

Apache

Version 1.0

Developer Guide

Document generated by Confluence on Oct 15, 2009 06:44 Page 3

Apache Wink Developer Guide

This page last changed on Oct 13, 2009 by michael.

Apache Wink 1.0

Apache Wink is a complete Java based solution for implementing and consuming REST based Web
Services. The goal of the Apache Wink framework is to provide a reusable and extendable set of classes
and interfaces that will serve as a foundation on which a developer can efficiently construct applications.

Contents

1 Introduction to Apache Wink

2 Apache Wink Building Blocks

3 Getting Started with Apache Wink

4 JAX-RS Concepts

5 Apache Wink Server

 5.1 Registration and Configuration

 5.2 Annotations

 5.3 Resource Matching

 5.4 APP. Service Document

 5.5 Spring Integration

 5.6 WebDAV Extension

 5.7 Handler Chain

 5.8 Link Builder

 5.9 Assets

 5.10 Admin Views

6 Apache Wink Client

 6.1 Getting Started with Apache Wink Client

 6.2 Configuring the Apache Wink Client

 6.3 Input and Output Stream Adapters

7 Apache Wink Providers

 7.1 Json

Document generated by Confluence on Oct 15, 2009 06:44 Page 4

 7.2 APP

 7.3 Atom

 7.4 RSS

 7.5 HTML

 7.6 CSV

 7.7 OpenSearch

 7.8 MultiPart

Appendix A - Feeds Support

Appendix B - Google App Engine

Document generated by Confluence on Oct 15, 2009 06:44 Page 5

1 Introduction to Apache Wink

This page last changed on Sep 12, 2009 by bluk.

Introduction to Apache Wink

Apache Wink 1.0 is a complete Java based solution for implementing and consuming REST based Web
Services. The goal of the Wink framework is to provide a reusable and extendable set of classes and
interfaces that will serve as a foundation on which a developer can efficiently construct applications.

Wink consists of a Server module for developing REST services, and of a Client module for consuming
REST services. It cleanly separates the low-level protocol aspects from the application aspects. Therefore,
in order to implement and consume REST Web Services the developer only needs to focus on the
application business logic and not on the low-level technical details.

The Wink Developer Guide provides the developer with a rudimentary understanding of the Wink
framework and the building blocks that comprise it.

Welcome to Apache Wink

Wink is a framework for the simple implementation and consumption of REST web services. REST is
an acronym that stands for REpresentational State Transfer. REST web services are "Resources" that
are identified by unique URIs. These resources are accessed and manipulated using a set of "Uniform
methods". Each resource has one or more "Representations" that are transferred between the client and
the service during a web service invocation.

The central features that distinguish the REST architectural style from other network-based styles is its
emphasis on a uniform interface, multi representations and services introspection.

Wink facilitates the development and consumption of REST web services by providing the means for
modeling the service according to the REST architectural style. Wink provides the necessary infrastructure
for defining and implementing the resources, representations and uniform methods that comprise a
service.

REST Architecture

For a detailed understanding of the REST architecture refer to the description by Roy Fielding in
his dissertation, The Design of Network-based Software Architectures. In particular, Chapter 5
Representational State Transfer (REST) describes the principles of the architecture.

REST Web Service

Figure 1: REST Web service design structure

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Document generated by Confluence on Oct 15, 2009 06:44 Page 6

Figure 1 demonstrates the design principles and components that comprise a REST web service. Wink
reflects these design principles in the implementation of web services.

Apache Wink Open Development

The purpose of this document is to provide detailed information about Wink 1.0 and describe the
additional features that the Apache Wink 1.0 runtime provides in addition to the JAX-RS Java API for
REST Web Service specification.

In addition to the features description, this document also provides information regarding implementation
specific issues.

This document provides the developer with a rudimentary understanding of the Wink 1.0 framework in
order to highlight the underlying concepts and precepts that make up the framework in order to create a
basis for understanding, cooperation and open development of Wink.

JAX-RS Specification Document
For more information on the JAX-RS functionality, refer to the JAX-RS specification
document, available at the following location:
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html

JAX-RS Compliancy

Apache Wink 1.0 is a complete implementation of the JAX-RS v1.0 specification.

JAX-RS is a Java based API for RESTful Web Services is a Java programming language API that provides
support in creating web services according to the Representational State Transfer (REST) architectural
style. JAX-RS uses annotations, introduced in Java SE 5, to simplify the development and deployment of
web service clients and endpoints.

http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html

Document generated by Confluence on Oct 15, 2009 06:44 Page 7

2 Apache Wink Building Blocks

This page last changed on Oct 12, 2009 by bluk.

Apache Wink Building Blocks

In order to take full advantage of Apache Wink, a basic understanding of the building blocks that
comprise it and their functional integration is required. The following section provides an introduction
to the basic concepts and building blocks of Apache Wink, version 1.0. In order to gain in-depth
understandings of the building blocks refer to the table of contents where these concepts are expanded
and addtional example are used to further illustrate the Apache Wink and JAX-RS SDK technologies.

This section contains the following topics:

Service Implementation Building Blocks

• Resource
• Providers
• URI Dispatching
• Assets
• Annotations
• URL Handling
• HTTP Methods - GET, POST, PUT, DELETE and OPTIONS
• Basic URL Query Parameters
• Apache Wink Building Blocks Summary

Client Components Building Blocks

• RestClient Class
• Resource Interface
• ClientRequest Interface
• ClientResponse Interface
• ClientConfig Class
• ClientHandler Interface
• InputStreamAdapter Interface
• OutputStreamAdapter Interface
• EntityType Class

The Apache Wink Runtime

• Request Processor
• Deployment Configuration
• Handler Chains

Service Implementation Building Block
Overview

As mentioned in the "Apache Wink Introduction" section, Apache Wink 1.0 reflects the design
principles of a REST web service. It does so by providing the developer with a set of java classes that
enable the implementation of "Resources", "Representations" and the association between them.
Wink 1.0 also enables the developer to define the resource URI and the "Uniform methods" that are
applicable to the resource.

Document generated by Confluence on Oct 15, 2009 06:44 Page 8

Resource

A "resource" represents a serviceable component that enables for the retrieval and manipulation of
data. A "resource class" is used to implement a resource by defining the "resource methods" that
handle requests by implementing the business logic. A resource is bound or anchored to a URI space by
annotating the resource class with the @Path annotation.

Providers

A provider is a class that is annotated with the @Provider annotation and implements one or more
interfaces defined by the JAX-RS specification. Providers are not bound to any specific resource. The
appropriate provider is automatically selected by the Apache Wink runtime according to the JAX-RS
specification. Apache Wink supplies many providers, however, application developers may supply their
own which take precedence over any provider in the default runtime.

There are three types of providers defined by the JAX-RS specification:

• Entry Providers
• Context Providers
• Exception Mapping Provider

Entity Provider

An "Entity Provider" is a class that converts server data into a specific format requested by the client
and/or converts a request transmitted by the client into server data. For instance, a String entity
provider can turn request entities (message bodies) over the wire into a Java type (java.lang.String).
Entity providers can also turn native Java types such as a java.lang.String into an appropriate
response entity. An entity provider can be restricted to support a limited set of media types using the
@javax.ws.rs.Produces and @javax.ws.rs.Consumes annotations. An entity provider is configured to
handle a specific server data type by implementing the javax.ws.rs.ext.MessageBodyWriter and/or
javax.ws.rs.ext.MessageBodyReader interfaces.

Figure 2: Entity Provider Diagram

Context Provider

Context providers are used to supply contexts to resource classes and other providers by implementing
the javax.ws.rs.ext.ContextResolver interface. For example, if a custom JAXBContext is required to
serialize or deserialize JAXB objects, an application can provide a ContextResolver that will return a
specific instance of a JAXBContext. Context providers may restrict the media types that they support
using the @javax.ws.rs.Produces annotation.

Figure 3: Context Provider Diagram

Document generated by Confluence on Oct 15, 2009 06:44 Page 9

Exception Mapping Provider

Exception mapping providers map exceptions into an instance of a javax.ws.rs.core.Response by
implementing the javax.ws.rs.ext.ExceptionMapper interface. The Response objects can contain response
information such as status codes, HTTP headers, and a response entity (message body). When a resource
method throws an exception, the runtime will try to find a suitable ExceptionMapper to "translate" the
exception to an appropriate Response object.

Figure 4: Exception Mapping Provider Diagram

URI Dispatching

Designing an efficient REST web service requires that the application developer understands the
resources that comprise the service, how to best identify the resources, and how they relate to one
another.

RESTful resources are identified by URIs in most cases related resources have URIs that share common
path elements.

Figure 5: Apache Wink Logic Flow

Document generated by Confluence on Oct 15, 2009 06:44 Page 10

Apache Wink Logic Flow

Figure 5 illustrates the Apache Wink logic flow. The HTTP request sent by the client invokes the "Apache
Wink REST Servlet". The REST servlet uses the "Request Processor" and the request URI in order to
find, match and invoke the correct resource method.

Bookmarks Example

Throughout this document, various project examples are used in order to describe the functionality and
processes that comprise the Apache Wink.
In order to explain the REST design principles used in the Apache Wink this developer guide refers to the
"Bookmark" example project found in the examples folder located in the Apache Wink distribution.

Refer to the code (using an IDE application) in the example in conjunction with the following explanations
and illustrations in this developer guide.

Apache Wink Servlet and Request Processor

Figure 6: Apache Wink REST Servlet and Request Processor for the Bookmark Services

Document generated by Confluence on Oct 15, 2009 06:44 Page 11

Server and Request Processor

Figure 6 shows the Apache Wink servlet and request Processor concept in the context of the application
server. In the "Bookmarks" example in Figure 6 there are two Resources, the first Resource is associated
with the /mybookmarks URI and manages the bookmarks collection, the second resource is associated
with the /mybookmarks/{bookmark} Resources and manages an individual bookmark within the
collection.

The Resources' defined by the web service and managed by Apache Wink are referred to as "URI
space". The Resources space is the collection of all URI's that exist in the same context. Figure 6 shows
the URI space that contains /mybookmarks and /mybookmarks/{bookmarks}.

URI Space

The Bookmarks service URI space consists of the following URI space items and detailed descriptions
about their context and functionality.
Table 1: URI Management

URI space Item Description

/Bookmark/rest This URI is the root context of the bookmark
service and the entry point of the URI space of the
service. An HTTP GET request to this URI returns
a "Service Document" which is automatically
generated by Apache Wink. The service document
provides information about all available collections
in the URI space.

/Bookmark/rest /mybookmarks This URI is associated with a collection of
bookmarks resources. Clients use the HTTP GET
method in order to retrieve a representation of

Document generated by Confluence on Oct 15, 2009 06:44 Page 12

the collection and HTTP POST method in order to
create a new item in the collection.

/Bookmark/rest /mybookmarks/
{bookmark}

This URI template is associated with a single
bookmark resource. Clients use the HTTP GET
method in order to retrieve a representation of
the resource, HTTP PUT method is used in order to
update the resource and HTTP DELETE method is
used in order to delete the resource.

Assets

Assets are classes that contain "web service business logic" implemented by the developer. Each Asset
is associated with one or more URI. The Apache Wink dispatcher invokes the Asset, which is associated
with the URI found in the HTTP request.

An Asset class can implement one or more methods, each method is associated with a single HTTP
method (GET, HEAD, POST, PUT, DELETE etc). The methods can be associated with a MIME type of a
produced representation. Methods that handle HTTP verbs of requests with a body (such as PUT, POST)
are also associated with the MIME type of the HTTP request.
The Asset class can be registered to the Apache Wink using the "Spring context xml" or by using a
registration API.

Spring Context Configuration
For further information regarding the Spring Context, refer to 5.5 Spring Integration in
section 5 Apache Wink Server.

Annotations

Annotations are a special text notations, or metadata, added to Java version 1.5. Annotations in Java
source code can affect both compilation and runtime behavior of the resulting Java classes.
JAX-RS is implemented by the use of annotations that are defined in the JAX-RS specification. Apache
Wink provides a set of additional annotations that enrich the functionality of the JAX-RS enabled
application.

The following table describes the additional Apache Wink annotations:

Annotation Precedes Description

@Workspace Resource Associate a "Collection
Resource" with a workspace
element and collection elements
in an APP Service Document

@Scope Resource /Provider Defines the default lifecycle
behavior for resources and
providers, and the option for
controlling the lifecycle through
the javax.ws.rs.core.Application
class

@Parent Resource Provides the ability to define a
base template URI for the URI
specified in a resources @Path
annotation

Document generated by Confluence on Oct 15, 2009 06:44 Page 13

@Asset Class Used by the Apache Wink
runtime in order to identify an
entity as an Asset

URL Handling

The Apache Wink receives HTTP requests and then dispatches a wrapped HTTP request to the appropriate
Resource method.
The HTTP request is match to the Resource method based on the HTTP request parameters, the Resource
method definitions and the MIME type.

Figure 7: URL Request Handling

Request Handling

Figure 7 demonstrates the HTTP Client request path to the URI dispatcher, once the dispatcher receives
the request it is then matched according to the HTTP method, URL and MIME type and finally the
Resource registry definition.

HTTP Methods - GET, POST, PUT, DELETE and OPTIONS

The common HTTP 1.1 methods for the Apache Wink are defined in the following section. This set of
methods can be expanded.

Document generated by Confluence on Oct 15, 2009 06:44 Page 14

Method Usage

Table 3: HTTP Methods

Method Safe Idempotent Cacheable

GET X X X

HEAD X X X

PUT X

POST *

DELETE X

OPTIONS

Key - X

• Safe - does not affect the server state
• Idempotent - a repeated application of the same method has the same effect as a single

application
• Cacheable - a response to a method is cacheable if it meets the requirements for HTTP caching
• * - Responses to this method are not cacheable, unless the response includes an appropriate

Cache-Control or Expires header fields. However, the 303 response can be used to direct the user
agent to retrieve a cacheable resource.

GET

The GET method is used to retrieve information from a specified URI and is assumed to be a safe and
repeatable operation by browsers, caches and other HTTP aware components. This means that the
operation must have no side effects and GET method requests can be re-issued.

HEAD

The HEAD method is the same as the GET method except for the fact that the HEAD does not contain
message body.

POST

The POST method is used for operations that have side effects and cannot be safely repeated. For
example, transferring money from one bank account to another has side effects and should not be
repeated without explicit approval by the user.

The POST method submits data to be processed, for example, from an HTML form, to the identified
resource. The data is included in the body of the request. This may result in the creation of a new
resource or the updates of existing resources or both.

PUT

The PUT method requests that the enclosed entity be stored under the supplied Request-URI. If the
Request-URI refers to an already existing resource, the enclosed entity should be considered as a
modified version of the one residing on the origin server.

If the Request-URI does not point to an existing resource, and that URI is capable of being defined as a
new resource by the requesting user agent, the origin server can create the resource with that URI.

Document generated by Confluence on Oct 15, 2009 06:44 Page 15

DELETE

The DELETE method requests that the origin server delete the resource identified by the Request-URI.
This method can be overridden on the origin server.
The client cannot be guaranteed that the operation has been carried out, even if the status code returned
from the origin server indicates that the action has been completed successfully.

OPTIONS

The OPTIONS method represents a request for information about the communication options available on
the request/response chain identified by the Request-URI.
This method allows the client to determine the options and/or requirements associated with a resource,
or the capabilities of a server, without implying a resource action or initiating a resource retrieval.

Basic URL Query Parameters

A URL parameter is a name and value pair appended to a URL. The parameter begins with a question
mark "?" and takes the form of name=value.
If more than one URL parameter exists, each parameter is separated by an ampersand "&" symbol. URL
parameters enable the client to send data as part of the URL to the server.

When a server receives a request and parameters are appended to the URL of the request, the server
uses these parameters as if they were sent as part of the request body. There are several predefined
URL parameters recognized by Apache Wink when using Wink providers. The following table lists the
parameters commonly used in web service URLs. These special URL parameters are defined in the
"RestConstants" class.

Query Parameters

Table 4: URL Parameters

Parameter Description Value

alt Provides an alternative
representation of the
specified MIME type. Apache
Wink recognizes this as a
representation request of the
highest priority.

MIME type, e.g.
"text%2Fplain"

absolute-urls Indicates to Apache Wink that
the generated links in the
response should be absolute,
mutual exclusive with the
relative-urls parameter

NONE

relative-urls Indicates to Apache Wink that
the generated links in the
response should be relative,
mutual exclusive with the
absolute-urls parameter

NONE

callback Wrap javascript representation
in callback function, is relevant
when requested with an
application/json MIME type.

name of callback function.
For example, "myfunc"

Combining URL Parameters

A single URL can contain more than one URL parameter, example "?alt=text%2Fjavascript
&callback=myfunc"(where "%2F" represents escaped "/").

Document generated by Confluence on Oct 15, 2009 06:44 Page 16

Apache Wink Building Blocks Summary

The previous section "Service Implementation Building Blocks" outlines the basic precepts and
building blocks that comprise the service side of Apache Wink.
In order to understand the relationship between the building blocks that comprise Apache Wink a set of
example applications have been designed and built that provide a reference point that demonstrate a
rudimentary understanding about the functionality of Apache Wink.

Apache Wink Examples

The following examples applications are used in this "Apache Wink Developer Guide".

• Bookmarks
• HelloWorld
• QADefects

Bookmarks Project

This developer guide uses the bookmarks example application in order to describe the logic flow process
within Apache Wink.
Refer to the comments located in the "Bookmarks" example application code for in-depth explanations
about the methods used to build the bookmarks application.

HelloWorld Project

Complete the step-by-step "HelloWorld" tutorial in chapter 3 "Getting Started with Apache Wink"
and then follow the installation instructions on page xx, in order to view the "Bookmarks" example
application from within the Eclipse IDE.

QADefects

The QADefects example application illustrates the advanced functionality of Apache Wink by
implementing most of the features provided by the Apache Wink (Runtime) framework.

Apache Wink Client Component Basics
Overview

The Apache Wink Client interacts with REST Web-Services. It maps REST concepts to Java classes and
encapsulates underlying REST related standards and protocols, as well as providing a plug-in mechanism
for raw HTTP streaming data manipulation. This mechanism also provides the ability to embed cross
application functionality on the client side, such as security, compression and caching.

Figure 8: Apache Wink Client Simplified Breakdown

Document generated by Confluence on Oct 15, 2009 06:44 Page 17

Figure 8: The illustration shows the basic elements that comprise the Apache Wink Client. The Apache
Wink Client utilizes the providers mechanism defined by the JAX-RS specification to perform reading
and writing of java objects. The Apache Wink Client is pre-initialized with the same providers that are
predefined by the Apache Wink JAX-RS server implementation.

Apache Wink Client Components

The Apache Wink Client is comprised of several key elements that together create a simple and
convenient framework for the consumption of REST based web services. The client is an abstraction of
REST concepts modeled into simple java classes that encapsulate the underlying HTTP protocol, used for
the service invocation.

The Apache Wink Client uses the java HttpURLConnection class for the HTTP invocation. The Apache
Wink Client also provides a module that utilizes the Apache HTTP Client instead of the default
HttpURLConnection class.

The following section provides an overview of the key elements and classes that comprise the Apache
Wink Client.

RestClient Class

The RestClient class is the central access point to Apache Wink Client. It provides the user with
functionality that enables the creation of new Resource instances. The RestClient provides the user with
the ability to set different configuration parameters and custom JAX-RS providers and propagates them to
the created resources.

Resource Interface

The Resource interface represents a single web resource located at a specific URL, enabling for the
manipulation and retrieval of the resource by the invocation of different HTTP methods on the resource
instance. The resource interface is implemented following the Builder design pattern so method calls can
be easily aggregated and in order to enable easy construction of requests and setting of the resource
properties prior to invocation.

ClientRequest Interface

The ClientRequest interface represents a request issued by invoking any one of the invocation methods
on a Resource. An instance of a ClientRequest is created at the beginning of an invocation and passed to
all the client handlers defined on the client that was used for the invocation.

Document generated by Confluence on Oct 15, 2009 06:44 Page 18

ClientResponse Interface

The ClientResponse interface represents an HTTP response that is received after invoking any one of the
invocation methods on a Resource. An instance of a ClientResponse is created by the ConnectionHandler
at the end of the handler chain, and is returned from every handler on the chain.

ClientConfig Class

The ClientConfig class provides client configuration when instantiating a new RestClient. The ClientConfig
is implemented using the Builder design pattern so method calls can be easily aggregated. Custom
Providers and client Handlers are set on the ClientConfig instance prior to the creation of the RestClient.

ClientHandler Interface

Client handlers are used to incorporate cross invocation functionality. The ClientHandler interface is
implemented by client handlers, and the handle() method is invoked for every request invocation in order
to allow the handler to perform custom actions during the request invocation.

InputStreamAdapter Interface

The InputStreamAdapter interface is used to wrap the response input stream with another input stream
in order to allow the manipulation of the response entity stream. The adapt() method is called after
reading the response status code and response headers, and before returning to the ClientResponse to
the handlers on the chain.

OutputStreamAdapter Interface

The OutputStreamAdapter interface is used to wrap the request output stream with another output
stream to allow the manipulation of the request entity stream. The adapt() method is called before
writing the request headers to allow the adapter to manipulate the request.

