size can only be one the following values: 4096,
8192, 16384, or 32768. Set this property prior to issuing the CREATE TABLE or
CREATE INDEX statement. This value will be used for the lifetime of the newly created
conglomerates.

Valid conglomerates

Tables and indexes, including the indexes created to enforce constraints.

65

Copyright

Default
4096 bytes.

Valid values

Page size can only be one the following values: 4096, 8192, 16384, or 32768. If you
specify an invalid value, Derby uses the default value 4096.

Example

-- chan?i ng the default for the system

der by. stor age. page& ze=8192

-- changing the default for the database

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
: gfrggy) st or age. pageSi ze'

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic or static
changes to properties.

derby.storage.tempDirectory

Function

Defines the location on disk for temporary file space needed by Derby for performing
large sorts and deferred deletes and updates. (Temporary files are automatically deleted
after use, and are removed when the database restarts after a crash.) The temporary
directory named by this property will be created if it does not exist, but will not be deleted
when the system shuts down. The path name specified by this property must have file
separators that are appropriate to the current operating system.

This property allows databases located on read-only media to write temporary files to a
writable location. If this property is not set, databases located on read-only media might
get an error like the following:

ERROR XSDF1: Exception during
of file c:\databases
for container)
ERRCR XJ001: Java excegtl on:)))
"a:\ dat abases\ db\ t np\ T887256591756. t np: j ava.i o. | OException'.

eatio
\'t np\

n
np\ 1887256591756. t mp

cr
\ db

This property moves the temporary directories for all databases being used by the Derby
system. Derby makes temporary directories for each database under the directory
referenced by this property. For example, if the property is set as follows:

der by. st or age. t enpDi r ect or y=C: / Tenp/ dbt enp

the temporary directories for the databases in C:\databases\dbl and C:\databases\db2
will be in C:\Temp\dbtemp\db1 and C:\Temp\dbtemp\db2, respectively.

The temporary files of two databases running concurrently with the same name (e.g.,
C:\databases\dbl and E:\databases\db1) will conflict with each other if the
derby.storage.tempDirectory property is set. This will cause incorrect results, so users
are advised to give databases unique names.

Default

A subdirectory named tmp under the database directory.

For example, if the database dbl is stored in C:\databases\db1, the temporary files are

66

Copyright

created in C:\databases\db1\tmp.

Example

-- systemw de property

der by. st orage. t enpDi rect ory=c: / Tenp/ dbt enp
- - dat abase-wi de

ropert
CALL SYSCS UTI L. Vs _SE_‘\II'_DATABASE_PR(PERTY(
' der by. st orage. tenpDi rectory',
" c:/ Tenp/ dbt enp’)

Dynamic or static

This property is static; you must restart Derby for a change to take effect.

derby.stream.error.field

Function

Specifies a static field that references a stream to which the error log is written. The field
is specified using the fully qualified name of the class, then a dot (.) and then the field
name. The field must be public and static. Its type can be either java.io.OutputStream or
java.io.Writer.

The field is accessed once at Derby boot time, and the value is used until Derby is
rebooted. If the field is null, the error stream defaults to the system error stream
(java.lang.System.err).

If the field does not exist or is inaccessible, the error stream defaults to the system error
stream. Derby will not call the close() method of the object obtained from the field.

Default

None.

Example

derby. streamerror.field=java.lang. Systemerr
Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.file

Function

Specifies name of the file to which the error log is written. If the file name is relative, it is
taken as relative to the system directory.

If this property is set, the derby.stream.error.method and derby.stream.error.field
properties are ignored.

Default
derby.log.

Example

67

Copyright

derby.streamerror.file=error.txt

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.method

Function

Specifies a static method that returns a stream to which the Derby error log is written.
Specify the method using the fully qualified name of the class, then a dot (.) and then the
method name. The method must be public and static. Its return type can be either

java.io.OutputStream or java.io.Writer. Derby will not call the close() method of the object
returned by the method.

The method is called once at Derby boot time, and the return value is used for the lifetime
of Derby. If the method returns null, the error stream defaults to the system error stream.
If the method does not exist or is inaccessible, the error stream defaults to the system
error stream (java.lang.System.err).

If the value of this property is set, the property derby.stream.error.field is ignored.

Default

Not set.

Example

der by. stream error. nmet hod=j ava. sql . Dri ver Manager .
get LogSt r eam

Scope
system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.logSeverityLevel

Function

Specifies which errors are logged to the Derby error log (typically the derby.log file). In
test environments, use the setting derby.stream.error.logSeverityLevel=0 so that all
problems are reported.

Any error raised in a Derby system is given a level of severity. This property indicates the
minimum severity hecessary for an error to appear in the error log. The severities are
defined in the class org.apache.derby.types.ExceptionSeverity. The higher the number,
the more severe the error.

« 20000

Errors that cause the statement to be rolled back, for example syntax errors and
constraint violations.

» 30000

68

Copyright

Errors that cause the transaction to be rolled back, for example deadlocks.
« 40000

Errors that cause the connection to be closed.
« 50000

Errors that shut down the Derby system.

Default
40000.

Example

/] send errors of |evel 30000 and higher to the |og
derby. streamerror.| ogSeveritylLevel =30000

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.system.durability

Function
This property changes the default durability of Derby to improve performance at the
expense of consistency and durability of the database. The only valid supported case
insensitive value is t est . If this property is set to any value other than t est , this
property setting is ignored. When der by. system durabi l ity issettot est, the store
system will not force I/O synchronization calls for:

« the log file at each commit.

