Apache Camel

USER GUIDE

Version |.6.4

Copyright 2007-2010, Apache Software Foundation

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

Chapter |

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter |11

APACHE CAMEL

Table of Contents

Introduction

Quickstart

Getting Started 7
Architecture 17
Enterprise Integration Patterns 30
Cook Book 35
Tutorials 88
Language Appendix 193
DataFormat Appendix 248
Pattern Appendix 315
Component Appendix 438
Index 0

Apache Camel is a powerful open source integration framework based on known Enterprise
Integration Patterns with powerful Bean Integration.

Camel lets you create the Enterprise Integration Patterns to implement routing and mediation
rules in either a Java based Domain Specific Language (or Fluent API), via Spring based Xml
Configuration files or via the Scala DSL. This means you get smart completion of routing rules
in your IDE whether in your Java, Scala or XML editor.

Apache Camel uses URlIs so that it can easily work directly with any kind of Transport or
messaging model such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF Bus API together with
working with pluggable Data Format options. Apache Camel is a small library which has minimal
dependencies for easy embedding in any Java application. Apache Camel lets you work with the
same API regardless which kind of Transport used, so learn the APl once and you will be able
to interact with all the Components that is provided out-of-the-box.

Apache Camel has powerful Bean Binding and integrated seamless with popular frameworks
such as Spring and Guice.

Apache Camel has extensive Testing support allowing you to easily unit test your routes.

Apache Camel can be used as a routing and mediation engine for the following projects:

» Apache ServiceMix which is the most popular and powerful distributed open source
ESB and JBI container

* Apache ActiveMQ which is the most popular and powerful open source message
broker

* Apache CXF which is a smart web services suite (JAX-WVS)

* Apache MINA a networking framework

So don't get the hump, try Camel today! @

CHAPTER | - INTRODUCTION

https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Scala+DSL
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Transport
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JBI
https://cwiki.apache.org/confluence/display/CAMEL/MINA
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/What+are+the+dependencies
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Transport
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Testing
http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://mina.apache.org/

To start using Apache Camel quickly, you can read through some simple examples in this
chapter. For readers who would like a2 more thorough introduction, please skip ahead to
Chapter 3.

WALK THROUGH AN EXAMPLE CODE

This mini-guide takes you through the source code of a simple example.
Camel can be configured either by using Spring or directly in Java - which this example does.
We start with creating a CamelContext - which is a container for Components, Routes etc:

CamelContext context = new DefaultCamelContext () ;

There is more than one way of adding a Component to the CamelContext. You can add
components implicitly - when we set up the routing - as we do here for the FileComponent:

context.addRoutes (new RouteBuilder () {

public void configure() {
from("test-jms:queue:test.queue™) .to("file://test");
// set up a listener on the file component
from("file://test") .process (new Processor () {

public void process (Exchange e) {
System.out.println("Received exchange: " + e.getIn());

or explicitly - as we do here when we add the JMS Component:

ConnectionFactory connectionFactory = new

ActiveMQConnectionFactory ("vm://localhost?broker.persistent=false");
// Note we can explicity name the component

context.addComponent ("test-jms",

JmsComponent . jmsComponentAutoAcknowledge (connectionFactory)) ;

| CHAPTER 2 - QUICKSTART

https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/File

The above works with any JMS provider. If we know we are using ActiveMQ we can use an
even simpler form using the activeMQComponent() method while specifying the brokerURL
used to connect to ActiveMQ

camelContext.addComponent ("activemng",
activeMQComponent ("vm: localhost?broker.persistent=false"));

In normal use, an external system would be firing messages or events directly into Camel
through one if its Components but we are going to use the ProducerTemplate which is a really
easy way for testing your configuration:

ProducerTemplate template = context.createProducerTemplate () ;

Next you must start the camel context. If you are using Spring to configure the camel context
this is automatically done for you; though if you are using a pure Java approach then you just
need to call the start() method

camelContext.start () ;

This will start all of the configured routing rules.

So after starting the CamelContext, we can fire some objects into camel:

for (int i = 0; i < 10; i++) {
template.sendBody ("test-jms:queue:test.queue", "Test Message: " + 1i);

WHAT HAPPENS?

From the ProducerTemplate - we send objects (in this case text) into the CamelContext to the
Component test-jms:queue:test.queue. These text objects will be converted automatically into
JMS Messages and posted to a JMS Queue named test.queue. When we set up the Route, we
configured the FileComponent to listen of the test.queue.

The File FileComponent will take messages off the Queue, and save them to a directory
named test. Every message will be saved in a file that corresponds to its destination and message
id.

Finally, we configured our own listener in the Route - to take notifications from the
FileComponent and print them out as text.

That's it!

If you have the time then use 5 more minutes to Walk through another example that
demonstrates the Spring DSL (XML based) routing.

CHAPTER 2 - QUICKSTART

https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://camel.apache.org/maven/current/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
https://cwiki.apache.org/confluence/display/CAMEL/Components
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Walk+through+another+example

3

! Camel 1.4.0 change
In Camel 1.4.0, CamelTemplate has been marked as @deprecated.
ProducerTemplate should be used instead and its created from the CamelContext
itself.

ProducerTemplate template = context.createProducerTemplate () ;

WALK THROUGH ANOTHER EXAMPLE

Introduction

We continue the walk from Walk through an Example. This time we take a closer look at the
routing and explains a few pointers so you wont walk into a bear trap, but can enjoy a walk

after hours to the local pub for a large beer @

First we take a moment to look at the Enterprise Integration Patterns that is the base
pattern catalog for integrations. In particular we focus on the Pipes and Filters EIP pattern, that
is a central pattern. This is used for: route through a sequence of processing steps, each
performing a specific function - much like the Java Servlet Filters.

Pipes and filters

In this sample we want to process a message in a sequence of steps where each steps can
perform their specific function. In our example we have a JMS queue for receiving new orders.
When an order is received we need to process it in several steps:

= validate

= register

= send confirm email
This can be created in a route like this:

<route>
<from uri="jms:queue:order"/>
<pipeline>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</pipeline>
</route>

Where as the bean ref is a reference for a spring bean id, so we define our beans using
regular Spring XML as:

CHAPTER 2 - QUICKSTART

https://cwiki.apache.org/confluence/display/CAMEL/Walk+through+an+Example
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/JMS

Pipeline is default
In the route above we specify pipeline but it can be omitted as its default, so
you can write the route as:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a multicast and "one" of
the endpoints to send to (as a logical group) is a pipeline of other endpoints. For example.

<route>
<from uri="jms:queue:order"/>
<multicast>
<to uri="log:org.company.log.Category"/>
<pipeline>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</pipeline>
</multicast>
</route>

The above sends the order (from jms: queue:order) to two locations at the same time,
our log component, and to the "pipeline" of beans which goes one to the other. If you
consider the opposite, sans the <pipeline>

<route>
<from uri="jms:queue:order"/>
<multicast>
<to uri="log:org.company.log.Category"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</multicast>
</route>

you would see that multicast would not "flow" the message from one bean to the next, but
rather send the order to all 4 endpoints (Ix log, 3x bean) in parallel, which is not (for this

CHAPTER 2 - QUICKSTART

4

example) what we want. We need the message to flow to the validateOrder, then to the
registerOrder, then the sendConfirmEmail so adding the pipeline, provides this facility.

<bean id="validateOrder" class="com.mycompany.MyOrderValidator"/>

Our validator bean is a plain POJO that has no dependencies to Camel what so ever. So you
can implement this POJO as you like. Camel uses rather intelligent Bean Binding to invoke your
POJO with the payload of the received message. In this example we will not dig into this how
this happens. You should return to this topic later when you got some hands on experience
with Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from the JMS queue
the message is routed like Pipes and Filters:
|. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as input to the registerOrder bean
3. the output from registerOrder bean is sent as input to the sendConfirmEmail bean

Using Camel Components

In the route lets imagine that the registration of the order has to be done by sending data to a
TCP socket that could be a big mainframe. As Camel has many Components we will use the
camel-mina component that supports TCP connectivity. So we change the route to:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<bean ref="sendConfirmEmail"/>
</route>

What we now have in the route is a to type that can be used as a direct replacement for the
bean type. The steps is now:

I. payload from the JMS is sent as input to the validateOrder bean

2. the output from validateOrder bean is sent as text to the mainframe using TCP

3. the output from mainframe is sent back as input to the sendConfirmEmai bean

What to notice here is that the to is not the end of the route (the world ©) in this
example it's used in the middle of the Pipes and Filters. In fact we can change the bean types to
to as well:

CHAPTER 2 - QUICKSTART

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/MINA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters

<route>
<from uri="jms:queue:order"/>
<to uri="bean:validateOrder"/>
<to uri="mina:tcp://mainframeip:44442textline=true"/>
<to uri="bean:sendConfirmEmail"/>
</route>

As the to is a generic type we must state in the uri scheme which component it is. So we must
write bean: for the Bean component that we are using.

Conclusion

This example was provided to demonstrate the Spring DSL (XML based) as opposed to the
pure Java DSL from the first example. And as well to point about that the to doesn't have to be
the last node in a route graph.

This example is also based on the in=only message exchange pattern. What you must
understand as well is the in-out message exchange pattern, where the caller expects a
response. We will look into this in another example.

See also

= Examples
= Tutorials
= User Guide

CHAPTER 2 - QUICKSTART

6

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Walk+through+an+Example
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Tutorials
https://cwiki.apache.org/confluence/display/CAMEL/User+Guide

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK

The purpose of a "patterns” book is not to advocate new techniques that the authors have
invented, but rather to document existing best practices within a particular field. By doing this,
the authors of a patterns book hope to spread knowledge of best practices and promote a
vocabulary for discussing architectural designs.

One of the most famous patterns books is Design Patterns: Elements of Reusable Object-oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, commonly known as
the "Gang of Four" (GoF) book. Since the publication of Design Patterns, many other pattern
books, of varying quality, have been written. One famous patterns book is called Enterprise
Integration Patterns: Designing, Building, and Deploying Messaging Solutions by Gregor Hohpe and
Bobby Woolf. It is common for people to refer to this book by its initials EIP. As the subtitle of
EIP suggests, the book focuses on design patterns for asynchronous messaging systems. The
book discusses 65 patterns. Each pattern is given a textual name and most are also given a
graphical symbol, intended to be used in architectural diagrams.

THE CAMEL PROJECT

Camel (http://activemq.apache.org/camel/) is an open-source, Java-based project that helps the
user implement many of the design patterns in the EIP book. Because Camel implements many
of the design patterns in the EIP book, it would be a good idea for people who work with
Camel to have the EIP book as a reference.

ONLINE DOCUMENTATION FOR CAMEL

The documentation is all under the Documentation category on the right-side menu of the
Camel website (also available in PDF form. Camel-related books are also available, in particular
the Camel in Action book, presently serving as the Camel bible--it has a free Chapter One
(pdf), which is highly recommended to read to get more familiar with Camel.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://activemq.apache.org/camel/
http://camel.apache.org/manual.html
https://cwiki.apache.org/confluence/display/CAMEL/Books
http://manning.com/ibsen
http://www.manning.com/ibsen/Camel_ch01_update.pdf
http://www.manning.com/ibsen/Camel_ch01_update.pdf

A useful tip for navigating the online documentation

The breadcrumbs at the top of the online Camel documentation can help you navigate between
parent and child subsections.

For example, If you are on the "Languages" documentation page then the left-hand side of the
reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of the
Apache Camel project, and clicking on "Documentation" takes you to the main documentation
page. You can interpret the "Architecture" and "Languages" buttons as indicating you are in the
"Languages" section of the "Architecture" chapter. Adding browser bookmarks to pages that
you frequently reference can also save time.

ONLINE JAVADOC DOCUMENTATION

The Apache Camel website provides Javadoc documentation. It is important to note that the
Javadoc documentation is spread over several independent Javadoc hierarchies rather than being
all contained in a single Javadoc hierarchy. In particular, there is one Javadoc hierarchy for the
core APIs of Camel, and a separate Javadoc hierarchy for each component technology supported
by Camel. For example, if you will be using Camel with ActiveMQ and FTP then you need to
look at the Javadoc hierarchies for the core APl and Spring API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL

In this section some of the concepts and terminology that are fundamental to Camel are
explained. This section is not meant as a complete Camel tutorial, but as a first step in that
direction.

Endpoint

The term endpoint is often used when talking about inter-process communication. For example,
in client-server communication, the client is one endpoint and the server is the other endpoint.
Depending on the context, an endpoint might refer to an address, such as a host:port pair for
TCP-based communication, or it might refer to a software entity that is contactable at that
address. For example, if somebody uses "www.example.com:80" as an example of an endpoint,
they might be referring to the actual port at that host name (that is, an address), or they might
be referring to the web server (that is, software contactable at that address). Often, the
distinction between the address and software contactable at that address is not an important
one.

Some middleware technologies make it possible for several software entities to be contactable
at the same physical address. For example, CORBA is an object-oriented, remote-procedure-

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-spring/apidocs/index.html

call (RPC) middleware standard. If a CORBA server process contains several objects then a
client can communicate with any of these objects at the same physical address (host:port), but a
client communicates with a particular object via that object's logical address (called an IOR in
CORBA terminology), which consists of the physical address (host:port) plus an id that uniquely
identifies the object within its server process. (An IOR contains some additional information
that is not relevant to this present discussion.) When talking about CORBA, some people may
use the term "endpoint” to refer to a CORBA server's physical address, while other people may
use the term to refer to the logical address of a single CORBA object, and other people still
might use the term to refer to any of the following:

* The physical address (host:port) of the CORBA server process

* The logical address (host:port plus id) of a CORBA object.

* The CORBA server process (a relatively heavyweight software entity)

* A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least two ways.
First, it is ambiguous because it might refer to an address or to a software entity
contactable at that address. Second, it is ambiguous in the granularity of what it refers
to: a heavyweight versus lightweight software entity, or physical address versus logical
address. It is useful to understand that different people use the term endpoint in
slightly different (and hence ambiguous) ways because Camel's usage of this term
might be different to whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many
different communication technologies. Here are some examples of the Camel-
supported endpoint technologies.

* A JMS queue.

* A web service.

» Afile. A file may sound like an unlikely type of endpoint, until you realize that in some
systems one application might write information to a file and, later, another
application might read that file.

* An FTP server.

* An email address. A client can send a message to an email address, and a server can
read an incoming message from a mail server.

* A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some endpoints
and connect these endpoints with routes, which | will discuss later in Section 4.8
("Routes, RouteBuilders and Java DSL"). Camel defines a Java interface called
Endpoint. Each Camel-supported endpoint has a class that implements this
Endpoint interface. As | discussed in Section 3.3 ("Online Javadoc documentation"),
Camel provides a separate Javadoc hierarchy for each communications technology
supported by Camel. Because of this, you will find documentation on, say, the
JmsEndpoint class in the JMS Javadoc hierarchy, while documentation for, say, the
FtpEndpoint class is in the FTP Javadoc hierarchy.

9 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/

CamelContext

A CamelContext object represents the Camel runtime system. You typically have one
CamelContext object in an application. A typical application executes the following steps.

I. Create a CamelContext object.

2. Add endpoints — and possibly Components, which are discussed in Section 4.5
("Components") — to the Came1lContext object.

3. Add routes to the CamelContext object to connect the endpoints.
Invoke the start () operation on the CamelContext object. This starts Camel-
internal threads that are used to process the sending, receiving and processing of
messages in the endpoints.

5. Eventually invoke the stop () operation on the CamelContext object. Doing this
gracefully stops all the endpoints and Camel-internal threads.
Note that the CamelContext.start () operation does not block indefinitely.
Rather, it starts threads internal to each Component and Endpoint and then
start () returns. Conversely, CamelContext.stop () waits for all the threads
internal to each Endpoint and Component to terminate and then stop ()
returns.
If you neglect to call CamelContext.start () in your application then messages
will not be processed because internal threads will not have been created.
If you neglect to call CamelContext.stop () before terminating your application
then the application may terminate in an inconsistent state. If you neglect to call
CamelContext.stop () in aJUnit test then the test may fail due to messages not
having had a chance to be fully processed.

CamelTemplate

Camel used to have a class called CamelClient, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other open-source
projects, such as the TransactionTemplate and JmsTemplate classes in Spring.

The CamelTemplate class is a thin wrapper around the CamelContext class. It has
methods that send a Message or Exchange — both discussed in Section 4.6 ("Message and
Exchange")) — to an Endpoint — discussed in Section 4.1 ("Endpoint"). This provides a way to
enter messages into source endpoints, so that the messages will move along routes — discussed
in Section 4.8 ("Routes, RouteBuilders and Java DSL") — to destination endpoints.

The Meaning of URL, URI, URN and IRI

Some Camel methods take a parameter that is a URI string. Many people know that a URI is
"something like a URL" but do not properly understand the relationship between URI and URL,
or indeed its relationship with other acronyms such as IRl and URN.

Most people are familiar with URLs (uniform resource locators), such as "http://...", "ftp://...",
"mailto:...". Put simply, a URL specifies the location of a resource.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.springframework.org/

A URI (uniform resource identifier) is a URL or a URN. So, to fully understand what URI means,
you need to first understand what is a URN.