EntityType Class

The EntityType is used to specify the class type and the generic type of responses. Typically, an
anonymous "EntityType" instance is created in order to specify the response type, as is shown in the
following code example:

Resource resource = client.resource(uri);
List<String> list = resource.get(new EntityType<List<String>>() {});

ApacheHttpClientConfig Class

The "ApacheHttpClientConfig" Configuration object configures the Apache Wink Client to use the
Apache HttpClient as the underlying HTTP client. The following code snippet, demonstrates the typical
usage:

// creates the client that uses Apache DefaultHttpClient as the underlying Http client.
RestClient client = new RestClient(new ApacheHttpClientConfig(new DefaultHttpClient()));

// creates the resource
Resource resource = client.resource("http://myhost:80/my/service");

// invokes a GET method on the resource and receives the response entity as a string
String entity = resource.get(String.class);

Document generated by Confluence on Oct 15, 2009 06:44 Page 19

...

The Apache Wink Runtime

The Apache Wink runtime is deployed on a JEE environment and is configured by defining the RestServlet
in the web.xml file of the application. This servlet is the entry point of all the HTTP requests targeted for
web services, and passes the request and response instances to the Wink engine for processing.

Figure 9: Apache Wink Request Processor Architecture

The diagram illustrates the core components of the Apache Wink runtime. The Wink engine is the
RequestProcessor. It builds an instance of a MessageContext with all of the required information for the
request and passes it through the engine handler chains. The handler chains are responsible for serving
the request, invoking the required resource method and finally generating a response.
In case of an error, the RequestProcessor invokes the Error chain with the generated exception for
producing the appropriate response.
The Apache Wink runtime maintains providers and resources in two registries, the "providers registry"
and the "resource registry" utilizing them during request processing.

Request Processor

The RequestProcessor is the Apache Wink engine, that is initialized by the RestServlet and is populated
with an instance of a DeploymentConfiguration.
When a request is passed to the handleRequest() method of the RequestProcessor, a new instance of a
MessageContext is created.
The MessageContext contains all of the information that is required for the Wink runtime to handle the
request. The RequestProcessor first invokes the Request Handler Chain and then the Response Handler
Chain.

If an exception occurs during any stage of the request processing, the RequestProcessor invokes the Error
Handler Chain for processing the exception.

Document generated by Confluence on Oct 15, 2009 06:44 Page 20

Deployment Configuration

The Apache Wink runtime is initialized with an instance of a Deployment Configuration. The Deployment
Configuration holds the runtime configuration, including the handler chains, registries, configuration
properties.
The Deployment Configuration is initialized with an instance of a JAX-RS Application used for obtaining
user resources and providers.

Customization of the Handlers Chain

The handler chain is customized by extending the org.apache.wink.server.handlers.HandlersFactory class,
overriding specific methods and specifying the new class in the web.xml file of the application.
In order to specify a different HandlersFactory class instead of the default handlers, specify an
init parameter for a custom properties file to be loaded by the RestServlet. Then, the value of the
wink.handlersFactoryClass property must be set as the fully qualified name of the customized handlers
class in the properties file.

<servlet>
 <servlet-name>restSdkService</servlet-name>
 <servlet-class>
 org.apache.wink.server.internal.servlet.RestServlet
 </servlet-class>
 <init-param>
 <param-name>propertiesLocation</param-name>
 <param-value>path/to/my-wink-properties.properties</param-value>
 </init-param>
</servlet>

In the my-wink-properties properties file:

wink.handlersFactoryClass=org.apache.wink.MyCustomHandlersFactory

See the JavaDoc for the HandlersFactory API.

Handler Chains

The handler chain pattern is used by the Wink runtime for implementing the core functionalities.
There are three handler chains utilized by the Wink runtime:

• RequestHandlersChain
• ResponseHandlersChain
• ErrorHandlersChain

Handler Chains
For further information regarding the "Handler Chains", refer to section 5 Apache Wink
Server, 5.7 Handler Chain - Runtime Extension

Document generated by Confluence on Oct 15, 2009 06:44 Page 21

Registries

The Apache Wink runtime utilizes two registries for maintaining the JAX-RS resources and providers. Both
registries maintain their elements in a sorted state according to the JAX-RS specification for increasing
performance during request processing. In addition to the JAX-RS specification sorting, Wink supports the
prioritization of resources and providers.

Resources and Providers Prioritization
For further information regarding *"Resources and Providers Prioritization", refer to
the section 5.1 Registration and Configuration.

Resource Registry

Firgure 10: Resource Registry Architecture

The resources registry maintains all of the root resources in the form of Resource Records.
A Resource Record holds the following:

• URI Template Processor - represents a URI template associated with a resource. Used during the
resource matching process.

• Resource Metadata - holds the resource metadata collected from the resource annotations.
• Sub-Resource Records - records of all the sub-resources (methods and locators) collected from

the sub-resource annotations.
• Resource Factory - a factory that retrieves an instance of the resource in accordance to the

creation method defined for the resource.
Possible creation methods include:

° - singleton
- prototype
- spring configuration
- user customizable

Document generated by Confluence on Oct 15, 2009 06:44 Page 22

3 Getting Started with Apache Wink

This page last changed on Sep 23, 2009 by michael.

Getting Started with Apache Wink

Apache Wink consists of a main library and an additional set of dependant libraries. The Apache Wink
distribution also includes an "examples" folder that contains all of the "example projects" referred to in
this developer guide.

This section contains the following:

• Apache Wink Distribution Files
• Creating a Project using the Apache Wink
• Testing the Project Deployment
• HelloWorld Detailed Description
• HelloWorld J2EE Deployment Descriptor - web.xml
• HelloWorld Spring Deployment Descriptor HelloWorldContext-server.xml
• Bookmark Example Application
• Apache Wink Getting Started Summary

Getting Started with Apache Wink Overview

In order to gain an in-depth understanding of the Apache Wink SDK a series of example projects have
been designed to help the developer clarify the underlying principles and usage of the Apache Wink.
The following sections provide a detailed step-by-step implementation and deployment of the HelloWorld
example application using the Eclipse IDE as the default development environment.

Apache Wink Distribution Files

TBD

Creating a Project using the Apache Wink

TBD

Testing the Project Deployment

TBD

HelloWorld Detailed Description

TBD

HelloWorld J2EE Deployment Descriptor - web.xml

TBD

HelloWorld Spring Deployment Descriptor HelloWorldContext-server.xml

TBD

Document generated by Confluence on Oct 15, 2009 06:44 Page 23

Bookmark Example Application

TBD

Apache Wink Getting Started Summary

TBD

Document generated by Confluence on Oct 15, 2009 06:44 Page 24

4 JAX-RS Concepts

This page last changed on Sep 16, 2009 by michael.

JAX-RS Concepts

JAX-RS (JSR 311) is the latest JCP specification that provides a Java based API for REST Web services
over the HTTP protocol. The JAX-RS specification is an annotation based server side API.

Applying JAX-RS to Apache Wink

Apache Wink is a full implementation of the JAX-RS 1.0 specification, providing a rich set of features and
expansions that extend and supplement the JAX-RS specification. Apache Wink is designed to be an easy
to use, production quality and efficient implementation.

The Apache Wink architecture enables the incorporation of custom functionality via the use of handlers
that provide for the manipulation of requests, Apache Wink also provides a powerful client module for
the consumption of REST web services and is bundled with a range of built-in Providers that enable the
developer to quickly implement applications that make use of industry standard formats such as XML,
ATOM, APP, RSS, JSON, CSV, HTML.

Developing REST Applications

For those new to JAX-RS or developing REST applications, follow this in-progress developer guide. If you
have comments or questions, send an e-mail to the appropriate Apache Wink mailing lists.

While this developer guide covers common scenarios, it is not intended to detail the JAX-RS specification
itself. Please read the (brief yet understandable) specification if it is available to you.

Getting Started - A Simple JAX-RS Application

• Creating a Resource
• Creating a javax.ws.rs.core.Application sub-class
• Packaging Apache Wink with a Web Application
• Installation and Running the Application

Application Configuration

• javax.ws.rs.core.Application subclass
• Container environment information

Resources, HTTP Methods, and Paths

• Root Resource Methods
• javax.ws.rs.core.Response
• HTTP Methods
• Subresource Methods
• Subresource Locators
• Regular Expressions

Request and Response Entities (Message Bodies) and Media
Types

• Produces/Consumes annotations
• ATOM
• XML
• JSON

http://incubator.apache.org/wink/
http://cwiki.apache.org/confluence/display/WINK/Index

Document generated by Confluence on Oct 15, 2009 06:44 Page 25

• Standard Entity Parameter Types
• Custom application provided Message Body Readers/Writers
• Transfer Encoding
• Content Encoding

Parameters

• Query Parameters
• Path Parameters
• Matrix Parameters
• Header Parameters
• Cookie Parameters

HTTP Headers

• Common HTTP Request Headers
• Common HTTP Response Headers

Content Negotiation

• Using URIs to identify content type
• Using parameters to identify content type
• Using Accept headers

Using Request Context Information

• HTTP Headers
• URI Information
• Security Information
• Request
• Providers

Caching

• Expires
• Cache-Control

Document generated by Confluence on Oct 15, 2009 06:44 Page 26

JAX-RS Application Configuration

This page last changed on Sep 10, 2009 by michael.

Applications

A JAX-RS application consists of one or more resources and zero or more providers. A JAX-RS application
is packaged as a Web application in a .war file. The Application subclass, resource classes, and providers
are packaged in WEB-INF/classes file and the required libraries are packaged in WEB-INF/lib. Included
libraries can also contain resource classes and providers as desired.
When using a Servlet 3 container, the Application subclass is optional. By default, all root resource classes
and providers packaged in the web application must be included in the published JAX-RS application.

Including Subclasses

An Application subclass can be included in a .war file to override the default behavior. If both getClasses
and getSingletons return an empty list then the default "willset" of classes must be used. The
implementations should support the Servlet 3 framework pluggability mechanism to enable portability
between containers and to avail themselves of container-supplied class scanning facilities.

Servlet Containers

When using a non-JAX-RS aware servlet container, the servlet-class or filter-class element of the web.xml
descriptor should name the JAX-RS implementation-supplied Servlet or Filter class respectively. The
application-supplied subclass of the application is identified, using an init-param with a param-name of
the "javax.ws.rs.application".

Document generated by Confluence on Oct 15, 2009 06:44 Page 27

JAX-RS Caching

This page last changed on Oct 11, 2009 by michael.

JAX-RS Caching

TBD

Expires

TBD

Cache Control

TBD

Document generated by Confluence on Oct 15, 2009 06:44 Page 28

JAX-RS Getting Started

This page last changed on Oct 13, 2009 by bluk.

Creating a Simple "Hello World" Application

The following example project will produce a simple JAX-RS application that can respond to requests
at "/helloworld" with a "Hello world!" plain text resource. While not entirely RESTful, this example
project is to show how to create a simple application and how to package it for consumption in a web
container.

The application is packaged in a WAR file (which is similar to a JAR/ZIP file, except with special files
in certain locations and a defined layout). It can be deployed in any web container, for example:
Jetty, Tomcat and Geronimo. Perform the following steps in order to create the "helloworld" example
application.

Step 1 - Creating the Root Resource

First, create a resource that will be used for HTTP GET requests to "/helloworld".

package org.apache.wink.example.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/helloworld")
public class HelloWorldResource {

 @GET
 public String getMessage() {
 return "Hello World!";
 }
}

As shown above, the Java class is just a plain old Java object that has JAX-RS annotations.

Step 2 - Creating a javax.ws.rs.core.Application sub-class

For non-JAX-RS aware web container environments (most environments are currently non JAX-RS aware),
a javax.ws.rs.core.Application sub-class needs to be created which returns sets of JAX-RS root
resources and providers. In the following example, there is only one root resource that will need to be
returned.

package org.apache.wink.example.helloworld;

import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.core.Application;

public class HelloWorldApplication extends Application {

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> classes = new HashSet<Class<?>>();
 classes.add(HelloWorldResource.class);

Document generated by Confluence on Oct 15, 2009 06:44 Page 29

 return classes;
 }

}

Compiling the classes

Using the Apache Wink distribution's JARs in the classpath, compile the two classes from the previous
example.

Step 3 - Creating a web.xml file

Now create a web.xml deployment descriptor. The deployment descriptor details information about the
web application in the WAR. In this case, it says that the Apache Wink JAX-RS servlet should be initialized
with a HelloWorldApplication instance.

In addition, any requests that begin with /rest/ will be handled by the Apache Wink JAX-RS servlet. So,
the request URL would be "/rest/helloworld" to reach the HelloWorld resource.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Hello world Web Application</display-name>
 <servlet>
 <servlet-name>HelloWorldApp</servlet-name>
 <servlet-class>org.apache.wink.server.internal.servlet.RestServlet</servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>org.apache.wink.example.helloworld.HelloWorldApplication</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>HelloWorldApp</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
</web-app>

Step 4 - Packaging the web application into a WAR file

Layout the application as follows and create a WAR file from the base directory (the one before WEB-INF).
Create a WAR by running "jar cvf helloworld-jaxrs.war *" from the base directory.

Not every JAR in the lib directory is necessary for all environments. Read the documentation for more
information about the requirements.

WEB-INF/classes/org/apache/wink/example/helloworld/HelloWorldApplication.class
WEB-INF/classes/org/apache/wink/example/helloworld/HelloWorldResource.class
WEB-INF/lib/activation-1.1.jar
WEB-INF/lib/commons-lang-2.3.jar
WEB-INF/lib/jaxb-api-2.1.jar
WEB-INF/lib/jaxb-impl-2.1.4.jar
WEB-INF/lib/json-20080701.jar
WEB-INF/lib/jsr311-api-1.0.jar

Document generated by Confluence on Oct 15, 2009 06:44 Page 30

WEB-INF/lib/slf4j-api-1.5.8.jar
WEB-INF/lib/slf4j-simple-1.5.8.jar
WEB-INF/lib/stax-api-1.0-2.jar
WEB-INF/lib/wink-common-<version #>.jar
WEB-INF/lib/wink-server-<version #>.jar
WEB-INF/web.xml

Step 5 - Installing the WAR file into your environment

Most web container environments will take a WAR file and deploy it without any further configuration
required. However, note the "Context Root" of the web application, or change it as required.

The context paths combine as follows:
http://<hostname>/<web application context root>/<servlet url mapping path>/helloworld

If the environment deployed the WAR file to a context root of "/helloworldapp", then the following URL
would be required to reach the HelloWorldResource.

http://<hostname>/helloworldapp/rest/helloworld

Document generated by Confluence on Oct 15, 2009 06:44 Page 31

JAX-RS Resources, HTTP Methods, and Paths

This page last changed on Sep 07, 2009 by michael.

Resources

Resources are one of the fundamental concepts in REST. REST emphasizes the manipulation of resources
rather than issuing function calls. Resources have unique identifiers. In HTTP terms, this means
associating every resource with at least one URL.

In order to manipulate a resource, requests are made with a specific HTTP method. For instance, in order
to retrieve a representation of a resource, an HTTP GET request to the resource's URL is issued. In order
to create a new item in a collection, an HTTP POST can be used with the collection URL.

Application developers define resources and the HTTP methods in order to quickly manipulate them by
using regular plain old Java objects and JAX-RS annotations.

Defining a Root Resource (@Path on Java class)

Developers can use POJOs to define a resource. Root resources have a @Path annotation at the class
declaration level. JAX-RS matches an incoming request's URL with the @Path annotation on all of an
application's root resources in order to determine which initial Java class will handle the request.

Root resources Java class instances are created per request by default.

Reference
Refer to the JAX-RS Application configuration topic for more information.

Resource classes have methods that are invoked when specific HTTP method requests are made, referred
to as resource methods. In order to create Java methods that will be invoked with specific HTTP methods,
a regular Java method must be implemented and annotated with one of the JAX-RS @HttpMethod
annotated annotations (namely, @GET, @POST, @PUT, and @DELETE).

For example, if a resource is located at a "/welcome" URL, the following root resource is defined.

@Path("/welcome")
public class WelcomeMessage {
 private String welcomeMessage = "Hello world!";

 @GET
 public String returnWelcomeMessage() {
 return welcomeMessage;
 }
}

Any incoming GET request that has the URL of "/welcome" is handled by WelcomeMessage class's
returnWelcomeMessage() method. A string is returned that represents the response body and is sent
as the response payload in a HTTP 200 status response.

Using a javax.ws.rs.core.Response

In the previous GET resource method example, the response body is returned as a String. If a more
complex response is requiredfor example, additional HTTP response headers or a different status code, a
javax.ws.rs.core.Response should be used as the Java method's return type. By building a Response
object, additional information can be returned to the client.

@Path("/welcome")

Document generated by Confluence on Oct 15, 2009 06:44 Page 32

public class WelcomeMessage {
 private String welcomeMessage = "Hello world!";

 @GET
 public Response returnWelcomeMessage() {
 String responseEntity = welcomeMessage;
 return Response.status(299).entity(responseEntity).header("CustomHeader", "CustomValue").build();
 }
}

The previous example uses 299 as the status code, standard HTTP status codes should be used in order
to help clients understand responses.When using Strings as the response entity, different Java types may
be used for complex responses.

Reference
Refer to the Request/Response entities page for more details on how request/response
entities are handled.

Using Common HTTP Methods (@GET, @POST, @PUT, @DELETE)

The four most common HTTP methods are GET, POST, PUT, and DELETE.

As shown in the previous example, an HTTP GET response to "/welcome" invokes the
returnWelcomeMessage() Java method.In order to add a Java method that would be invoked when a
HTTP PUT request is made to "/welcome", the following code should be added:

@Path("/welcome")
public class WelcomeMessage {
 private String welcomeMessage = "Hello world!";

 @GET
 public String returnWelcomeMessage() {
 return welcomeMessage;
 }

 @PUT
 public String updateWelcomeMessage(String aNewMessage) {
 welcomeMessage = aNewMessage;
 }
}

Notice that the updateWelcomeMessage has an unannotated parameter which represents an incoming
request's body.

Reference
Refer to the Request/Response entities page for more details on how request/response
entities are handled.

Subresource Methods (@Path and @GET, @POST, @PUT, @DELETE on a Java
method)

Sometimes it is easier having a root resource resolve a generic URL path and to have @Path annotated
methods further resolve the request. For instance, suppose that a HTTP GET to "/administrator" returned
generic information about an administrator. However, sometimes it is better to return smaller bits or more
detailed information about the resource using a slightly different URL identifier. Suppose that a HTTP
GET to "/administrator/name" should return the name. Instead of creating many root resource classes

Document generated by Confluence on Oct 15, 2009 06:44 Page 33

for each URL, you can have the root resource initially resolve the beginning of the URL request and then
further resolve the request against subresource methods.

Subresource methods are Java methods with a @Path annotation and a @HttpMethod annotated
annotation (@GET, @POST, @PUT, @DELETE).

@Path("/administrator")
public class Administrator{

 @GET
 public String findUserInfo() {
 String userInfo = null;
 /* build user info */
 return userInfo;
 }

 @GET
 @Path("/name")
 public String getJustUserName() {
 String userName = "";
 /* get the user name */
 return userName;
 }

 @GET
 @Path("/id")
 public String getUserId() {
 String userId = "";
 /* get the user id */
 return userId;
 }
}

An HTTP URL request to the "/administrator" would resolve to Administrator#findUserInfo(). A HTTP
URL request to "/administrator/name" would invoke the Administrator#getJustUserName() method.
Finally a HTTP URL request to "/administrator/id" would resolve to Administrator#getUserId().

Using Subresource Locators (@Path on Java method)

In more complicated scenarios, subresource locators are needed. Subresource locators are particularly
useful when requests must be further resolved by other objects. Subresource locators are Java methods
which have only an @Path annotation. They are different than subresource methods because they do not
have any HTTP method annotation on them.

A subresource locator returns an object that has JAX-RS annotations on its methods (or inherits them).
The object is used to further resolve the incoming requests by dynamically inspecting the object for JAX-
RS annotations.

This scenario uses @PathParams which are discussed on the parameters page.

@Path("/users")
public class UsersCollection {

 @Path("{userid}")
 public Object findUserInfo(@PathParam("userid") String userId) {
 if(userId.equals("superuser")) {
 return new SuperUser();
 }
 return User.findUserInDatabase(userId);
 }

Document generated by Confluence on Oct 15, 2009 06:44 Page 34

}

public class Superuser {
 @GET
 public String getUserInfo() {
 String userInfo = /* get the user info */;
 return userInfo;
 }

 @GET
 @Path("/contactinfo")
 public String getContactInfo() {
 String contactInfo = /* get the user contact info */;
 return contactInfo;
 }
}

public class User {
 protected String name;

 protected User() {
 /* subresource locator object lifecycles are controlled by the developer */
 }

 public static User findUserInDatabase(String userName) {
 User u = /* get user from database with assigned field values */
 return u;
 }

 @GET
 public String getInfo() {
 String info = /* get the user info */;
 return info;
 }

 @GET
 @Path("/name")
 public String getMyUserName() {
 return name;
 }
}

A HTTP GET to "/users/superuser" would result in User#findUserInfo() being invoked first. The method
inspects the "userId" path parameter (which resolves to "superuser" for this request) so a Superuser
object is returned. The request is then further resolved against the Superuser object. In the simple "/
users/superuser" case, the request invokes Superuser#getUserInfo();

If a HTTP GET to "/users/superuser/contactinfo" was made, then User#findUserInfo() is invoked and
again returns a Superuser object. The Superuser object is then used to resolve the "/contactinfo" portion
of the request which invokes Superuser#getContactInfo.