« the log file before a data page is forced to disk.

« page allocation when a file is grown.

« for data writes during checkpoints.

While performance is improved, note that under these conditions, a commit no longer
guarantees that the transaction's modification will survive a system crash or JVM
termination, the database may not recover successfully upon restart, a near-full disk at
runtime may cause unexpected errors, and the database may be in an inconsistent state.

If you boot the database with this property set to t est , the following warning message is
logged in the der by. | og file:

WARNI NG The dat abase is booted with derby.system durability=test.
In this node, it is possible that database nay not be able

to recover, committed transactions may be | ost, and the database
may be in an inconsistent state. PleaSe use this node only when

t hese consequences are acceptabl e.

A similar message will appear in the der by. | og file if the database was booted with
derby.system.durability=test at any time previously.

Once the database is booted with der by. syst em dur abi | i t y=t est, there are no
guarantees that the database is consistent.

Default
This property is ignored by default.

Supported values

The only supported value is t est .

69

Copyright

Example

der by. system dur abi | i t y=t est

Since this is a system property, you can set it in the der by. properti es file or on the
command line of the JVM when starting the application.

You might enable this property when using Derby as a test database where consistency
or recoverability is not an issue.
Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.system.home

Function
Specifies the Derby system directory, which is the directory that contains subdirectories
holding databases that you create and the text file derby.properties.

If the system directory that you specify with derby.system.home does not exist at startup,
Derby creates the directory automatically.

Default

Current directory (the value of the JVM system property user.dir).

If you do not explicitly set the derby.system.home property when starting Derby, the
default is the directory in which Derby was started.
Note: You should always explicitly set the value of derby.system.home.

Example
- Dder by. syst em hone=C: \ der by

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.user.UserName

Function
Has two uses:
» Creates users and passwords when derby.authentication.provider is set to BUILTIN.
» Caches user DNs locally when derby.authentication.provider is set to LDAP and
derby.authentication.ldap.searchFilter is set to derby.user.

Users and Passwords
This property creates valid clear-text users and passwords within Derby when the
derby.authentication.provider property is set to BUILTIN. For information about users,
see "Working with User Authentication" in the Derby Developer's Guide.

» Database-Level Properties

When you create users with database-level properties, those users are available to
the specified database only.

You set the property once for each user. To delete a user, set that user's password
to null.

70

Copyright

» System-Level Properties
When you create users with system-level users, those users are available to all
databases in the system.

You set the value of this system-wide property once for each user, so you can set it
several times. To delete a user, remove that user from the file.

You can define this property in the usual ways-typically in the derby.properties file.

When a user name and its corresponding password are provided in the
DriverManager.getConnection call, Derby validates them against the properties defined
for the current system.

User names are SQL92ldentifiers and can be delimited.

Syntax

der by. user. { User Nane=Passwor d} | User Nanme=user DN }

- - dat abase- 1 evel grope
CALL SYSCS_UTI L. SYSCS_SET” DATABASE_PROPERTY(
" der by-user. User Na)
' Password | userDN‘)

Default

None.

Example

-- system|l evel property
der by. user . guest =j avabw

der by. user. sa=Der by3x9

der by. user."! Anber" =j ava5w

-- dat abase-| evel grop

CALL SYSCS UTI L. SYSCS SET DATABASE_PROPERTY(
' der by user. sa'

' Der by3x9')
-- cache a userDN | ocal |y, database-|evel eroperty
CALL SYSCS UTI L. SYSCS_SET_DATABASE_PROPERT

' der by user. richard’
"ui d=richard, ou= Peopl e, o=ExanpleSite.com)

Dynamic or static

Dynamic. The change takes effect immediately. For information about dynamic changes
to properties, see Dynamic or static changes to properties.

Caching user DNs

This property caches user DNs (distinguished names) locally when
derby.authentication.provider is set to LDAP and derby.authentication.ldap.searchFilter is
set to derby.user. When you provide a user DN with this property, Derby is able to avoid
an LDAP search for that user's DN before authenticating. For those users without DNs
defined with this property, Derby performs a search using the default value of
derby.authentication.ldap.searchFilter.

71

Copyright

Internal language transformations
The Derby SQL parser sometimes transforms SQL statements internally for performance
reasons. This appendix describes those transformations. Understanding the internal
language transformations can help you analyze and tune performance. Understanding
the internal language transformations is not necessary for the general user.

This chapter uses some specialized terms. Here are some definitions:

base table

A real table in a FROM list. In queries that involve "virtual” tables such as views and derived tables,
base tables are the underlying tables to which virtual tables correspond.

derived table

A virtual table, such as a subquery given a correlation name or a view. For example: SELECT
derivedtable.c1 FROM (VALUES (‘a','b")) AS derivedtable(c1,c2).

equality predicate

A predicate in which one value is compared to another value using the = operator.
equijoin predicate

A predicate in which one column is compared to a column in another table using the = operator.
optimizable

A predicate is optimizable if it provides a starting or stopping point and allows use of an index.
Optimizable predicates use only simple column references and =, <, >, +, >=, and IS NULL
operators. For complete details, see What's optimizable?. A synonym for optimizable is indexable.

predicate

A WHERE clause contains boolean expressions that can be linked together by AND or OR clauses.
Each part is called a predicate. For example: WHERE c1 =2 AND c2 = 5 contains two predicates.

sargable

Sargable predicates are a superset of optimizable predicates; not all sargable predicates are
optimizable, because sargable predicates also include the <> operator. (Sarg stands for "search
argument.") Predicates that are sargable but not optimizable nevertheless improve performance and
allow the optimizer to use more accurate costing information.