URN is an acronym for uniform resource name. There are may "unique identifier" schemes in the
world, for example, ISBNs (globally unique for books), social security numbers (unique within a
country), customer numbers (unique within a company's customers database) and telephone
numbers. Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-name>:<unique-
identifier>". A URN uniquely identifies a resource, such as a book, person or piece of equipment.
By itself, a URN does not specify the location of the resource. Instead, it is assumed that a
registry provides a mapping from a resource's URN to its location. The URN specification does
not state what form a registry takes, but it might be a database, a server application, a wall chart
or anything else that is convenient. Some hypothetical examples of URNs are
"urn:employee:08765245", "urn:customer:uk:3458:hul8" and
"urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee”, "customer" and "foo"
in these examples) part of a URN implicitly defines how to parse and interpret the <unique-
identifier> that follows it. An arbitrary URN is meaningless unless: (1) you know the semantics
implied by the <scheme-name>, and (2) you have access to the registry appropriate for the
<scheme-name>. A registry does not have to be public or globally accessible. For example,
"urn:employee:08765245" might be meaningful only within a specific company.

To date, URNSs are not (yet) as popular as URLs. For this reason, URI is widely misused as a
synonym for URL.

IRl is an acronym for internationalized resource identifier. An IRI is simply an internationalized
version of a URL. In particular, a URI can contain letters and digits in the US-ASCII character
set, while a IRI can contain those same letters and digits, and also European accented characters,
Greek letters, Chinese ideograms and so on.

Components

Component is confusing terminology; EndpointFactory would have been more appropriate because
a Component is a factory for creating Endpoint instances. For example, if a Camel-based
application uses several JMS queues then the application will create one instance of the
JmsComponent class (which implements the Component interface), and then the application
invokes the createEndpoint () operation on this JmsComponent object several times.
Each invocation of JmsComponent.createEndpoint () creates an instance of the
JmsEndpoint class (which implements the Endpoint interface). Actually, application-level
code does not invoke Component.createEndpoint () directly. Instead, application-level
code normally invokes CamelContext.getEndpoint (); internally, the CamelContext
object finds the desired Component object (as | will discuss shortly) and then invokes
createEndpoint () onit.

Consider the following code.

myCamelContext.getEndpoint ("pop3: john.smith@mailserv.example.com?password=myPassword")!;

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

The parameter to getEndpoint () is a URI. The URI prefix (that is, the part before ":")
specifies the name of a component. Internally, the CamelContext object maintains a mapping
from names of components to Component objects. For the URI given in the above example,
the CamelContext object would probably map the pop3 prefix to an instance of the
MailComponent class. Then the CamelContext object invokes

createEndpoint ("pop3://john.smith@mailserv.example.com?password=myPassword’
on that MailComponent object. The createEndpoint () operation splits the URI into its
component parts and uses these parts to create and configure an Endpoint object.

In the previous paragraph, | mentioned that a Camel1Context object maintains a mapping
from component names to Component objects. This raises the question of how this map is
populated with named Component objects. There are two ways of populating the map. The
first way is for application-level code to invoke CamelContext.addComponent (String
componentName, Component component). The example below shows a single
MailComponent object being registered in the map under 3 different names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent () ;
myCamelContext.addComponent ("pop3", mailComponent) ;
myCamelContext.addComponent ("imap", mailComponent) ;
myCamelContext.addComponent ("smtp", mailComponent) ;

The second (and preferred) way to populate the map of named Component objects in the
CamelContext objectis to let the CamelContext object perform lazy initialization. This
approach relies on developers following a convention when they write a class that implements
the Component interface. | illustrate the convention by an example. Let's assume you write a
class called com.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write a properties file
called "META-INF/services/org/apache/camel/component/foo" (without a ".properties” file
extension) that has a single entry in it called class, the value of which is the fully-scoped name
of your class. This is shown below.

Listing 1. META-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another
properties file in the same directory called "bar" that has the same contents. Once you have
written the properties file(s), you create a jar file that contains the
com.example.myproject.FooComponent class and the properties file(s), and you add
this jar file to your CLASSPATH. Then, when application-level code invokes
createEndpoint ("foo:...") onaCamelContext object, Camel will find the "foo
properties file on the CLASSPATH, get the value of the class property from that properties
file, and use reflection APIs to create an instance of the specified class.

As | said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support for numerous
communication technologies. The out-of-the-box support consists of classes that implement the

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 12

Component interface plus properties files that enable a Came1Context object to populate
its map of named Component objects.

Earlier in this section | gave the following example of calling
CamelContext.getEndpoint ().

myCamelContext.getEndpoint ("pop3: smith@mailserv.example.com?password=myPassword")!;

When | originally gave that example, | said that the parameter to getEndpoint () was a URL
| said that because the online Camel documentation and the Camel source code both claim the
parameter is a URL. In reality, the parameter is restricted to being a URL. This is because when
Camel extracts the component name from the parameter, it looks for the first ":", which is a
simplistic algorithm. To understand why, recall from Section 4.4 ("The Meaning of URL, URI,
URN and IRI") that a URI can be a URL or a URN. Now consider the following calls to

getEndpoint.

myCamelContext.getEndpoint ("pop3:...");

(
myCamelContext.getEndpoint ("jms:...");
myCamelContext.getEndpoint ("urn:foo:...");
(

myCamelContext.getEndpoint ("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn". It
would be more useful if the latter components were identified as "urn:foo" and "urn:bar" or,
alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix). So, in practice you
must identify an endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for URNs means the
you should consider the parameter to getEndpoint () as being a URL rather than (as
claimed) a URI.

Message and Exchange

The Message interface provides an abstraction for a single message, such as a request, reply
or exception message.

There are concrete classes that implement the Message interface for each Camel-supported
communications technology. For example, the JmsMessage class provides a JMS-specific
implementation of the Message interface. The public API of the Message interface provides
get- and set-style methods to access the message id, body and individual header fields of a
messge.

The Exchange interface provides an abstraction for an exchange of messages, that is, a
request message and its corresponding reply or exception message. In Camel terminology, the
request, reply and exception messages are called in, out and fault messages.

There are concrete classes that implement the Exchange interface for each Camel-supported
communications technology. For example, the JmsExchange class provides a JMS-specific
implementation of the Exchange interface. The public APl of the Exchange interface is quite

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

limited. This is intentional, and it is expected that each class that implements this interface will
provide its own technology-specific operations.

Application-level programmers rarely access the Exchange interface (or classes that
implement it) directly. However, many classes in Camel are generic types that are instantiated
on (a class that implements) Exchange. Because of this, the Exchange interface appears a
lot in the generic signatures of classes and methods.

Processor

The Processor interface represents a class that processes a message. The signature of this
interface is shown below.

Listing 2. Processor

package org.apache.camel;
public interface Processor ({
void process (Exchange exchange) throws Exception;

}

Notice that the parameter to the process () method is an Exchange rather than a
Message. This provides flexibility. For example, an implementation of this method initially
might call exchange.getIn () to get the input message and process it. If an error occurs
during processing then the method can call exchange.setException ().

An application-level developer might implement the Processor interface with a class that
executes some business logic. However, there are many classes in the Camel library that
implement the Processor interface in a way that provides support for a design pattern in the
EIP book. For example, ChoiceProcessor implements the message router pattern, that is, it
uses a cascading if-then-else statement to route a message from an input queue to one of
several output queues. Another example is the FilterProcessor class which discards
messages that do not satisfy a stated predicate (that is, condition).

Routes, RouteBuilders and Java DSL

A route is the step-by-step movement of a Message from an input queue, through arbitrary
types of decision making (such as filters and routers) to a destination queue (if any). Camel
provides two ways for an application developer to specify routes. One way is to specify route
information in an XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a Java DSL (domain-specific language).

Introduction to Java DSL

For many people, the term "domain-specific language" implies a compiler or interpreter that can
process an input file containing keywords and syntax specific to a particular domain. This is not
the approach taken by Camel. Camel documentation consistently uses the term "Java DSL"

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

instead of "DSL", but this does not entirely avoid potential confusion. The Camel "Java DSL" is a
class library that can be used in a way that looks almost like a DSL, except that it has a bit of
Java syntactic baggage. You can see this in the example below. Comments afterwards explain
some of the constructs used in the example.

Listing 3. Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder () {
public void configure() {

from("queue:a") .filter (header ("foo") .isEqualTo ("bar")) .to("queue:b");
from("queue:c") .choice ()
.when (header ("foo") .isEqualTo ("bar")) .to ("queue:d")
.when (header ("foo") .isEqualTo ("cheese")) .to("queue:e")
.otherwise () .to("queue:f");

}
bi
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes (builder) ;

The first line in the above example creates an object which is an instance of an anonymous
subclass of RouteBuilder with the specified configure () method.

The CamelContext.addRoutes (RouterBuilder builder) method invokes
builder.setContext (this) —so the RouteBuilder object knows which
CamelContext object it is associated with —and then invokes builder.configure ().
The body of configure () invokes methods such as from (), filter (), choice (),
when (), isEqualTo (), otherwise () and to ().

The RouteBuilder.from(String uri) method invokes getEndpoint (uri) on the
CamelContext associated with the RouteBuilder object to get the specified Endpoint
and then puts a FromBuilder "wrapper” around this Endpoint. The
FromBuilder.filter (Predicate predicate) method creates a
FilterProcessor object for the Predicate (that is, condition) object built from the
header ("foo") .isEqualTo ("bar") expression. In this way, these operations
incrementally build up a Route object (with a RouteBuilder wrapper around it) and add it
to the CamelContext object associated with the RouteBuilder.

Critique of Java DSL

The online Camel documentation compares Java DSL favourably against the alternative of
configuring routes and endpoints in a XML-based Spring configuration file. In particular, Java
DSL is less verbose than its XML counterpart. In addition, many integrated development
environments (IDEs) provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider: that of
writing a parser that can process DSL stored in, say, an external file. Currently, Camel does not
provide such a DSL parser, and | do not know if it is on the "to do" list of the Camel

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

maintainers. | think that a DSL parser would offer a significant benefit over the current Java
DSL. In particular, the DSL would have a syntactic definition that could be expressed in a
relatively short BNF form. The effort required by a Camel user to learn how to use DSL by
reading this BNF would almost certainly be significantly less than the effort currently required
to study the APl of the RouterBuilder classes.

Continue Learning about Camel

Return to the main Getting Started page for additional introductory reference information.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 16

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml Configuration to
configure routing and mediation rules which are added to a CamelContext to implement the
various Enterprise Integration Patterns.

At a high level Camel consists of a CamelContext which contains a collection of Component
instances. A Component is essentially a factory of Endpoint instances. You can explicitly
configure Component instances in Java code or an loC container like Spring or Guice, or they
can be auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a JMS
system; you can communicate with an endpoint; either sending messages to it or consuming
messages from it. You can then create a Producer or Consumer on an Endpoint to exchange
messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or Predicate to
make a truly powerful DSL which is extensible to the most suitable language depending on your
needs. The following languages are supported

* Bean Language for using Java for expressions
* Constant
* the unified EL from JSP and JSF
* Header
* JXPath
e Mvel
+ OGNL
* Property
* Scala DSL
* Scripting Languages such as
o BeanShell
° JavaScript
> Groovy
° Python
o PHP
o Ruby
* Simple
° File Language
+ SQL
» XPath

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Routes
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language
https://cwiki.apache.org/confluence/display/CAMEL/Constant
https://cwiki.apache.org/confluence/display/CAMEL/EL
https://cwiki.apache.org/confluence/display/CAMEL/Header
https://cwiki.apache.org/confluence/display/CAMEL/JXPath
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/Property
https://cwiki.apache.org/confluence/display/CAMEL/Scala+DSL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Python
https://cwiki.apache.org/confluence/display/CAMEL/PHP
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/XPath

* XQuery

Most of these languages is also supported used as Annotation Based Expression Language.

For a full details of the individual languages see the Language Appendix

URIS

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created

by a Component if you refer to them within Routes

Current Supported URIs

Component / Artifactld / URI

Description

ActiveMQ / activemg-camel

activemg: [topic:]destinationName

For JMS Messaging with Apache
ActiveMQ

ActiveMQ Journal / activemg-core

activemqg.journal:directory-on-filesystem

Uses ActiveMQ's fast disk
journaling implementation to store
message bodies in a rolling log file

AMQP / camel-amqgp

amgp: [topic:]destinationName

For Messaging with AMQP
protocol

Atom / camel-atom

atom:uri

Working with Apache Abdera for
atom integration, such as
consuming an atom feed.

Bean / camel-core

bean:beanName [?method=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

Bean Validation / camel-bean-validator

bean-validator:something

Validates the payload of a message
using the Java Validation API (JSR
303 and JAXP Validation) and its
reference implementation
Hibernate Validator

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/Annotation+Based+Expression+Language
https://cwiki.apache.org/confluence/display/CAMEL/Book+Languages+Appendix
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/
http://activemq.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ+Journal
https://cwiki.apache.org/confluence/display/CAMEL/AMQP
http://www.amqp.org/
http://www.amqp.org/
https://cwiki.apache.org/confluence/display/CAMEL/Atom
http://incubator.apache.org/abdera/
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Validation
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

Browse / camel-core

browse: someName

Provides a simple
BrowsableEndpoint which can be
useful for testing, visualisation tools
or debugging. The exchanges sent
to the endpoint are all available to
be browsed.

Cache / camel-cache

cache://cachename [?options]

The cache component facilitates
creation of caching endpoints and
processors using EHCache as the
cache implementation.

Class / camel-core

class:className [?method=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

Cometd / camel-cometd

cometd://host:port/channelname

Used to deliver messages using the
jetty cometd implementation of the
bayeux protocol

Crypto (Digital Signatures) / camel-crypto

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify exchanges
using the Signature Service of the
Java Cryptographic Extension.

CXF / camel-cxf

cxf:address[?serviceClass=...]

Working with Apache CXF for
web services integration

CXF Bean / camel-cxf

cxf:bean name

Proceess the exchange using a JAX
WS or JAX RS annotated bean
from the registry. Requires less
configuration than the above CXF
Component

CXFRS / camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXF for
REST services integration

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/Browse
https://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint
https://cwiki.apache.org/confluence/display/CAMEL/Cache
http://ehcache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Class
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Cometd
http://docs.codehaus.org/display/JETTY/Cometd+(aka+Bayeux)
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
https://cwiki.apache.org/confluence/display/CAMEL/Crypto+(Digital+Signatures)
https://cwiki.apache.org/confluence/display/CAMEL/CXF
http://apache.org/cxf/
https://cwiki.apache.org/confluence/display/CAMEL/CXF+Bean+Component
https://cwiki.apache.org/confluence/display/CAMEL/CXFRS
http://apache.org/cxf/

DataSet / camel-core

dataset:name

For load & soak testing the DataSet
provides a way to create huge
numbers of messages for sending
to Components or asserting that
they are consumed correctly

Db4o / camel-db4o in camel-extra

db4o://className

For using a db4o datastore as a
queue via the db4o library

Direct / camel-core

direct:name

Synchronous call to another
endpoint

EJB / camel-ejb

ejb:ejbName [?method=someMethod]

Uses the Bean Binding to bind
message exchanges to EJBs. It
works like the Bean component
but just for accessing EJBs.
Supports EJB 3.0 onwards.

Esper / camel-esper in camel-extra

esper:name

Working with the Esper Library for
Event Stream Processing

Event / camel-spring

event://default
spring-event://default

Working with Spring
ApplicationEvents

Exec / camel-exec

exec://executable[?options]

For executing system commands

File / camel-core

file://nameOfFileOrDirectory

Sending messages to a file or
polling a file or directory. Camel
I.x use this link File.

CHAPTER 4 - ARCHITECTURE

20

https://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Db4o
http://code.google.com/p/camel-extra/
http://www.db4o.com/
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/EJB
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Esper
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
https://cwiki.apache.org/confluence/display/CAMEL/Event
https://cwiki.apache.org/confluence/display/CAMEL/Exec
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/File

21

Flatpack / camel-flatpack

flatpack: [fixed|delim] :configFile

Processing fixed width or delimited
files or messages using the FlatPack
library

Freemarker / camel-freemarker

freemarker:someTemplateResource

Generates a response using a
Freemarker template

FTP / camel-ftp

ftp://host[:port]/fileName

Sending and receiving files over
FTP. Camel l.x use this link
FTP.

FTPS / camel-ftp

ftps://host[:port]/fileName

Sending and receiving files over FTP
Secure (TLS and SSL).

GAuth / camel-gae

gauth://name[?options]

Used by web applications to
implement an OAuth consumer.
See also Camel Components for
Google App Engine.

GHttp / camel-gae

ghttp://hostname[:port] [/path] [?options]

ghttp:///path[?options]

Provides connectivity to the URL
fetch service of Google App Engine
but can also be used to receive
messages from servlets. See also
Camel Components for Google
App Engine.

GLogin / camel-gae

glogin://hostname[:port] [?options]

Used by Camel applications outside
Google App Engine (GAE) for
programmatic login to GAE
applications. See also Camel
Components for Google App
Engine.

GTask / camel-gae

gtask://queue-name

Supports asynchronous message
processing on Google App Engine
by using the task queueing service
as message queue. See also Camel
Components for Google App
Engine.

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/Flatpack
http://flatpack.sourceforge.net
http://flatpack.sourceforge.net
https://cwiki.apache.org/confluence/display/CAMEL/Freemarker
http://freemarker.org/
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/gauth
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/apis/accounts/docs/OAuth.html
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/ghttp
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/glogin
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/gtask
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/appengine/docs/java/taskqueue/
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE

GMail / camel-gae

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Supports sending of emails via the
mail service of Google App Engine.
See also Camel Components for
Google App Engine.