If a HTTP GET to "/users/user1/name" was made, then User#findUserInfo() is again invoked but it would
go and look up the user from the database and return a User object. The User object is then used to
resolve the "/name" portion and results in the User#getMyUserName() method being invoked on the User
object returned.

Document generated by Confluence on Oct 15, 2009 06:44 Page 35

JAX-RS Request and Response Entities

This page last changed on Oct 14, 2009 by michael.

Request and Response Entities

Request and response entities represent the main part of an HTTP request. Entities are also refered to
as the "message body" or "payload". Entities are sent via a request, usually an HTTP POST and PUT
method are used or they are returned in a response, this is relevant for all HTTP methods.

Unlike other distributed systems technologies, there is generally no wrapper around an entity. For
example, if a request is made for a binary PNG image represented here, http://example.com/user/abcd/
portrait.png , the response entity is only the PNG image binary data.

Resource methods have a single entity parameter that represents the main entity body. It is the only
unannotated parameter allowed in a resource method.

When using JAX-RS, request and response entites are mapped to and from Java types by Entity Providers
that implement the JAX-RS interfaces, MessageBodyReader and MessageBodyWriter. Applications may
provide their own MessageBodyReaders and MessageBodyWriters that take precedent over the runtime
provided ones.

Media Types (MIME) and javax.ws.rs.core.MediaType

The request and response entity can be any form of data, a way of identifying what the entities bits and
bytes represent is needed. In requests and responses, the Content-Type HTTP header is used to indicate
the type of entity currently being sent. The Content-Type value comes from a well known media type as
registered in IANA.

Common content types include "text/plain", "text/xml", "text/html", and "application/json".

Correct Content-Type values are essential for clients and servers. "Unusual" behavior by clients such as
browsers can be attributed to wrong content types.

Media Types are also used in a request Accept header to indicate what type of resource representation
the client wants to receive. Clients could indicate a preference as well, such as JSON before XML.

Reference
Refer to the HTTP spec regarding the Accept header and the Content Negotiation topic.

javax.ws.rs.core.MediaType has functionality and representations related to Media Types.

@Consumes and @Produces Annotations

Annotating a class or a resource method with @Consumes and @Produces will help the JAX-RS runtime
identify the appropriate methods to invoke for requests. For example:

@Path("/example")
public RootResource {
 @POST
 @Consumes("text/xml")
 @Produces("text/xml")
 public Response getOnlyXML(String incomingXML) {
 return Response.ok("only xml").type("text/xml").build();
 }

 @GET
 @Produces("text/html", "text/plain")
 public String getText() {

http://example.com/user/abcd/portrait.png
http://example.com/user/abcd/portrait.png
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Document generated by Confluence on Oct 15, 2009 06:44 Page 36

 return "text representation";
 }
}

In the previous code example, if a HTTP POST to "/example" was issued with a Content-Type header of
"text/xml" and an Accept header of "text/xml", then the RootResource#getOnlyXML method would be
invoked. If the same POST request was issued with an Accept header of "text/plain", then a 406 Not
Acceptable response would be generated by the JAX-RS runtime and the method would not be invoked.

It is a good practice to return a javax.ws.rs.core.Response with a .type() or .variant() call since it
would guarantee a return content type. Notice that the above getText() code supports multiple data
types. A javax.ws.rs.core.Response object returned must have a single concrete Content-Type value.
In orer to select the best acceptable representation in the resource method, use either the @Context
HttpHeaders#getAcceptableMediaTypes() or a @Context Request#selectVariant() method.

Reference
Refer to the Context topic page for more information.

While resource methods may consume one media type for example XML and produce another such as
JSON, most user requests expect the same media type that was sent in the request to be returned in the
response.

If the Content-Type header is empty and there is an entity, then the JAX-RS runtime will make the
Content-Type be "application/octet-stream". If an Accept header is empty, then according to the HTTP
specification, the Accept header is equivalent to */* which is a wildcard that matches anything.

Important Note
Note that the resource method ultimately has control over the response content. If a
javax.ws.rs.core.Response is returned, then the developer can return whatever Content-
Type is desired. The @Consumes and @Produces is primarily useful only when processing
request information and determining which resource method is possible to invoke. If a
specific Response content type is not specified via a returned javax.ws.rs.core.Response
object, the response media type is determined by a combination of the @Produces
annotation values and the available MessageBodyWriters for the response entity's Java
type. This can lead to undesired results if there is no @Produces annotation or if the
@Produces annotation has multiple media types listed.

Reference
Refer to the JAX-RS specification for the effective algorithm used.

JAX-RS Standard Entity Parameter Types

JAX-RS requires certain parameters to be supported for virtually any content type. The following table
lists the supported content types:

Java Type Content Type Supported Special Notes

java.lang.String */*

byte[] */*

java.io.InputStream */*

java.io.Reader */*

java.io.File */*

javax.activation.DataSource */*

Document generated by Confluence on Oct 15, 2009 06:44 Page 37

javax.xml.transform.Source text/xml, application/xml,
application/*+xml

javax.xml.bind.JAXBElement
and JAXB classes

text/xml, application/xml,
application/*+xml

javax.ws.rs.core
.MultivaluedMap
<String, String>

application/x-www-form-
urlencoded

javax.ws.rs
.core.StreamingOutput

/ As a writer only

Developers can use the previous Java types as entity parameters for requests and responses.

@Path("/example")
public class RootResource {

 @GET
 @Produces("text/xml")
 public Response getInfo() {
 byte[] entity = /* get the entity into a byte array */
 return Response.ok(entity).type("text/xml").build();
 }

 @POST
 @Consumes("application/json")
 @Produces("application/json")
 public StreamingOutput createItem(InputStream requestBodyStream) {
 /* read the requestBodyStream like a normal input stream */
 return new StreamingOutput() {

 public void write(OutputStream output) throws IOException, WebApplicationException {
 byte[] out = /* get some bytes to write */
 output.write(out);
 }
 })
 }
}

Transfer Encoding

Transfer or "chunked" encoding is handled by the container for incoming requests. The container or the
application must do any transfer encoding for outgoing responses.

Content Encoding

Content for example "gzip" and or "deflate" encoding is handled by the application. However, some
containers handle content encoding for developers and will uncompress content automatically or will with
various configuration set. Check the container documentation.

Document generated by Confluence on Oct 15, 2009 06:44 Page 38

JAX-RS Parameters

This page last changed on Sep 22, 2009 by michael.

Parameters

Parameters are used to pass and add additional information to a request. Search queries, offsets/pages in
a collection, and other information can be used. While parameters are sometimes used to add more verbs
to HTTP, it is advised not to use parameters as a way to create new HTTP methods or to make existing
HTTP methods break the generally understood attributes (i.e. idempotent).

Parameters can be any basic Java primitive type including java.lang.String as well as types with a
constructor that takes in a single String or a valueOf(String) static method.In addition, List, SortedSet,
and Set can be used where the generic type is one of the previously mentioned types such as a
Set<String> when a parameter can have multiple values.

When full control is needed for parsing requests, it is generally recommend that developers use a String
as the parameter type so that some basic inspection can be performed and developers can customize
error path responses.

Query Parameters (@QueryParam)

Query parameters are one of the better known parameters. A query string is appended to the request
URL with a leading "?" and then name/value pairs.

Query Parameter Examples
Refer to the following links:
http://www.google.com/search?q=apache+wink
http://www.example.com/users?offset=100&numPerPage=20

In order to enable JAX-RS to read a query parameters, add a parameter to the resource method and
annotate with @QueryParam:

@Path("/example")
public class RootResource {
 @GET
 public Response invokeWithParameters(@QueryParam("q") String searchTerm) {
 if(q == null) {
 return Response.status(Status.BAD_REQUEST).build();
 }
 /* do a search */
 return Response.ok(/* some entity here */).build();
 }
}

If a HTTP GET request to "/example?q=abcd" is made, searchTerm will have "abcd" as the value when
invoked.

Path Parameters (@PathParam)

Path parameters take the incoming URL and match parts of the path as a parameter. By including
{name} in a @Path annotation, the resource can later access the matching part of the URI to a
path parameter with the corresponding "name". Path parameters make parts of the request URL as
parameters which can be useful in embedding request parameter information to a simple URL.

@Path("/books/{bookid}")

http://www.google.com/search?q=apache+wink
http://www.example.com/users?offset=100&numPerPage=20

Document generated by Confluence on Oct 15, 2009 06:44 Page 39

public class BookResource {
 @GET
 public Response invokeWithBookId(@PathParam("bookid") String bookId) {
 /* get the info for bookId */
 return Response.ok(/* some entity here */).build();
 }

 @GET
 @Path("{language}")
 public Response invokeWithBookIdAndLanguage(@PathParam("bookid") String bookId,
 @PathParam("language") String language) {
 /* get the info for bookId */
 return Response.ok(/* some entity here */).build();
 }
}

In the previous example, HTTP GET to /books/1 or to /books/abcd would result in invokeWithBookId
being called. If a HTTP GET request is issued to /books/1/en or /books/1/fr or /books/abcd/jp, then
invokeWithBookIdAndLanguage would be invoked with the appropriate parameters.

Matrix Parameters (@MatrixParam)

Matrix parameters are not as widely used on the Internet today. However, you can read a MatrixParam
just as easily as any other parameter.

@Path("/")
public class RootResource {
 @GET
 public Response invokeWithParameters(@MatrixParam("name") String name) {
 if(name == null) {
 return Response.status(Status.BAD_REQUEST).build();
 }
 return Response.ok(/* some entity here */).build();
 }
}

Header Parameters (@HeaderParam)

Header parameters are useful especially when there are additional metadata control parameters that
need to be passed in for example, security information, cache information, and so forth.

@Path("/")
public class RootResource {
 @GET
 public Response invokeWithParameters(@HeaderParam("controlInfo") String controlInfo) {
 if(controlInfo == null) {
 return Response.status(Status.BAD_REQUEST).build();
 }
 return Response.ok(/* some entity here */).build();
 }
}

Document generated by Confluence on Oct 15, 2009 06:44 Page 40

CookieParameters (@CookieParam)

In a REST application, requests are stateless although applications sometimes use Cookies for various
reasons, such as adding some stateless resource viewing information without embedding it into the URL
such as the maximum number of items to retrieve. The CookieParam annotation is used to easily retrieve
the information.

@Path("/")
public class RootResource {
 @GET
 public Response invokeWithParameters(@CookieParam("max") String maximumItems) {
 if(userId == null) {
 return Response.status(Status.BAD_REQUEST).build();
 }
 return Response.ok(/* some entity here */).build();
 }
}

Document generated by Confluence on Oct 15, 2009 06:44 Page 41

JAX-RS HTTP Headers

This page last changed on Sep 22, 2009 by michael.

HTTP Headers

HTTP headers generally store metadata and control information. There are some common headers
shared in requests and responses but there are a few specific headers to either a request or a response.
Developers should read the HTTP specification for a complete understanding of HTTP headers. Some
of the more common HTTP headers are mentioned below in cases where JAX-RS provides convenient
methods for the header.

Generally, in order to get the request header name and values, developers can use either an injected
@HeaderParam annotated with a parameter/field/property or an injected @Context HttpHeaders
parameter/field/property.

@Path("/example")
public ExampleResource {
 @Context HttpHeaders requestHeaders;

 @GET
 public void getSomething(@HeaderParam("User-Agent") String theUserAgent) {
 /* use theUserAgent variable or requestHeader's methods to get more info */
 }
}

In order to set response headers, developers can set them on a javax.ws.rs.core.Response return object.

@Path("/example")
public ExampleResource {
 @GET
 public Response getSomething() {
 return Response.ok(/* some entity */).header("CustomHeader", "CustomValue").build();
 }
}

A response headers can be set when a MessageBodyWriter#writeTo() method is called.

Common Headers

The common header specifies the size and type of a header. Every header must begin with the common
header. The common header must not appear by itself.

Content-Type

The Content-Type signals the media type of the request/response entity. The Content-Type
header on requests is read via HttpHeaders#getMediaType() method. The Content-Type is set
for responses when doing a javax.ws.rs.core.Response.ResponseBuilder#type() method or a
javax.ws.rs.core.Response.ResponseBuilder#variant() method.

Content-Language

The Content-Language denotes what language the entity is in. In order to receive the request entity
language, use the HttpHeaders#getLanguage() method. In order to set the response entity language, use
the javax.ws.rs.core.Response.ResponseBuilder#language() method.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Document generated by Confluence on Oct 15, 2009 06:44 Page 42

Content-Length

The Content-Length is useful for determining the entity's length. If possible, the MessageBodyWriter
entity providers will automatically set the Content-Length if possible, and some containers will set the
response Content-Length if the entity is small.

Reference
Refer to the HTTP spec for more details on when this header is set and valid.

Common Request HTTP Headers

An HTTP Request Header is a line of text that a client software (i.e. Web Browser) sends to a server
together with other request data.

Accept

The Accept header is used to determine the possible response representations that the client prefers
such as XML over JSON but not plain text. When a resource method is effectively annotated with a
@Produces, any incoming request must have a compatible Accept header value for the resource method
to be selected. Clients can set quality parameters (priority ordering) for the best possible response and
services generally try to honor the request. To get the best representation of a response, use either the
HttpHeaders#getAcceptableMediaTypes() or Request#selectVariant() methods.

Accept-Language

Like the Accept header, Accept-Language lists the preferred languages. A
HttpHeaders#getAcceptableLanguages() method will list the acceptable languages in a preferred order.

If-Match and If-None-Match

If a previous response had an ETag header, the client can re-use the ETag value with the If-
Match or If-None-Match request header to do conditional requests (if the server application
supported the If-Match/If-None-Match headers). For example, a POST with an If-Match header
and an old ETag value should only execute the POST request if the old ETag value is still valid.
javax.ws.rs.core.Request#evaluatePreconditions() may help evaluate the If-Match and If-None-Match
headers.

If-Modified-Since and If-Unmodified-Since

Like ETags, If-Modified-Since and If-Unmodified-Since are based on the Last-Modified date. Using either
request header with a date, will set up a conditional request (if the server application supports the
headers). For instance, a GET with an If-Modified-Since header of an old known date would allow the
server to send back a response with just a HTTP status code of 304 (Not Modified). By sending back a
HTTP status code of 304, the server is telling the client that the resource has not changed so there is
no need to re-download the resource representation. This could save precious bandwidth for the client.
javax.ws.rs.core.Request#evaluatePreconditions() may help evaluate the If-Modified-Since and If-
Unmodified-Since headers.

Important Note
Note that date formats are specified in the HTTP specification.

Common Response HTTP Headers

HTTP Headers form the core of an HTTP request, and are very important in an HTTP response. They
define various characteristics of the data that is requested or the data that has been provided. The
headers are separated from the request or response body by a blank line

Document generated by Confluence on Oct 15, 2009 06:44 Page 43

ETag

ETags or entity tags can be set. Like a hashcode, it is given to the client so a client can use
various control request headers such as If-Match and If-None-Match for conditional requests.
javax.ws.rs.core.Response.ResponseBuilder#tag() and javax.ws.rs.core.EntityTag are useful for ETags.

Expires

The Expires response header indicates the amount of time that the response entity should be
cached. It is useful to set the expiration for data that is not going to change for a known time
length. Browsers use this response header to manage their caches among other user agents.The
javax.ws.rs.core.Response.ResponseBuilder#expires() method can be used to set the Expires header.

Last-Modified

Last-Modified specifies the date when the resource was changed. A client can use the response value
in combination with If-Modified-Since and If-Unmodified-Since request headers to perform conditional
requests.The javax.ws.rs.core.Response.ResponseBuilder#lastModified() method can be used to set the
Last-Modified header.

Important Note
Note that date formats are specified in the HTTP specification.

Location

The Location response header usually indicates where the resource is located (in a redirect) or the
URI of the new resource (when resources are created and usually in a HTTP 201 response). The
javax.ws.rs.core.Response.ResponseBuilder#location()method can be used to set the Location header.

Document generated by Confluence on Oct 15, 2009 06:44 Page 44

JAX-RS Content Negotiation

This page last changed on Sep 22, 2009 by michael.

What is Content Negotiation?

One of the more popular features of REST applications is the ability to return different representations
of resources. For instance, data can be in JSON format or in XML. Or it can even be available in either
format depending on the request. Content negotiation is the way for clients and servers to agree on what
content format is sent.

Data is returned in multiple formats because the needs of each client's request can be different. A
browser might prefer JSON format. Another command line based client might prefer XML format. A third
client might request the same resource as a PNG image.

It is up to the service to determine which formats are supported.

There are many practical ways of performing content negotiation.

Content Negotiation Based on URL

Many popular public REST APIs perform content negotiation based on the URL. For instance, a resource in
XML format might be at http://example.com/resource.xml. The same resource could be offered in JSON
format but located at http://example.com/resource.json.

@Path("/resources")
public class Resource {

 @Path("{resourceID}.xml")
 @GET
 public Response getResourceInXML(@PathParam("resourceID") String resourceID) {
 return Response.ok(/* entity in XML format */).type(MediaType.APPLICATION_XML).build();
 }

 @Path("{resourceID}.json")
 @GET
 public Response getResourceInJSON(@PathParam("resourceID") String resourceID) {
 return Response.ok(/* entity in JSON format */).type(MediaType.APPLICATION_JSON).build();
 }
}

In the above code, a request to "/resources/resourceID.myformat" would result in a 404 status
code.

Another way of implementing the above is to use a single resource method like below:

@Path("/resources")
public class Resource {

 @Path("{resourceID}.{type}")
 @GET
 public Response getResource(@PathParam("resourceID") String resourceID, @PathParam("type") String
 type) {
 if ("xml".equals(type)) {
 return Response.ok(/* entity in XML format */).type(MediaType.APPLICATION_XML).build();
 } else if ("json".equals(type)) {
 return Response.ok("/* entity in JSON format */).type(MediaType.APPLICATION_JSON).build();
 }

http://json.org
http://www.w3.org/XML/
http://example.com/resource.xml
http://example.com/resource.json

Document generated by Confluence on Oct 15, 2009 06:44 Page 45

 return Response.status(404).build();
 }

}

The previous code excerpt essentially behaves the same as the ContentNegotiationViaURL.java example.

Content Negotiation Based on Request Parameter

Another popular method is for the client to specify the format in a parameter. For instance, by default, a
resource could be offered in XML at http://example.com/resource. The JSON version could be retrieved
by using a query parameter like http://example.com/resource?format=json.

@Path("/resources")
public class Resource {

 @Path("{resourceID}")
 @GET
 public Response getResource(@PathParam("resourceID") String resourceID,
 @QueryParam("format") String format) {
 if (format == null || "xml".equals(format)) {
 return Response.ok(/* entity in XML format */).type(MediaType.APPLICATION_XML).build();
 } else if ("json".equals(format)) {
 return Response.ok(/* entity in JSON format */).type(MediaType.APPLICATION_JSON).build();
 }

 return Response.notAcceptable(Variant.mediaTypes(MediaType.APPLICATION_XML_TYPE,
 MediaType.APPLICATION_JSON_TYPE).add()
 .build()).build();
 }
}

Content Negotiation Based on Accept Header

Perhaps the most powerful form of content negotiation, the HTTP Accept header is another way of
specifying the preferred representation format.

The following excerpt shows sample client code using the Wink RestClient:

 RestClient client = new RestClient();
 ClientResponse response = client.resource("http://example.com/resources/
resource1").header("Accept", "application/json;q=1.0, application/xml;q=0.8").get();
 // find what format was sent back
 String contentType = response.getHeaders().getFirst("Content-Type");

 if (contentType.contains("application/json")) {
 JSONObject entity = response.getEntity(JSONObject.class); /* or use a String, InputStream, or other
 provider that supports the entity media type */
 } else if (contentType.contains("application/xml") {
 String entity = response.getEntity(String.class); /* or use a JAXB class, InputStream, etc. */
 }

The following example implements sample client code using the Apache HttpClient.

http://example.com/resource
http://example.com/resource?format=json
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://hc.apache.org/httpclient-3.x/

Document generated by Confluence on Oct 15, 2009 06:44 Page 46

 HttpClient client = new HttpClient();
 GetMethod getMethod =
 new GetMethod("http://example.com/resources/resource1");
 // prefer JSON over XML but both are acceptable to the client
 getMethod.setRequestHeader("Accept", "application/json;q=1.0, application/xml;q=0.8");
 try {
 client.executeMethod(getMethod);

 // find what format was sent back
 getMethod.getResponseHeader("Content-Type").getValue();

 // use getMethod.getResponseBodyAsString() or getMethod.getResponseBodyAsStream()
 // to read the body
 } finally {
 getMethod.releaseConnection();
 }

Using the @Context HttpHeaders injected variable, the client preferred response representation is found.