In addition, sargable predicates can be pushed down (see Predicates pushed into views or derived
tables).

simple column reference

A reference to a column that is not part of an expression. For example, cl is a simple column
reference, but c1+1,max(cl), and lower(cl) are not.

Predicate transformations

WHERE clauses with predicates joined by OR are usually not optimizable. WHERE
clauses with predicates joined by AND are optimizable if at least one of the predicates is
optimizable. For example:

SELECT * FROM Flights
WHERE flight_id =" AA1111"
AND segnent _nunber <> 2

In this example, the first predicate is optimizable; the second predicate is not. Therefore,
the statement is optimizable.

Note: In a few cases, a WHERE clause with predicates joined by OR can be transformed
into an optimizable statement. See OR transformations.

72

Copyright

Derby can transform some predicates internally so that at least one of the predicates is
optimizable and thus the statement is optimizable. This section describes the predicate
transformations that Derby performs to make predicates optimizable.

A predicate that uses the following comparison operators can sometimes be transformed
internally into optimizable predicates.

BETWEEN transformations

A BETWEEN predicate is transformed into equivalent predicates that use the >= and <=
operators, which are optimizable. For example:

f1ight_date BETWEEN DATE(' 2005-04-01') and DATE(' 2005- 04- 10')

is transformed into

flight date >= DATE('2005-04- 01)
AND fl1Tght _date >= "2005-04-

LIKE transformations

This section describes using LIKE transformations as a comparison operator.
Character string beginning with constant

A LIKE predicate in which a column is compared to a character string that begins with a
character constant (not a wildcard) is transformed into three predicates: one predicate
that uses the LIKE operator, one that uses the >= operator, and one that uses the <
operator. For example:

country LIKE ' Ch% %

becomes

country LIKE ' Ch% %
AND country >="'Ch'
AND country < 'C'"

The first (LIKE) predicate is not optimizable, but the new predicates added by the
transformation are.

When the character string begins with one more character constants and ends with a
single "%", the first LIKE clause is eliminated. For example:

country LIKE ' Ch%

becomes

country >= 'Ch' _
AND country < 'C"'

Character string without wildcards

A LIKE predicate is transformed into a predicate that uses the = operator (and a NOT
LIKE predicate is transformed into one that uses <>) when the character string does not
contain any wildcards. For example:

country LIKE ' Chile'

73

Copyright
becomes

country = 'Chile'

and

country NOT LIKE ' Chil e

becomes

country <> 'Chile'

Predicates that use the = operator are optimizable. Predicates that use the <> operator
are sargable.

Unknown parameter

"The situation is similar to those described above when a column is compared using the
LIKE operator to a parameter whose value is unknown in advance (dynamic parameter,
join column, etc.).

In this situation, the LIKE predicate is likewise transformed into three predicates: one
LIKE predicate, one predicate using the >= operator, and one predicate using the <
operator. For example:

country LIKE ?

is transformed into

country LIKE ?
AND country >= InternallyGeneratedParanet er
AND country < Internal |l yGenerat edPar anet er

where the InternallyGeneratedParameters are calculated at the beginning of execution
based on the value of the parameter.

Note: This transformation can lead to a bad plan if the user passes in a string that begins
with a wildcard or a nonselective string as the parameter. Users can work around this
possibility by writing the query like this (which is not optimizable):

(country || ') LIKE ?

Static IN predicate transformations

A static IN list predicate is one in which the IN list is composed entirely of constants.
Derby calculates the minimum and maximum values in the list and transforms the
predicate into three new predicates: the original IN predicate, one that uses the >=
operator, and one that uses the <= operator. The second and third are optimizable. For
example:

orig_airport IN ('ABQ, 'AKL', 'DSM)

is transformed into

orig airport IN ("ABQ, 'AK
AND orig_airport >= 'AB%
AND orig_airport <= 'DS

L', 'DSM)

NOT IN predicate transformations

74

Copyright

NOT IN lists are transformed into multiple predicates that use the <> operator. <>
predicates are not optimizable, but they are sargable (See Internal language
transformations). For example:

orig_airport NOT IN ("ABQ, '"AKL', 'DSM)

becomes

orig airport <> 'AB
AND ©Orig_airport <> AKL
AND orig_airport <> 'DSM

In addition, large lists are sorted in ascending order for performance reasons.

OR transformations

If all the OR predicates in a WHERE clause are of the form

sinpl e columm reference = Expression

where the columnReference is the same for all predicates in the OR chain, Derby
transforms the OR chain into an IN list of the following form:

sinmple colum reference I N (Expressionl, Expression2, ..., ExpressionN)

The new predicate might be optimizable.

For example, Derby can transform the following statement:

SELECT * FROM Fli ghts
VWHERE flight id = 'AA1111'
OR flight id = "'US5555
OR flightZid =

into this one:

SELECT * FROM Flights
WHERE flight id IN (' AA1111', 'US5555', ?)

If this transformed IN list is a static IN list, Derby also performs the static IN list
transformation (see Static IN predicate transformations).