HDFS / camel-hdfs in camel-hdfs

hdfs://path[?options]

For reading/writing from/to an
HDFS filesystem

Hibernate / camel-hibernate in camel-extra

hibernate://entityName

For using a database as a queue via
the Hibernate library

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7 MLLP
protocol and the HL7 model using
the HAPI library

HTTP / camel-http

http://hostname[:port]

For calling out to external HTTP
servers

iBATIS / camel-ibatis

ibatis://sqlOperationName

Performs a query, poll, insert,
update or delete in a relational
database using Apache iBATIS

IMap / camel-mail

imap://hostname[:port]

Receiving email using IMap

IRC / camel-irc

irc:host[:port]/#room

For IRC communication

JavaSpace / camel-javaspace

javaspace:jini://host?spaceName=mySpace?. ..

Sending and receiving messages
through JavaSpace

CHAPTER 4 - ARCHITECTURE

22

https://cwiki.apache.org/confluence/display/CAMEL/gmail
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/appengine/docs/java/mail/
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/HDFS
http://github.com/dgreco/camel-hdfs/
http://http://hadoop.apache.org/hdfs/
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
https://cwiki.apache.org/confluence/display/CAMEL/HL7
http://hl7api.sourceforge.net
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
http://ibatis.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/IRC
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html

23

JBI / servicemix-camel

jbi:serviceName

For JBI integration such as working
with Apache ServiceMix

JCR / camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
(JSR-170) compliant repository like
Apache Jackrabbit

JDBC / camel-jdbc

jdbc:dataSourceName?options

For performing JDBC queries and
operations

Jetty / camel-jetty

jetty:url

For exposing services over HTTP

JMS / camel-jms

jms: [topic:]destinationName

Working with JMS providers

JMX'/ camel-jmx

jmx://platform?options

For working with JMX notification
listeners

JPA / camel-jpa

jpa://entityName

For using a database as a queue via
the JPA specification for working
with Open]PA, Hibernate or
TopLink

JT/400 / camel-jt400

jt400://user:pwd@system/<path to dtag>

For integrating with data queues on
an AS/400 (aka System i, IBM i, i5,
...) system

Language / camel-core

language://languageName [:script] [?options]

Executes Languages scripts

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/JBI
http://servicemix.apache.org
https://cwiki.apache.org/confluence/display/CAMEL/JCR
http://jackrabbit.apache.org
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/Jetty
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMX
https://cwiki.apache.org/confluence/display/CAMEL/JPA
http://openjpa.apache.org/
http://www.hibernate.org/
https://cwiki.apache.org/confluence/display/CAMEL/JT400
https://cwiki.apache.org/confluence/display/CAMEL/Language
https://cwiki.apache.org/confluence/display/CAMEL/Languages

LDAP / camel-Idap

ldap:host[:port] ?base=... [&scope=<scope>]

Performing searches on LDAP
servers (<scope> must be one of
object|onelevel|subtree)

Log / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to
log the message exchange to some
underlying logging system like log4;

Lucene / camel-lucene

lucene:searcherName:insert[?analyzer=<analyzer>]
lucene:searcherName:query[?analyzer=<analyzer>]

Uses Apache Lucene to perform
Java-based indexing and full text
based searches using advanced

analysis/tokenization capabilities

Mail / camel-mail

mail://user-info@host:port

Sending and receiving email

MINA / camel-mina

[tcpludp|vm] thost[:port]

Working with Apache MINA

Mock / camel-core

mock:name

For testing routes and mediation
rules using mocks

MSV / camel-msv

msv:someLocalOrRemoteResource

Validates the payload of a message
using the MSV Library

Nagios / camel-nagios

nagios://host[:port]?options

Sending passive checks to Nagios
using JSendNSCA

Netty / camel-netty

netty:tcp//host[:port]?options
netty:udp//host[:port]?options

Working with TCP and UDP
protocols using Java NIO based
capabilities offered by the JBoss
Netty community project

CHAPTER 4 - ARCHITECTURE

24

https://cwiki.apache.org/confluence/display/CAMEL/LDAP
https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/Lucene
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/MSV
https://msv.dev.java.net/
https://cwiki.apache.org/confluence/display/CAMEL/Nagios
http://www.nagios.org/
http://code.google.com/p/jsendnsca/
https://cwiki.apache.org/confluence/display/CAMEL/Netty
http://www.jboss.org/netty
http://www.jboss.org/netty

25

NMR / servicemix-nmr

nmr://serviceName

Integration with the Normalized
Message Router BUS in ServiceMix
4.x

POP / camel-mail

pop3://user-info@host:port

Receiving email using POP3 and
JavaMail

Printer / camel-printer

lpr://host:port/path/to/printer[?options]

The printer component facilitates
creation of printer endpoints to
local, remote and wireless printers.
The endpoints provide the ability
to print camel directed payloads
when utilized on camel routes.

Properties / camel-core

properties://key[?options]

The properties component
facilitates using property
placeholders directly in endpoint
uri definitions.

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled delivery of
messages using the Quartz
scheduler

Quickfix / camel-quickfix

quickfix-server:config file
quickfix-client:config-file

Implementation of the QuickFix for
Java engine which allow to send/
receive FIX messages

Ref / camel-core

ref:name

Component for lookup of existing
endpoints bound in the Registry.

Restlet / camel-restlet

restlet:restletUrl[?options]

Component for consuming and
producing Restful resources using
Restlet

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/NMR
http://servicemix.apache.org/SMX4NMR/index.html
http://servicemix.apache.org/SMX4NMR/index.html
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/Printer
https://cwiki.apache.org/confluence/display/CAMEL/Properties
https://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
https://cwiki.apache.org/confluence/display/CAMEL/Quickfix
http://www.fixprotocol.org
https://cwiki.apache.org/confluence/display/CAMEL/Ref
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
http://www.restlet.org

RMI / camel-rmi

rmi://host[:port]

Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri

Validates the payload of a message
using RelaxNG Compact Syntax

RNG / camel-jing

rng:/relativeOrAbsoluteUri

Validates the payload of a message
using RelaxNG

RSS / camel-rss

rss:uri

Working with ROME for RSS
integration, such as consuming an
RSS feed.

Scalate / scalate-camel

scalate:templateName

Uses the given Scalate template to
transform the message

SEDA / camel-core

seda:name

Asynchronous call to another
endpoint in the same Camel
Context

SERVLET / camel-servlet

servlet:uri

For exposing services over HTTP
through the servlet which is
deployed into the Web container.

SFTP / camel-ftp

sftp://host[:port]/fileName

Sending and receiving files over
SFTP (FTP over SSH). Camel 1.x
use this link FTP.

Sip / camel-sip

sip://user@host[:port]?[options]
sips://user@host[:port]?[options]

Publish/Subscribe communication
capability using the Telecom SIP
protocol. RFC3903 - Session
Initiation Protocol (SIP) Extension
for Event

CHAPTER 4 - ARCHITECTURE

26

https://cwiki.apache.org/confluence/display/CAMEL/RMI
https://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
https://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/
https://cwiki.apache.org/confluence/display/CAMEL/RSS
https://rome.dev.java.net
https://cwiki.apache.org/confluence/display/CAMEL/Scalate
http://scalate.fusesource.org/
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/Sip
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt

27

Smooks / camel-smooks in camel-extra

unmarshal (edi)

For working with EDI parsing using
the Smooks library

SMTP / camel-mail

smtp://user-infoRhost[:port]

Sending email using SMTP and
JavaMail

SMPP / camel-smpp

smpp://user-info@host [:port] ?options

To send and receive SMS using
Short Messaging Service Center
using the JSMPP library

SNMP / camel-snmp

snmp://host[:port] ?options

Polling OID values and receiving
traps using SNMP via SNMP4]
library

Springlntegration / camel-spring-integration

spring-integration:defaultChannelName

The bridge component of Camel
and Spring Integration

Spring Web Services / camel-spring-ws

spring-ws: [mapping-type:]address[?options]

Client-side support for accessing
web services, and server-side
support for creating your own
contract-first web services using
Spring Web Services

SQL / camel-sq|

sgl:select * from table where id=#

Performing SQL queries using
JDBC

Stream / camel-stream

stream: [in|out|err|file]

Read or write to an input/output/
error/file stream rather like unix

pipes

StringTemplate / camel-stringtemplate

string-template:someTemplateResource

Generates a response using a String
Template

CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/Smooks
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Smooks
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/SMPP
http://code.google.com/p/jsmpp/
https://cwiki.apache.org/confluence/display/CAMEL/SNMP
http://snmp4j.com
https://cwiki.apache.org/confluence/display/CAMEL/SpringIntegration
http://www.springframework.org/spring-integration
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Web+Services
http://static.springsource.org/spring-ws/sites/1.5/
https://cwiki.apache.org/confluence/display/CAMEL/SQL+Component
https://cwiki.apache.org/confluence/display/CAMEL/Stream
https://cwiki.apache.org/confluence/display/CAMEL/StringTemplate
http://www.stringtemplate.org/
http://www.stringtemplate.org/

TCP / camel-mina

mina:tcp://host:port

Working with TCP protocols using
Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates a Mock endpoint which
expects to receive all the message
bodies that could be polled from
the given underlying endpoint

Timer / camel-core

timer://name

A timer endpoint

UDP / camel-mina

mina:udp://host:port

Working with UDP protocols using
Apache MINA

Validation / camel-spring

validation:someLocalOrRemoteResource

Validates the payload of a message
using XML Schema and JAXP
Validation

Velocity / camel-velocity

velocity:someTemplateResource

Generates a response using an
Apache Velocity template

VM / camel-core

vm:name

Asynchronous call to another
endpoint in the same JVM

XMPP / camel-xmpp

xmpp://host:port/room

Working with XMPP and Jabber

XQuery / camel-saxon

xquery:someXQueryResource

Generates a response using an
XQuery template

CHAPTER 4 - ARCHITECTURE

28

https://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Timer
https://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Validation
http://www.w3.org/XML/Schema
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://velocity.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/VM
https://cwiki.apache.org/confluence/display/CAMEL/XMPP
https://cwiki.apache.org/confluence/display/CAMEL/XQuery+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/XQuery

XSLT / camel-spring
Generates a response using an
xslt:someTemplateResource XSLT template

For a full details of the individual components see the Component Appendix

29 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/XSLT
http://www.w3.org/TR/xslt
https://cwiki.apache.org/confluence/display/CAMEL/Book+Component+Appendix

Camel supports most of the Enterprise Integration Patterns from the excellent book of the
same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly
for users of Camel.

PATTERN INDEX

There now follows a list of the Enterprise Integration Patterns from the book along with
examples of the various patterns using Apache Camel

Messaging Systems

—® Message
@l Channel

How does one application communicate with another using
messaging?

% Message

How can two applications connected by a message channel
exchange a piece of information?

*DD Pipes and

Filters

How can we perform complex processing on a message while
maintaining independence and flexibility?

v o | Message

= Router

How can you decouple individual processing steps so that
messages can be passed to different filters depending on a set of
conditions?

@@ Message

Translator

How can systems using different data formats communicate with
each other using messaging!?

—t Message
Endpoint

How does an application connect to a messaging channel to send
and receive messages!?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Message+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint

31

Messaging Channels

Point to . . .
I Point How can the caller be sure that exactly one receiver will receive
the document or perform the call?
Channel
Publish ,
. How can the sender broadcast an event to all interested
Subscribe receivers!?
Channel ’
Dead
(Y, Letter What will the messaging system do with a message it cannot

deliver?
Channel

Guaranteed How can the sender make sure that a message will be delivered,
Delivery even if the messaging system fails?

@
—
g
What is an architecture that enables separate applications to
Message . . s
% work together, but in a de-coupled fashion such that applications
Bus . . .
can be easily added or removed without affecting the others?

Message Construction

How can messaging be used to transmit events from one
Event Message L
application to another?

L]—» Request Repl When an application sends a message, how can it get a
<« q PY response from the receiver?

m Correlation How does a requestor that has received a reply know which
[A] HB]

Identifier request this is the reply for?
= © Return
[i ?
= Address How does a replier know where to send the reply?

Message Routing

= Content How do we handle a situation where the implementation of a
o— . .)) .
— Based single logical function (e.g., inventory check) is spread across
Router multiple physical systems?
Message . - . .
Filter How can a component avoid receiving uninteresting messages?
» ~—f+ Dynamic How can you avoid the dependency of the router on all
T Router possible destinations while maintaining its efficiency?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
https://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
https://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
https://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Return+Address
https://cwiki.apache.org/confluence/display/CAMEL/Return+Address
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router

% Recipient How do we route a message to a list of (static or dynamically)
List specified recipients?
= How can we process a message if it contains multiple
m Splitter elements, each of which may have to be processed in a
different way?
BeD How do we combine the results of individual, but related
Aggregator
messages so that they can be processed as a whole?
0% qoo How can we get a stream of related but out-of-sequence
O Resequencer .
messages back into the correct order?
= Composed How can you maintain the overall message flow when
E=>E=-E Message processing a message consisting of multiple elements, each of
Processor which may require different processing?
Scatter How do you maintain the overall message flow when a
Gather message needs to be sent to multiple recipients, each of which
may send a reply?
How do we route a message consecutively through a series of
oooo

Routing Slip processing steps when the sequence of steps is not known at
design-time and may vary for each message?

How can | throttle messages to ensure that a specific endpoint
Throttler does not get overloaded, or we don't exceed an agreed SLA
with some external service?

How can | sample one message out of many in a given period

Samplin .
Ping to avoid downstream route does not get overloaded?
Delayer How can | delay the sending of a message?
Load .
How can | balance load across a number of endpoints?
Balancer
. How can | route a message to a number of endpoints at the
Multicast .
same time?
Loop How can | repeat processing a message in a loop?

Message Transformation

D—bl:‘

Content How do we communicate with another system if the message
Enricher originator does not have all the required data items available?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

32

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
https://cwiki.apache.org/confluence/display/CAMEL/Composed+Message+Processor
https://cwiki.apache.org/confluence/display/CAMEL/Composed+Message+Processor
https://cwiki.apache.org/confluence/display/CAMEL/Composed+Message+Processor
https://cwiki.apache.org/confluence/display/CAMEL/Scatter-Gather
https://cwiki.apache.org/confluence/display/CAMEL/Scatter-Gather
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Sampling
https://cwiki.apache.org/confluence/display/CAMEL/Delayer
https://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
https://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
https://cwiki.apache.org/confluence/display/CAMEL/Multicast
https://cwiki.apache.org/confluence/display/CAMEL/Loop
https://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
https://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher

[J—wo Content How do you simplify dealing with a large message, when you are
Filter interested only in a few data items?
[(J—s0 Claim How can we reduce the data volume of message sent across the
=] Check system without sacrificing information content?
9) How do you process messages that are semantically equivalent,
22 ®0 Normalizer ° YU PTe 8 yed
but arrive in a different format?
Sort How can | sort the body of a message?!
Validate How can | validate a message?

Messaging Endpoints

Messaging
Mapper

How do you move data between domain objects and the
messaging infrastructure while keeping the two independent of
each other?

¥
+

Event Driven

How can an application automatically consume messages as they

Consumer become available?

| 'Q' Polling How can an application consume a message when the
Consumer application is ready?

| IQ Competing How can a messaging client process multiple messages
Consumers concurrently?

1y {. Message How can multiple consumers on a single channel coordinate
Dispatcher their message processing?

_IE Selective How can a message consumer select which messages it wishes
Consumer to receive!?

_[:E'} Durable How can a subscriber avoid missing messages while it's not
Subscriber listening for them?
Idempotent . . .

How can a message receiver deal with duplicate messages?

Consumer

Transactional
Client

How can a client control its transactions with the messaging
system?

Bl

Messaging
Gateway

How do you encapsulate access to the messaging system from
the rest of the application?

33 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

https://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Claim+Check
https://cwiki.apache.org/confluence/display/CAMEL/Claim+Check
https://cwiki.apache.org/confluence/display/CAMEL/Normalizer
https://cwiki.apache.org/confluence/display/CAMEL/Sort
https://cwiki.apache.org/confluence/display/CAMEL/Validate
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
https://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
https://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
https://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway

How can an application design a service to be invoked both via

Service . ; > . .

. various messaging technologies and via non-messaging
Activator .

techniques?

System Management

P How can you route a message through intermediate steps to
—+—| Detour o . . .
perform validation, testing or debugging functions?
Wire How do you inspect messages that travel on a point-to-point
I Tap channel?
Log How can | log processing a message?