@Path("/resources")
public class Resource {

 @Context
 private HttpHeaders headers;

 @Path("{resourceID}")
 @GET
 public Response getResource(@PathParam("resourceID") String resourceID) {
 List<MediaType> acceptHeaders = headers.getAcceptableMediaTypes();
 if (acceptHeaders == null || acceptHeaders.size() == 0) {
 return Response.ok(/* entity in XML format */).type(MediaType.APPLICATION_XML).build();
 }

 for (MediaType mt : acceptHeaders) {
 String qValue = mt.getParameters().get("q");
 if(qValue != null && Double.valueOf(qValue).doubleValue() == 0.0) {
 break;
 }
 if(MediaType.APPLICATION_XML_TYPE.isCompatible(mt)) {
 return Response.ok(/* entity in XML format */).type(MediaType.APPLICATION_XML).build();
 } else if (MediaType.APPLICATION_JSON_TYPE.isCompatible(mt)) {
 return Response.ok(/* entity in JSON format */).type(MediaType.APPLICATION_JSON).build();
 }
 }
 return Response.notAcceptable(Variant.mediaTypes(MediaType.APPLICATION_JSON_TYPE,
 MediaType.APPLICATION_XML_TYPE).add()
 .build()).build();
 }

}

If the client request does not have an Accept HTTP header, then by default the XML format is returned.
The @Context HttpHeaders.getAcceptableMediaTypes() method returns an ordered list, sorted by the
client preference of the representations.

Looping through the acceptable media types, if the preferred media type is compatible with one of the
service's available return types, then the preferred media type is used.

Document generated by Confluence on Oct 15, 2009 06:44 Page 47

Note
Note that the quality factor is checked. In fairly rare requests, clients can let the service
know that a media type should not be sent back (if the quality factor is 0.0).

Document generated by Confluence on Oct 15, 2009 06:44 Page 48

JAX-RS Context Information

This page last changed on Aug 24, 2009 by bluk.

Context Information

In addition to request parameters and entities, there is more request information that can be accessed
via request @Context injected variables.

When a resource method is invoked, the runtime injects the @Context variables.

@Path("/resource")
public class Resource {
 @Context
 private HttpHeaders headers;

 @GET
 public void get(@Context UriInfo uriInfo) {
 /* use headers or uriInfo variable here */
 }
}

javax.ws.rs.core.HttpHeaders

HttpHeaders provides methods that allow users to access request headers. A few convenience methods
such as #getAcceptableLanguages() and #getAcceptableMediaTypes() provide client preference sorted
acceptable responses.

javax.ws.rs.core.UriInfo

UriInfo provides methods so developers can find or build URI information of the current request.

javax.ws.rs.core.SecurityContext

SecurityContext provides access to the security information.

javax.ws.rs.core.Request

Request provides methods for evaluating preconditions and for selecting the best response variant based
on the request headers.

javax.ws.rs.core.Providers

Providers allows access to the user and runtime provided MessageBodyReaders, MessageBodyWriters,
ContextResolvers, and ExceptionMappers. It is useful for other providers but can sometimes be useful for
resource methods and classes.

Document generated by Confluence on Oct 15, 2009 06:44 Page 49

5 Apache Wink Server

This page last changed on Oct 14, 2009 by michael.

Apache Wink Server Module

The following section describes the Apache Wink Server and provides a detailed description of the Apache
Wink Server component and its functionality.

Contents

5.1 Registration and Configuration

5.2 Annotations

5.3 Resource Matching

5.4 APP. Service Document

5.5 Spring Integration

5.6 WebDAV Extension

5.7 Handler Chain

5.8 Link Builder

5.9 Assets

5.10 Admin Views

Apache Wink Server Overview

The Apache Wink Server module is a complete implementation of the JAX-RS v1.0 specification. In
addition to the core implementation, the Wink Server module provides a set of additional features that
are designed to facilitate the development of RESTful Web services. The framework is easy to extend and
to enrich with new functionality.

Main Features

The Apache Wink Server main features are as follows:

• Is a complete implementation of the JAX-RS v1.0 specification
• Provides out-of-the-box Java object models for Atom, Json, RSS, APP, CSV, HTML, Multipart and

OpenSearch along with providers to serialize and deserialize these models
• Highly configurable and flexible runtime functionality
• Provides a Handlers mechanism for manipulation of HTTP request and response messages
• Automatic generation of APP document for collection resources
• Spring integration
• Provides support for WebDAV through the WebDAV extension
• Provides an in-depth administration view of the runtime registries

Apache Wink High Level Server Architecture Overview

The following diagram illustrates the general architecture of the Apache Wink server runtime.

Document generated by Confluence on Oct 15, 2009 06:44 Page 50

The Apache Wink server runtime layer receives incoming HTTP requests from the hosting container.
Once a request is received the Apache Wink server runtime initiates a new request session by creating
a message context that is passed through the handlers chain which consists of system and user defined
handlers.

Initially the runtime passes the message context through the handlers responsible for finding the
resources and resource methods that match the request according to the JAX-RS specification. If
required, the incoming request is de-serialized using the appropriate provider. Once the injectable
parameters are ready for injection the matched resource method is invoked and the returned response
object is then passed through the handler chain in order to select and activate the appropriate provider
for serialization as the HTTP response.

Document generated by Confluence on Oct 15, 2009 06:44 Page 51

5.1 Registration and Configuration

This page last changed on Oct 13, 2009 by bluk.

Registration and Configuration

Apache Wink provides several methods for registering resources and providers. This chapter describes
registration methods and Wink configuration options.

Simple Application

Apache Wink provides the "SimpleWinkApplication" class in order to support the loading of resources
and providers through a simple text file that contains a list of fully qualified class names of the resource
and provider classes. Each line contains a single fully qualified class name that is either a resource or a
provider. Empty lines and lines that begin with a number sign (#) are permitted and ignored.

Providers
com.example.MyXmlProvider
com.example.MyJSONProvider

Resources
com.example.FooResource
com.example.BarResource

Specifying the Simple Application File Location

The path to a simple application file is configured via the applicationConfigLocation init-param in the
web.xml file. It is possible to specify multiple files by separating them with a semicolon.

<servlet>
 <servlet-name>restSdkService</servlet-name>
 <servlet-class>
 org.apache.wink.server.internal.servlet.RestServlet
 </servlet-class>
 <init-param>
 <param-name>applicationConfigLocation</param-name>
 <param-value>/WEB-INF/providers;/WEB-INF/resources</param-value>
 </init-param>
</servlet>

Apache Wink Application

Apache Wink extends the javax.ws.rs.core.Application class with the
org.apache.wink.common.WinkApplication class in order to provide the Dynamic Resources and the
Priorities functionality.

An application may provide an instance of the Apache Wink Application to the Apache Wink runtime as
specified by the JAX-RS specification.

Dynamic Resources

Dynamic Resources enable the binding of a Resource class to a URI path during runtime instead of by
using the @Path annotation. A dynamic resource must implement the DynamicResource interface and
must not be annotated with the @Path annotation.

Document generated by Confluence on Oct 15, 2009 06:44 Page 52

Motivation

A Dynamic Resource is useful for situations where a resource class must be bound to multiple paths, for
example, a sorting resource:

public class SortingResource<E extends Comparable<? super E>> {
 private List<E> list;
 @POST
 public void sort() {
 Collections.sort(list);
 }
 public void setList(List<E> list) {
 this.list = list;
 }
 public List<E> getList() {
 return list;
 }
}

Explanation

In this example, the SortingResource class can sort any list. If the application manages a library of
books and exposes the following resource paths, then the SortingResource class can be used for the
implementation of all these resource paths, assuming that it could be bound to more than one path.

/sort-books
/sort-authors
/sort-titles

A dynamic resource is also useful for situations where the resource path is unknown during development,
and is only known during the application startup.

Usage

A Dynamic Resource is a resource class that implements the org.apache.wink.server.DynamicResource
interface or extends the org.apache.wink.server.AbstractDynamicResource convenience class.

A Dynamic Resource is not registered in Apache Wink through the Application#getClasses() method or
the Application#getSignletons() method, since the same class can be used for multiple resources.
In order to register Dynamic Resources in the system, the WinkApplication#getInstances()method must
be used.

Scope

The scope of a Dynamic Resource is limited to "singleton" as it is initialized prior to its registration, and
the system does not have enough information to create it in runtime. This limitation is irrelevant when
working with Spring. Refer to chapter #0 for more information on Spring integration.

Priorities

Although JAX-RS defines the algorithm for searching for resources and providers, Apache Wink enables to
extend this algorithm by allowing the specification of priorities for them.
Apache Wink extends the JAX-RS search algorithms by providing the ability to specify priorities on the
resources and providers. This is achieved by enabling the registration of multiple Application instances
with different priorities, rendering the order of their registration irrelevant as long as they have different
priorities.

Document generated by Confluence on Oct 15, 2009 06:44 Page 53

In order to register a prioritized Application, it is necessary to register an instance of a Apache
WinkApplication class. Priority values range between 0 and 1. In the event that the priority was not
specified, a default priority of 0.5 is used.

Resource Priorities

Priorities on resources are useful for situations where an application registers core resources bound
to paths, and allows extensions to register resources on the same paths in order to override the core
resources.

The Apache Wink runtime first sorts the resources based on their priority and then based on the JAX-RS
specification, thus if two resources have the same path, the one with higher priority is invoked.

Provider Priorities

JAX-RS requires that application-provided providers be used in preference to implementation pre-
packaged providers. Apache Wink extends this requirement by allowing applications to specify a priority
for providers.

The Apache Wink runtime initially sorts the matching providers according to the JAX-RS specification, and
uses the priority as the last sorting key for providers of equal standing.
If two providers have the same priority, the order in which they are registered determines their priority
such that the latest addition receives the highest priority.
In order to meet the JAX-RS requirements, the pre-packages providers are registered using a priority of
0.1.

Properties Table

Property Name Description Default Value

wink.http.uri URI that is used by the Link
Builders in case of HTTP

Use the URI from the request

wink.https.uri URI used by the Link Builders in
case of HTTPS

Use the URI from the request

wink.context.uri Context path used by the Link
Builders

Use the context path from the
request

wink.defaultUrisRelative Indicates if URIs generated by
the Link Builders are absolute
or relative, valid values: true or
false

true - links are relative

wink.addAltParam Indicates if the "alt" query
parameter should be added
to URIs generated by the Link
Builders. Valid values are: true,
false

true - add the alt query
parameter

wink.search
PolicyContinuedSearch

Indicates if continues search is
enabled. Valid values: true, false

true - continued search is
enabled

wink.rootResource Indicates if a root resource with
Service Document generation
capabilities should be added.
Valid values are: none, atom,
atom+html

atom+html --atom and html
Service Document generation
capabilities

wink.serviceDocumentCssPath Defines path to a css file that
is used in the html Service

No css file defined

Document generated by Confluence on Oct 15, 2009 06:44 Page 54

Document generation. Relevant
only if html Service Document is
defined

wink.handlersFactoryClass Defines a
org.apache.wink.server
.handlers.HandlersFactory class
that defines user handlers

No user handlers defined

wink.mediaType
MapperFactoryClass

Defines a
org.apache.wink.server.handlers
.MediaTypeMapperFactory
class that defines media type
mappers

No media type mappers defined

wink.loadApplications Loads providers defined in a
wink-application file found by
the runtime

True, automatically load all
wink-application specified
classes

Custom Properties File Definition

In order to provide a custom properties file, the application should define the propertiesLocation init-
param in the Apache Wink Servlet definition.

Providers
<servlet>
 <servlet-name>restSdkService</servlet-name>
 <servlet-class>
 org.apache.wink.server.internal.servlet.RestServlet
 </servlet-class>
 <init-param>
 <param-name>propertiesLocation</param-name>
 <param-value>/WEB-INF/configuration.properties</param-value>
 </init-param>
 <init-param>
 <param-name>winkApplicationConfigLocation</param-name>
 <param-value>/WEB-INF/application</param-value>
 </init-param>
 <load-on-startup>0</load-on-startup>
</servlet>

Runtime

RegistrationApache Wink provides several APIs for Runtime Registration. The APIs appear in the
org.apache.wink.server.utils.RegistrationUtils class. The most important method is the one that registers
an instance of the javax.ws.rs.core.Application class

Providers
static void registerApplication(Application application, ServletContext servletContext)

Double Registration
Registration is ignored and a warning is printed to the log if the instance was previously
registered

Document generated by Confluence on Oct 15, 2009 06:44 Page 55

Media-Type Mapping

It is sometimes necessary to override the Content-Type response header based on the client user agent.
For example, the Firefox browser cannot handle the application/atom+xml media type for Atom content,
unless it is defined as a text/xml.

Apache Wink provides a set of predefined Media-Type mappings for use in such cases by supplying
the MediaTypeMapper class. Applications may extend or override the MediaTypeMapper class to define
additional mappings.

Customizing Mappings

In order to customize these mappings the application should create a instance of a
org.apache.wink.server.handlers.MediaTypeMapperFactory class and set it in a customized Wink
properties file.

Reference
Refer to section 5.1 Registration and Configuration for more information on Customizing the
Default Properties Configuration.

Alternative Shortcuts

Clients specify the requested media type by setting the Http Accept header. Apache Wink provides an
alternate method for specifying the requested media type via use of the "alt" request parameter. This
functionality is useful for situation where the client has little affect on the accept header, for example
when requesting a resource using a browser.

For example, a request to /entry?alt=application/xml specifies that the requested response media type
is application/xml. Apache Wink provides a shortcut mechanism for specifying the media type of the alt
query parameter and provides a predefined set of shortcuts for common media types.

Predefined Shortcuts

Shortcut Media Type

json text/javascript

atom application/atom+xml

xml application/xml

text text/plain

html text/html

csv text/csv

opensearch application/opensearchdescription+xml

Customizing Shortcuts

The shortcuts table can be customized by overriding the deployment configuration class.

Reference
Refer to section 2 Apache Wink Building Blocks for more information on Customizing the
Default Deployment Configuration.

Document generated by Confluence on Oct 15, 2009 06:44 Page 56

5.2 Annotations

This page last changed on Oct 13, 2009 by michael.

Annotations

Apache Wink provides several annotations in addition to those defined by the JAX-RS specification. The
following section describes these annotations in detail.

@Workspace Annotation

The purpose of the @Workspace annotation is to associate a "Collection Resource" with a workspace
element and collection elements in an APP Service Document.

Reference
For more information regarding the APP Service Document, refer to section 5.4 APP Service
Document

The workspaceTitle annotation parameter specifies the title of the workspace and the collectionTitle
annotation parameter specifies the title of the collection.

@Workspace Annotation Specification

Value Description

Mandatory No

Target Resource class

Parameters Name Type

 workspaceTitle String

 collectionTitle String

Example @Workspace(workspaceTitle =
"Title",
collectionTitle = "Collection") x

@Workspace Annotation Example

The following example demonstrates the use of @Workspace annotation on two resources in order to
have the auto-generated APP service document contain the information about them.

Given the following collection Resources definitions, ResourceA and ResourceB, the result is displayed in
the "Auto Generated APP Service Document" table that follows.

ResourceA Definition

@Workspace(workspaceTitle = "Services", collectionTitle = "Service1")
@Path("services/service1")
public class ResourceA {
 @POST
 @Produces("text/plain")
 @Consumes({"application/atom+xml", "application/xml"})
 public String getText() {return "hey there1";}

Document generated by Confluence on Oct 15, 2009 06:44 Page 57

}

ResourceB Definition

@Workspace(workspaceTitle = "Services", collectionTitle = "Service2")
@Path("services/service2")
public class ResourceB {
 @POST
 @Produces("text/plain")
 @Consumes({"application/atom+xml", "application/xml"})
 public String getText() {return "hey there2";}
}

The auto-generated APP Service Document is as follows:

Auto Generated APP Service Document

<service xmlns:atom=http://www.w3.org/2005/Atom
 xmlns="http://www.w3.org/2007/app">
 <workspace>
 <atom:title>Services</atom:title>
 <collection href="services/service1">
 <atom:title>Service1</atom:title>
 <accept>application/xml</accept>
 <accept>application/atom+xml</accept>
 </collection>
 <collection href="services/service2">
 <atom:title>Service2</atom:title>
 <accept>application/xml</accept>
 <accept>application/atom+xml</accept>
 </collection>
 </workspace>
</service>

@Asset Annotation

The @Asset annotation is a marker annotation used by the Apache Wink runtime in order to identify an
entity as an Asset.

Reference
For more information about Assets refer to section 5.9 Assets.

@Asset Annotation Specification

Value Description

Mandatory No

Target Resource class

Parameters None

Example @Asset

Document generated by Confluence on Oct 15, 2009 06:44 Page 58

@Scope Annotation

The JAX-RS specification defines the default lifecycle behavior for resources and providers, and the option
for controlling the lifecycle through the javax.ws.rs.core.Application class.

Apache Wink provides the @Scope annotation to specify the lifecycle of a provider or resource.

@Scope Annotation Specification

Value Description

Mandatory No

Target Provider class or Resource class

Parameters Name Type

 Value ScopeType enum

Example @Scope(ScopeType.PROTOTYPE)

Resource Example

The following example illustrates how to define a resource with a singleton lifecycle.

@Scope(ScopeType.SINGLETON)
@Path("service1")
public class ResourceA {
 ...
}

Provider Example

The following example illustrates how to define a provider with a prototype lifecycle.

@Scope(ScopeType.PROTOTYPE)
@Provider
public class EntityProvider implements MessageBodyReader<String> {
 ...
}

@Parent Annotation

The @Parent annotation provides the ability to define a base template URI for the URI specified in a
resources @Path annotation.
If a resource is annotated with the @Parent annotation, the Apache Wink runtime calculates the final
resource template by first retrieving the value of the @Parent annotation, which holds the parent
resource class, and then concatenates the resource path template definition to the path template
definition of the parent resource.

Document generated by Confluence on Oct 15, 2009 06:44 Page 59

@Parent Annotation Specification

Value Description

Mandatory No

Target Provider class or Resource class

Parameters Name Type

 Value Class<?>

Example @Parent(ParentResource.class)

Example 1

@Path("services")
public class ParentResource {
 ...
}

Example 2

@Parent(BaseResource.class)
@Path("service1")
public class ResourceA {
 ...
}

Explanation

In the example, the user defined two resources: A ParentResource and ResourceA. ParentResource
defines the @Path annotation to associate it with "services" URI. ResourceA defines the @Path
annotation to associate it with "service1" URI and defines ParentResource to be its parent by specifying
it in the @Parent annotation. In this case, the final URI path for ResourceA is "services/service1".

Document generated by Confluence on Oct 15, 2009 06:44 Page 60

5.3 Resource Matching

This page last changed on Oct 13, 2009 by michael.

Resource Matching

Apache Wink provides a Continued Search mode when searching for a resource method to invoke
during request processing, which is an extended search mode to the algorithm defined by the JAX-RS
specification.

Resource Matching Overview

Section 3.7.2 of the JAX-RS specification describes the process of matching requests to resource
methods. The fact that only the first matching root resource (section 1(f) of the algorithm) and only the
first matching sub-resource locator (section 2(g) of the algorithm) are selected during the process makes
it difficult for application developers to implement certain scenarios.
For example, it is impossible to have two resources anchored to the same URI, each having its own set of
supported methods:

@Path("my/service")
public class ResourceA {
 @GET
 @Produces("text/plain")
 public String getText() {...}
}

@Path("my/service")
public class ResourceB {
 @GET
 @Produces("text/html")
 public String getHtml() {...}
}

Explanation

In order to implement this according to the JAX-RS specification, ResourceB must extend ResourceA and
be registered instead of ResourceA. However, this may not always be possible, such as in an application
that uses JAX-RS as the web service frontend while providing an open architecture for registering
extending services. For example, Firefox that provides an Extensions mechanism. The extending service
must be aware of the core implementation workings and classes, that may not always be plausible.
Moreover, it is impossible for a service to extend the functionality of another service without knowing the
inner workings of that service, that creates an "evil" dependency between service implementations.

In order to solve this problem, Apache Wink provides a special resource Continued Search mode when
searching for a resource and method to invoke. By default, this mode is off, meaning that the search
algorithm is strictly JAX-RS compliant. When this mode is activated, and a root resource or sub-resource
locator proves to be a dead-end, the Apache Wink runtime will continue to search from the next root-
resource or sub-resource locator, as if they were the first match.

In the previous example, there is no way to know which of the resources is a first match for a request
to "/my/service". If the Continued Search mode is off, either the getText() method is unreachable or
the getHtml() method is unreachable. However, when the Continued Search mode is active, a request for
text/plain reaches the getText() method in ResourceA, and a request for text/html reaches the getHtml()
method in ResourceB.

Document generated by Confluence on Oct 15, 2009 06:44 Page 61

Configuration

The Continued Search mode is activated by setting the value of the wink.searchPolicyContinuedSearch
key in the application configuration properties file to true.
If the key is set to anything else but true or if it does not exist in the properties file, then the Continued
Search mode is set to off, and the behavior is strictly JAX-RS compliant.

Document generated by Confluence on Oct 15, 2009 06:44 Page 62

5.4 APP Service Document

This page last changed on Oct 13, 2009 by michael.

APP Service Document

Apache Wink supports the automatic and manual generation of APP Service Documents by providing an
APP data model and set of complementary providers.