Transitive closure

The transitive property of numbers states that if A=B and B = C, then A =C.

Derby applies this property to query predicates to add additional predicates to the query
in order to give the optimizer more information. This process is called transitive closure.
There are two types of transitive closure:

 Transitive closure on join clauses

Applied first, if applicable

« Transitive closure on search clauses

Transitive closure on join clauses

When a join statement selects from three or more tables, Derby analyzes any equijoin

75

Copyright

predicates between simple column references within each query block and adds
additional equijoin predicates where possible if they do not currently exist. For example,
Derby transforms the following query:

SELECT * FROM sanp. errpl oyee e, sanp.enp_act a, sanp.enp_resune r
VWHERE e. enpno = a. enpho
and a.enmpno = r.enpno

into the following:

SELECT * FROM sarrp errpl oyee e, sanp.enp_act a, sanp.enp_resune r
VWHERE e. enpno = enpno
and a.enmpno = r. errpno
and e.enpno = r.enpno

On the other hand, the optimizer knows that one of these equijoin predicates is redundant
and will throw out the one that is least useful for optimization.

Transitive Closure on Search Clauses

Derby applies transitive closure on search clauses after transitive closure on join clauses.
For each sargable predicate where a simple column reference is compared with a
constant (or the IS NULL and IS NOT NULL operators), Derby looks for an equijoin
predicate between the simple column reference and a simple column reference from
another table in the same query block. For each such equijoin predicate, Derby then
searches for a similar comparison (the same operator) between the column from the
other table and the same constant. Derby adds a new predicate if no such predicate is
found.

Derby performs all other possible transformations on the predicates (described in
Predicate transformations) before applying transitive closure on search clauses.

For example, given the following statement:

, FllghtAvall ?/ ‘
i

Flights
VWHERE Flights. fli gt id IlghtAva yfll ht _id
AND Flights.flight_id between ' AA110 ' and
AND Flights.flight“id <> "'AA1219'
AND FlightAvailabiTity.flight_id <> 'AA1271"

Derby first performs any other transformations:
« the BETWEEN transformation on the second predicate:
AND Flights.flight_id >= ' AA1100'
lights.flight"id <= ' AA1250'

SELECT * FROM Fli ghts, FI| htAvallab it ?/])

W-IERE Fli 9hts._fllgt iId %htAval ability.flight_id
D Flights.flight_id >=

AND Flights.flight"id <= AA1250

AND Flights.flight~id <> 'AA121

AND Flights.flight_id <> 'AA1271'

AND FlightAvailabiTity.flight_id >="'AA1100

AND FlightAvailability.flight”id <= 'AA1250

AND FlightAvailability.flightZid <> 'AA1271

AND FlightAvailability.flightZid <> 'AA1219'

When a sargable predicate uses the = operator, Derby can remove all equijoin predicates
comparing that column reference to another simple column reference from the same
guery block as part of applying transitive closure, because the equijoin predicate is now

76

Copyright

redundant, whether or not a new predicate was added. For example:

SELECT * FROM F
VWHERE Flights. f

li IE avail a |?/)
I d= I ght avai | ab |tyf||ght|d
AND Fl i ghtavail ab _id = AAl

ts,
St.
iity. f

becomes (and is equivalent to)

SELECT * FROM Fl i gh
VWHERE Fl i ghts, flight
AND Fl i ghtavai | abi

, Flightavailabilit
|d—g 122' J

ts
t
iTy.flight_id = "' AA1122'

The elimination of redundant predicates gives the optimizer more accurate selectivity
information and improves performance at execution time.

View transformations

When Derby evaluates a statement that references a view, it transforms the reference to
a view into a derived table. It might make additional transformations to improve
performance.

View flattening

When evaluating a statement that references a view, Derby internally transforms a view
into a derived table. This derived table might also be a candidate for flattening into the
outer query block.

A view or derived table can be flattened into the outer query block if all of the following
conditions are met:
* The select list is composed entirely of simple column references and constants.
» There is no GROUP BY clause in the view.
» There is no DISTINCT in the view.

For example, given view v1(a,b):

SELECT Cities.city_name, Countries.country iso_code
FROM Cities, Couniries
WHERE Cities.country iso_code = Countries.country_i so_code

and a SELECT that references it:

SELECT a, b
FROM vl WHERE a = ' Mel bour ne'

after the view is transformed into a derived table, the internal query is

SELECT a, b

FROM E]sei ect Cities.city _name, Countries.country_ iso_code

FROM Cities, Countries

VWHERE Cities.country iso_code = Countries.country_iso_code) vl(a, b)
VWHERE a = ' Mel bour ne™

After view flattening it becomes

SELECT Cities.city_name, Countries.country_iso_code

FROM Cities, Countries

VWHERE Citi es, country_iso_code = Countries.country_iso_code
AND Cities.city_nane = '©Mel bourne'

Predicates pushed into views or derived tables

An SQL statement that references a view can also include a predicate. Consider the view
v2 (a,b):

77

Copyright

CREATE VI EWv2(a, b) AS

SELECT sal es_person, MAX(sal es)
FROM Sal es

GROUP BY sal es_person

The following statement references the view and includes a predicate:

SELECT *
WHERE a = ' LUCCHESSI '

When Derby transforms that statement by first transforming the view into a derived table,
it places the predicate at the top level of the new query, outside the scope of the derived
table:

SELECT a, b
FROM (SELECT sal es_person, MAX(sal es)
F Sal es
WHERE sal es_person = ' LUCCHESSI '
GROUP BY sal es_person)
vi(a, b)

In the example in the preceding section (see View flattening), Derby was able to flatten
the derived table into the main SELECT, so the predicate in the outer SELECT could be
evaluated at a useful point in the query. This is not possible in this example, because the
underlying view does not satisfy all the requirements of view flattening.