For a full breakdown of each pattern see the Book Pattern Appendix

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 34

https://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
https://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
https://cwiki.apache.org/confluence/display/CAMEL/Detour
https://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
https://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
https://cwiki.apache.org/confluence/display/CAMEL/LogEIP
https://cwiki.apache.org/confluence/display/CAMEL/Book+Pattern+Appendix

This document describes various recipes for working with Camel
* Bean Integration describes how to work with beans and Camel in a loosely coupled
way so that your beans do not have to depend on any Camel APlIs
> Annotation Based Expression Language binds expressions to method
parameters
> Bean Binding defines which methods are invoked and how the Message is
converted into the parameters of the method when it is invoked
° Bean Injection for injecting Camel related resources into your POJOs
o Parameter Binding Annotations for extracting various headers, properties
or payloads from a Message
> POJO Consuming for consuming and possibly routing messages from Camel
> POJO Producing for producing camel messages from your POJOs
> RecipientlList Annotation for creating a Recipient List from a POJO method
o Using Exchange Pattern Annotations describes how pattern annotations can
be used to change the behaviour of method invocations
* Hiding Middleware describes how to avoid your business logic being coupled to any
particular middleware APIs allowing you to easily switch from in JVM SEDA to |MS,
ActiveMQ, Hibernate, JPA, JDBC, iBATIS or JavaSpace etc.
* Visualisation describes how to visualise your Enterprise Integration Patterns to help
you understand your routing rules
* Business Activity Monitoring (BAM) for monitoring business processes across systems
* Extract Transform Load (ETL) to load data into systems or databases
* Testing for testing distributed and asynchronous systems using a messaging approach
o Camel Test for creating test cases using a single Java class for all your
configuration and routing
o Spring Testing uses Spring Test together with either XML or Java Config to
dependency inject your test classes
o Guice uses Guice to dependency inject your test classes
* Templating is a great way to create service stubs to be able to test your system
without some back end system.
* Database for working with databases
* Parallel Processing and Ordering on how using parallel processing and SEDA or JMS
based load balancing can be achieved.
* Asynchronous Processing in Camel Routes.
* Implementing Virtual Topics on other JMS providers shows how to get the effect of
Virtual Topics and avoid issues with JMS durable topics
* Camel Transport for CXF describes how to put the Camel context into the CXF
transport layer.

35 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Annotation+Based+Expression+Language
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Hiding+Middleware
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
https://cwiki.apache.org/confluence/display/CAMEL/Visualisation
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/BAM
https://cwiki.apache.org/confluence/display/CAMEL/ETL
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/Database
https://cwiki.apache.org/confluence/display/CAMEL/Parallel+Processing+and+Ordering
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Asynchronous+Processing
https://cwiki.apache.org/confluence/display/CAMEL/Implementing+Virtual+Topics+on+other+JMS+providers
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Transport+for+CXF

* Fine Grained Control Over a Channel describes how to deliver a sequence of
messages over a single channel and then stopping any more messages being sent over
that channel. Typically used for sending data over a socket and then closing the
socket.

» EventNotifier to log details about all sent Exchanges shows how to let Camels
EventNotifier logall sent to endpoint events and how long time it took.

* Loading routes from XML files into an existing CamelContext.

BEAN INTEGRATION

Camel supports the integration of beans and POJOs in a number of ways

Bean Binding

Whenever Camel invokes a bean method, either via the Bean component, Spring Remoting or
POJO Consuming then the Bean Binding mechanism is used to figure out what method to use
(if it is not explicit) and how to bind the Message to the parameters possibly using the
Parameter Binding Annotations

Annotations

If a bean is defined in Spring XML or scanned using the Spring 2.5 component scanning
mechanism and a <camelContext> is used or a CamelBeanPostProcessor then we process a
number of Camel annotations to do various things such as injecting resources or producing,
consuming or routing messages.
* POJO Consuming to consume and possibly route messages from Camel
* POJO Producing to make it easy to produce camel messages from your POJOs
* RecipientList Annotation for creating a Recipient List from a POJO method
* RoutingSlip Annotation for creating a Routing Slip for a POJO method
* Bean Injection to inject Camel related resources into your POJOs
» Using Exchange Pattern Annotations describes how the pattern annotations can be
used to change the behaviour of method invocations with Spring Remoting or POJO
Producing

Spring Remoting

We support a Spring Remoting provider which uses Camel as the underlying transport
mechanism. The nice thing about this approach is we can use any of the Camel transport
Components to communicate between beans. It also means we can use Content Based Router
and the other Enterprise Integration Patterns in between the beans; in particular we can use
Message Translator to be able to convert what the on-the-wire messages look like in addition
to adding various headers and so forth.

COOKBOOK

36

https://cwiki.apache.org/confluence/display/CAMEL/Fine+Grained+Control+Over+a+Channel
https://cwiki.apache.org/confluence/display/CAMEL/EventNotifier+to+log+details+about+all+sent+Exchanges
https://cwiki.apache.org/confluence/display/CAMEL/Loading+routes+from+XML+files
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/RoutingSlip+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator

Bean Component

The Bean component supports the creation of a proxy via ProxyHelper to a Java interface;
which the implementation just sends a message containing a Beanlnvocation to some Camel
endpoint.

Then there is a server side implementation which consumes a message and uses the Bean
Binding to bind the message to invoke a method passing in its parameters.

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using Bean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression
@)]JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression
Example:

public class Foo {

@MessageDriven (uri = "activemg:my.queue")
public void doSomething (@XPath("/foo/bar/text()") String correlationID,

COOKBOOK

@Body

https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
https://cwiki.apache.org/confluence/display/CAMEL/Constant
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
https://cwiki.apache.org/confluence/display/CAMEL/EL
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
https://cwiki.apache.org/confluence/display/CAMEL/Header
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
https://cwiki.apache.org/confluence/display/CAMEL/PHP
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
https://cwiki.apache.org/confluence/display/CAMEL/Python
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
https://cwiki.apache.org/confluence/display/CAMEL/Simple
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
https://cwiki.apache.org/confluence/display/CAMEL/XPath
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
https://cwiki.apache.org/confluence/display/CAMEL/XQuery

String body) {

Advanced example using @Bean

And an example of using the the @Bean binding annotation, where you can use a Pojo where
you can do whatever java code you like:

public class Foo {

@MessageDriven (uri

"activemg:my.queue")
public void doSomething (@Bean ("myCorrelationIdGenerator") String correlationID,
@Body String body) {

And then we can have a spring bean with the id myCorrelationldGenerator where we
can compute the id.

public class MyIdGenerator ({
private UserManager userManager;

public String generate (@Header (name = "user") String user, @Body String payload)
throws Exception ({
User user = userManager.lookupUser (user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload (payload);
return id;

The Pojo MyldGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator ({

public static int generate() {

erate a unique id

return 123;

COOKBOOK

38

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding

39

And finally we just need to remember to have our bean registered in the Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to use Groovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething (@Groovy ("$request.header['user'].firstName
$Srequest.header['user'].familyName) String fullName, @Body String body) {
process ne JL;,Cf,u,;,") message nere

}

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

Bean Binding

The Bean Binding in Camel defines both which methods are invoked and also how the Message
is converted into the parameters of the method when it is invoked.

Choosing the method to invoke

The binding of a Camel Message to a bean method call can occur in different ways, order if
importance:

* if the message contains the header CamelBeanMethodName
(org.apache.camel.MethodName in Camel |.x) then that method is invoked,
converting the body to whatever the argument is to the method

* the method name can be specified explicitly in the DSL or when using POJO
Consuming

+ Camel 2.0: if the bean has a method that is marked with @Handler annotation
then that method is selected

* if the bean can be converted to a Processor using the Type Converter mechanism
then this is used to process the message. This mechanism is used by the ActiveMQ
component to allow any JMS MessageListener to be invoked directly by Camel

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

without having to write any integration glue code. You can use the same mechanism
to integrate Camel into any other messaging/remoting frameworks.

* if the body of the message can be converted to a Beanlnvocation (the default payload
used by the ProxyHelper) - then that its used to invoke the method and pass the
arguments

+ otherwise the type of the method body is used to try find a method which matches;
an error is thrown if a single method cannot be chosen unambiguously.

* you can also use Exchange as the parameter itself, but then the return type must be
void.

In case where Camel will not be able to choose a method to invoke an
AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body.

Parameter binding

When a method have been chosen to be invoked Camel will bind to the parameters of the
method.

The following Camel specific types is automatic binded:

* org.apache.camel.Exchange

* org.apache.camel.Message

= Camel 2.0: org.apache.camel.CamelContext

* org.apache.camel.TypeConverter

= Camel 2.0: org.apache.camel.spi.Registry

* java.lang.Exception
So if you declare any of the given type above they will be provided by Camel. A note on the
Exception is that it will bind to the caught exception of the Exchange. So its often usable if
you use a Pojo to handle a given using using eg an onException route.

What is most interresting is that Camel will also try to bind the body of the Exchange to the
first parameter of the method signature (albeit not of any of the types above). So if we for
instance declare e parameter as: String body then Camel will bind the IN body to this type.
Camel will also automatic type convert to the given type declared.

Okay lets show some examples.

Below is just a simple method with a body binding. Camel will bind the IN body to the body
parameter and convert it toa String type.

public String doSomething (String body)

And in this sample we got one of the automatic binded type as well, for instance the
Registry that we can use to lookup beans.

COOKBOOK

40

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

public String doSomething (String body, Registry registry)

And we can also use Exchange as well:

public String doSomething(String body, Exchange exchange)

You can have multiple types as well

public String doSomething(String body, Exchange exchange, TypeConverter converter)

And imagine you use a Pojo to handle a given custom exception InvalidOrderException
then we can bind that as well:

Notice we can bind to it even if we use a sub type of java.lang.Exception as Camel still
knows its an exception and thus can bind the caused exception (if any exists).

public String badOrder (String body, InvalidOrderException invalid)

So what about headers and other stuff? Well now it gets a bit tricky so we can use annotations
to help us. See next section for details.

Binding Annotations

You can use the Parameter Binding Annotations to customize how parameter values are
created from the Message

Examples

For example a Bean such as:

public class Bar {
public String doSomething (String body) {

process the in body and return whatever you want
return "Bye World";

Or the Exchange example. Notice that the return type must be void when there is only a
single parameter:

public class Bar {

public void doSomething (Exchange exchange) ({

41 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean

@Handler

Available as of Camel 2.0

You can mark a method in your bean with the @Handler annotation to indicate that this
method should be used for Bean Binding.
This has the advantage as you do not have to specify the method name in the Camel route. And
thus you do not run into problems when you rename the method name using an IDE that don't
find all references.

public class Bar {

@Handler
public String doSomething (String body) {
brocess the in body and return whatever you want

return "Bye World";

POJO consuming

For example you could use POJO Consuming to write a bean like this

public class Foo {

@Consume (uri = "activemg:my.queue")
public void doSomething(String body) {

process Lnbound mess age nere

}

Here Camel with subscribe to an ActiveMQ queue, then convert the message payload to a
String (so dealing with TextMessage, ObjectMessage and BytesMessage in JMS), then process
this method.

Bean Injection

We support the injection of various resources using @Endpointlnject. This can be used to
inject

COOKBOOK

42

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming

43

© @Consume requires camel-spring
Using the @Consume annotations requires camel-spring that uses the
org.apache.camel.spring.CamelBeanPostProcessor to perform the
setup for this consumer and the needed bean bindings.

& @MessageDriven is @deprecated
The @MessageDriven has been replaced with @Consume in Camel 1.5.0 or newer.
Its now marked as @deprecated and will be removed in Camel 2.0.

* Endpoint instances which can be used for testing when used with Mock endpoints; see
the Spring Testing for an example.

* ProducerTemplate instances for POJO Producing

* client side proxies for POJO Producing which is a simple approach to Spring
Remoting

Parameter Binding Annotations

Annotations can be used to define an Expression or to extract various headers, properties or
payloads from a Message when invoking a bean method (see Bean Integration for more detail of
how to invoke bean methods) together with being useful to help disambiguate which method to
invoke.

If no annotations are used then Camel assumes that a single parameter is the body of the
message. Camel will then use the Type Converter mechanism to convert from the expression
value to the actual type of the parameter.

The core annotations are as follows

Annotation Meaning Parameter

@Body To bind to an inbound message body

To bind to an Exception set on the exchange

@ExchangeException (Camel 2.0)

String name

@Header To bind to an inbound message header of the header

To bind to the Map of the inbound message

@Headers headers

To bind to the Map of the outbound message

@OutHeaders headers

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/ProducerTemplate
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ExchangeException.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Headers.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/OutHeaders.html

 camel-core
The annotations below are all part of camel-core and thus does not require
camel-spring or Spring. These annotations can be used with the Bean
component or when invoking beans in the DSL

String name
@Property To bind to a named property on the exchange of the
property

@Properties To bind to the property map on the exchange

Camel 2.0: Not part as a type parameter but
stated in this table anyway to spread the good word
that we have this annotation in Camel now. See
more at Bean Binding.

@Handler

The follow annotations @Headers, @OutHeaders and @Properties binds to the backing
java.util.Map so you can alter the content of these maps directly, for instance using the
put method to add a new entry. See the OrderService class at Exception Clause for such an
example.

Example

In this example below we have a @Consume consumer (like message driven) that consumes
JMS messages from the activemq queue. We use the @Header and @Body parameter binding
annotations to bind from the JMSMessage to the method parameters.

public class Foo {

@Consume (uri = "activemg:my.queue")
public void doSomething (QHeader (name = "JMSCorrelationID") String correlationID,
@Body String body) {
process the 1nbound message nere

}

In the above Camel will extract the value of Message.getfMSCorrelationlD(), then using the
Type Converter to adapt the value to the type of the parameter if required - it will inject the
parameter value for the correlationlD parameter. Then the payload of the message will be
converted to a String and injected into the body parameter.

You don't need to use the @Consume annotation; as you could use the Camel DSL to
route to the beans method

COOKBOOK

44

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Property.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Properties.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/DSL

45

Using the DSL to invoke the bean method

Here is another example which does not use POJO Consuming annotations but instead uses
the DSL to route messages to the bean method

public class Foo {

public void doSomething (QHeader (name = "JMSCorrelationID") String correlationID,
@Body String body) {

process the inbound message here

The routing DSL then looks like this

from("activemqg: someQueue") .
to("bean:myBean") ;

Here myBean would be looked up in the Registry (such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try figure out what
method to call.

If you want to be explicit you can use

from("activemqg: someQueue") .
to ("bean:myBean?methodName=doSomething") ;

And here we have a nifty example for you to show some great power in Camel. You can mix
and match the annotations with the normal parameters, so we can have this example with
annotations and the Exchange also:

public void doSomething (@Header (name = "user") String user, @Body String body,
Exchange exchange) {

exchange.getIn() .setBody (body + "MyBean");

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using Bean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
https://cwiki.apache.org/confluence/display/CAMEL/Constant

@EL Inject an EL expression

@Groovy Inject a Groovy expression
@Header Inject a Header expression
@)]JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression
Example:

public class Foo {

@MessageDriven (uri = "activemg:my.queue")
public void doSomething (@XPath("/foo/bar/text()") String correlationID, @Body
String body) {

process the inbound message here

Advanced example using @Bean
And an example of using the the @Bean binding annotation, where you can use a Pojo where
you can do whatever java code you like:
public class Foo {
@MessageDriven (uri = "activemg:my.queue")

public void doSomething (@Bean ("myCorrelationIdGenerator") String correlationID,
@Body String body) {

}

COOKBOOK

46

http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
https://cwiki.apache.org/confluence/display/CAMEL/EL
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
https://cwiki.apache.org/confluence/display/CAMEL/Header
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
https://cwiki.apache.org/confluence/display/CAMEL/PHP
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
https://cwiki.apache.org/confluence/display/CAMEL/Python
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
https://cwiki.apache.org/confluence/display/CAMEL/Simple
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
https://cwiki.apache.org/confluence/display/CAMEL/XPath
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Pojo

47

And then we can have a spring bean with the id myCorrelationldGenerator where we
can compute the id.

public class MyIdGenerator ({
private UserManager userManager;

public String generate (@Header (name = "user'") String user, @Body String payload)
throws Exception ({
User user = userManager.lookupUser (user);
String userId = user.getPrimaryId();

String id = userId + generateHashCodeForPayload (payload);
return id;

The Pojo MyldGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator ({

public static int generate() {
g rate a unique id

return 123;

And finally we just need to remember to have our bean registered in the Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to use Groovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething (@Groovy ("$request.header['user'].firstName
Srequest.header['user'].familyName) String fullName, @Body String body) {
process the 1npbound message nere

}

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Groovy

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

@MessageDriven or @Consume

To consume a message you use either the @MessageDriven annotation or from 1.5.0 the
@Consume annotation to mark a particular method of a bean as being a consumer method.
The uri of the annotation defines the Camel Endpoint to consume from.

e.g. lets invoke the onCheese() method with the String body of the inbound JMS message
from ActiveMQ on the cheese queue; this will use the Type Converter to convert the JMS
ObjectMessage or BytesMessage to a String - or just use a TextMessage from JMS

public class Foo {

@Consume (uri="activemqg:cheese")
public void onCheese (String name) {

}

The Bean Binding is then used to convert the inbound Message to the parameter list used to
invoke the method .

What this does is basically create a route that looks kinda like this

from(uri) .bean (theBean, "methodName") ;

Using context option to apply only a certain CamelContext

Available as of Camel 2.0
See the warning above.

You can use the context option to specify which CamelContext the consumer should
only apply for. For example:

@Consume (uri="activemqg:cheese", context="camel-1"
public void onCheese (String name) {

The consumer above will only be created for the CamelContext that have the context id =
camel-1. You set this id in the XML tag:

<camelContext id="camel-1" ...>

COOKBOOK

48

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/MessageDriven.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consume.html
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

49

© @MessageDriven is @deprecated
@MessageDriven is deprecated in Camel |.x. You should use @Consume instead.
Its removed in Camel 2.0.