Atom Publishing Protocol Service Documents are designed to support the auto-discovery of services.
APP Service Documents represent server-defined groups of Collections used to initialize the process of
creating and editing resources. These groups of collections are called Workspaces. The Service Document
can indicate which media types and categories a collection accepts.

The Apache Wink runtime supports the generation of the APP Service Documents in the XML (application/
atomsvc+xml) and HTML (text/html) representations.

Enabling the APP Service Document Auto Generation

APP Service Document generation is activated by setting the wink.rootResource key in the configuration
properties file. By default, the key value is set to "atom+html", indicating that both XML (application/
atomsvc+xml) and HTML (text/html) representations are available.

Once activated, the auto-generated APP Service Document is available at the application root URL
"http://host:port/application".

Adding Resources to APP Service Document

Apache Wink provides the @Workspace annotation used to associate a Collection Resource with an APP
Service Document workspace and collection elements. The only requirement to incorporate a collection
resource in a service document is to place the @Workspace annotation on the resource.

Reference
For more information on the @Workspace annotation refer to 5.2 Annotations.

Example

Given the following collection resource definition:

@Workspace(workspaceTitle = "Workspace", collectionTitle = "Title")
@Path("my/service")
public class ResourceA {
 ...
}

The auto-generated APP Service Document is:

<service xmlns:atom=http://www.w3.org/2005/Atom
 xmlns="http://www.w3.org/2007/app">
 <workspace>
 <atom:title>Workspace</atom:title>
 <collection href="my/service">
 <atom:title>Title</atom:title>
 <accept/>
 </collection>
 </workspace>

http://host:port/application

Document generated by Confluence on Oct 15, 2009 06:44 Page 63

</service>

APP Service Document HTML Styling

Apache Wink provides the ability to change the default styling of the APP Service Document HTML
representation. The styling is changed by setting the value of the wink.serviceDocumentCssPath key in
the configuration properties file to the application specific CSS file location.

Implementation

The following classes implement the APP Service Document support:

• org.apache.wink.server.internal.resources.RootResource - generates the XML (application/
atomsvc+xml) representation of the APP Service Document.

 org.apache.wink.server.internal.resources. HtmlServiceDocumentResource - generates the HTML
(text/html) representation of the APP Service Document.

Document generated by Confluence on Oct 15, 2009 06:44 Page 64

5.5 Spring Integration

This page last changed on Oct 12, 2009 by bluk.

Spring Integration

Apache Wink provides an additional module deployed as an external jar in order to provide Spring
integration. The Spring integration provides the following features:

• The ability to register resources and providers from the Spring context, registered as classes or as
Spring beans

• The ability to define the lifecycle of resources or providers that are registered as Spring beans,
overriding the default scope specified by the JAX-RS specification.

• Resources and providers can benefit from Spring features such as IoC and post-processors.

• Customize Apache Wink from the Spring context. When working with Spring, Apache Wink defines
a core spring context that contains customization hooks, enabling easy customization that would
otherwise require coding.

Spring Registration

Spring makes it convenient to register resources and providers as spring beans.
Spring Context Loading. In order to load the Spring Context, it is necessary to add a Context Load
Listener definition to the web.xml file. The contextConfigLocation context-param must specify the
location of the Apache Wink core context file and the application context file, as described in the following
example:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:META-INF/server/winkCoreContext-server.xml
 classpath:mycontext.xml
 </param-value>
</context-param>
<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

Registering Resources and Providers

Apache Wink provides the org.apache.wink.spring.Registrar class in order to register resources and
providers through a Spring context. The Registrar class extends the WinkApplication class and must be
registered as a singleton spring bean. It is possible to define multiple registrars in the same context. All
registrars are automatically collected by the runtime and registered as WinkApplication objects during the
context loading. The registrar provides the following properties:

• instances - instances of resources and providers. Ordinarily, these instances are Spring beans, so
they can benefit from IoC and other Spring features.

• classes - a set of resources and providers class names. This property is similar to the getClasses()
method of the Application class.

• priority - the priority of the WinkApplication

Reference

Document generated by Confluence on Oct 15, 2009 06:44 Page 65

For more information on Priorities refer to section 5.1 Registration and Configuration.

<bean class="org.apache.wink.spring.Registrar">
 <property name="classes">
 <set value-type="java.lang.Class">
 <value>package.className</value>
 </set>
 </property>
 <property name="instances">
 <set>
 <ref bean="resources.resource1" />
 <ref bean="resources.resource2" />
 <ref bean="providers.provider1" />
 </set>
 </property>
</bean>

Custom Properties File Definition

Apache Wink provides a set of customizable properties. When working with Spring, the user should
redefine the custom properties file using the Spring context:

<bean id="customPropertiesFactory"
class="org.springframework.beans.factory.config.PropertiesFactoryBean">
 <property name="locations">
 <list>
 <value>WEB-INF/configuration.properties</value>
 </list>
 </property>
</bean>
<bean id="customConfigurer"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="ignoreUnresolvablePlaceholders" value="true" />
 <property name="order" value="1" />
 <property name="propertiesArray">
 <list>
 <props>
 <prop key="wink.propertiesFactory">customPropertiesFactory</prop>
 </props>
 </list>
 </property>
</bean>

• The customPropertiesFactory bean loads the properties file.

• The customConfigurer bean overrides the default factory with a custom factory.

• The order is set to "1". This makes the customConfigurer bean run before the default Apache Wink
configurer.

• In addition, notice that ignoreUnresolvablePlaceholders must be set to true, otherwise the configurer
will fail, since some unresolved properties can remain in the context.

Customizing Media-Type Mappings

Apache Wink provides the ability to customize the Media-Type mappings using Spring context.

Document generated by Confluence on Oct 15, 2009 06:44 Page 66

Reference
For more information on Media-Type Mapping refer to section 5.1 Registration and
Configuration .

<bean id="custom.MediaTypeMapper" class="org.apache.wink.server.internal.MediaTypeMapper">
 <property name="mappings">
 <list>
 <map>
 <entry key="userAgentStartsWith" value="Mozilla/" />
 <entry key="resultMediaType">
 <util:constant static-field=" javax.ws.rs.core.MediaType.ATOM" />
 </entry>
 <entry key="typeToSend">
 <util:constant static-field="javax.ws.rs.core.MediaType.TEXT_XML" />
 </entry>
 </map>
 </list>
 </property>
</bean>
<bean id="customConfigurer"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="ignoreUnresolvablePlaceholders" value="true" />
 <property name="order" value="1" />
 <property name="propertiesArray">
 <list>
 <props>
 <prop key="wink.MediaTypeMapper">custom.MediaTypeMapper</prop>
 </props>
 </list>
 </property>
</bean>

• The custom.MediaTypeMapper bean creates a new Media-Type mapper.

• The customConfigurer bean overrides the default factory with a custom factory.

customConfigurer
The order is set to "1". This makes the customConfigurer run before the default Apache
Wink configurer.

* In addition, notice that ignoreUnresolvablePlaceholders must be set to true, otherwise the configurer
will fail, since some unresolved properties can remain in the context.

Customizing Alternative Shortcuts

Apache Wink provides the ability to customize the Alternative Shortcuts in one of two ways.

Reference
For more information on Alternative Shortcuts Mappings refer to section 5.1 Registration
and Configuration.

External Properties File

The shortcuts are defined in a properties file. The shortcuts properties file is loaded in the same way that
the configuration properties file is loaded.

<bean id="custom.Shortcuts"

Document generated by Confluence on Oct 15, 2009 06:44 Page 67

class="org.springframework.beans.factory.config.PropertiesFactoryBean">
 <property name="locations">
 <list>
 <value>WEB-INF/shortcuts</value>
 </list>
 </property>
</bean>
<bean id="customConfigurer"
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="ignoreUnresolvablePlaceholders" value="true" />
 <property name="order" value="1" />
 <property name="propertiesArray">
 <list>
 <props>
 <prop key="wink.alternateShortcutsMap">custom.Shortcuts</prop>
 </props>
 </list>
 </property>
</bean>

Spring Context File

Defines the map of the shortcuts in the Spring context.

Document generated by Confluence on Oct 15, 2009 06:44 Page 68

5.6 WebDAV Extension

This page last changed on Oct 13, 2009 by michael.

WebDAV Extension

Apache Wink provides an extension module for supporting the WebDAV protocol. The extension contains
the complete WebDAV XML model and a WebDAV response builder for easing the process of creating a
WebDAV multistatus response.

Usful Information
The WebDAV extension is a single jar wink-webdav-<version>.jar, and it has no special
dependencies.

WebDAV Data Model

The WebDAV extension provides a Java data model that reflects the WebDAV XMLs defined in the
WebDAV RFC. All classes of the data model are located in the org.apache.wink.webdav.model package.

WebDAV Classes

The WebDAV extension provides several classes that applications can use in order to receive basic
support for common WebDAV methods.

WebDAVModelHelper

The WebDAVModelHelper class provides helper methods for XML marshaling and unmarshaling of the
WebDAV data model classes. It also provides helper methods for creating generic properties as DOM
element classes to populate the WebDAV Prop element.

WebDAVResponseBuilder

The WebDAVResponseBuilder class is used in order to create responses to WebDAV PROPFIND requests.
It takes a SyndEntry or SyndFeed as input in order to create the response.

Resource Method Definition

A resource method is defined to handle the desired WebDAV method by annotating it with one of the
WebDAV method designators defined in the WebDAVMethod enum.
The supported WebDAV Http methods are as follows:

• PROPFIND

• PROPPATCH

• MKCOL

• COPY

• MOVE

• LOCK

• UNLOCK.

Document generated by Confluence on Oct 15, 2009 06:44 Page 69

Creating a Multistatus Response

In order to create a MULTISTATUS response to a PROPFIND request the user can use the
WebDAVResponseBuilder class, or create the response manually.

Using WebDAVResponseBuilder

In order to create a multistatus response using the WebDAVResponseBuilder class, call one of the
propfind() methods.

The WebDAVResponseBuilder class also enables the user to provide the properties to include in the
response by extending the PropertyProvider class, overriding the setPropertyValue() method and passing
the property provider instance to the response builder propfind() method.

WebDAVResponseBuilder Example

@Path("defects/{defect}")
public class DefectResource {
 @WebDAVMethod.PROPFIND
 @Consumes("application/xml")
 @Produces(application/xml")
 public Response propfindDefect(@PathParam("defect") String defected) {
 SyndFeed feed = ...
 return WebDAVResponseBuilder.propfind(feed);
 }
}

The propfindDefect() method is associated with the PROPFIND WebDAV Http method using the
@WebDAVMethod.PROPFIND annotation.

When the propfindDefect() method is invoked, an instance of a
org.apache.wink.common.model.synd.SyndFeed is created and passed to the
WebDAVResponseBuilder.propfind() method in order to create the actual response.

Manual Creation

In order to create a Multistatus response manually, perform the following steps:

1. Create a new org.apache.wink.webdav.model.Multistatus instance and set its fields according to the
application logic.

2. Create a new javax.ws.rs.core.Response instance, set the response code to MULTI_STATUS (207),
and set its entity to be the Multistatus instance.

Return the Response instance from the resource method

Document generated by Confluence on Oct 15, 2009 06:44 Page 70

5.7 Handler Chain - Runtime Extension

This page last changed on Oct 12, 2009 by bluk.

Handler Chain - Runtime Extension

The Apache Wink runtime utilizes three Handler Chains for the complete processing of a request: Request
chain, Response chain and Error chain. A handler receives a MessageContext instance for accessing
and manipulating the current request information and a HandlerChain instance for advancing the chain.
It is the responsibility of the handler to pass control to the next handler on the chain by invoking the
doChain() method on the HandlerChain instance.

A handler may call the doChain() method several times if needed, so handlers are required to consider
the possibility they will be invoked more than once for the same request.
All handler related interfaces reside in the org.apache.wink.server.handlers package.

The implementation of separate chains provides the ability to move up and down one chain before
moving on to the next chain. This is particularly useful for the implementation of the JAX-RS resource-
method search algorithm that includes invoking sub-resource locators, and implementing the Continued
Search mode.

Handlers

There are two types of handlers:

• System Handler - are the handlers that implement the core engine of the Apache Wink runtime.
The Apache Wink runtime will not function correctly if any of the system handlers are removed from
the chain.

• User Handler - are the handlers that are provided by an application to customize a chains behavior
and to add unique functionality to it. User handlers are not part of the core functionality of Apache
Wink.

Reference
In order to customize a handler chain refer to section 2 "Apache Wink Building Blocks",
Customization of the Handlers Chain

Message Context

The MessageContext allows the following:
Allows handlers to access and manipulate the current request informationAllows handlers to maintain
a state by setting attributes on the message context, as the handlers themselves are singletons and
therefore statelessAllows handlers to pass information to other handlers on the chain

Request Handler Chain

The Request Handler Chain is responsible for processing a request according to the JAX-RS specification
by accepting the request, searching for the resource method to invoke, de-serializing the request
entity and finally for invoking the resource method. It is responsible for invoking sub-resource locators
by moving up and down the chain as needed. A Request handler is a class that implements the
org.apache.wink.server.handlers.RequestHandler interface.

System Request Handlers

The following is a list of system handlers comprising the request handler chain in the order that they
appear in the chain.

Document generated by Confluence on Oct 15, 2009 06:44 Page 71

Handler Description

SearchResultHandler Responsible for throwing the search result error if
there was one during the search for the resource
method

OptionsMethodHandler Generates a response for an OPTIONS request
in case that there is no resource method that is
associated with OPTIONS, according to the JAX-RS
spec

HeadMethodHandler Handles a response for a HEAD request in
case that there is no resource method that is
associated with HEAD, according to the JAX-RS
spec

FindRootResourceHandler Locates the root resource that best matches the
request

FindResourceMethodHandler Locates the actual method to invoke that matches
the request, invoking sub-resource locators as
needed

CreateInvocationParametersHandler Creates the parameters of the resource method to
invoke and de-serializes the request entity using
the appropriate MessageBodyReader

InvokeMethodHandler Invokes the resource method

User Request Handlers

User request handlers are inserted before the InvokeMethodHandler handler.

Reference
In order to customize a handler chain refer to section 2 "Apache Wink Building Blocks",
Customization of the Handlers Chain

Response Handler Chain

The Response Handler Chain is responsible for handling the object returned from invoking a resource
method or sub-resource method according to the JAX-RS specification. It is responsible for determining
the response status code, selecting the response media type and for serializing the response entity.
A Response handler is a class that implements the
org.apache.wink.server.handlers.ResponseHandler interface.

System Response Handlers

The following is a list of system handlers comprising the response handler chain in the order that they
appear in the chain.

Handler Description

PopulateResponseStatusHandler Determines the response status code, according
to the JAX-RS spec

PopulateResponseMediaTypeHandler Determines the response media type, according to
the JAX-RS spec

Document generated by Confluence on Oct 15, 2009 06:44 Page 72

FlushResultHandler Serializes the response entity using the
appropriate MessageBodyWriter

HeadMethodHandler Performs cleanup operations in case that there
was no resource method that was associated with
HEAD.

User Response Handlers

User response handlers are inserted before the FlushResultHandler handler. Apache Wink initializes the
user response handler chain with the CheckLocationHeaderHandler handler that verifies that the
"Location" response header is present on a response when there is a status code that requires it, for
example, status code: 201.

Reference
In order to customize a handler chain refer to section 2 "Apache Wink Building Blocks",
Customization of the Handlers Chain

Error Handler Chain

The Error Handler Chain is responsible for handling all of the exceptions that are thrown during the
invocation of the Request and Response handler chains, according to the JAX-RS specification for handling
exceptions. It is responsible for determining the response status code, selecting the response media type
and for serializing the response entity.

An Error handler is a class that implements the org.apache.wink.server.handlers.ResponseHandler
interface.

System Error Handlers

The following is a list of system handlers comprising the error handler chain in the order that they appear
in the chain.

Error Handlers

Handler Description

PopulateErrorResponseHandler Prepares the response entity from a thrown
exception according to the JAX-RS specification

PopulateResponseStatusHandler Determines the response status code according to
the JAX-RS spec

PopulateResponseMediaTypeHandler Determines the response media type, according to
the JAX-RS spec

FlushResultHandler Serializes the response entity using the
appropriate MessageBodyWriter

User Error Handlers

User error handlers are inserted before the FlushResultHandler handler.

Reference
In order to customize a handler chain refer to section 2 "Apache Wink Building Blocks",
Customization of the Handlers Chain

Document generated by Confluence on Oct 15, 2009 06:44 Page 73

Request Processing

The following details how the Apache Wink runtime performs request processing:

1. Create new instances of the three handler chains. The handlers themselves are singletons.
2. Create a new instance of a MessageContext to pass between the handlers.
3. Invoke the first handler on the Request chain.
4. Once the request chain is complete, invoke the Response chain and pass it the MessageContext that

was used in the Request chain.
5. Make both chains and the MessageContext available for garbage collection.

If at any time during the execution of a Request or Response chain an exception is thrown, catch
the exception, wrap it in a new MessageContext instance and invoke the Error chain to produce an
appropriate response.

Document generated by Confluence on Oct 15, 2009 06:44 Page 74

5.8 Link Builder

This page last changed on Oct 12, 2009 by bluk.

Link Builders

The LinkBuilders interface enables access to two types of links builders, the SystemLinksBuilder and the
SingleLinkBuilder. An instance of LinkBuilders is injected into a class field or method parameter using the
@Context annotation.

Upon creation, the LinkBuilders automatically detects if the target method being invoked is a resource
method or a sub-resource method. The "resource" and "subResource" properties of the builder are
initialized accordingly. The link builder interfaces reside in the org.apache.wink.server.utils package.

Link Builders Overview

The JAX-RS specification defines the UriBuilder interface used to construct a URI from a template, but
does not specify any mechanism that can automatically generate all resource links.
Apache Wink provides the SystemLinksBuilder for automatic generation of all the alternate links to a
resource, one link per every supported media type. For example, this is useful for an application that
produces Atom feeds to include in the feed all the alternate representations of the resource.

Apache Wink provides a mechanism for defining if the generated links should be absolute links or relative
to a base URI. For example, links embedded in an Atom feed should be as short as possible in order to
optimize the payload size.

The "alt" Query Parameter

Apache Wink supports the special query parameter "alt" that is used to override the value of the request
Accept header. When the link builders generate a link that specifies the "type" attribute, then the
"alt" query parameter is automatically added to the generated link. This is controlled by setting the
wink.addAltParam key of the configuration properties file or by calling the LinksBuilder#addAltParam()
method.

Reference
For more information on the Configuration Properties File refer to section 5.1 Registration
and Configuration.

System Links Builder

The SystemLinksBuilder interface enables the generation of all, or a subset of, the system links to a
resource or its sub-resources. The links are generated as absolute URIs or as relative to the base URI
according to the SystemLinksBuilder state, request information or the application configuration.

Example

@Path("defects/{id}")
public class DefectResource {
@GET
@Produces("application/atom+xml")
public SyndEntry getAtom() { ... }
@GET
@Produces("application/json")
public JSONObject getJson() { ... }
}
@GET
@Produces("application/xml")

Document generated by Confluence on Oct 15, 2009 06:44 Page 75

public Defect getXml(@Context LinkBuilders linkBuilders) { SystemLinksBuilder builder =
 linkBuilders.systemLinksBuilder(); ListsystemLinks = builder.build(null); ... }
}

Explanation

The DefectResource#getXml() method is invoked when a GET request for application/xml is made to /
defects/3. The Apache Wink runtime injects an instance of LinkBuilders to the linkBuilder parameter and a
new instance of a SystemLinksBuilder is created by invoking the systemLinksBuilder() method.
The call to the build() method of the SystemLinksBuilder generates three alternate links to the
DefectResource and the self link:

• <link rel="self" href="/defects/3"/>

• <link rel="alternate" type="application/json" href="/defects/3"/>

• <link rel="alternate" type="application/xml" href="/defects/3"/>

• <link rel="alternate" type="application/xtom+xml" href="/defects/3"/>

Single Link Builder

The SingleLinkBuilder interface enables the generation of a single link referencing a resource or a sub-
resource, allowing the specification of the 'rel' and 'type' attributes of the generated link. The links are
generated as absolute URIs or as relative to the base URI according to the SingleLinkBuilder state,
request information or the application configuration.
Generating Absolute or Relative Links
The link builders generate absolute or relative links based on the following algorithm:

1. Use the value that was passed to the relativize() method of the builder.
2. If the relativize() method was not called, then use the value of the "relative-urls" query parameter

from the request. The value must be either true or false.
3. If the request does not contain the "relative-urls" query parameter, then use the value of the

wink.defaultUrisRelative key set in the application configuration properties file. The value must be
either true or false.

4. If the configuration key does not exist, then use true.

Reference
For more information on the Configuration Properties File refer to section 5.1 Registration
and Configuration.

Document generated by Confluence on Oct 15, 2009 06:44 Page 76

5.9 Assets

This page last changed on Oct 13, 2009 by michael.

Assets

An Asset is a special entity that is returned by a resource method or is injected into a resource method as
an entity parameter. The asset is used for retrieving the actual request entity or response entity.
The purpose of an asset is to act as a container of an entity data model while providing the
transformation methods of the data model into data models of other representations.
Asset classes are POJOs, annotated with the @Asset annotation, that have any number of entity
methods.