However, if the source of all of the column references in a predicate is a simple column
reference in the underlying view or table, Derby is able to push the predicate down to the
underlying view. Pushing down means that the qualification described by the predicate
can be evaluated when the view is being evaluated. In our example, the column
reference in the outer predicate, a, in the underlying view is a simple column reference to
the underlying base table. So the final transformation of this statement after predicate
pushdown is:

SELECT a, b

FROM (SELECT sal es_person, MAstaI es) from Sal es
VWHERE sal es_person = ' LUCCHESS] '

GROUP BY sal'es_person) vl(a, b)

Without the transformation, Derby would have to scan the entire table t1 to form all the
groups, only to throw out all but one of the groups. With the transformation, Derby is able
to make that qualification part of the derived table.

If there were a predicate that referenced column b, it could not be pushed down, because
in the underlying view, column b is not a simple column reference.

Predicate pushdown transformation includes predicates that reference multiple tables
from an underlying join.

Subquery processing and transformations

Subqueries are notoriously expensive to evaluate. This section describes some of the
transformations that Derby makes internally to reduce the cost of evaluating them.

Materialization

Materialization means that a subquery is evaluated only once. There are several types of
subqueries that can be materialized.

Expression subqueries that are not correlated

78

Copyright

A subguery can be materialized if it is a noncorrelated expression subquery. A correlated
subquery is one that references columns in the outer query, and so has to be evaluated
for each row in the outer query.

For example:

SELECT * FROM Staff WHERE id = (SELECT MAX(nmanager) FROM Org)

In this statement, the subquery needs to be evaluated only once.

This type of subquery must return only one row. If evaluating the subquery causes a
cardinality violation (if it returns more than one row), an exception is thrown when the
subquery is run.

Subquery materialization is detected before optimization, which allows the Derby
optimizer to see a materialized subquery as an unknown constant value. The comparison
is therefore optimizable.

The original statement is transformed into the following two statements:

constant = SELECT MAX(rmanager) FROM O g
SELECT * FROM St af f
VWHERE i d = constant

The second statement is optimizable.

Subqueries that cannot be flattened

Materialization of a subquery can also occur when the subquery is nonflattenable and
there is an equijoin between the subquery and another FROM table in the query.

For example:
SELECT i, a FROMt1,
SELECT DI STINCT a FROM T2) x1
VHE tl.i =xl.a ANDtl1.i in (1, 3, 5 7)

In this example, the subquery x1 is noncorrelated because it does not reference any of
the columns from the outer query. The subquery is nonflattenable because of the
DISTINCT keyword. Derby does not flatten DISTINCT subqueries. This subquery is
eligible for materialization. Since there is an equijoin predicate between the subquery x1
and the table t1 (namely, t1.i = x1.a), the Derby optimizer will consider performing a hash
join between t1 and x1 (with x1 as the inner operand). If that approach yields the best
cost, Derby materializes the subquery x1 to perform the hash join. The subquery is
evaluated only a single time and the results are stored in an in-memory hash table. Derby
then executes the join using the in-memory result set for x1.

Flattening a subquery into a normal join

Subqueries are allowed to return more than one row when used with IN, EXISTS, and
ANY. However, for each row returned in the outer row, Derby evaluates the subquery
until it returns one row; it does not evaluate the subquery for all rows returned.

For example, given two tables, t1 and t2:

cl

79

Copyright

cl

and the following query:

SELECT c1 FROMt1 WHERE c1 I N (SELECT c1 FROMt 2)

the results would be

1
2

Simply selecting t1.c1 when simply joining those tables has different results:

SELJI%CT tl.cl FROMt1l, t2 WHERE tl.cl1 =1t2.cl

2
2

Statements that include such subqueries can be flattened into joins only if the subquery
does not introduce any duplicates into the result set (in our example, the subquery
introduced a duplicate and so cannot simply be flattened into a join). If this requirement
and other requirements (listed below) are met, however, the statement is flattened such
that the tables in the subquery's FROM list are treated as if they were inner to the tables
in the outer FROM list.

For example, the query could have been flattened into a join if c1 in t2 had a unique index
on it. It would not have introduced any duplicate values into the result set.

The requirements for flattening into a normal join are:

« The subquery is not under an OR.

» The subquery type is EXISTS, IN, or ANY, or it is an expression subquery on the
right side of a comparison operator.

* The subquery is not in the SELECT list of the outer query block.

» There are no aggregates in the SELECT list of the subquery.

* The subquery does not have a GROUP BY clause.

» There is a uniqueness condition that ensures that the subquery does not introduce
any duplicates if it is flattened into the outer query block.

< Each table in the subquery's FROM list (after any view, derived table, or subquery
flattening) must be a base table.

« If there is a WHERE clause in the subquery, there is at least one table in the
subqguery whose columns are in equality predicates with expressions that do not
include any column references from the subquery block. These columns must be a
superset of the key columns for any unique index on the table. For all other tables in
the subquery, the columns in equality predicates with expressions that do not
include columns from the same table are a superset of the unique columns for any
unique index on the table.