& When using more than one CamelContext
When you use more than | CamelContext you might end up with each of them
creating a POJO Consuming.
In Camel 2.0 there is a new option on @Consume that allows you to specify
which CamelContext id/name you want it to apply for.

Using an explicit route

If you want to invoke a bean method from many different endpoints or within different complex
routes in different circumstances you can just use the normal routing DSL or the Spring XML
configuration file.

For example

from(uri) .beanRef ("myBean", "methodName") ;

which will then look up in the Registry and find the bean and invoke the given bean name. (You
can omit the method name and have Camel figure out the right method based on the method
annotations and body type).

Use the Bean endpoint

You can always use the bean endpoint

from(uri) .to("bean:myBean?method=methodName") ;

Which approach to use?

Using the @MessageDriven/@Consume annotations are simpler when you are creating a
simple route with a single well defined input URI.

However if you require more complex routes or the same bean method needs to be
invoked from many places then please use the routing DSL as shown above.

There are two different ways to send messages to any Camel Endpoint from a POJO

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

@Endpointlnject

To allow sending of messages from POJOs you can use @Endpointlnject() annotation. This will
inject either a ProducerTemplate or CamelTemplate so that the bean can send message
exchanges.

e.g. lets send a message to the foo.bar queue in ActiveMQ at some point

public class Foo {
@EndpointInject (uri="activemqg: foo.bar")
ProducerTemplate producer;

public void doSomething() {
if (whatever) {
producer.sendBody ("<hello>world!</hello>");

The downside of this is that your code is now dependent on a Camel API, the
ProducerTemplate. The next section describes how to remove this

Hiding the Camel APIs from your code using @Produce

We recommend Hiding Middleware APIs from your application code so the next option might
be more suitable.

You can add the @Produce annotation to an injection point (a field or property setter) using a
ProducerTemplate or using some interface you use in your business logic. e.g.

public interface MyListener {
String sayHello(String name) ;

public class MyBean {
@Produce (uri = "activemg:foo")
protected MyListener producer;

public void doSomething() {
lets send a message

String response = producer.sayHello ("James") ;

Here Camel will automatically inject a smart client side proxy at the @Produce annotation - an
instance of the MyListener instance. When we invoke methods on this interface the method call
is turned into an object and using the Camel Spring Remoting mechanism it is sent to the
endpoint - in this case the ActiveMQ endpoint to queue foo; then the caller blocks for a
response.

COOKBOOK

50

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Hiding+Middleware
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

If you want to make asynchronous message sends then use an @InOnly annotation on the
injection point.

@RECIPIENTLIST ANNOTATION

As of 1.5.0 we now support the use of @RecipientList on a bean method to easily create a
dynamic Recipient List using a Java method.

Simple Example using @Consume

package com.acme.foo;
public class RouterBean {

@Consume (uri = "activemg:foo")
@RecipientList
public String[] route(String body) {
return new String[]{"activemg:bar", "activemg:whatnot"};

For example if the above bean is configured in Spring when using 2 <camelContext>
element as follows

<?xml version="1.0" encoding="UTF-8"?2>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://activemg.apache.org/camel/schema/spring http://activemg.apache.org/camel/
schema/spring/camel-spring.xsd

">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"/>
<bean id="myRecipientList" class="com.acme.foo.RouterBean"/>
</beans>
then a route will be created consuming from the foo queue on the ActiveMQ component

which when a message is received the message will be forwarded to the endpoints defined by
the result of this method call - namely the bar and whatnot queues.

51 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

How it works

The return value of the @RecipientList method is converted to either a java.util.Collection /
java.util.Iterator or array of objects where each element is converted to an Endpoint or a String,
or if you are only going to route to a single endpoint then just return either an Endpoint object
or an object that can be converted to a String. So the following methods are all valid

@RecipientList

public String[] route(String body) { ... }
QRecipientList

public List<String> route(String body) { ... }
@RecipientList

public Endpoint route(String body) { ... }

@RecipientList
public Endpoint[] route(String body) { ... }

@RecipientList
public Collection<Endpoint> route (String body) { ... }

@RecipientList
public URI route(String body) { ... }

@RecipientList
public URI[] route(String body) { ... }

Then for each endpoint or URI the message is forwarded a separate copy to that endpoint.

You can then use whatever Java code you wish to figure out what endpoints to route to; for
example you can use the Bean Binding annotations to inject parts of the message body or
headers or use Expression values on the message.

More Complex Example Using DSL

In this example we will use more complex Bean Binding, plus we will use a separate route to
invoke the Recipient List

public class RouterBean2 {

QRecipientList
public String route (Q@Header ("customerID") String custID String body) {
if (custID == null) return null;
return "activemg:Customers.Orders." + custID;

public class MyRouteBuilder extends RouteBuilder {
protected void configure () {
from("activemg:0Orders.Incoming") .recipientList (bean ("myRouterBean", "route"));

COOKBOOK

52

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

53

Notice how we are injecting some headers or expressions and using them to determine the
recipients using Recipient List EIP.
See the Bean Integration for more details.

USING EXCHANGE PATTERN ANNOTATIONS

When working with POJO Producing or Spring Remoting you invoke methods which typically
by default are InOut for Request Reply. That is there is an In message and an Out for the result.
Typically invoking this operation will be synchronous, the caller will block until the server
returns a result.

Camel has flexible Exchange Pattern support - so you can also support the Event Message
pattern to use InOnly for asynchronous or one way operations. These are often called 'fire and
forget' like sending a JMS message but not waiting for any response.

From 1.5 onwards Camel supports annotations for specifying the message exchange pattern
on regular Java methods, classes or interfaces.

Specifying InOnly methods

Typically the default InOut is what most folks want but you can customize to use InOnly using
an annotation.

public interface Foo {
Object someInOutMethod (String input);
String anotherInOutMethod (Cheese input);

@InOnly
void someInOnlyMethod (Document input) ;

The above code shows three methods on an interface; the first two use the default InOut
mechanism but the somelnOnlyMethod uses the InOnly annotation to specify it as being a
oneway method call.

Class level annotations

You can also use class level annotations to default all methods in an interface to some pattern
such as

@InOnly
public interface Foo {

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message

void someInOnlyMethod (Document input) ;
void anotherInOnlyMethod(String input);

Annotations will also be detected on base classes or interfaces. So for example if you created a
client side proxy for

public class MyFoo implements Foo {

Then the methods inherited from Foo would be InOnly.

Overloading a class level annotation

You can overload a class level annotation on specific methods. A common use case for this is if
you have a class or interface with many InOnly methods but you want to just annote one or
two methods as InOut

@InOnly

public interface Foo {
void someInOnlyMethod (Document input) ;
void anotherInOnlyMethod(String input);

@InOut
String someInOutMethod (String input) ;

In the above Foo interface the somelnOutMethod will be InOut

Using your own annotations
You might want to create your own annotations to represent a group of different bits of
metadata; such as combining synchrony, concurrency and transaction behaviour.

So you could annotate your annotation with the @Pattern annotation to default the
exchange pattern you wish to use.

For example lets say we want to create our own annotation called @MyAsyncService

@Retention (RetentionPolicy.RUNTIME)
QTarget ({ElementType.TYPE, ElementType.METHOD})

lets add the message exchange pattern to it

@Pattern (ExchangePattern.InOnly)

COOKBOOK

54

55

public @interface MyAsyncService {

}

Now we can use this annotation and Camel will figure out the correct exchange pattern...

public interface Foo {
void someInOnlyMethod (Document input);
void anotherInOnlyMethod(String input) ;

@MyAsyncService
String someInOutMethod (String input) ;

When writing software these days, its important to try and decouple as much middleware code
from your business logic as possible.
This provides a number of benefits...
* you can choose the right middleware solution for your deployment and switch at any
time
* you don't have to spend a large amount of time learning the specifics of any particular
technology, whether its JMS or JavaSpace or Hibernate or JPA or iBATIS whatever
For example if you want to implement some kind of message passing, remoting, reliable load
balancing or asynchronous processing in your application we recommend you use Camel
annotations to bind your services and business logic to Camel Components which means you
can then easily switch between things like
* in JVM messaging with SEDA
* using JMS via ActiveMQ or other JMS providers for reliable load balancing, grid or
publish and subscribe
* for low volume, but easier administration since you're probably already using a
database you could use
o Hibernate or JPA to use an entity bean / table as a queue
o iBATIS to work with SQL
> JDBC for raw SQL access
* use JavaSpace

How to decouple from middleware APIs

The best approach when using remoting is to use Spring Remoting which can then use any
messaging or remoting technology under the covers. When using Camel's implementation you
can then use any of the Camel Components along with any of the Enterprise Integration
Patterns.

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

Another approach is to bind Java beans to Camel endpoints via the Bean Integration. For
example using POJO Consuming and POJO Producing you can avoid using any Camel APIs to

decouple your code both from middleware APls and Camel APIs!

VISUALISATION

Camel supports the visualisation of your Enterprise Integration Patterns using the GraphViz
DOT files which can either be rendered directly via a suitable GraphViz tool or turned into
HTML, PNG or SVG files via the Camel Maven Plugin.

Here is a typical example of the kind of thing we can generate

org.apache.camel.example.docs.ContentBasedRouteRoute

seda.cbr.input

XPath: /person/city = 'Londol

seda:cbr.outputb

If you click on the actual generated htmlyou will see that you can navigate from an EIP node
to its pattern page, along with getting hover-over tool tips ec.

How to generate

See Camel Dot Maven Goal or the other maven goals Camel Maven Plugin

For OS X users

If you are using OS X then you can open the DOT file using graphviz which will then
automatically re-render if it changes, so you end up with a real time graphical representation of
the topic and queue hierarchies!

COOKBOOK

56

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://graphviz.org
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
http://activemq.apache.org/camel/maven/camel-spring/cameldoc/index.html
http://activemq.apache.org/camel/maven/examples/camel-example-docs/cameldoc/main/routes.html
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Dot+Maven+Goal
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
http://www.pixelglow.com/graphviz/

57

Also if you want to edit the layout a little before adding it to a wiki to distribute to your

team, open the DOT file with OmniGraffle then just edit away @

BUSINESS ACTIVITY MONITORING

The Camel BAM module provides a Business Activity Monitoring (BAM) framework for
testing business processes across multiple message exchanges on different Endpoint instances.

For example if you have a simple system which you submit Purchase Orders into system A
and then receive Invoices from system B, you might want to test that for a specific Purchase
Order you receive a matching Invoice from system B within a specific time period.

How Camel BAM Works

What Camel BAM does is use a Correlation Identifier on an input message to determine which
Process Instance a message belongs to. The process instance is an entity bean which can maintain
state for each Activity (where an activity typically maps to a single endpoint, such as the receipt
of Purchase orders, or the receipt of Invoices).

You can then add rules which are fired when a message is received on any activity such as to
set time expectations, or to perform real time reconciliation of values across activities etc.

Simple Example

The following example shows how to perform some time based rules on a simple business
process of 2 activities A and B (which maps to the Purchase Order and Invoice example above).
If you want to experiment with this scenario you could edit the Test Case which defines the
activities and rules, then tests that they work.

return new ProcessBuilder (jpaTemplate, transactionTemplate) ({
public void configure () throws Exception {

ating on an XPath on he message

lets define some activities, cc 1
ActivityBuilder a = activity("seda:a").name("a")
.correlate (xpath("/hello/@id")) ;

ActivityBuilder b = activity("seda:b") .name ("b")
.correlate (xpath("/hello/@id")) ;

now lets add some rules
b.starts () .after (a.completes())

.expectWithin (seconds (1)

.errorIfOver (seconds (errorTimeout)) .to ("mock:overdue") ;

COOKBOOK

http://www.omnigroup.com/applications/omnigraffle/
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
http://svn.apache.org/repos/asf/camel/trunk/components/camel-bam/src/test/java/org/apache/camel/bam/BamRouteTest.java

As you can see in the above example, we define two activities first, then we define rules on
when we expect the activities on an individual process instance to complete by along with the
time at which we should assume there is an error. The ProcessBuilder is-a RouteBuilder and
can be added to any CamelContext

Complete Example

For a complete example please see the BAM Example which is part of the standard Camel
Examples

Use Cases

In the world of finance a common requirement is tracking financial trades. Often a trader will
submit a Front Office Trade which then flows through the Middle Office and Back Office
through various systems to settle the trade so that money is exchanged. You may wish to add
tests that front and back office trades match up within a time period; if they don't match or a
back office trade does not arrive within a required amount of time, you might want to fire off
an alarm.

EXTRACT TRANSFORM LOAD (ETL)

The ETL (Extract, Transform, Load) is a mechanism for loading data into systems or databases
using some kind of Data Format from a variety of sources; often files then using Pipes and
Filters, Message Translator and possible other Enterprise Integration Patterns.

So you could query data from various Camel Components such as File, HTTP or JPA,
perform multiple patterns such as Splitter or Message Translator then send the messages to
some other Component.

To show how this all fits together, try the ETL Example

MOCK COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to
jMock in that it allows declarative expectations to be created on any Mock endpoint before a
test begins. Then the test is run, which typically fires messages to one or more endpoints, and
finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:
* The correct number of messages are received on each endpoint,
* The correct payloads are received, in the right order,

COOKBOOK

58

https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/BAM+Example
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://en.wikipedia.org/wiki/Extract,_transform,_load
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/ETL+Example
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/DataSet
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://jmock.org

59

* Messages arrive on an endpoint in order, using some Expression to create an order
testing function,

* Messages arrive match some kind of Predicate such as that specific headers have
certain values, or that parts of the messages match some predicate, such as by
evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the Mock
endpoint assertions. In other words, it's a Mock endpoint that automatically sets up its
assertions from some sample messages in a File or database, for example.

URI format

mock:someName [?options]
Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format,
?option=value&option=values&. ..

Options

Option Default Description

reportGroup null A size to use a throughput logger for reporting

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the
context. Then we set an expectation, and then, after the test has run, we assert that our
expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint ("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount (2) ;

v lets assert tha he mock:foo endpoint received 2 messages

resultEndpoint.assertIsSatisfied() ;

You typically always call the assertlsSatisfied() method to test that the expectations were met
after running a test.

Camel will by default wait 20 seconds when the assertIsSatisfied () is invoked. This
can be configured by setting the setResultWaitTime (millis) method.

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Log
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()

Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set
expectations. The main methods are as follows:

Method Description

expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.
expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.

To add an expectation that no duplicate messages are received; using an Expression to calculate a unique identifier for each message. This

expectsNoDuplicates(Expression) could be something like the JMSMessageID if using JMS, or some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived ("firstMessageBody", "secondMessageBody",
"thirdMessageBody") ;

Adding expectations to specific messages
In addition, you can use the message(int messagelndex) method to add assertions about a
specific message that is received.

For example, to add expectations of the headers or body of the first message (using zero-
based indexing like java.util.List), you can use the following code:

resultEndpoint.message (0) .header ("foo") .isEqualTo ("bar") ;

There are some examples of the Mock endpoint in use in the camel-core processor tests.

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

* Spring Testing

* Testing

TESTING

Testing is a crucial activity in any piece of software development or integration. Typically Camel
Riders use various different technologies wired together in a variety of patterns with different
expression languages together with different forms of Bean Integration and Dependency

COOKBOOK 60

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection

Injection so its very easy for things to go wrong! @ Testing is the crucial weapon to ensure
that things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit testing framework
you use (JUnit 3.x, 4.x or TestNG). However the Camel project has tried to make the testing
of Camel as easy and powerful as possible so we have introduced the following features.

Testing mechanisms

The following mechanisms are supported

Name Description

is a library letting you easily create Camel test cases using a single Java class for all
Camel your configuration and routing without using Spring or Guice for Dependency
Test Injection which does not require an in depth knowledge of Spring+SpringTest or
Guice

Spring uses Spring Test together with either XML or Java Config to dependency inject
Testing your test classes

Guice uses Guice to dependency inject your test classes

In all approaches the test classes look pretty much the same in that they all reuse the Camel
binding and injection annotations.

Camel Test Example

Here is the Camel Test example.

public class FilterTest extends CamelTestSupport {

QEndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

public void testSendMatchingMessage () throws Exception {
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar"):;
resultEndpoint.assertIsSatisfied() ;

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

6l COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

@Override
protected RouteBuilder createRouteBuilder () {
return new RouteBuilder () {

public void configure() {
from("direct:start").filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");

}
bi

Notice how it derives from the Camel helper class CamelTestSupport but has no Spring or

Guice dependency injection configuration but instead overrides the createRouteBuilder()
method.

Spring Test with XML Config Example
Here is the Spring Testing example using XML Config.

@ContextConfiguration
public class FilterTest extends AbstractJUnit38SpringContextTests {

@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";
resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");
resultEndpoint.assertIsSatisfied() ;

@DirtiesContext

public void testSendNotMatchingMessage () throws Exception {

resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

COOKBOOK

62

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java

63

resultEndpoint.assertIsSatisfied();

Notice that we use @DirtiesContext on the test methods to force Spring Testing to
automatically reload the CamelContext after each test method - this ensures that the tests
don't clash with each other (e.g. one test method sending to an endpoint that is then reused in
another test method).

Also notice the use of @ContextConfiguration to indicate that by default we should
look for the FilterTest-context.xml on the classpath to configure the test case which looks like
this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
WS>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>
</filter>
</route>
</camelContext>

</beans>

Spring Test with Java Config Example

Here is the Spring Testing example using Java Config. For more information see Spring Java
Config.