When an asset instance is returned from a resource method or is set as the entity on a Response
instance, it is used by the Apache Wink runtime to retrieve the actual response entity by invoking the
appropriate entity-producing method of the asset.

Reference
For more information on Entity-Producing Methods refer to section Entity Producing
Methods.

When an asset is the entity parameter of a resource method, it is used by the Apache Wink runtime to set
the actual request entity by invoking the appropriate entity-consuming method of the asset.

Assets Overview

A typical application exposes each resource in a number of representations. Some form of data model
usually backs the resource, and the application business logic relies on the manipulation of that data
model. The application will most likely expose resource methods allowing the consumption of the data
model in more than one representation (for example Atom and XML) and the production of the data
model in other representation (for example Atom, XML and JSON).

According to the JAX-RS specification, the optimal method for implementing a resource is one that
consumes and produces an application data model and makes use of a different provider for every media
type.

For example, if a resource implements methods that consume and produce a "Defect" bean, then a
provider must be implemented for each representation of the "Defect" (Atom, XML and JSON). However,
there are times that the transformation of the application data model into a representation requires
information that may only be available to the resource but is unavailable to a provider (for example, a
connection to the Database).

There are several solutions for dealing with the problem of a provider not having sufficient information to
perform application data transformations. The following is a description of two possible solutions:

• Passing the information as members on the resource and accessing the resource from the provider
via the UriInfo context.

This solution is only plausible if the resource scope is "per request" and does not work if the resource is a
singleton.

• Passing the information from the resource to the provider via the attributes of the
HttpServletRequest.

This solution is only plausible when the application is deployed in a JEE container and is not the optimal
solution.
In addition to the previously mentioned problem, the creation of a provider for every data model per
media type may result in the inflation of providers in the system, causing the provider selection algorithm
to consider a large set of potential providers.

As a result, the selection of the actual provider from the set of potential providers is non-deterministic,
because the selection between them is undefined.

Document generated by Confluence on Oct 15, 2009 06:44 Page 77

Performance Degradation
An additional side effect of provider inflation is performance degradation.

The use of an asset solves the problem of passing information between a resource and a provider and
reduces the amount of registered providers in the system.

Lifecycle

Resource methods can use an asset as a response entity and as a request entity. The Apache Wink
runtime applies different lifecycles for each case.

Response Entity Asset

The lifecycle of an asset as a response entity is as follows:

1. The application creates and returns the asset from the resource method.
2. The appropriate entity-producing method is invoked by the Apache Wink runtime to retrieve the

actual response entity.
3. The appropriate message body writer as obtained from the Providers#getMessageBodyWriter()

method serializes the entity obtained at the previous step.
4. The asset is made available for garbage collection.

Request Entity Asset

The lifecycle of an asset as a request entity is as follows:

1. An asset class is instantiated by the Apache Wink runtime by invoking the asset default constructor.
Note that this implies that the asset class must have a public default constructor.

2. The appropriate message body reader as obtained from the Providers#getMessageBodyReader()
method is invoked by the Apache Wink runtime to read the request entity.

3. The appropriate entity-consuming method is invoked on the asset to populate the asset with the
request entity.

4. The asset is injected into the resource method as the entity parameter.
5. The asset is made available for garbage collection after returning from the resource method.

Asset Entity Methods

Asset Entity methods are the public methods of an asset annotated with either @Consumes or @Produces
annotation. Annotating a method with both @Consumes and @Produces annotations is not supported and
may result in unexpected behavior.

Entity Producing Methods

An Entity Producing Method is a public asset method annotated with the @Produces annotation,
designating it to produce the actual response entity. Such methods produce an entity only for the media
types declared in the @Produces annotation. Note that under this definition, wildcard ("/") is allowed.
The Apache Wink runtime will not invoke an entity-producing method whose effective value of @Produces
does not match the request Accept header

Entity Consuming Methods

An Entity Consuming Method is a public asset method annotated with the @Consumes annotation,
designating it to consume the actual request entity for populating the asset. Such methods consume an
entity only for the media types declared in the @Consumes annotation. Note that under this definition,
wildcard ("/") is allowed.
The Apache Wink runtime will not invoke an entity-consuming method whose effective value of
@Consumes does not match the request Content-Type header.

Document generated by Confluence on Oct 15, 2009 06:44 Page 78

Parameters

Asset Entity methods support the same parameter types as JAX-RS specifies for a resource method.

Return Type

Entity methods may return any type that is permissible to return from a resource method.

Exceptions

Exceptions thrown from an entity method are treated as exceptions thrown from a resource method.

Annotation Inheritance

The @Produces and @Consumes annotations are not inherited when an asset sub-class overrides an
asset entity method. Asset sub-classes must re-declare the @Produces and @Consumes annotations for
the overriding method to be an entity method.

Entity Method Matching

Asset classes are handled by the AssetProvider which is a JAX-RS provider that is capable of consuming
and producing all media types.

Reference
For more information on Asset Providers refer to section 7.7 Assets Provider.

Request Entity Matching

The following points describe the process of selecting the asset entity-consuming method to handle the
request entity. This process occurs during the invocation of the AssetProvider#isReadable() method.

1. Collect all the entity-consuming methods of the asset. These are the public methods annotated with
@Consumes annotation.

2. Sort the collected entity-consuming methods in descending order, where methods with more specific
media types precede methods with less specific media types, following the rule n/m > n/* > /.

3. Select the first method that supports the media type of the request entity body as provided to the
AssetProvider#isReadable() method, and return true.

4. If no entity-consuming method supports the media type of the request entity body, return false. The
Apache Wink runtime continues searching for a different provider to handle the asset as a regular
entity.

Response Entity Matching

The following points describe the process of selecting an entity-producing method to
produce the actual response entity. The following process occurs during the invocation of the
AssetProvider#isWriteable() method.

1. Collect all the entity-producing methods of the asset. These are the public methods annotated with
@Produces annotation.

2. Sort the collected entity-producing methods in descending order, where methods with more specific
media types precede methods with less specific media types, following the rule n/m > n/* > /.

3. Select the first method that supports the media type of the response entity body as provided to the
AssetProvider#isWriteable()method and return true.

4. If no entity-producing method supports the media type of the response entity body, return false.
The Apache Wink runtime continues searching for a different provider to handle the asset as a
regular entity.

Document generated by Confluence on Oct 15, 2009 06:44 Page 79

Asset Example

The following example illustrates the use of an asset. The "Defect" bean is a JAXB annotated class.

DefectAsset Class

The DefectAsset class is the asset backed by an instance of a "Defect" bean.

@Asset
public class DefectAsset {
 public Defect defect;
 public DefectAsset(Defect defect) {
 this.defect = defect;
 }
 @Produces("application/xml")
 public Defect getDefect() {
 return this.defect;
 }
 @Produces("text/html")
 public String getDefectAsHtml() {
 String html = ...;
 return html;
 }

 @Produces("application/atom+xml")
 public AtomEntry getDefectAsAtom() {
 AtomEntry entry = ...;
 return entry;
 }
 @Consumes("application/xml")
 public void setDefect(Defect defect) {
 this.defect = defect;
 }
}

DefectResource Class

 The DefectResource class is a resource that is anchored to the URI path "defects/{id}" within the
Apache Wink runtime.

@Path("defects/{id}")
public class DefectResource {
 @GET
 public DefectAsset getDefect(@PathParam("id") String id) {
 return new DefectAsset(defects.get(id));
 }
 @PUT
 public DefectAsset updateDefect(DefectAsset defectAsset,
 @PathParam("id") String id) {
 defects.put(id, defectAsset.getDefect());
 return defectAsset;
 }
}

Scenario Explanation 1

1. A client issues an HTTP GET request with a URI="/defects/1" and Accept Header= "application/xm

Document generated by Confluence on Oct 15, 2009 06:44 Page 80

2. The Apache Wink runtime analyzes the request and invokes the DefectResource#getDefect()
resource method.

3. The DefectResource#getDefect() resource method creates an instance of DefectAsset and populates
it with defect "1" data

4. The DefectResource#getDefect() resource method returns the DefectAsset instance back to Apache
Wink runtim

5. The Apache Wink runtime analyzes the asset and invokes the DefectAsset#getDefect() entity-
producing method to obtain the reference to the "Defect" bean.

6. The "Defect" bean is serialized by Apache Wink runtime as an XML using the appropriate provider.

Scenario Explanation 2

1. A Client issues an HTTP GET request with a URI="/defects/1" and Accept Header= "text/html"
2. The Apache Wink runtime analyzes the request and invokes the DefectResource#getDefect()

resource metho
3. The DefectResource#getDefect() resource method creates an instance of DefectAsset and populates

it with defect "1" data.
4. The DefectResource#getDefect() method returns the populated asset back to the Apache Wink

runtime.
5. The Apache Wink runtime analyzes the asset and invokes the DefectAsset#getDefectAsHtml()

entity-producing method in order to obtain the reference to the "Defect" bean.
6. The "Defect" is serialized by Apache Wink runtime as an HTML using the appropriate provider.

Scenario Explanation 3

1. A Client issues an HTTP PUT request with a URI="/defects/1" and Accept Header= "text/html"
2. The Apache Wink runtime analyzes the request and invokes the DefectResource#updateDefect()

method with an instance of DefectAsset populated with the request entity.* A DefectAsset is
instantiated by the Apache Wink runtime

3. The DefectAsset#setDefect() entity-consuming method is invoked in order to populate the
DefectAsset with the defect data.

Document generated by Confluence on Oct 15, 2009 06:44 Page 81

5.10 Admin Views

This page last changed on Oct 13, 2009 by michael.

Administration Views

Apache Wink provides administration views in order to help developers better understand the services
that the REST application expose. There are two administration views, the "application resource XML
view" and the "resource registry XML view".

Application Resources XML View

The application resource XML view shows the way the application is exposed to the user, it exposes the
REST resources with their URI templates, the HTTP methods that are supported by the resources and the
consume/produces MimeType supported by each method. This view can be used as a base for the service
documentation.

Resource Registry XML View

The resource registry XML view shows the way that the application is developed, it is similar to the
"Application resources XML view" but it also exposes the classes that implement resources and their
priority in the registry. This view can be useful for debugging.

Configuration

By default these views are disabled, in order to activate them register the "AdminServlet" implemented
by the org.apache.wink.server.internal.servlet.AdminServletin the web.xml file. No init parameters
are required.

Example

The following code snippet is an example of a web application descriptor file.

<servlet>
 <servlet-name>restSdkAdmin</servlet-name>
 <servlet-class>org.apache.wink.server.internal.servlet.AdminServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>restSdkAdmin</servlet-name>
 <url-pattern>/admin</url-pattern>
</servlet-mapping>

Document generated by Confluence on Oct 15, 2009 06:44 Page 82

6 Apache Wink Client

This page last changed on Oct 14, 2009 by michael.

Apache Wink Client

The following section describes the Apache Wink Client and provides a detailed description of the Apache
Wink Client component and its functionality.

Contents

6.1 Getting Started with Apache Wink Client

6.2 Configuring the Apache Wink Client

6.3 Input and Output Stream Adapters

Apache Wink Client Overview

The Apache Wink Client is an easy-to-use client, providing a high level Java API for writing clients
that consume HTTP-based RESTful Web Services. The Apache Wink Client utilizes JAX-RS concepts,
encapsulates Rest standards and protocols and maps Rest principles concepts to Java classes, which
facilitates the development of clients for any HTTP-based Rest Web Services.

The Apache Wink Client also provides a Handlers mechanism that enables the manipulation of HTTP
request/response messages.

Main Features

The Apache Wink Clients main features are as follows:

• Utilizes JAX-RS Providers for resource serialization and deserialization
• Provides Java object models for Atom, Json, RSS, APP, CSV, Multipart and OpenSearch along with

providers to serialize and deserialize these models
• Uses the JDK HttpUrlConnection as the underlying Http transport
• Allows for the easy replacement of the underlying Http transport
• Provides a Handlers mechanism for manipulation of HTTP request and response messages

Supports

• Http proxy
• SSL

Apache Wink High Level Client Architecture Overview

The following diagram illustrates the high-level architecture of the Apache Wink Client.

Document generated by Confluence on Oct 15, 2009 06:44 Page 83

The RestClient class is the Apache Wink Client entry point and is responsible for holding different
configuration options and the provider registry.

The RestClient is used to create instances of the Resource class. The Resource class represents a web
resource associated with a specific URI and is used to perform uniform interface operations on the
resource it represents. Every method invocation goes through a user defined handlers chain that enables
for manipulation of the request and response.

Document generated by Confluence on Oct 15, 2009 06:44 Page 84

6.1 Getting Started with Apache Wink Client

This page last changed on Oct 13, 2009 by michael.

Getting Started with the Apache Wink Client

The following section details the getting started examples that demonstrate how to write a simple client
that consume RESTful Web Services with the Apache Wink Client.

GET Request

The following example demonstrates how to issue an Http GET request.

// create the rest client instance
1 RestClient client = new RestClient();

// create the resource instance to interact with
2 Resource resource = client.resource("http://services.com/HelloWorld");
// perform a GET on the resource. The resource will be returned as plain text
3 String response = resource.accept("text/plain").get(String.class);

Explanation

The RestClient is the entry point for building a RESTful Web Service client. In order to start working with
the Wink Client, a new instance of RestClient needs to be created, as the example shows in line 1 of
the example. A new Resource is then created with the given URI, by calling the RestClient#resource()
method as appears in line 2.

Finally, the Resource#get() method is invoked in order to issue an Http GET request as appears in line 3.
Once the Http response is returned, the client invokes the relevant provider to desterilizes the response in
line 3.

POST Request

The following example demonstrates how to issue an Http POST request.

// create the rest client instance
1 RestClient client = new RestClient();

// create the resource instance to interact with
2 Resource resource = client.resource("http://services.co");

// issue the request
3 String response = resource.contentType("text/plain").accept("text/plain").post(String.class, "foo");

Explanation

The POST Request example demonstrates how to issue a simple Http POST request that sends and
receives resources as strings.

First, a new instance of a Resource is created through the RestClient. The Http POST request is then
issued by specifying the request and response media types and the response entity type (String.class).

POST Atom Request

The following example demonstrates how to issue an Http POST request that sends and receives atom
entries.

Document generated by Confluence on Oct 15, 2009 06:44 Page 85

// create the rest client instance
1 RestClient client = new RestClient();

// create the resource instance to interact with
2 Resource resource = client.resource("http://services.co");

3 AtomEntry request = getAtomEntry();

// issue the request
4 AtomEntry response = resource.contentType("application/atom+xml").accept("application/atom
+xml").post(AtomEntry.class, request);

Explanation

The Apache Wink Client provides an object model for Atom (atom feed and atom entry), and supplies out-
of-the-box providers that enable sending and receiving atom feeds and entries.

Using ClientResponse

The following example demonstrates how to use the ClientResponse object in order to de-serialize the
response entity.

// create the rest client instance
1 RestClient client = new RestClient();

// create the resource instance to interact with
2 Resource resource = client.resource("http://services.co");

// issue the request
3 ClientResponse response = resource.accept("text/plain").get();

// deserialize response
4 String responseAsString = response.getEntity(String.class);

Explanation

If the response entity type is not provided when invoking the Resource#get() method that appears
in line 3, the response will be returned as the raw ClientResponse. In order to trigger the response
deserialization mechanism, the ClientResponse#getEntity() method needs to be invoked as it appears in
line 4 with the required response entity type.

Document generated by Confluence on Oct 15, 2009 06:44 Page 86

6.2 Configuring the Apache Wink Client

This page last changed on Oct 13, 2009 by michael.

Client Configuration

The RestClient configuration is performed by using the ClientConfig class. An instance of the configuration
class is passed to the constructor of the RestClient when constructing a new RestClient.

The following options can be configured in the RestClient:

• Custom providers via JAX-RS Application

• Handler chain

• Proxy host and port

• Connect and read timeouts

• Redirect

Handler Configuration

The following example demonstrates how to register a custom handler.

1 ClientConfig config = new ClientConfig();
// Create new JAX-RS Application
2 config.handlers(new DummyHandler());
// create the rest client instance
3 RestClient client = new RestClient(config);
// create the resource instance to interact with
4 Resource resource = client.resource("http://services.com/HelloWorld");
// perform a GET on the resource
// the resource will be returned as plain text
5 String response = resource.accept("text/plain").get(String.class);

Explanation

First, a new instance of a ClientConfig is created as it appears in line 1. Then the new handler is added to
the handlers chain by invoking the handlers() method on the ClientConfig instance as it appears in line 2.
Finally, a new instance of a RestClient is created with this configuration as it appears in line 3.

Custom Provider Configuration

The following example demonstrates how to register a custom entity provider.

1 ClientConfig config = new ClientConfig();
 // Create new JAX-RS Application
2 Application app = new Application() {
 @Override
 public Set<Class<?>> getClasses() {
 HashSet<Class<?>> set = new HashSet<Class<?>>();
 set.add(FooProvider.class);
 return set;}};
3 conf.applications(app);
// create the rest client instance
4 RestClient client = new RestClient(config);
// create the resource instance to interact with
5 Resource resource = client.resource("http://services.com/HelloWorld");
// perform a GET on the resource. the resource will be returned as plain text

Document generated by Confluence on Oct 15, 2009 06:44 Page 87

6 String response = resource.accept("text/plain").get(String.class);

Explanation

First, a new instance of ClientConfig is created as it appears in line 1. Then a new anonymous Application
is instantiated and set on the ClientConfig as it appears in line 2 and 3. Finally, a new instance of a
RestClient is created with this configuration as it appears in line 4.

Document generated by Confluence on Oct 15, 2009 06:44 Page 88

6.3 Input and Output Stream Adapters

This page last changed on Oct 13, 2009 by michael.

Input and Output Stream Adapters

The Apache Wink Client provides the ability to manipulate raw Http input and output entity streams
through the InputStreamAdapter and the OutputStreamAdapter interfaces. This is useful for modifying
the input and output streams, regardless of the actual entity, for example when adding compression
capabilities.
The adapt() method of the output stream adapter is called before the request headers are committed, in
order to allow the adapter to manipulate them.

The adapt() method of the input stream adapter is called after the response status code and the headers
are received in order to allow the adapter to behave accordingly.

Stream Adapters Example

The following example demonstrates how to implement input and output adapters.

Gzip Handler

The following code snippet is an example of adding a input and output adapters in the Gzip handler.

public class GzipHandler implements ClientHandler {
 public ClientResponse handle(ClientRequest request,
 HandlerContext context) {
 request.getHeaders().add("Accept-Encoding", "gzip");
 context.addInputStreamAdapter(new GzipInputAdapter());
 context.addOutputStreamAdapter(new GzipOutputAdapter());
 return context.doChain(request);
 }}

Explanation

The Gzip handler creates instances of the GzipInputAdapter and the GzipOutputAdapter and adds
them to the stream adapters of the current request by invoking the addInputStreamAdapter() method
and the addOutputStreamAdapter() method on the HandlerContext instance.

Gzip Input Stream Adapter

The following code snippet is an example of an implementation of a Gzip input stream adapter.

class GzipInputAdapter implements InputStreamAdapter{
 public InputStream adapt(InputStream is,
 ClientResponse response) {
 String header = response.getHeaders().getFirst("Content-Encoding");
 if (header != null && header.equalsIgnoreCase("gzip")) {
 return new GZIPInputStream(is);
 }
 return is;
 }}

Explanation

The Gzip input stream adapter is responsible for wrapping the input stream with the Gzip input stream.

Document generated by Confluence on Oct 15, 2009 06:44 Page 89

Gzip Output Stream Adapter

The following code snippet is an example of an implementation of a Gzip output stream adapter.

class GzipOutputAdapter implements OutputStreamAdapter {
 public OutputStream adapt(OutputStream os,
 ClientRequest request) {
 request.getHeaders().add("Content-Encoding", "gzip");
 return new GZIPOutputStream(os);
 }}

Explanation

The Gzip output stream adapter is responsible for wrapping the output stream with the Gzip output
stream.

Document generated by Confluence on Oct 15, 2009 06:44 Page 90

7 Apache Wink Representations

This page last changed on Oct 14, 2009 by michael.

Apache Wink Representations

In addition to the JAX-RS standard representations Apache Wink provides an expanded set of
representations that can be used by an application to expose resources in a rich set of representations.
The following section provides information about the representations that are supported by Apache Wink.

Contents

7.1 Json

7.2 APP

7.3 Atom

7.4 RSS

7.5 HTML

7.6 CSV

7.7 OpenSearch

7.8 MultiPart

Apache Wink Representations Request Flow

The following diagram illustrates the client request flow for a resource.

A resource is an abstract entity and as such can not be transmitted between peers. When a client is
required to send or receive a resource it must use a representation of that resource. The resource
representation is a specific formatting of the resource data. The diagram illustrates that a request for a
resource is in fact a request for a specific representation of that resource.

Apache Wink implements resource representations through the use of providers for java objects as
defined by the JAX-RS specification.

Document generated by Confluence on Oct 15, 2009 06:44 Page 91

Apache Wink Providers

In addition to JAX-RS standard providers (refer to section 4.2 of the JAX-RS specification), Apache
Wink provides a set of complementary providers. The purpose of these providers is to provide mapping
services between various representations for example Atom, APP, OpenSearch, CSV, JSON and HTML, and
their associated Java data models.