Flattening into a normal join gives the optimizer more options for choosing the best query
plan. For example, if the following statement:

SELECT huge.* FROM hu%e)
WHERE c1 I'N (SELECT cI FROM ti ny)

can be flattened into

SELECT huge.* FROM huge, tiny WHERE huge.cl = tiny.cl

80

Copyright

the optimizer can choose a query plan that will scan tiny and do a few probes into the
huge table instead of scanning the huge table and doing a large nhumber of probes into
the tiny table.

Here is an expansion of the example used earlier in this section. Given

CREATE TABLE t1 (cl1 INT)

CREATE TABLE t2 (cl INT NOT NULL PRI MARY KE
CREATE TABLE t3 (cl I NT NOT NULL PRI MARY KE
INSERT INTO t1 VALUES (1), (2), (3

INSERT INTO t2 VALUES (1), (2), (3

I NSERT I NTO t3 VALUES (2), (3), (4

this query

SELECT t1.* FROMt1l WHERE t1.cl IN
(SELECT t2.cl FROMt2, t3 WHERE t2.cl = t3.cl)

should return the following results:

2
3

The query satisfies all the requirements for flattening into a join, and the statement can
be transformed into the following one:

The following query:

SELECT t1.*
FROM t 1 WHERE EXI STS
(SELECT * FROMt2, t3 WHERE t2.c1 = t3.cl1 ANDt2.cl = t1l.cl)

can be transformed into

Flattening a subquery into an EXISTS join

An EXISTS join is a join in which the right side of the join needs to be probed only once
for each outer row. Using such a definition, an EXISTS join does not literally use the
EXISTS keyword. Derby treats a statement as an EXISTS join when there will be at most
one matching row from the right side of the join for a given row in the outer table.

A subquery that cannot be flattened into a normal join because of a uniqueness condition
can be flattened into an EXISTS join if it meets all the requirements (see below). Recall
the first example from the previous section (Flattening a subquery into a normal join):

SELECT c1 FROMt1l WHERE cl1 I N (SELECT cl FROMt 2)

This query could not be flattened into a normal join because such a join would return the
wrong results. However, this query can be flattened into a join recognized internally by
the Derby system as an EXISTS join. When processing an EXISTS join, Derby knows to
stop processing the right side of the join after a single row is returned. The transformed
statement would look something like this:

81

Copyright

SELECT c1 FRO\/Itl t2
WHERE t1.cl = t2.
EXI STS JO N | NTERNAL SYNTAX

Requirements for flattening into an EXISTS join:

» The subquery is not under an OR.

* The subquery type is EXISTS, IN, or ANY.

e The subquery is not in the SELECT list of the outer query block.

« There are no aggregates in the SELECT list of the subquery.

e The subquery does not have a GROUP BY clause.

« The subquery has a single entry in its FROM list that is a base table.

« None of the predicates in the subquery, including the additional one formed
between the left side of the subquery operator and the column in the subquery's
SELECT list (for IN or ANY subqueries), include any subqueries, method calls, or
field accesses.

When a subquery is flattened into an EXISTS join, the table from the subquery is made
join-order-dependent on all the tables with which it is correlated. This means that a table
must appear inner to all the tables on which it is join-order-dependent. (In subsequent
releases this restrictions can be relaxed.) For example:

SELECT t1.* FROM t t2
WHERE EXI STS (SELECT * FROMt3 WHERE t1.cl = t3.cl)

gets flattened into

SELECT t1.* FROMt1l, t2, t3 WHERE t1l.cl = t3.cl

where t3 is join order dependent on t1. This means that the possible join orders are (t1,
t2, t3), (1, t3, t2), and (t2, t1, t3).

Flattening VALUES subqueries

Derby flattens VALUES subqueries to improve performance.

DISTINCT elimination in IN, ANY, and EXISTS subqueries

An IN, ANY, or EXISTS subquery evaluates to true if there is at least one row that causes
the subquery to evaluate to true. These semantics make a DISTINCT within an IN, ANY,
or EXISTS subquery unnecessary. The following two queries are equivalent and the first
is transformed into the second:

SELECT * FROMt1l WHERE c1 I N
(SELECT DI STINCT c2 FROMt2 WHERE t1.c3 = t2.c4)

SELECT * FROM t1 WHERE c1 IN
(SELECT ¢2 FROM {2 WHERE t1.¢3 = t2.c4)

IN/ANY subquery transformation

An IN or ANY subquery that is guaranteed to return at most one row can be transformed
into an equivalent expression subquery (a scalar subquery without the IN or ANY). The
subquery must not be correlated. Subqueries guaranteed to return at most one row are:
« Simple VALUES clauses
e SELECTS returning a non-grouped aggregate

For example:

WHERE C1 IN (SELECT M N(c1) FROM T)

can be transformed into

82

Copyright

WHERE C1 = (SELECT M N(c1) FROM T)

This transformation is considered before subquery materialization. If the transformation is
performed, the subquery becomes materializable. In the example, if the IN subquery
were not transformed, it would be evaluated anew for each row.