@ContextConfiguration (
locations =
"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)
public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject (uri = "mock:result")

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config

protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

@Test

public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar"):;
resultEndpoint.assertIsSatisfied();

@DirtiesContext

@QTest

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;
template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");
resultEndpoint.assertIsSatisfied() ;

@Configuration

public static class ContextConfig extends SingleRouteCamelConfiguration ({

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {
from("direct:start") .filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");

}
}i

This is similar to the XML Config example above except that there is no XML file and instead
the nested ContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and
make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive from
SingleRouteCamelConfiguration which is a helper Spring Java Config class which will
configure the CamelContext for us and then register the RouteBuilder we create.

COOKBOOK

http://jira.springframework.org/browse/SJC-238

65

Testing endpoints

Camel provides a number of endpoints which can make testing easier.

Name Description

For load & soak testing this endpoint provides a way to create huge numbers of
DataSet messages for sending to Components and asserting that they are consumed

correctly
Mock For testing routes and mediation rules using mocks and allowing assertions to be
o :
added to an endpoint
Test Creates a Mock endpoint which expects to receive all the message bodies that

could be polled from the given underlying endpoint

The main endpoint is the Mock endpoint which allows expectations to be added to different
endpoints; you can then run your tests and assert that your expectations are met at the end.

Stubbing out physical transport technologies

If you wish to test out a route but want to avoid actually using a real physical transport (for
example to unit test a transformation route rather than performing a full integration test) then
the following endpoints can be useful.

Name Description

Direct invocation of the consumer from the producer so that single threaded
Direct (non-SEDA) in VM invocation is performed which can be useful to mock out
physical transports

Delivers messages asynchonously to consumers via a
SEDA java.util.concurrent.BlockingQueue which is good for testing asynchronous
transports

Testing existing routes

Camel provides some features to aid during testing of existing routes where you cannot or will
not use Mock etc. For example you may have a production ready route which you want to test
with some 3rd party APl which sends messages into this route.

Name Description

Allows you to be notified when a certain condition has occurred. For
NotifyBuilder example when the route has completed 5 messages. You can build complex
expressions to match your criteria when to be notified.

Allows you to advice or enhance an existing route using a RouteBuilder
AdviceWith style. For example you can add interceptors to intercept sending outgoing
messages to assert those messages are as expected.

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/DataSet
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/NotifyBuilder
https://cwiki.apache.org/confluence/display/CAMEL/AdviceWith
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder

CAMEL TEST

As a simple alternative to using Spring Testing or Guice the camel-test module was
introduced into the Camel 2.0 trunk so you can perform powerful Testing of your Enterprise
Integration Patterns easily.

Adding to your pom.xml

To get started using Camel Test you will need to add an entry to your pom.xml

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-test</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

You might also want to add commons-logging and log4j to ensure nice logging messages (and
maybe adding a log4j.properties file into your src/test/resources directory).

<dependency>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<scope>test</scope>

</dependency>

Writing your test

You firstly need to derive from the class CamelTestSupport and typically you will need to
override the createRouteBuilder() method to create routes to be tested.

Here is an example.
public class FilterTest extends CamelTestSupport {

@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

public void testSendMatchingMessage () throws Exception {
String expectedBody = "<matched/>";

COOKBOOK 66

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/log4j.properties
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");
resultEndpoint.assertIsSatisfied() ;

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;
template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied() ;

@QOverride
protected RouteBuilder createRouteBuilder() {
return new RouteBuilder () {
public void configure() {
from("direct:start") .filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");

}
}i

Notice how you can use the various Camel binding and injection annotations to inject individual
Endpoint objects - particularly the Mock endpoints which are very useful for Testing. Also you
can inject producer objects such as ProducerTemplate or some application code interface for
sending messages or invoking services.

JNDI

Camel uses a Registry to allow you to configure Component or Endpoint instances or Beans
used in your routes. If you are not using Spring or [OSGi] then JNDI is used as the default
registry implementation.

So you will also need to create a jndi.properties file in your src/test/resources
directory so that there is a default registry available to initialise the CamelContext.

Here is an example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

See Also

* Testing
* Mock

67 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/JNDI
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/jndi.properties
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Mock

SPRING TESTING

Testing is a crucial part of any development or integration work. The Spring Framework offers
a number of features that makes it easy to test while using Spring for Inversion of Control
which works with JUnit 3.x, JUnit 4.x or TestNG.

We can reuse Spring for loC and the Camel Mock and Test endpoints to create
sophisticated integration tests that are easy to run and debug inside your IDE.

For example here is a simple unit test

import org.apache.camel.CamelContext;

import org.apache.camel.component.mock.MockEndpoint;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests;

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

public void testMocksAreValid() throws Exception {
MockEndpoint.assertIsSatisfied (camelContext) ;

This test will load a Spring XML configuration file called MyCamelTest-context.xml from
the classpath in the same package structure as the MyCamelTest class and initialize it along with
any Camel routes we define inside it, then inject the CamelContext instance into our test case.

For instance, like this maven folder layout:

src/main/java/com/mycompany/MyCamelTest.class
src/main/resources/com/mycompany/MyCamelTest-context.xml

You can overload the method createApplicationContext to provide the Spring
ApplicationContext that isn't following the above default. For instance:

protected AbstractXmlApplicationContext createApplicationContext () {
return new ClassPathXmlApplicationContext ("/config/MySpringConfig.xml") ;

Then the test method will then run which invokes the
MockEndpoint.assertlisSatisfied(camelContext) method which asserts that all of the Mock and
Test endpoints have their expectations met.

xml}

COOKBOOK

68

https://cwiki.apache.org/confluence/display/CAMEL/Testing
http://testng.org
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test

69

Spring Test with Java Config Example

You can completely avoid using an XML configuration file by using Spring Java Config.

Here is an example using Java Config.

@ContextConfiguration (
locations =
"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)
public class FilterTest extends AbstractJUnit4SpringContextTests ({

@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

@Test

public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();

@DirtiesContext

@QTest

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

@QConfiguration
public static class ContextConfig extends SingleRouteCamelConfiguration {
@Bean
public RouteBuilder route() {
return new RouteBuilder () {
public void configure() {

from("direct:start").filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");
}
bi

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java

This is similar to the XML Config example above except that there is no XML file and instead
the nested ContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and
make Spring Test work more cleanly with Spring JavaConfig.

Adding more Mock expectations

If you wish to programmatically add any new assertions to your test you can easily do so with
the following. Notice how we use @Endpointlnject to inject a Camel endpoint into our code
then the Mock API to add an expectation on a specific message.

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

QAutowired
protected CamelContext camelContext;

@EndpointInject (uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksArevValid() throws Exception {
lets add more expectations

foo.message (0) .header ("bar") .isEqualTo ("ABC") ;

MockEndpoint.assertIsSatisfied(camelContext);

Further processing the received messages

Sometimes once a Mock endpoint has received some messages you want to then process them
further to add further assertions that your test case worked as you expect.

So you can then process the received message exchanges if you like...

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

QAutowired
protected CamelContext camelContext;

@EndpointInject (uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {

lets add more expectations...

MockEndpoint.assertIsSatisfied (camelContext) ;

COOKBOOK

70

http://jira.springframework.org/browse/SJC-238
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock

71

ow lets do some further assertions
List<Exchange> list = foo.getReceivedExchanges () ;
for (Exchange exchange : list) {
Message in

exchange.getIn();

Sending and receiving messages

It might be that the Enterprise Integration Patterns you have defined in either Spring XML or
using the Java DSL do all of the sending and receiving and you might just work with the Mock
endpoints as described above. However sometimes in a test case its useful to explicitly send or
receive messages directly.

To send or receive messages you should use the Bean Integration mechanism. For example
to send messages inject a ProducerTemplate using the @Endpointinject annotation then call the
various send methods on this object to send a message to an endpoint. To consume messages
use the @MessageDriven annotation on a method to have the method invoked when a message
is received.

public class Foo {
@EndpointInject (uri="activemqg: foo.bar")
ProducerTemplate producer;

public void doSomething() {
lets send a mes je!

producer.sendBody ("<hello>world!</hello>") ;

lets consur
@MessageDriven (uri="activemqg:cheese")
public void onCheese (String name) {

See Also

* areal example test case using Mock and Spring along with its Spring XML
* Bean Integration

* Mock endpoint

* Test endpoint

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test

CAMEL GUICE

As of 1.5 we now have support for Google Guice as a dependency injection framework. To use
it just be dependent on camel=-guice.jar which also depends on the following jars.

Dependency Injecting Camel with Guice

The GuiceCamelContext is designed to work nicely inside Guice. You then need to bind it
using some Guice Module.

The camel-guice library comes with a number of reusable Guice Modules you can use if you
wish - or you can bind the GuiceCamelContext yourself in your own module.
* CamelModule is the base module which binds the GuiceCamelContext but leaves it
up you to bind the RouteBuilder instances
* CamelModuleWithRouteTypes extends CamelModule so that in the constructor of
the module you specify the RouteBuilder classes or instances to use
* CamelModuleWithMatchingRoutes extends CamelModule so that all bound
RouteBuilder instances will be injected into the CamelContext or you can supply an
optional Matcher to find RouteBuilder instances matching some kind of predicate.
So you can specify the exact RouteBuilder instances you want

Injector injector = Guice.createInjector (new
CamelModuleWithRouteTypes (MyRouteBuilder.class, AnotherRouteBuilder.class));
1f required you can lookup the CamelContext

CamelContext camelContext = injector.getInstance (CamelContext.class);

Or inject them all

Injector injector = Guice.createlInjector (new CamelModuleWithRouteTypes()) ;
if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance (CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any other dependent
objects.

Bootstrapping with JNDI

A common pattern used in J2EE is to bootstrap your application or root objects by looking
them up in JNDI. This has long been the approach when working with |MS for example -
looking up the JMS ConnectionFactory in JNDI for example.

You can follow a similar pattern with Guice using the GuiceyFruit JNDI Provider which lets
you bootstrap Guice from a jndi.properties file which can include the Guice Modules to
create along with environment specific properties you can inject into your modules and objects.

COOKBOOK

72

http://code.google.com/p/google-guice/
http://activemq.apache.org/camel/maven/camel-guice/dependencies.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/GuiceCamelContext.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModule.html
hhttp://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithRouteTypes.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithMatchingRoutes.html
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi

73

If the jndi.properties is conflict with other component, you can specify the jndi
properties file name in the Guice Main with option -j or -jndiProperties with the properties file
location to let Guice Main to load right jndi properties file.

Configuring Component, Endpoint or RouteBuilder instances

You can use Guice to dependency inject whatever objects you need to create, be it an
Endpoint, Component, RouteBuilder or arbitrary bean used within a route.

The easiest way to do this is to create your own Guice Module class which extends one of
the above module classes and add a provider method for each object you wish to create. A
provider method is annotated with @Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JIndiBind ("jms")
JmsComponent jms (@Named ("activemqg.brokerURL") String brokerUrl) ({
return JmsComponent.jmsComponent (new ActiveMQConnectionFactory (brokerUrl));

You can optionally annotate the method with @)JndiBind to bind the object to JNDI at some
name if the object is a component, endpoint or bean you wish to refer to by name in your
routes.

You can inject any environment specific properties (such as URLs, machine names,
usernames/passwords and so forth) from the jndi.properties file easily using the @Named
annotation as shown above. This allows most of your configuration to be in Java code which is
typesafe and easily refactorable - then leaving some properties to be environment specific (the
jndi.properties file) which you can then change based on development, testing, production etc.

Creating multiple RouteBuilder instances per type

It is sometimes useful to create multiple instances of a particular RouteBuilder with different
configurations.

To do this just create multiple provider methods for each configuration; or create a single
provider method that returns a collection of RouteBuilder instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JIndiBind (" foo™)

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder

Collection<RouteBuilder> foo (@Named ("fooUrl") String fooUrl) {
return Lists.newArraylList (new MyRouteBuilder (fooUrl), new
MyRouteBuilder ("activemqg:CheeseQueue")) ;

}

See Also

* there are a number of Examples you can look at to see Guice and Camel being used
such as Guice JMS Example
* Guice Maven Plugin for running your Guice based routes via Maven

TEMPLATING

When you are testing distributed systems its a very common requirement to have to stub out
certain external systems with some stub so that you can test other parts of the system until a
specific system is available or written etc.
A great way to do this is using some kind of Template system to generate responses to
requests generating a dynamic message using a mostly-static body.
There are a number of templating components you could use
* Freemarker
* Scalate
» StringTemplate
* Velocity
* XQuery
o XSLT

Example

Here's a simple example showing how we can respond to InOut requests on the My.Queue
queue on ActiveMQ with a template generated response. The reply would be sent back to the
JMSReplyTo Destination.

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") ;

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") .
to("activemg:Another.Queue") ;

COOKBOOK

74

https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Guice+JMS+Example
https://cwiki.apache.org/confluence/display/CAMEL/Guice+Maven+Plugin
https://cwiki.apache.org/confluence/display/CAMEL/Freemarker
https://cwiki.apache.org/confluence/display/CAMEL/Scalate
https://cwiki.apache.org/confluence/display/CAMEL/StringTemplate
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/XSLT
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

75

See Also

* Mock for details of mock endpoint testing (as opposed to template based stubs).

DATABASE

Camel can work with databases in a number of different ways. This document tries to outline
the most common approaches.

Database endpoints

Camel provides a number of different endpoints for working with databases
» JPA for working with hibernate, openjpa or toplink. When consuming from the
endpoints entity beans are read (and deleted/updated to mark as processed) then
when producing to the endpoints they are written to the database (via insert/update).
* iBATIS similar to the above but using Apache iBATIS
» |DBC similar though using explicit SQL

Database pattern implementations

Various patterns can work with databases as follows
* Idempotent Consumer
* Aggregator
* BAM for business activity monitoring

PARALLEL PROCESSING AND ORDERING

It is a common requirement to want to use parallel processing of messages for throughput and
load balancing, while at the same time process certain kinds of messages in order.

How to achieve parallel processing

You can send messages to a number of Camel Components to achieve parallel processing and
load balancing such as

» SEDA for in-JVM load balancing across a thread pool

* ActiveMQ or JMS for distributed load balancing and parallel processing

» JPA for using the database as a poor mans message broker
When processing messages concurrently, you should consider ordering and concurrency issues.
These are described below

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
http://ibatis.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/BAM
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA

Concurrency issues

Note that there is no concurrency or locking issue when using ActiveMQ, JMS or SEDA by
design; they are designed for highly concurrent use. However there are possible concurrency
issues in the Processor of the messages i.e. what the processor does with the message?

For example if a processor of a message transfers money from one account to another
account; you probably want to use a database with pessimistic locking to ensure that operation
takes place atomically.

Ordering issues

As soon as you send multiple messages to different threads or processes you will end up with
an unknown ordering across the entire message stream as each thread is going to process
messages concurrently.

For many use cases the order of messages is not too important. However for some
applications this can be crucial. e.g. if a customer submits a purchase order version |, then
amends it and sends version 2; you don't want to process the first version last (so that you
loose the update). Your Processor might be clever enough to ignore old messages. If not you
need to preserve order.

Recommendations

This topic is large and diverse with lots of different requirements; but from a high level here are
our recommendations on parallel processing, ordering and concurrency

* for distributed locking, use a database by default, they are very good at it @
* to preserve ordering across a JMS queue consider using Exclusive Consumers in the
ActiveMQ component
* even better are Message Groups which allows you to preserve ordering across
messages while still offering parallelisation via the JMSXGrouoplD header to
determine what can be parallelized
* if you receive messages out of order you could use the Resequencer to put them
back together again
A good rule of thumb to help reduce ordering problems is to make sure each single can be
processed as an atomic unit in parallel (either without concurrency issues or using say, database
locking); or if it can't, use a Message Group to relate the messages together which need to be
processed in order by a single thread.

Using Message Groups with Camel

To use a Message Group with Camel you just need to add a header to the output JMS message
based on some kind of Correlation Identifier to correlate messages which should be processed

COOKBOOK

76

https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Processor
http://activemq.apache.org/exclusive-consumer.html
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/message-groups.html
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
http://activemq.apache.org/message-groups.html
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier

77

in order by a single thread - so that things which don't correlate together can be processed
concurrently.

For example the following code shows how to create a message group using an XPath
expression taking an invoice's product code as the Correlation Identifier

from("activemg:a") .setHeader ("JMSXGroupID", xpath("/invoice/
productCode")) .to ("activemg:b") ;

You can of course use the Xml Configuration if you prefer

ASYNCHRONOUS PROCESSING

Overview

Camel supports a more complex asynchronous processing model. The asynchronous
processors implement the AsyncProcessor interface which is derived from the more
synchronous Processor interface. There are advantages and disadvantages when using
asynchronous processing when compared to using the standard synchronous processing model.

Advantages:

* Processing routes that are composed fully of asynchronous processors do not use up
threads waiting for processors to complete on blocking calls. This can increase the
scalability of your system by reducing the number of threads needed to process the
same workload.

* Processing routes can be broken up into SEDA processing stages where different
thread pools can process the different stages. This means that your routes can be
processed concurrently.

Disadvantages:

* Implementing asynchronous processors is more complex than implementing the

synchronous versions.