The Apache Wink providers are pre-registered and delivered with the Apache Wink runtime along with the
JAX-RS standard providers.

Apache Wink provides an additional method for defining the life cycle of a provider via the use of the
@Scope annotation and a way to define the providers priorities.

Scoping

The JAX-RS specification defines by default, that a singleton instance of each provider class is instantiated
for each JAX-RS application. Apache Wink fully supports this requirement and in addition provides a
"Prototype" lifecycle, which is an instance per-request lifecycle.
Prototype means that a new instance of a provider class is instantiated for each request. The @Scope
annotation (section#0) is used on a provider class to specify its lifecycle. The lifecycle of a provider that
does not specify the @Scope annotation defaults to the singleton lifecycle.

Prototype Example

The following example shows how to define a provider with a prototype lifecycle.

@Scope(ScopeType.PROTOTYPE)
@Provider
public class MyProvider implements MessageBodyReader<String>{
 ...
}

Singleton Example 1

The following example shows how to define a provider with a singleton lifecycle.

@Scope(ScopeType.SINGELTON)
@Provider
public class MyProvider implements MessageBodyReader<String>{
 ...
}

Singleton Example 2

The following example shows that when the @Scope annotation is not used, the provider will be a
singleton, as per the JAX-RS specification.

@Provider
public class MyProvider implements MessageBodyReader<String>{
 ...
}

Document generated by Confluence on Oct 15, 2009 06:44 Page 92

Priority

Apache Wink provides a method for setting a priority for a provider.

Reference
For more information on Provider Priorities refer to section 5.1 Registration and
Configuration.

Document generated by Confluence on Oct 15, 2009 06:44 Page 93

7.1 JSON

This page last changed on Oct 13, 2009 by michael.

JSON Providers

Apache Wink provides a set providers that are capable of serializing a number of data models into JSON
representations. There are currently 3 Apache Wink extensions that provide JSON support. Each has
unique features that may make one more suitable for your particular application.

wink-json-provider (org.json)

The wink-json-provider extension is provided in the binary distribution and uses the JSON.org classes to
provide JSON support. Include the wink-json-provider-<VERSION>.jar in the classpath and the providers
will automatically be registered. You will also need the org.json JAR which is provided in the ext/wink-
json-provider/lib folder.

org.apache.wink.providers.json.JsonProvider

Handles reading and writing of org.json.JSONObject classes for the application/json and application/
javascript media types.

 Supported Media Types Entity

Read Yes application/json ,
application/javascript

org.json.JSONObject

Write Yes application/json ,
application/javascript

org.json.JSONObject

org.apache.wink.providers.json.JsonArrayProvider

Handles reading and writing of org.json.JSONArray classes for the application/json and application/
javascript media types.

 Supported Media Types Entity

Read Yes application/json ,
application/javascript

org.json.JSONArray

Write Yes application/json ,
application/javascript

org.json.JSONArray

org.apache.wink.providers.json.JsonJAXBProvider

Handles reading and writing of JAXBElement and JAXB annotated classes for the application/json and
application/javascript media types.

 Supported Media Types Entity

Read Yes application/json ,
application/javascript

JAXB object,
JAXBElement<?>>>

Write Yes application/json ,
application/javascript

JAXB object,
JAXBElement<?>>>

http://json.org

Document generated by Confluence on Oct 15, 2009 06:44 Page 94

Producing and Consuming JSON Example

The following example demonstrates the usage of a JSON provider for reading and writing JSON
representations.

 @GET
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public JSONObject postJSON(JSONObject requestJSON) {
 String property = requestJSON.getString("property");
 JSONObject jobj = new JSONObject();
 return jobj;
 }

 /* Book is a JAXB annotated class */

 @GET
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Book postJSONBook(Book requestBookEntity) {
 String title = requestBookEntity.getTitle();
 /* other code */
 Book response = new Book();
 return response;
 }

wink-jettison-provider (org.codehaus.jettison)

The wink-jettison-provider extension is provided in the binary distribution and uses the Jettison code
to provide JSON support. Include the wink-jettison-provider-<VERSION>.jar in the classpath and the
providers will automatically be registered. You will also need the Jettison library JARs which are provided
in the ext/wink-jettison-provider/lib folder.

By default, reading is currently disabled due to potential issues with the reader. You can enable it
by calling setUseAsReader(boolean) on each provider and registering as a singleton in the JAX-RS
Application sub-class.

org.apache.wink.providers.jettison.JettisonJAXBElementProvider

Handles reading and writing of JAXBElement classes for the application/json media type.

 Supported Media Types Entity

Read Yes application/json JAXBElement<?>>>

Write Yes application/json JAXBElement<?>>>

org.apache.wink.providers.jettison.JettisonJAXBElementProvider

Handles reading and writing of JAXB annotated classes for the application/json media type.

 Supported Media Types Entity

Read Yes application/json JAXB object

Write Yes application/json JAXB object

http://jettison.codehaus.org/

Document generated by Confluence on Oct 15, 2009 06:44 Page 95

Example

The following examples demonstrates the usage of a Jettison provider for producing and consuming
JSON.

Jettison Provider Registration

The following code example demonstrates the way to register a Jettison provider within a JAX-RS
application.

 public class MyApp extends Application {
 public Set getClasses() {
 Set s = new HashSet();
 s.add(MyResource.class);
 return s;
 }

 public Set<Object> getSingletons() {
 Set s = new HashSet();
 JettisonJAXBProvider jaxbProvider = new JettisonJAXBProvider();
 jaxbProvider.setUseAsReader(true);
 return s;
 }
 }

Producing and Consuming JSON

The following code example demonstrates the reading and writting of JAXB objects into a JSON
representation by using a Jettison provider.

 /* Book is a JAXB annotated class */

 @GET
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Book postJSONBook(Book requestBookEntity) {
 String title = requestBookEntity.getTitle();
 /* other code */
 Book response = new Book();
 return response;
 }

Jackson JSON Processor

Jackson JSON Processor may also suit your needs and can be used. They provide their own JAX-RS entity
provider. See their documentation for more information.

http://jackson.codehaus.org/

Document generated by Confluence on Oct 15, 2009 06:44 Page 96

7.2 APP

This page last changed on Oct 13, 2009 by michael.

Atom Publishing Protocol (AtomPub) Overview

The Atom Publishing Protocol (AtomPub) is an application-level protocol for publishing and editing Web
resources. The protocol is based on HTTP transport of Atom-formatted representations. The Atom format
is documented in the Atom Syndication Format.

Data Model

Apache Wink provides an Atom Publishing Protocol data model for producing Service Documents
(application/atomsvc+xml) and Categories Documents (application/atomcat+xml). All of the model
classes are located under the org.apache.wink.common.model.app package.

Important Note
The APP data model can also be used to produce Service and Categories documents in
HTML (text/html) and JSON (application/json) formats. For more details regarding HTML
see section HTML (TBD). For JSON format see section (TBD)

APP Service Document Support

The following table shows the APP service document data models and the representations in which it can
be serialized and de-serialized.

 Supported Media Types Data Model Provider
Registration

Read Yes application/
atomsvc+xml

org.apache.wink.common
.model.app.AppService

Not required.
Registered by
default

Write Yes application/
atomsvc+xml

org.apache.wink.common
.model.app.AppService

Not required.
Registered by
default

APP Categories Document Support

The following table shows the APP Catagories document data models and the representations in which it
can be serialized and de-serialized.

 Supported Media Types Data Model Provider
Registration

Read Yes application/
atomcat+xml

org.apache.wink.common
.model.app.AppCategories

Not required.
Registered by
default

Write Yes application/
atomcat+xml

org.apache.wink.common
.model.app.AppCategories

Not required.
Registered by
default

Producing an APP Service Document Example

The following code example demonstrates the creation of an APP Service Document.

Document generated by Confluence on Oct 15, 2009 06:44 Page 97

 @GET
 @Produces(MediaTypeUtils.ATOM_SERVICE_DOCUMENT)
 public AppService getServiceDocument() {
 AppService serviceDocument = new AppService();
 List<AppWorkspace> workspaces = serviceDocument.getWorkspace();
 AppWorkspace workspace1 = new AppWorkspace();
 workspace1.setTitle(new AtomText("Workspace1"));
 List<AppCollection> collections = workspace1.getCollection();
 AppCollection collection = new AppCollection();
 collection.setTitle(new AtomText("Collection1"));

 collections.add(collection);
 workspaces.add(workspace1);
 ...
 return serviceDocument;
 }

Explanation

AppService class is JAXB annotated POJO. An instance of an AppService class is created, populated
and returned by the resource. A generic JAXB provider is used to serializes this class into an XML
representation.

Document generated by Confluence on Oct 15, 2009 06:44 Page 98

7.3 Atom

This page last changed on Oct 15, 2009 by shivakumar.

Atom Syndication Format Overview

Atom is an XML-based document format that describes lists of related information known as "feeds".
Feeds are composed of a number of items, known as "entries", each with an extensible set of attached
metadata. For example, each entry has a title. The primary use case that Atom addresses is the
syndication of Web content such as weblogs and news headlines to Web sites as well as directly to user
agents.

Data Model

Apache Wink provides an Atom Syndication Format data model for consuming and producing Atom
Feeds and Atom Entries (application/atom+xml). All of the model classes are located under the
org.apache.wink.common.model.atom and org.apache.wink.common.model.synd packages.

Important Note
The Atom Syndication Format data model can also be used to produce Atom Feeds and
Atom Entries in HTML (text/html) and JSON (application/json) formats. For more details
regarding HTML see section HTML (TBD). For JSON format see section (TBD)

Atom Feed Support

The following table shows the Atom Feed data models and the representations in which it can be
serialized and de-serialized.

 Supported Media Types Data Model Provider
registration

Read Yes application/atom
+xml

org.apache.wink
.common.model
.atom.AtomFeed
org.apache.wink
.common.model
.synd.SyndFeed

Not required.
Registered by
default

Write Yes application/atom
+xml

org.apache.wink
.common.model
.atom.AtomFeed
org.apache.wink
.common.model
.synd.SyndFeed

Not required.
Registered by
default

Atom Entry Support

The following table shows the Atom Entry data models and the representations in which it can be
serialized and de-serialized.

 Supported Media Types Data Model Provider
registration

Read Yes application/atom
+xml

org.apache.wink
.common.model
.atom.AtomEntry
org.apache.wink
.common.model
.synd.SyndEntry

Not required.
Registered by
default

Document generated by Confluence on Oct 15, 2009 06:44 Page 99

Write Yes application/atom
+xml

org.apache.wink
.common.model
.atom.AtomEntry
org.apache.wink
.common.model
.synd.SyndEntry

Not required.
Registered by
default

Examples

The following code example demonstrates reading and writing of Atom Feeds and Atom Entries.

Producing Atom Feed

The following code example demonstrates the creation of an Atom Feed.

 @GET
 @Produces(MediaType.APPLICATION_ATOM_XML)
 public AtomFeed getFeed() {
 AtomFeed feed = new AtomFeed();
 feed.setId("http://example.com/atomfeed");
 feed.setTitle(new AtomText("Example"));
 feed.setUpdated(new Date());
 AtomLink link1 = new AtomLink();
 ...

 return feed;
 }
}

Consuming Atom Feed

The following code example demonstrates the consumption of an Atom Feed.

 @POST
 @Consumes(MediaType.APPLICATION_ATOM_XML)
 public void setFeed(AtomFeed feed) {
 ...

 return;
 }

Producing Atom Entry

The following code example demonstrates the creation of an Atom Entry.

 @GET
 @Produces(MediaType.APPLICATION_ATOM_XML)
 public AtomEntry getEntry() {
 AtomEntry entry = new AtomEntry();
 entry.setId("http://example.com/entry");
 entry.setTitle(new AtomText("Web Demo"));
 entry.getLinks().add(link2);
 entry.setUpdated(new Date());
 entry.setPublished(new Date());
 ...

Document generated by Confluence on Oct 15, 2009 06:44 Page 100

 return entry;
 }

Consuming Atom Entry

The following code example demonstrates the consumption of an Atom Entry.

 @POST
 @Consumes(MediaType.APPLICATION_ATOM_XML)
 public void setEntry(AtomEntry entry) {
 ...

 return;
 }

Document generated by Confluence on Oct 15, 2009 06:44 Page 101

7.4 RSS

This page last changed on Oct 15, 2009 by michael.

RSS Data Model

RSS (Really Simple Syndication) is an XML-based document format for the syndication of web content
such as weblogs and news headlines to Web sites as well as directly to user agents. Apache Wink
supports the RSS 2.0 specification.

(Really Simple Syndication) RSS Data Model Overview

Apache Wink provides an RSS data model for consuming and producing RSS Feeds (application/xml). All
of the model classes are located under org.apache.wink.common.model.rss package.

RSS Feed Support

The following table shows the RSS Feed data models and the representations in which it can be serialized
and de-serialized.

 Supported Media Types Data Model Provider
registration

Read Yes application/xml org.apache.wink
.common.model
.rss.RssFeed

Not required.
Registered by
default

Write Yes application/xml org.apache
.wink.common
.model.rss
.RssFeed

Not required.
Registered by
default

Examples

The following code example demonstrates reading and writing of RSS Feeds.

Producing RSS Feed

The following code example demonstrates the creation of an RSS Feed.

 @GET
 @Produces(MediaType.APPLICATION_XML)
 public RssFeed getFeed() {
 RssFeed rss = new RssFeed();

 RssChannel channel = new RssChannel();
 channel.setTitle("Liftoff News");
 channel.setLink("http://liftoff.msfc.nasa.gov");
 channel.setDescription("Liftoff to Space Exploration.");
 channel.setPubDate(new Date().toString());

 RssItem item = new RssItem();
 item.setTitle("Star City");
 item.setLink("http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp");
 item.setDescription("How do Americans get ready to work with Russians aboard the International Space
 Station?");
 channel.getItems().add(item);

Document generated by Confluence on Oct 15, 2009 06:44 Page 102

 ...

 rss.setChannel(channel);
 return rss;
 }
}

Consuming RSS Feed

The following code example demonstrates the consumption of an RSS Feed.

 @POST
 @Consumes(MediaType.APPLICATION_XML)
 public void setFeed(RssFeed feed) {
 ...

 return;
 }

Document generated by Confluence on Oct 15, 2009 06:44 Page 103

7.5 HTML

This page last changed on Oct 14, 2009 by michael.

HTML

Apache Wink provides a set of providers that are capable of serializing a number of data models
(SyndEntry and SyndFeed) as HTML.

 Supported Media Types Data model Provider
registration

Read No N/A N/A N/A

Write Yes text/html org.apache.wink
.common.model
.synd.SyndFeed
org.apache.wink
.common.model
.synd.SyndEntry

See below.

Activating the HTML provider

The Apache Wink HTML providers are not enabled by default. In order to activate them they must be
registered by the HtmlSyndEntryProvider and the HtmlSyndFeedProvider providers, located in the
org.apache.wink.server.internal.providers.entity.html package.

As the HTML providers use a jsps in order to generate the representation the HtmlDefaultRepresentation
folder must include all its content and subfolders available for the servlet container.

Example

Detailed example of the HTML implementation can be seen at the QADefect example.

Document generated by Confluence on Oct 15, 2009 06:44 Page 104

7.6 CSV

This page last changed on Oct 14, 2009 by michael.

Comma Separated Values (CSV) Providers

Apache Wink provides a CSV data model and providers for producing and consuming CSV (text/csv). The
model is based on a Serialization and a Deserialization interface, in addition to a simple CSV Table class.
All of the model classes are located under the org.apache.wink.common.model.csv package.

The following tables list the providers that provide this functionality.

 Supported Media Types Data Model Provider
registration

Read Yes text/csv org.apache.wink
.common.model
.csv.CsvDeserializer
org.apache.wink
.common.model
.csv.CsvTable
org.apache.wink
.common.model
.csv.MultiCsvTable

Not required.
Registered by
default

Write Yes text/csv org.apache.wink
.common.model
.csv.CsvSerializer
org.apache.wink
.common.model
.csv.CsvTable
org.apache.wink
.common.model
.csv.MultiCsvTable

Not required.
Registered by
default

Examples

The following code example demonstrates the reading and writing of CSV documents.

Producing CSV

The following code example demonstrates the creation of a CSV document.

@GET
@Produces("text/csv")
public CsvTable getJohns() {
 CsvTable cvs = new CsvTable("Id", "First Name", "Last Name", "Email");
 cvs.addRow("1","John","Kennedy","john@Kennedy.org");
 cvs.addRow("2","John","Lennon","john@Lennon.org");
 cvs.addRow("3","John","Malkovich","john@malkovich.org");
 cvs.addRow("4","John","McCain","john@McCain.org");
 return cvs;
}

Consuming CSV

The following code example demonstrates the consumption of a CSV document.

Document generated by Confluence on Oct 15, 2009 06:44 Page 105

@POST
@Consumes("text/csv")
public void postCsv(CsvTable csv) {
 for (String[] row : csv.getRows()) {
 for(String cell: row){
 System.out.print(cell + " ,");
 }
 System.out.print("\n");
 }
}

Document generated by Confluence on Oct 15, 2009 06:44 Page 106

7.7 OpenSearch

This page last changed on Oct 14, 2009 by michael.

OpenSearch Overview

OpenSearch is a collection of simple formats for the sharing of search results.
The OpenSearch description document format is used to describe a search engine that can be used by
search client applications.

The OpenSearch response elements can be used to extend existing syndication formats, such as RSS and
Atom, with the extra metadata needed to return search results. The OpenSearch document is associated
with the "application/opensearchdescription+xml" mime type.

Note
For more detailed information about Open Search, refers to the Open Search home page at
http://www.opensearch.org/Home

Data Model

Apache Wink provides an Open Search data model for producing Open Search Documents. of
the model classes are located under the org.apache.wink.common.model.opensearch package.
OpenSearchDescription class is used by an application to build Open Search Description documents.

OpenSearch Support

The following table shows the OpenSearch data model and representation in which it can be serialized
and de-serialized.

 Supported Media Types Data Model Provider
registration

Read Yes NA NA NA

Write Yes application/
opensearchdescription
+xml

org.apache.wink
.common.model
.opensearch
.OpenSearchDescription

Not required.
Registered by
default

Producing an OpenSearch Document Example

The following example demonstrates the creation of an OpenSearch document.

 @GET
 @Produces(MediaTypeUtils.OPENSEARCH)
 public OpenSearchDescription getOpenSearch(@Context UriInfo info) {
 String baseUri = info.getAbsolutePath().toString();
 OpenSearchDescription openSearchDescription = new OpenSearchDescription();
 openSearchDescription.setShortName("Example search engine");
 ...
 return openSearchDescription;
}

http://www.opensearch.org/Home

Document generated by Confluence on Oct 15, 2009 06:44 Page 107

7.8 MultiPart

This page last changed on Oct 14, 2009 by michael.

MultiPart

Apache Wink provides a MultiPart data model and providers for producing and consuming
multipart messages (multipart/*). All of the model classes are located under the
org.apache.wink.common.model.multipart package distributed with the wink-common jar.

The data model can be used with the wink-server module or with the wink-client module.

 Supported Media Types Data Model Provider
registration

Read Yes multipart/* org.apache.wink
.common.model
.multipart.InMultiPart
org.apache.wink
.common.model
.multipart
.BufferedInMultiPart

Not required.
Registered by
default

Write Yes multipart/* org.apache.wink
.common.model
.multipart.OutMultiPart
org.apache.wink
.common.model
.multipart
.BufferedOutMultiPart

Not required.
Registered by
default

Serialization and De-serialization

The serialization and de-serialization of a multipart message is performed by the multipart providers. The
serialization and de-serialization of the parts that make up the multipart message is performed as if each
part is a separate message and in accordance with the JAX-RS specification. This means that every part
is serialized and de-serialized using the appropriate provider that matches the binding class and content
media type of that specific part.

Main Classes

The multipart data model is comprised of the following main classes:

• InMultiPart - is used for de-serialization of an incoming multipart message.
• InPart - represents a single part contained in an incoming multipart message.
• OutMultiPart - is used for serialization of an outgoing multipart message.
• OutPart - represents a single part contained in an outgoing multipart message.

Streaming Multipart

The base multipart classes are designed to handle multipart messages without buffering the data in
order to avoid possible memory issues. This means that the data is accessible only once by the use of an
iterator.

Document generated by Confluence on Oct 15, 2009 06:44 Page 108

Buffering Multipart

The BufferedInMultiPart and BufferedOutMultiPart classes are used to handle multipart messages where
the complete message is buffered in the memory, allowing random and multiple access of the data. These
classes are suitable for situations where the multipart message is small.

Examples

The following examples illustrate the usage of the multipart data model.

Multipart Consumption

The following example illustrates the usage of a streaming multipart message.

@Path("files")
@POST
@Produces(MediaType.TEXT_PLAIN)
@Consumes(MediaTypeUtils.MULTIPART_FORM_DATA)
public String uploadFiles(InMultiPart inMP) throws IOException {
 while (inMP.hasNext()) {
 InPart part = inMP.next();
 MultivaluedMap<String, String> heades = part.getHeaders();
 String CDHeader = heades.getFirst("Content-Disposition");
 InputStream is = part.getBody(InputStream.class, null);
 // use the input stream to read the part body
 }
}

* Detailed example of the MultiPart implementation can be seen at the MultiPart example.