The subquery type transformation is shown in IN or ANY Subquery Transformations for
Subqueries Returning a Single Row:

Table 5. IN or ANY Subquery Transformations for Subqueries Returning a Single
Row

Before Transformation After Transformation
cl IN (SELECT ...) cl = (SELECT ...)
cl = ANY (SELECT ...) cl = (SELECT ...)
cl <> ANY (SELECT ...) cl <> (SELECT ...)
cl > ANY (SELECT ...) cl > (SELECT ...)
cl >= ANY (SELECT ...) cl >= (SELECT ...)
cl < ANY (SELECT ...) cl < (SELECT ...)
cl <= ANY (SELECT ...) cl <= (SELECT ...)

Outer join transformations

Derby transforms OUTER to INNER joins when the predicate filters out all nulls on the
join column. This transformation can allow more potential query plans and thus better
performance.

Sort avoidance

Sorting is an expensive process. Derby tries to eliminate unnecessary sorting steps
where possible.

DISTINCT elimination based on a uniqueness condition

A DISTINCT (and the corresponding sort) can be eliminated from a query if a uniqueness
condition exists that ensures that no duplicate values will be returned. If no duplicate
values are returned, the DISTINCT node is superfluous, and Derby transforms the
statement internally into one without the DISTINCT keyword.

The requirements are:
* No GROUP BY list.
e SELECT list contains at least one simple column reference.
« Every simple column reference is from the same table.
« Every table in the FROM list is a base table.
e Primary table

There is at least one unique index on one table in the FROM list for which all the
columns appear in one of the following:

« equality predicates with expressions that do not include any column
references
 simple column references in the SELECT list
« Secondary table(s)

All the other tables in the FROM list also have at least one unique index for which

83

Copyright

all the columns appear in one of the following:

» equality predicates with expressions that do not include columns from the
same table
 simple column references in the SELECT list

For example:

CREATE TABLE tabl (cl | NT NOT NULL,
c2 I NT NOT NUL

¢3 I NT_NOT NULL,

ca CHAR(?).

PRI MARY KEY &cl c2,
CREATE. TABLE tab

PRI MARY KEY (cl

c3
I'NT NULL,

WA,

the col urms in the index on the onl?/ tabl e ftabl? appear

the way required for the Primary table (sinple colum references)
SELECT DI STI cl, c2, c3, c4

FROM t abl

-- all the col urms in the index on the onIY tabl e f bl) appear

-- in the \I\BK eqmred for the Primary table (equality predi cates)

SELECT DI STI c4

FROM t abl

V\HERE cl =1

AND c2 = 2

AND c4 = 'WA

-- all the columns in the index on tabl aBPear
--in the way required for the Primary ta

-- and all the colums in the

-- other tables appear in the way required
-- for a Secondary table

SELECT DI STINCT tabl.cl1, tabl.c3, tabl.c4

FROM t abl, tab2

VHERE t abl 02 =2
AND tab2.c2 = tabl.c2
AND t ab2. cl = tabl.cl

Combining ORDER BY and DISTINCT

Without a transformation, a statement that contains both DISTINCT and ORDER BY
would require two separate sorting steps-one to satisfy DISTINCT and one to satisfy
ORDER BY. (Currently, Derby uses sorting to evaluate DISTINCT. There are, in theory,
other ways to accomplish this.) In some situations, Derby can transform the statement
internally into one that contains only one of these keywords. The requirements are:

* The columns in the ORDER BY list must be a subset of the columns in the SELECT

list.
« All the columns in the ORDER BY list are sorted in ascending order.

A unique index is not required.

For example:

SELECT DI STINCT miles, neal
FROM Fl i ght's
ORDER BY neal

is transformed into

SELECT DI STINCT mil es, neal
FROM Fl i ght's

Note that these are not equivalent functions; this is simply an internal Derby
transformation.

84

Copyright

Combining ORDER BY and UNION

Without a transformation, a statement that contains both ORDER BY and UNION would
require two separate sorting steps-one to satisfy ORDER BY and one to satisfy UNION
(Currently Derby uses sorting to eliminate duplicates from a UNION. You can use UNION
ALL to avoid sorting, but UNION ALL will return duplicates. So you only use UNION ALL
to avoid sorting if you know that there are no duplicate rows in the tables).

In some situations, Derby can transform the statement internally into one that contains
only one of these keywords (the ORDER BY is thrown out). The requirements are:
» The columns in the ORDER BY list must be a subset of the columns in the select
list of the left side of the union.
« All the columns in the ORDER BY list must be sorted in ascending order and they
must be an in-order prefix of the columns in the target list of the left side of the
UNION.

Derby will be able to transform the following statements:

SELECT miles, neal

FROM Fl i Eht S

UNI ON VALUES (1000, 'D)
ORDER BY 1

Derby cannot avoid two sorting nodes in the following statement, because of the order of
the columns in the ORDER BY clause:
SEL(EJC\J:T flight_id, segment_nunber FROM Flights

NI
SELECT flight_id, segment_nunmber FROM FlightAvailability
ORDER BY segnent _nunber , flight_id

Aggregate processing

COUNT(nonNullableColumn)

Derby transforms COUNT(honNullableColumn) into COUNT(*). This improves
performance by potentially reducing the number of referenced columns in the table (each
referenced column needs to be read in for each row) and by giving the optimizer more
access path choices. For example, the cheapest access path for

SELECT COUNT(*) FROM t1

is the index on t1 with the smallest number of leaf pages, and the optimizer is free to
choose that path.