When to Use

We recommend that processors and components be implemented the more simple
synchronous APIs unless you identify a performance of scalability requirement that dictates
otherwise. A Processor whose process() method blocks for a long time would be good
candidates for being converted into an asynchronous processor.

COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/SEDA

 Supported versions
The information on this page applies for the Camel |.x and Camel 2.4 onwards. In
Camel |.x the asynchronous processing is only implemented for |Bl where as in
Camel 2.4 onwards we have implemented it in many other areas. See more at
Asynchronous Routing Engine.

Interface Details

public interface AsyncProcessor extends Processor {
boolean process (Exchange exchange, AsyncCallback callback);

The AsyncProcessor defines a single process () method which is very similar to it's
synchronous Processor.process() brethren. Here are the differences:
* A non-null AsyncCallback MUST be supplied which will be notified when the
exchange processing is completed.
* |t MUST not throw any exceptions that occurred while processing the exchange.
Any such exceptions must be stored on the exchange's Exception property.
* |t MUST know if it will complete the processing synchronously or asynchronously.
The method will return true if it does complete synchronously, otherwise it returns
false.
* When the processor has completed processing the exchange, it must call the
callback.done (boolean sync) method. The sync parameter MUST match
the value returned by the process () method.

Implementing Processors that Use the AsyncProcessor API

All processors, even synchronous processors that do not implement the AsyncProcessor
interface, can be coerced to implement the AsyncProcessor interface. This is usually done when
you are implementing a Camel component consumer that supports asynchronous completion of
the exchanges that it is pushing through the Camel routes. Consumers are provided a
Processor object when created. All Processor object can be coerced to a AsyncProcessor using
the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert (processor) ;

For a route to be fully asynchronous and reap the benefits to lower Thread usage, it must start
with the consumer implementation making use of the asynchronous processing API. If it called
the synchronous process() method instead, the consumer's thread would be forced to be
blocked and in use for the duration that it takes to process the exchange.

COOKBOOK

78

https://cwiki.apache.org/confluence/display/CAMEL/JBI
https://cwiki.apache.org/confluence/display/CAMEL/Asynchronous+Routing+Engine

79

It is important to take note that just because you call the asynchronous API, it does not
mean that the processing will take place asynchronously. It only allows the possibility that it can
be done without tying up the caller's thread. If the processing happens asynchronously is
dependent on the configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback class instance which
can reference the exchange object that was declared final. This allows it to finish up any post
processing that is needed when the called processor is done processing the exchange. See
below for an example.

final Exchange exchange = ...

AsyncProcessor asyncProcessor = ...

asyncProcessor.process (exchange, new AsyncCallback() {
public void done (boolean sync) {

if (exchange.isFailed()) {
do failure processing.. perhaps rollback etc.
} else {

Asynchronous Route Sequence Scenarios

Now that we have understood the interface contract of the AsyncProcessor, and have seen
how to make use of it when calling processors, lets looks a what the thread model/sequence
scenarios will look like for some sample routes.

The Jetty component's consumers support async processing by using continuations. Suffice
to say it can take a http request and pass it to a camel route for async processing. If the
processing is indeed async, it uses Jetty continuation so that the http request is 'parked' and the
thread is released. Once the camel route finishes processing the request, the jetty component
uses the AsyncCallback to tell Jetty to 'un-park’ the request. Jetty un-parks the request, the http
response returned using the result of the exchange processing.

Notice that the jetty continuations feature is only used "If the processing is indeed async".
This is why AsyncProcessor.process() implementations MUST accurately report if request is
completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and implement the
AsyncProcessor interface. A route that uses both the jetty asynchronous consumer and the jhc
asynchronous producer will be a fully asynchronous route and has some nice attributes that can
be seen if we take a look at a sequence diagram of the processing route. For the route:

from("jetty:http://localhost:8080/service"”) .to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

COOKBOOK

[jetty Consumer | [PipelinePracessor] [_jhc Producer]

1
1
hitp request b
process() i
process() IEEEEE————
http request
return false b
1
return false b b
i i i
1 1 1
1 1
- : http response
1
- _ done(false)
e done(false)

hitp response

return

return

The diagram simplifies things by making it looks like processors implement the
AsyncCallback interface when in reality the AsyncCallback interfaces are inline inner classes, but
it illustrates the processing flow and shows how 2 separate threads are used to complete the
processing of the original http request. The first thread is synchronous up until processing hits
the jhc producer which issues the http request. It then reports that the exchange processing
will complete async since it will use a NIO to complete getting the response back. Once the jhc
component has received a full response it uses AsyncCallback.done () method to notify
the caller. These callback notifications continue up until it reaches the original jetty consumer
which then un-parks the http request and completes it by providing the response.

Mixing Synchronous and Asynchronous Processors

It is totally possible and reasonable to mix the use of synchronous and asynchronous
processors/components. The pipeline processor is the backbone of a Camel processing route. It
glues all the processing steps together. It is implemented as an AsyncProcessor and supports
interleaving synchronous and asynchronous processors as the processing steps in the pipeline.

Lets say we have 2 custom processors, MyValidator and MyTransformation, both of which
are synchronous processors. Lets say we want to load file from the data/in directory validate
them with the MyValidator() processor, Transform them into JPA java objects using
MyTransformation and then insert them into the database using the JPA component. Lets say
that the transformation process takes quite a bit of time and we want to allocate 20 threads to
do parallel transformations of the input files. The solution is to make use of the thread
processor. The thread is AsyncProcessor that forces subsequent processing in asynchronous
thread from a thread pool.

The route might look like:

COOKBOOK

80

https://cwiki.apache.org/confluence/display/CAMEL/JPA

from("file:data/in") .process (new MyValidator()) .thread(20) .process (new
MyTransformation()) .to("jpa:PurchaseOrder");

The sequence diagram would look something like this:
file: Consumer | Pipeline } [__MyValidator | Thread J [MyTransformation J[_jpa: Producer _]

file polled
async process| % |
ync p 0 sync process()

async ﬁrocess(]

return false

return false

do ne(falée)

Sync process D

S

=

NG process

remove file done(false)

T
1
I
I
I
I
I
I
I
I
I
[

-
You would actually have multiple threads executing the 2nd part of the thread sequence.

Staying synchronous in an AsyncProcessor

Generally speaking you get better throughput processing when you process things
synchronously. This is due to the fact that starting up an asynchronous thread and doing a
context switch to it adds a little bit of of overhead. So it is generally encouraged that
AsyncProcessors do as much work as they can synchronously. When they get to a step that
would block for a long time, at that point they should return from the process call and let the
caller know that it will be completing the call asynchronously.

IMPLEMENTING VIRTUAL TOPICS ON OTHER JMS
PROVIDERS

ActiveMQ supports Virtual Topics since durable topic subscriptions kinda suck (see this page
for more detail) mostly since they don't support Competing Consumers.

Most folks want Queue semantics when consuming messages; so that you can support
Competing Consumers for load balancing along with things like Message Groups and Exclusive
Consumers to preserve ordering or partition the queue across consumers.

COOKBOOK

http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/exclusive-consumer.html

However if you are using another JMS provider you can implement Virtual Topics by

switching to ActiveMQ = or you can use the following Camel pattern.
First here's the ActiveMQ approach.
* send to activemgq:topic:VirtualTopic.Orders
* for consumer A consume from activemq:Consumer.A.VirtualTopic.Orders
When using another message broker use the following pattern
* send to jms:Orders
* add this route with a to() for each logical durable topic subscriber

from("jms:0rders") .to ("jms:Consumer.A", "Jjms:Consumer.B", ...);

 for consumer A consume from jms:Consumer.A

WHAT'S THE CAMEL TRANSPORT FOR CXF

In CXF you offer or consume a webservice by defining it—¥s address. The first part of the
address specifies the protocol to use. For example address="http://localhost:90000" in an
endpoint configuration means your service will be offered using the http protocol on port 9000
of localhost. When you integrate Camel Tranport into CXF you get a new transport "camel".
So you can specify address="camel://direct:MyEndpointName" to bind the CXF service address
to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which implements the CXF
transport APl with the Camel core library. This allows you to use camel=¥s routing engine and
integration patterns support smoothly together with your CXF services.

INTEGRATE CAMEL INTO CXF TRANSPORT LAYER

To include the Camel Tranport into your CXF bus you use the CamelTransportFactory. You
can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring

You can use the following snippet in your applicationcontext if you want to configure anything
special. If you only want to activate the camel transport you do not have to do anything in your
application context. As soon as you include the camel-cxf jar in your app cxf will scan the jar
and load a CamelTransportFactory for you.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />

{ checkException new added in Camel 2.1 and Camel 1.6.2

COOKBOOK

82

http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports
http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports

83

<!-- If checkException is true , CamelDestination will check the outMessage's
exception and set it into camel exchange. You can also override this value
in CamelDestination's configuration. The default value is false.
This option should be set true when you want to leverage the camel's error
handler to deal with fault message -->
<property name="checkException" value="true" />
<property name="transportIds">
<list>
<value>http://cxf.apache.org/transports/camel</value>
</list>
</property>
</bean>

Integrating the Camel Transport in a programmatic way

Camel transport provides a setContext method that you could use to set the Camel context
into the transport factory. If you want this factory take effect, you need to register the factory
into the CXF bus. Here is a full example for you.

import org.apache.cxf.Bus;

import org.apache.cxf.BusFactory;

import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;

BusFactory bf = BusFactory.newlInstance();

Bus bus = bf.createBus();

CamelTransportFactory camelTransportFactory = new CamelTransportFactory();
camelTransportFactory.setCamelContext (context)

2gister the conduit initiator

ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class);
cim.registerConduitInitiator (CamelTransportFactory.TRANSPORT ID,
camelTransportFactory) ;
'/ register the destination factory
DestinationFactoryManager dfm = bus.getExtension (DestinationFactoryManager.class);
dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT ID,
camelTransportFactory) ;

set o as the default bus for cxf
BusFactory.setDefaultBus (bus) ;

CONFIGURE THE DESTINATION AND CONDUIT

Namespace

The elements used to configure an Camel transport endpoint are defined in the namespace
http://cxf.apache.org/transports/camel. It is commonly referred to using the
prefix camel. In order to use the Camel transport configuration elements you will need to add

COOKBOOK

http://cxf.apache.org/transports/camel

the lines shown below to the beans element of your endpoint's configuration file. In addition,
you will need to add the configuration elements' namespace to the xsi : schemaLocation
attribute.

Listing 4. Adding the Configuration Namespace

<beans ...
xmlns:camel="http://cxf.a

che.org/transports/camel

xsi:schemalLocation="...
http:
http:
>

The destination element

You configure an Camel transport server endpoint using the camel :destination element
and its children. The camel :destination element takes a single attribute, name, the
specifies the WSDL port element that corresponds to the endpoint. The value for the name
attribute takes the form portQName . camel-destination. The example below shows the
camel:destination element that would be used to add configuration for an endpoint that
was specified by the WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint's target namespace was
http://widgets.widgetvendor.net.

Listing 5. camel:destination Element

<camel:destination name="{http://wi

widgetvendor.net}widgetSOAPPort.http-destination>
<camelContext id="context" xmlns="http://activemqg.apache.org/camel/schema/spring
<route>
<from uri="direct:EndpointC" />
<to uri="direct:EndpointD" />
</route>
</camelContext>
</camel:destination>

The camel:destination element has a number of child elements that specify configuration
information. They are described below.

Element Description

camel-

. You can specify the camel context in the camel destination
spring:camelContext

COOKBOOK

84

http://widgets.widgetvendor.net

85

The camel context id which you want inject into the camel

camel :camelContextRef L
destination

The conduit element

You configure an Camel transport client using the camel : conduit element and its children.
The camel:conduit element takes a single attribute, name, that specifies the WSDL port
element that corresponds to the endpoint. The value for the name attribute takes the form
portQName . camel-conduit. For example, the code below shows the camel:conduit
element that would be used to add configuration for an endpoint that was specified by the
WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint’s target namespace was
http://widgets.widgetvendor.net.

Listing 6. http-conf:conduit Element

<camelContext id="conduit context" xmlns="http://activemq.apache.org/camel/schema/
spring">
<route>
<from uri="direct:EndpointA" />
<to uri="direct:EndpointB" />
</route>
</camelContext>

<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit">
<camel:camelContextRef>conduit context</camel:camelContextRef>
</camel:conduit>

<camel:conduit name="*.camel-conduit">

an also using the wild card

to specify the camel-conduit

</camel:conduit>

The camel:conduit element has a number of child elements that specify configuration
information. They are described below.

Element Description

camel-

. You can specify the camel context in the camel conduit
spring:camelContext

The camel context id which you want inject into the

camel:camelContextRef .
camel conduit

COOKBOOK

http://widgets.widgetvendor.net

EXAMPLE USING CAMEL AS A LOAD BALANCER FOR CXF

This example show how to use the camel load balance feature in CXF, and you need load the
configuration file in CXF and publish the endpoints on the address "camel://direct:EndpointA"
and "camel://direct:EndpointB"

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://cxf.apache.org/transports/camel"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/
camel.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/
cxfEndpoint.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
">

<bean id = "roundRobinRef"
class="org.apache.camel.processor.loadbalancer.RoundRobinLoadBalancer" />

<camelContext id="dest context" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jetty:http://localhost:9091/GreeterContext/GreeterPort"/>
<loadBalance ref="roundRobinRef">
<to uri="direct:EndpointA"/>
<to uri="direct:EndpointB"/>
</loadBalance>
</route>
</camelContext>

<!-- Inject the camel context to the Camel

. = rans
<camel:destination name="{http://apache.org/

hello world soap http}CamelPort.camel-destination">
<camel:camelContextRef>dest context</camel:camelContextRef>
</camel:destination>

</beans>

COMPLETE HOWTO AND EXAMPLE FOR ATTACHING
CAMEL TO CXF

Better JMS Transport for CXF Webservice using Apache Camel

COOKBOOK

86

https://cwiki.apache.org/confluence/display/CAMEL/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel

87

When sending an Exchange to an Endpoint you can either use a Route or a ProducerTemplate.
This works fine in many scenarios. However you may need to guarantee that an exchange is

To achieve fine grained control over sending exchanges you will need to program directly to a
Producer. Your code will look similar to:

CamelContext camelContext =

// Obtain an endpoint and create the producer we will be using.
Endpoint endpoint = camelContext.getEndpoint ("someuri:etc");
Producer producer = endpoint.createProducer();
producer.start () ;

try {
// For each message to send...
Object requestMessage =
Exchange exchangeToSend = producer.createExchange();
exchangeToSend () .setBody (requestMessage) ;
producer.process (exchangeToSend) ;

P

finally {
// Tidy the producer up.
producer.stop () ;

In the case of using Apache MINA the producer.stop() invocation will cause the socket to be
closed.

INTRODUCTION

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/ProducerTemplate
https://cwiki.apache.org/confluence/display/CAMEL/MINA

There now follows the documentation on camel tutorials

OAuth Tutorial

This tutorial demonstrates how to implement OAuth for a web application with
Camel's gauth component. The sample application of this tutorial is also online at
http://gauthcloud.appspot.com/

Tutorial for Camel on Google App Engine

This tutorial demonstrates the usage of the Camel Components for Google App
Engine. The sample application of this tutorial is also online at
http://camelcloud.appspot.com/

Tutorial on Spring Remoting with JMS

This tutorial is focused on different techniques with Camel for Client-Server
communication.

Report Incident - This tutorial introduces Camel steadily and is based on a real life
integration problem

This is a very long tutorial beginning from the start; its for entry level to Camel. Its
based on a real life integration, showing how Camel can be introduced in an existing
solution. We do this in baby steps. The tutorial is currently work in progress, so
check it out from time to time. The tutorial explains some of the inner building blocks
Camel uses under the covers. This is good knowledge to have when you start using
Camel on a higher abstract level where it can do wonders in a few lines of routing
DsSL.

Using Camel with ServiceMix a tutorial on using Camel inside Apache ServiceMix.
Better JMS Transport for CXF Webservice using Apache Camel Describes how to
use the Camel Transport for CXF to attach a CXF Webservice to a JMS Queue
Tutorial how to use good old Axis 1.4 with Camel

This tutorial shows that Camel does work with the good old frameworks such as
AXIS that is/was widely used for WebService.

Tutorial on using Camel in a Web Application

This tutorial gives an overview of how to use Camel inside Tomcat, Jetty or any other
servlet engine

Tutorial on Camel 1.4 for Integration

Another real-life scenario. The company sells widgets, with a somewhat unique
business process (their customers periodically report what they've purchased in order
to get billed). However every customer uses a different data format and protocol.
This tutorial goes through the process of integrating (and testing!) several customers
and their electronic reporting of the widgets they've bought, along with the company's
response.

TUTORIALS

88

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-OAuth
https://cwiki.apache.org/confluence/display/CAMEL/gauth
http://gauthcloud.appspot.com/
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial+for+Camel+on+Google+App+Engine
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://camelcloud.appspot.com/
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-JmsRemoting
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
https://cwiki.apache.org/confluence/display/CAMEL/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-AXIS-Camel
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial+on+using+Camel+in+a+Web+Application
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Business-Partners

* Tutorial how to build a Service Oriented Architecture using Camel with OSGI -
Updated 20/11/2009
The tutorial has been designed in two parts. The first part introduces basic concept to
create a simple SOA solution using Camel and OSGI and deploy it in a OSGI Server
like Apache Felix Karaf and Spring DM Server while the second extends the
Reportincident tutorial part 4 to show How we can separate the different layers
(domain, service, ...) of an application and deploy them in separate bundles. The Web
Application has also be modified in order to communicate to the OSGI bundles.