Buffered Multipart Consumption

The following example illustrates the usage of a buffering multipart message.

@Path("users")
@POST
@Consumes({"multipart/mixed"})
public BufferedOutMultiPart addUsers(BufferedInMultiPart inMP) throws IOException {
 List<InPart> parts = inMP.getParts();
 for (InPart p : parts) {
 User u = p.getBody(User.class, null);
 // use the user object retrieved from the part body

 }
}

* Detailed example of the MultiPart implementation can be seen at the MultiPart example.

Document generated by Confluence on Oct 15, 2009 06:44 Page 109

Appendix A - Feeds Support

This page last changed on Oct 15, 2009 by shivakumar.

Migration from Apache Abdera to Apache Wink

Apache Wink is an excellent solution for consuming and producing Atom, APP and RSS documents. The
following section describes how to migrate from Apache Abdera to Apache Wink by providing a set of
examples that cover most use cases.

Advantages of Apache Wink over Apache Abdera

• Standardized APIs (using JAX-RS and JAXB)
• Support for handling XML and JSON more easily
• Support for handling RSS and ATOM more easily

This section contains the following topics:

• 1) Consuming Atom Documents
• 2) a) Producing Atom Documents
• 2) b) Producing Atom Documents - the JAX-RS way
• 3) Consuming RSS Documents
• 4) Producing RSS Documents
• 5) Writing Atom Publishing Protocol (APP) Server
• 6) Writing Atom Publishing Protocol (APP) Client

1) Consuming Atom Documents

The following code example demonstrates the consumption of Atom documents using Apache Abdera.

Apache Abdera - Click on link to Download - ConsumeAtomUsingAbdera.java

Abdera abdera = new Abdera();
Parser parser = abdera.getParser();
URL url = new URL("http://alexharden.org/blog/atom.xml");
Document<Feed> doc = parser.parse(url.openStream());
Feed feed = doc.getRoot();
System.out.println(feed.getTitle());
for (Entry entry : feed.getEntries()) {
 System.out.println("\t" + entry.getTitle());
}

The following code example demonstrates the consumption of Atom documents using Apache Wink.

Apache Wink - Click on link to Download - ConsumeAtomUsingWink.java

RestClient client = new RestClient();
Resource resource = client.resource("http://alexharden.org/blog/atom.xml");
AtomFeed feed = resource.accept(MediaType.APPLICATION_ATOM_XML).get(AtomFeed.class);

http://cwiki.apache.org/confluence/download/attachments/2852765/ConsumeAtomUsingAbdera.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/ConsumeAtomUsingWink.java?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 110

System.out.println(feed.getTitle().getValue());
for (AtomEntry entry : feed.getEntries()) {
 System.out.println("\t" + entry.getTitle().getValue());
}

2) a) Producing Atom Documents

The following code example demonstrates the production of Atom documents using Apache Abdera.

Apache Abdera - Click on links to Download - ProduceAtomUsingAbdera.java
ProduceAtomUsingAbdera_web.xml

protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 Abdera abdera = new Abdera();
 Feed feed = abdera.newFeed();

 feed.setId("tag:example.org,2007:/foo");
 feed.setTitle("Test Feed");
 feed.setSubtitle("Feed subtitle");
 feed.setUpdated(new Date());
 feed.addAuthor("Shiva HR");
 feed.addLink("http://example.com");
 feed.addLink("http://example.com/foo", "self");

 Entry entry = feed.addEntry();
 entry.setId("tag:example.org,2007:/foo/entries/1");
 entry.setTitle("Entry title");
 entry.setSummaryAsHtml("<p>This is the entry title</p>");
 entry.setUpdated(new Date());
 entry.setPublished(new Date());
 entry.addLink("http://example.com/foo/entries/1");

 feed.getDocument().writeTo(response.getWriter());
}

The following code example demonstrates the production of Atom documents using Apache Wink.

Apache Wink - Click on links to Download - ProduceAtomUsingWink.java
ProduceAtomUsingWink_web.xml

protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 AtomFeed feed = new AtomFeed();
 feed.setId("tag:example.org,2007:/foo");
 feed.setTitle(new AtomText("Test Feed"));
 feed.setSubtitle(new AtomText("Feed subtitle"));
 feed.setUpdated(new Date());

 AtomPerson person = new AtomPerson();
 person.setName("Shiva HR");

http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtomUsingAbdera.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtomUsingAbdera_web.xml?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtomUsingWink.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtomUsingWink_web.xml?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 111

 feed.getAuthors().add(person);

 AtomLink link1 = new AtomLink();
 link1.setHref("http://example.com");
 feed.getLinks().add(link1);

 AtomLink link2 = new AtomLink();
 link2.setHref("http://example.com/foo");
 link2.setRel("self");
 feed.getLinks().add(link2);

 AtomEntry entry = new AtomEntry();
 entry.setId("tag:example.org,2007:/foo/entries/1");
 entry.setTitle(new AtomText("Entry title"));

 AtomText summary = new AtomText();
 summary.setType(AtomTextType.html);
 summary.setValue("<p>This is the entry title</p>");
 entry.setSummary(summary);

 entry.setUpdated(new Date());
 entry.setPublished(new Date());

 AtomLink link3 = new AtomLink();
 link3.setHref("http://example.com/foo/entries/1");
 entry.getLinks().add(link3);

 feed.getEntries().add(entry);

 AtomFeed.marshal(feed, response.getOutputStream());
}

2) b) Producing Atom Documents - the JAX-RS way

A more elegant way of producing Atom documents using Apache Wink is the JAX-RS way as described
below:

1. Open the Eclipse development environment and create a "Dynamic Web Project".
2. Add Apache Wink & its dependent JARs under Java EE Module Dependencies.
3. Create a POJO class and a method that creates Atom feed document. Annotate the class & its

methods with the required JAX-RS annotations as below:
ProduceAtom.java

4. Add org.apache.wink.server.internal.servlet.RestServlet into web.xml and specify the path of above
Resource class in it's init-param.
See ProduceAtomWinkElegant_web.xml and application

5. Deploy the web-application and access it using the url http://localhost:8080/
ProduceAtom_Wink_Elegant/rest/getAtom

6. Final WAR -> ProduceAtom_Wink_Elegant.zip (add Wink & its dependent JARs under
ProduceAtom_Wink_Elegant\WEB-INF\lib and re-zip it as WAR).

3) Consuming RSS Documents

The following code example demonstrates the consuming of RSS documents using Apache Abdera.

Apache Abdera - Click on link to Download - ConsumeRssUsingAbdera.java

http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtom.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtomWinkElegant_web.xml?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/application?version=1
http://localhost:8080/ProduceAtom_Wink_Elegant/rest/getAtom
http://localhost:8080/ProduceAtom_Wink_Elegant/rest/getAtom
http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceAtom_Wink_Elegant.zip?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/ConsumeRssUsingAbdera.java?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 112

public static void main(String[] args) throws ParseException, IOException {
 System.out.println("Consuming RSS Documents using Abdera...\n");
 Abdera abdera = new Abdera();
 Parser parser = abdera.getParser();
 URL url = new URL("http://www.rssboard.org/files/sample-rss-2.xml");
 Document<RssFeed> doc = parser.parse(url.openStream());
 RssFeed rssFeed = doc.getRoot();
 System.out.println("Title: " + rssFeed.getTitle());
 System.out.println("Description: " + rssFeed.getSubtitle() + "\n");
 int itemCount = 0;
 for (Entry entry : rssFeed.getEntries()) {
 System.out.println("Item " + ++itemCount + ":");
 System.out.println("\tTitle: " + entry.getTitle());
 System.out.println("\tPublish Date: " + entry.getPublished());
 System.out.println("\tDescription: " + entry.getContent());
 }
}

The following code example demonstrates the consuming of RSS documents using Apache Wink.

Apache Wink - Click on link to Download - ConsumeRssUsingWink.java

public static void main(String[] args) {
 System.out.println("Consuming RSS Documents using Apache Wink...\n");
 RestClient client = new RestClient();
 String url = "http://www.rssboard.org/files/sample-rss-2.xml";
 Resource resource = client.resource(url);
 RssFeed rss = resource.accept(MediaType.APPLICATION_XML).get(RssFeed.class);
 RssChannel channel = rss.getChannel();
 System.out.println("Title: " + channel.getTitle());
 System.out.println("Description: " + channel.getDescription() + "\n");
 int itemCount = 0;
 for (RssItem item : channel.getItems()) {
 System.out.println("Item " + ++itemCount + ":");
 System.out.println("\tTitle: " + item.getTitle());
 System.out.println("\tPublish Date: " + item.getPubDate());
 System.out.println("\tDescription: " + item.getDescription());
 }
}

4) Producing RSS Documents

Apache Abdera

Apache Abdera version 0.4 does not support RSS write.

Apache Wink

Same as in 2) b) Producing Atom Documents - the JAX-RS way. However the resource method now
returns an RssFeed object instead of AtomFeed object.

http://cwiki.apache.org/confluence/download/attachments/2852765/ConsumeRssUsingWink.java?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 113

Apache Wink - Click on link to Download - ProduceRss_Wink_Elegant.zip

@Path("/getRss")
public class ProduceRss {
 @GET
 @Produces(MediaType.APPLICATION_XML)
 public Rss getRss() {
 RssFeed rss = new RssFeed();

 RssChannel channel = new RssChannel();
 channel.setTitle("Liftoff News");
 channel.setLink("http://liftoff.msfc.nasa.gov");
 channel.setDescription("Liftoff to Space Exploration.");
 channel.setPubDate(new Date().toString());

 RssItem item = new RssItem();
 item.setTitle("Star City");
 item.setLink("http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp");
 item.setDescription("How do Americans get ready to work with Russians aboard the International
 Space Station?");

 channel.getItem().add(item);
 rss.setChannel(channel);
 return rss;
 }
}

5) Writing Atom Publishing Protocol (APP) Server

In order to write and publish an APP server using Apache Abdera and Apache Wink perform the following
steps:

The following scenario explains how to Implement an APP server as described in the following beautiful
article by James Snell: http://www.ibm.com/developerworks/library/x-atompp1/

Apache Abdera

1. Open the Eclipse development environment and create a "Dynamic Web Project".
2. Add Apache Abdera & its dependent JARs under Java EE Module Dependencies.
3. Add the following CollectionAdapter and Provider classes under src/myPackage directory:

APP_CollectionAdapter.java APP_ContentProvider.java
4. Add org.apache.abdera.protocol.server.servlet.AbderaServlet into web.xml and point the following

init paramters to the classes added above.
org.apache.abdera.protocol.server.Provider
org.apache.abdera.protocol.server.CollectionAdapter
APP_Server_Abdera_web.xml

5. Add the following index.jsp which has help on how to perform the APP operations:
APP_Server_Abdera_index.jsp

6. Deploy and run the application.

Final WAR -> APP_Server_Abdera.zip (add Apache Abdera & its dependent JARs under
APP_Server_Abdera\WEB-INF\lib and re-zip it as WAR).

Apache Wink

1. Open the Eclipse development environment and create a "Dynamic Web Project".
2. Add Apache Wink & its dependent JARs under Java EE Module Dependencies.

http://cwiki.apache.org/confluence/download/attachments/2852765/ProduceRss_Wink_Elegant.zip?version=1
http://www.ibm.com/developerworks/library/x-atompp1/
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_CollectionAdapter.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_ContentProvider.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Abdera_web.xml?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Abdera_index.jsp?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Abdera.zip?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 114

3. Add the following Resource class under src/myPackage directory: EntriesCollection.java
4. Add org.apache.wink.server.internal.servlet.RestServlet into web.xml and specify the path of above

Resource class in it's init-param. APP_Server_Wink_web.xml APP_Server_Wink_application
5. Add the following index.jsp which has help on how to perform the APP operations:

APP_Server_Wink_index.jsp
6. Deploy and run the application.

Final WAR -> APP_Server_Wink.zip (add Apache Wink & its dependent JARs under APP_Server_Wink
\WEB-INF\lib and re-zip it as WAR)

References

• Apache Wink's "SimpleDefects" example: http://svn.apache.org/repos/asf/incubator/wink/tags/
wink-0.1-incubating/wink-examples/apps/SimpleDefects/src/main/java/org/apache/wink/example/
simpledefects/resources/DefectsResource.java

• Abdera Feed Sample shipped with IBM WebSphere Feature Pack for Web 2.0 http://
publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.ajax.feed.samples.help/
docs/GettingStarted_useage.html

• Abdera Server Implementation Guide -> http://cwiki.apache.org/ABDERA/server-implementation-
guide.html

• Abdera Collection Adapter Implementation Guide -> http://cwiki.apache.org/ABDERA/collection-
adapter-implementation-guide.html

6) Writing Atom Publishing Protocol (APP) Client

In order to write an Atom Publishing Protocol refer to the following examples.

Important Note
Make sure that the APP_Server_Abdera.war and the APP_Server_Wink.war provided in the
previous example are deployed before running this example.

Apache Abdera - Click on link to Download - APP_Client_Abdera.java

 1. Acessing Service Document:

Document<Service> introspection = abderaClient.get(SERVICE_URL).getDocument();
Service service = introspection.getRoot();
List<Workspace> workspaces = service.getWorkspaces();
for (Workspace workspace : workspaces) {
 System.out.println("\t" + workspace.getTitle());
 List<Collection> collections = workspace.getCollections();
 for (Collection collection : collections) {
 System.out.println("\t" + collection.getTitle() + "\t:\t" + collection.getHref());
 }
 System.out.print("\n");
}

 2. Getting a Feed

RequestOptions opts = new RequestOptions();
opts.setContentType("application/atom+xml;type=feed");
ClientResponse response = abderaClient.get(FEED_URL, opts);
Feed feed = (Feed)response.getDocument().getRoot();

http://cwiki.apache.org/confluence/download/attachments/2852765/EntriesCollection.java?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Wink_web.xml?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Wink_application?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Wink_index.jsp?version=1
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Server_Wink.zip?version=1
http://svn.apache.org/repos/asf/incubator/wink/tags/wink-0.1-incubating/wink-examples/apps/SimpleDefects/src/main/java/org/apache/wink/example/simpledefects/resources/DefectsResource.java
http://svn.apache.org/repos/asf/incubator/wink/tags/wink-0.1-incubating/wink-examples/apps/SimpleDefects/src/main/java/org/apache/wink/example/simpledefects/resources/DefectsResource.java
http://svn.apache.org/repos/asf/incubator/wink/tags/wink-0.1-incubating/wink-examples/apps/SimpleDefects/src/main/java/org/apache/wink/example/simpledefects/resources/DefectsResource.java
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.ajax.feed.samples.help/docs/GettingStarted_useage.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.ajax.feed.samples.help/docs/GettingStarted_useage.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.ajax.feed.samples.help/docs/GettingStarted_useage.html
http://cwiki.apache.org/ABDERA/server-implementation-guide.html
http://cwiki.apache.org/ABDERA/server-implementation-guide.html
http://cwiki.apache.org/ABDERA/collection-adapter-implementation-guide.html
http://cwiki.apache.org/ABDERA/collection-adapter-implementation-guide.html
http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Client_Abdera.java?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 115

 3. Posting an entry to a Feed

RequestOptions opts = new RequestOptions();
opts.setContentType("application/atom+xml;type=entry");
ClientResponse response = abderaClient.post(FEED_URL, newEntry, opts);

 4. Putting a change to an Entry

RequestOptions opts = new RequestOptions();
opts.setContentType("application/atom+xml;type=entry");
ClientResponse response = abderaClient.put(ENTRY_URL, changedEntry.getDocument(), opts);

 5. Getting an Entry

RequestOptions opts = new RequestOptions();
opts.setContentType("application/atom+xml;type=entry");
ClientResponse response = abderaClient.get(ENTRY_URL, opts);
Entry entry = (Entry)response.getDocument().getRoot();

 6. Deleting an Entry

ClientResponse response = abderaClient.delete(ENTRY_URL);

Apache Wink - Click on link to Download - APP_Client_Wink.java

 1. Acessing Service Document:

Resource resource = restClient.resource(SERVICE_URL);
AppService service = resource.accept(MediaTypeUtils.ATOM_SERVICE_DOCUMENT).get(AppService.class);
List<AppWorkspace> workspaces = service.getWorkspace();
for (AppWorkspace workspace : workspaces) {
 System.out.println("\t" + workspace.getTitle().getValue());
 List<AppCollection> collections = workspace.getCollection();
 for (AppCollection collection : collections) {
 System.out.println("\t" + collection.getTitle().getValue()
 + "\t:\t"
 + collection.getHref());
 }
 System.out.print("\n");
}

 2. Getting a Feed

http://cwiki.apache.org/confluence/download/attachments/2852765/APP_Client_Wink.java?version=1

Document generated by Confluence on Oct 15, 2009 06:44 Page 116

Resource feedResource = restClient.resource(FEED_URL);
AtomFeed feed = feedResource.accept(MediaType.APPLICATION_ATOM_XML).get(AtomFeed.class);

 3. Posting an entry to a Feed

Resource feedResource = restClient.resource(FEED_URL);
ClientResponse response =
 feedResource.contentType(MediaType.APPLICATION_ATOM_XML).post(newEntry);

 4. Putting a change to an Entry

Resource feedResource = restClient.resource(ENTRY_URL);
ClientResponse response =
 feedResource.contentType(MediaType.APPLICATION_ATOM_XML).put(changedEntry);

 5. Getting an Entry

Resource feedResource = restClient.resource(ENTRY_URL);
AtomEntry atomEntry = feedResource.accept(MediaType.APPLICATION_ATOM_XML).get(AtomEntry.class);

 6. Deleting an Entry

Resource feedResource = restClient.resource(ENTRY_URL);
ClientResponse response = feedResource.delete();

Document generated by Confluence on Oct 15, 2009 06:44 Page 117

Appendix B - Google App Engine

This page last changed on Oct 14, 2009 by michael.

Google App Engine

Apache Wink can be run using Google App Engine as the core functionality is fully compatible. However,
due to some of the App Engine limitations, a number of the additional functions may not work correctly.

Known Limitations

JAXB - Google App Engine doesn't support JAXB. Therefore, the built-in JAXB, Atom and JSON providers
will not work.

Logging

Google uses java.util.logging, also referred to as the JDK 1.4 logging. Apache Wink uses slf4j. In order
to enable Wink's logging function, replace the slf4j-simple-<version>.jar with the slf4j-jdk14-
<version>.jar.

In order to view all of Wink's messages place the following property in the logging.properties file:

org.apache.wink.level=ALL

Everything that the servlet writes to the standard output stream (System.out) and standard error stream
(System.err) is captured by the App Engine and then recorded in the application logs.

Useful Tip
In order to gain an in depth understanding refer to Logging.

When running with Spring, make sure that you have jcl-over-slf4j-<version>.jar in
the classpath. This jar is needed, since Spring uses commons-logging.

Additional Issues

The following section contains "additional Issues" that maybe experience while trying to run custom
developer code in the Google App Engine. It is advantageous to read the relevant documentation as it
provides important information, that will save valuable developer time that is required to ascertain why
the application behaves differently in comparison to a regular servlet container.

Context Path

Usually the URI in a servlet container looks like this:

requestURI = contextPath + servletPath + pathInfo

while in most servlet containers context path is a war name (or it can be configured), in App Engine it's
just empty.
So if your servlet is mapped to "rest", access

http://host:port/rest

.

References

• App Engine Java Overview
• Will it play in App Engine

https://appengine.google.com/
http://slf4j.org
http://code.google.com/appengine/docs/java/runtime.html#Logging
http://www.springsource.org/
http://code.google.com/appengine/docs/java/overview.html
http://groups.google.com/group/google-appengine-java/web/will-it-play-in-app-engine

	Apache Wink Developer Guide 1.0
	Apache Wink Developer Guide Contents
	Apache Wink Developer Guide Contents 2
	1 Introduction to Apache Wink
	2 Apache Wink Building Blocks
	3 Getting Started with Apache Wink
	4 JAX-RS Concepts
	JAX-RS Application Configuration
	JAX-RS Caching
	JAX-RS Getting Started
	JAX-RS Resources, HTTP Methods, and Paths
	JAX-RS Request and Response Entities
	JAX-RS Parameters
	JAX-RS HTTP Headers
	JAX-RS Content Negotiation
	JAX-RS Context Information

	5 Apache Wink Server
	5.1 Registration and Configuration
	5.2 Annotations
	5.3 Resource Matching
	5.4 APP Service Document
	5.5 Spring Integration
	5.6 WebDAV Extension
	5.7 Handler Chain - Runtime Extension
	5.8 Link Builder
	5.9 Assets
	5.10 Admin Views

	6 Apache Wink Client
	6.1 Getting Started with Apache Wink Client
	6.2 Configuring the Apache Wink Client
	6.3 Input and Output Stream Adapters

	7 Apache Wink Representations
	7.1 JSON
	7.2 APP
	7.3 Atom
	7.4 RSS
	7.5 HTML
	7.6 CSV
	7.7 OpenSearch
	7.8 MultiPart

	Appendix A - Feeds Support
	Appendix B - Google App Engine