85

Copyright

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

86

	Copyright
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	Working with Derby properties
	Properties overview
	Scope of properties
	Persistence of properties
	Precedence of properties
	Protection of database-wide properties

	Dynamic versus static properties

	Ways of setting Derby properties
	System-wide properties
	Changing the system-wide properties programmatically
	As a parameter to the JVM command line
	Using a properties object within an application or statement

	Changing the system-wide properties by using the derby.properties file
	Verifying system properties

	Database-wide properties
	In a client/server environment
	Dynamic or static changes to properties

	Properties case study

	Performance tips and tricks
	The tips
	Use prepared statements with substitution parameters
	Create indexes, and make sure they are being used
	Increase the size of the data page cache
	Tune the size of database pages
	Performance trade-offs of large pages
	When large page size does not improve performance
	When large page size is not desirable

	Avoid expensive queries
	Use the appropriate getXXX and setXXX methods for the type
	Tune database booting/class loading
	Avoid inserts in autocommit mode if possible

	More tips
	Shut down the system properly
	Put Derby first in your classpath

	Tuning databases and applications
	Application and database design issues
	Avoiding table scans of large tables
	Always create indexes
	Create useful indexes
	Make sure indexes are being used, and rebuild them
	Think about index order
	Think about join order
	Decide whether a descending index would be useful

	Prevent the user from issuing expensive queries

	Avoiding compiling SQL statements
	Using the statement cache

	Shielding users from Derby class-loading events

	Analyzing statement execution
	Working with RunTimeStatistics
	Overview
	How you use the RUNTIMESTATISTICS attribute
	Analyzing the information
	Statistics timing
	Statement execution plan
	Optimizer estimates
	Optimizer overrides

	DML statements and performance
	Performance and optimization
	Index use and access paths
	What is an index?
	What's optimizable?
	Directly optimizable predicates
	Indirectly optimizable predicates
	Joins

	Covering indexes
	Single-column index examples
	Multiple-column index example

	Useful indexes can use qualifiers
	When a table scan Is better
	Indexes have a cost for inserts, updates, and deletes

	Joins and performance
	Join order overview
	Join strategies

	Derby's cost-based optimization
	About the optimizer's choice of access path
	About the optimizer's choice of join order
	Join order case study

	About the optimizer's choice of join strategy
	About the optimizer's choice of sort avoidance
	Cost-based ORDER BY sort avoidance

	About the system's selection of lock granularity
	How the system makes its decision if it has a choice
	Lock escalation threshold

	About the optimizer's selection of bulk fetch

	Locking and performance
	Transaction-based lock escalation
	LOCK TABLE statement

	Non-cost-based optimizations
	Non-cost-based sort avoidance (tuple filtering)
	DISTINCT
	Quick DISTINCT scans

	GROUP BY

	The MIN() and MAX() optimizations

	Overriding the default optimizer behavior

	Selectivity and cardinality statistics
	Determinations of rows scanned from disk for a table scan
	How the optimizer determines the number of rows in a table

	Estimations of rows scanned from disk for an index scan
	Queries with a known search condition
	Queries with an unknown search condition

	Statistics-based versus hard-wired selectivity
	Selectivity from cardinality statistics
	Selectivity from hard-wired assumptions

	What are cardinality statistics?
	Working with cardinality statistics
	When cardinality statistics are automatically updated
	When cardinality statistics go stale

	Derby properties
	Scope of Derby properties
	Derby properties
	derby.authentication.ldap.searchAuthDN
	derby.authentication.ldap.searchAuthPW
	derby.authentication.ldap.searchBase
	derby.authentication.ldap.searchFilter
	derby.authentication.provider
	derby.authentication.server
	derby.connection.requireAuthentication
	derby.database.defaultConnectionMode
	derby.database.forceDatabaseLock
	derby.database.fullAccessUsers
	derby.database.propertiesOnly
	derby.database.readOnlyAccessUsers
	derby.database.sqlAuthorization
	derby.infolog.append
	derby.language.logQueryPlan
	derby.language.logStatementText
	derby.locks.deadlockTimeout
	derby.locks.deadlockTrace
	derby.locks.escalationThreshold
	derby.locks.monitor
	derby.locks.waitTimeout
	derby.storage.initialPages
	derby.storage.minimumRecordSize
	derby.storage.pageCacheSize
	derby.storage.pageReservedSpace
	derby.storage.pageSize
	derby.storage.tempDirectory
	derby.stream.error.field
	derby.stream.error.file
	derby.stream.error.method
	derby.stream.error.logSeverityLevel
	derby.system.durability
	derby.system.home
	derby.user.UserName
	Caching user DNs

	Internal language transformations
	Predicate transformations
	BETWEEN transformations
	LIKE transformations
	Character string beginning with constant
	Character string without wildcards
	Unknown parameter

	Static IN predicate transformations
	NOT IN predicate transformations

	OR transformations

	Transitive closure
	Transitive closure on join clauses
	Transitive Closure on Search Clauses

	View transformations
	View flattening
	Predicates pushed into views or derived tables

	Subquery processing and transformations
	Materialization
	Flattening a subquery into a normal join
	Flattening a subquery into an EXISTS join
	Flattening VALUES subqueries
	DISTINCT elimination in IN, ANY, and EXISTS subqueries
	IN/ANY subquery transformation

	Outer join transformations
	Sort avoidance
	DISTINCT elimination based on a uniqueness condition
	Combining ORDER BY and DISTINCT
	Combining ORDER BY and UNION

	Aggregate processing
	COUNT(nonNullableColumn)

	Trademarks