* Examples
While not actual tutorials you might find working through the source of the various
Examples useful

TUTORIAL ON SPRING REMOTING WITH JMS

PREFACE

This tutorial aims to guide the reader through the stages of creating a project which uses Camel
to facilitate the routing of messages from a JMS queue to a Spring service. The route works in a
synchronous fashion returning a response to the client.

* Tutorial on Spring Remoting with JMS

* Preface

* Prerequisites

+ Distribution

* About

* Create the Camel Project

* Update the POM with Dependencies

* Writing the Server

* Create the Spring Service

* Define the Camel Routes

» Configure Spring

* AOP Enabled Server

* Run the Server

* Writing The Clients

* Client Using The ProducerTemplate

* Client Using Spring Remoting

* Client Using Message Endpoint EIP Pattern

* Run the Clients

* Using the Camel Maven Plugin

* Using Camel JMX

* See Also

89 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/tutorial-osgi-camel-part1
https://cwiki.apache.org/confluence/display/CAMEL/tutorial-osgi-camel-part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.springramework.org

© Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

PREREQUISITES

This tutorial uses Maven to setup the Camel project and for dependencies for artifacts.

DISTRIBUTION

This sample is distributed with the Camel distribution as examples/camel-example-
spring-jms.

ABOUT

This tutorial is a simple example that demonstrates more the fact how well Camel is seamless
integrated with Spring to leverage the best of both worlds. This sample is client server solution
using JMS messaging as the transport. The sample has two flavors of servers and also for clients
demonstrating different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a business service that

does computations on the received message and returns a response.
The EIP patterns used in this sample are:

Pattern Description

Message . . .
8 We need a channel so the Clients can communicate with the server.
Channel
Message The information is exchanged using the Camel Message interface.
Message This is where Camel shines as the message exchange between the Server and
8 the Clients are text based strings with numbers. However our business service
Translator

uses int for numbers. So Camel can do the message translation automatically.

It should be easy to send messages to the Server from the the clients. This is
Message archived with Camels powerful Endpoint pattern that even can be more
Endpoint powerful combined with Spring remoting. The tutorial have clients using each
kind of technique for this.

Point to

Point We using JMS queues so there are only one receive of the message exchange
Channel

TUTORIALS

90

https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel

Event
Driven
Consumer

Yes the JMS broker is of course event driven and only reacts when the client
sends a message to the server.

We use the following Camel components:

Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server side
We use the bean binding to easily route the messages to our business
Bean . o :
service. This is a very powerful component in Camel.
File In the AOP enabled Server we store audit trails as files.
JMS Used for the JMS messaging

CREATE THE CAMEL PROJECT

mvn archetype:create -Dgroupld=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies

First we need to have dependencies for the core Camel jars, its spring, jms components and
finally ActiveMQ as the message broker.

<!-- required by both client and server -->

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-core</artifactId>

</dependency>

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>

</dependency>

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-spring</artifactId>

</dependency>

<dependency>
<groupId>org.apache.activemg</groupId>
<artifactId>activemg-camel</artifactId>

</dependency>

As we use spring xml configuration for the ActiveMQ JMS broker we need this dependency:

91 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JMS

) For the purposes of the tutorial a single Maven project will be used for both the
client and server. Ideally you would break your application down into the
appropriate components.

<!-- xbean is required for ActiveMQ broker configuration in the spring xml file -->
<dependency>

<groupld>org.apache.xbean</groupId>

<artifactId>xbean-spring</artifactId>
</dependency>

And dependencies for the AOP enable server example. These dependencies are of course only
needed if you need full blown AOP stuff using Aspejct] with bytecode instrumentation.

<!-- required jars for aspec

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-aop</artifactId>
<version>${spring-version}</version>

</dependency>

<dependency>
<groupld>org.aspectj</groupIld>
<artifactId>aspectjrt</artifactId>
<version>1l.6.2</version>

</dependency>

<dependency>
<groupld>org.aspectj</groupIld>
<artifactId>aspectjweaver</artifactId>
<version>l.6.2</version>

</dependency>

<dependency>
<groupId>cglib</groupId>
<artifactId>cglib-nodep</artifactId>
<version>2.1 3</version>

</dependency>

WRITING THE SERVER

Create the Spring Service

For this example the Spring service (= our business service) on the server will be a simple
multiplier which trebles in the received value.

TUTORIALS 92

93

public interface Multiplier {

Vaks

* Multiplies the given number by a pre-defined constant.
*

* @param originalNumber The number to be multiplied
* @return The result of the multiplication

*/
int multiply(int originalNumber) ;

And the implementation of this service is:

@Service (value = "multiplier")
public class Treble implements Multiplier {

public int multiply(final int originalNumber) {
return originalNumber * 3;

Notice that this class has been annotated with the @Service spring annotation. This ensures
that this class is registered as a bean in the registry with the given name multiplier.

Define the Camel Routes

public class ServerRoutes extends RouteBuilder ({

@Override

public void configure() throws Exception {

// route from the numbers queue to our busine that is a

ring bean
with the id=multiplier

Camel

ill introspect the multiplier bean and find the best candidate of

to in
// You can add annotations etc to help Camel find the method to invoke.
// As our multiplier bean only have one method its easy for Camel to find the
method to use

from("jms:queue:numbers") .to ("multiplier");

have c ined some

ral ways to configure th

same routing,

of them here below

// as above but with the bean: efix

//from("jms:queue:numbers") .to ("bean:multiplier") ;

// beanRef is using explicity bean bindings to lookup the multiplier bean and
7oke the multiply method

TUTORIALS

from("Jjms:queue:numbers") .k ef ("multiplier", "multiply");
he ame as a X as a URI configuration
from("activemqg:queue:numbers") .to("bean:multiplier?methodName=multiply") ;

This defines a Camel route from the JMS queue named humbers to the Spring bean named
multiplier. Camel will create a consumer to the JMS queue which forwards all received
messages onto the the Spring bean, using the method named multiply.

Configure Spring

The Spring config file is placed under META-INF/spring as this is the default location used
by the Camel Maven Plugin, which we will later use to run our server.

First we need to do the standard scheme declarations in the top. In the camel-server.xml we
are using spring beans as the default bean: namespace and springs context:. For configuring
ActiveMQ we use broker: and for Camel we of course have camel:. Notice that we don't
use version numbers for the camel-spring schema. At runtime the schema is resolved in the
Camel bundle. If we use a specific version number such as |.4 then its IDE friendly as it would
be able to import it and provide smart completion etc. See Xml Reference for further details.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:broker="http://activemqg.apache.org/schema/core"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
http://activemqg.apache.org/schema/core http://activemq.apache.org/schema/core/
activemg-core.xsd">

We use Spring annotations for doing loC dependencies and its component-scan features comes
to the rescue as it scans for spring annotations in the given package name:

<!-- let Spring do its IoC stuff in this

<context:component-scan base-package="org.apache.camel.example.server"/>

Camel will of course not be less than Spring in this regard so it supports a similar feature for
scanning of Routes. This is configured as shown below.

TUTORIALS

94

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference

95

Notice that we also have enabled the JMXAgent so we will be able to introspect the Camel
Server with a JMX Console.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->
<camel:camelContext id="camel-server">
<camel :package>org.apache.camel.example.server</camel:package>

ector so we can connect to the server

and b

<camel:jmxAgent id="agent" createConnector="true"/>
</camel:camelContext>

The ActiveMQ JMS broker is also configured in this xml file. We set it up to listen on TCP port
61610.

<!-- lets configure the ActiveMQ JMS broker server to listen on TCP 61610 -->
<broker:broker usedmx="false" persistent="false" brokerName="localhost">
<broker:transportConnectors>
<broker:transportConnector name="tcp" uri="tcp://localhost:61610"/>
</broker:transportConnectors>
</broker:broker>

As this examples uses JMS then Camel needs a JMS component that is connected with the
ActiveMQ broker. This is configured as shown below:

<!-- lets configure the Camel ActiveMQ to use the ActiveMQ broker declared above -->
<bean id="jms" class="org.apache.activemqg.camel.component.ActiveMQComponent">

<property name="brokerURL" value="tcp://localhost:61610"/>
</bean>

Notice: The JMS component is configured in standard Spring beans, but the gem is that the
bean id can be referenced from Camel routes - meaning we can do routing using the JMS
Component by just using jms: prefix in the route URI. What happens is that Camel will find in
the Spring Registry for a bean with the id="jms". Since the bean id can have arbitrary name you
could have named it id="jmsbroker" and then referenced to it in the routing as
from="jmsbroker:queue:numbers) .to ("multiplier") ;

We use the vm protocol to connect to the ActiveMQ server as its embedded in this
application.

component- Defines the package to be scanned for Spring stereotype annotations, in this

scan case, to load the "multiplier" bean

camel- Defines the package to be scanned for Camel routes. Will find the
context ServerRoutes class and create the routes contained within it
jms bean Creates the Camel JMS component

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Camel+JMX
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMS

AOP Enabled Server

The example has an enhanced Server example that uses fullblown Aspejct] AOP for doing a
audit tracking of invocations of the business service.

We leverage Spring AOP support in the {{camel-server-aop.xml} configuration file. First we
must declare the correct XML schema's to use:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:broker="http://activemq.apache.org/schema/core"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/
schema/aop/spring-aop.xsd
http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/
activemg-core.xsd">

Then we include all the existing configuration from the normal server example:

<!-- let Spring do its IoC stuff in this

<context:component-scan base-package="org.apache.camel.example.server"/>

ver to listen on TCP 61610 —--—>
<broker:broker useJmx="false" persistent="false" brokerName="localhost">

<!-- lets configure the ActiveMQ JMS broker

<broker:transportConnectors>
<broker:transportConnector name="tcp" uri="tcp://localhost:61610"/>
</broker:transportConnectors>
</broker:broker>

<!-- lets configure the Camel JMS consumer to use the ActiveMQ broker declared

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">
<bean class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61610"/>
</bean>
</property>
</bean>

Then we enable the Aspejct] AOP auto proxy feature of Spring that will scan for classes
annotated with the @Aspect annotation:

TUTORIALS

96

97

<!-- turn on

ring xml file

<aop:aspectj-autoproxy/>

Then we define our Audit tracker bean that does the actual audit logging. It's also the class that
is annotated with the @Aspect so Spring will pick this up, as the aspect.

<l Z t that tracks all >

<bean id="AuditTracker" class="org.apache.camel.example.server.AuditTracker">
<!-- define what store to use for audit backup -->
<property name="store" ref="AuditStore"/>

</bean>

ions of

invocat

busin ervice

And the gem is that we inject the AuditTracker aspect bean with a Camel endpoint that defines
where the audit should be stored. Noticed how easy it is to setup as we have just defined an
endpoint URI that is file based, meaning that we stored the audit tracks as files. We can change

this tore to any Camel components as we wish. To store it on a JMS queue simply change the
URI to jms:queue:audit.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->
<camel:camelContext id="camel-server-aop">
<camel:package>org.apache.camel.example.server</camel:package>
ble JMX
amel will log at

jconsole -->

<camel:jmxAgent id="agent" createConnector="true"/>
<!-- the audit store endpoint is configued as file based.
In Camel 2.0 the endpoint should be defined in camel context -->
<camel:endpoint id="AuditStore" uri="file://target/store"/>
</camel:camelContext>

And the full blown Aspejct for the audit tracker java code:

/**
* For audit tracking of all incoming invocations of our business (Multiplier)
27

@Aspect

public class AuditTracker {

// endpoint

use for backup store of audit tracks
private Endpoint store;

@Required

public void setStore (Endpoint store) {
this.store = store;

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Components

@Before ("execution (int org.apache.camel.example.server.Multiplier.multiply (int))
&& args (originalNumber)")
public void audit (int originalNumber) throws Exception ({
String msg = "Someone called us with this number " + originalNumber;
System.out.println (msg);

now send the message to the backup store using the Camel Message Endpoint

Exchange exchange = store.createExchange () ;
exchange.getIn() .setBody (msg) ;
store.createProducer () .process (exchange) ;

Run the Server

The Server is started using the org.apache.camel.spring.Main class that can start
camel-spring application out-of-the-box. The Server can be started in several flavors:

* as a standard java main application - just start the

org.apache.camel.spring.Main class

= using maven jave:exec

= using camel:run
In this sample as there are two servers (with and without AOP) we have prepared some
profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java —-PCamelServer

Or for the AOP enabled Server example:
mvn compile exec:java -PCamelServerAOP

WRITING THE CLIENTS

This sample has three clients demonstrating different Camel techniques for communication
= CamelClient using the ProducerTemplate for Spring template style coding
* CamelRemoting using Spring Remoting
= CamelEndpoint using the Message Endpoint EIP pattern using a neutral Camel API

Client Using The ProducerTemplate

We will initially create a client by directly using ProducerTemplate. We will later create a
client which uses Spring remoting to hide the fact that messaging is being used.

TUTORIALS

98

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Run+Maven+Goal

99

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camel:camelContext id="camel-client">
<camel:template id="camelTemplate"/>
</camel:camelContext>

<!-- Camel JMSProducer to be able to send mes

yes to a remote Active MQ server -->

<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61610"/>

</bean>

The client will not use the Camel Maven Plugin so the Spring XML has been placed in src/main/
resources to not conflict with the server configs.

camelContext The Camel context is defined but does not contain any routes

template The ProducerTemplate is used to place messages onto the JMS queue

This initialises the Camel JMS component, allowing us to place messages

jms bean
onto the queue

And the CamelClient source code:

public static void main(final String[] args) throws Exception ({
System.out.println("Notice this client requires that the CamelServer is already
running!") ;

ApplicationContext context = new
ClassPathXmlApplicationContext ("camel-client.xml");

the camel template for Spring template style sending of messe

ProducerTemplate camelTemplate = (ProducerTemplate)
context.getBean ("camelTemplate") ;

System.out.println ("Invoking the multiply with 22");

// as op

1 to the CamelClientRemoting example we need to de

P ne the service URI
in this java code

int response = (Integer)camelTemplate.sendBody ("jms:queue:numbers",
ExchangePattern.InOut, 22);

System.out.println("... the result is: " + response);

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin

System.exit (0);

The ProducerTemplate is retrieved from a Spring ApplicationContext and used to
manually place a message on the "numbers" JMS queue. The exchange pattern
(ExchangePattern.InOut) states that the call should be synchronous, and that we will
receive a response.

Before running the client be sure that both the ActiveMQ broker and the CamelServer
are running.

Client Using Spring Remoting

Spring Remoting "eases the development of remote-enabled services". It does this by allowing
you to invoke remote services through your regular Java interface, masking that a remote
service is being called.

<!-- Camel proxy for a given service, in this case the JMS queue
In Camel 2.0 , the proxy should be defined in camelContext. -->
<camel :proxy
id="multiplierProxy"
serviceInterface="org.apache.camel.example.server.Multiplier"
serviceUrl="jms:queue:numbers"/>

The snippet above only illustrates the different and how Camel easily can setup and use Spring
Remoting in one line configurations.

The proxy will create a proxy service bean for you to use to make the remote invocations.
The servicelnterface property details which Java interface is to be implemented by the
proxy. serviceUrl defines where messages sent to this proxy bean will be directed. Here we
define the JMS endpoint with the "numbers" queue we used when working with Camel template
directly. The value of the id property is the name that will be the given to the bean when it is
exposed through the Spring ApplicationContext. We will use this name to retrieve the
service in our client. | have named the bean multiplierProxy simply to highlight that it is not the
same multiplier bean as is being used by CamelServer. They are in completely independent
contexts and have no knowledge of each other. As you are trying to mask the fact that
remoting is being used in a real application you would generally not include proxy in the name.

And the Java client source code:

public static void main(final String[] args) {
System.out.println("Notice this client requires that the CamelServer is already
running!");

ApplicationContext context = new

ClassPathXmlApplicationContext ("camel-client-remoting.xml") ;

get the proxy to the service and we as the client can use the "proxy" as

TUTORIALS

100

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting

101

rs do the remote

> the remote ActiveMQ server and fetch the res

Multiplier multiplier = (Multiplier)context.getBean ("multiplierProxy");

System.out.println("Invoking the multiply with 33");
int response = multiplier.multiply(33);
System.out.println("... the result is: " + response);

System.exit (0) ;

Again, the client is similar to the original client, but with some important differences.
I. The Spring context is created with the new camel-client-remoting.xml
2. We retrieve the proxy bean instead of a ProducerTemplate. In a non-trivial
example you would have the bean injected as in the standard Spring manner.
3. The multiply method is then called directly. In the client we are now working to an
interface. There is no mention of Camel or JMS inside our Java code.

Client Using Message Endpoint EIP Pattern

This client uses the Message Endpoint EIP pattern to hide the complexity to communicate to
the Server. The Client uses the same simple API to get hold of the endpoint, create an
exchange that holds the message, set the payload and create a producer that does the send and
receive. All done using the same neutral Camel API for all the components in Camel. So if the
communication was socket TCP based you just get hold of a different endpoint and all the java
code stays the same. That is really powerful.

Okay enough talk, show me the code!

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already
running!") ;

ApplicationContext context = new
ClassPathXmlApplicationContext ("camel-client.xml") ;
CamelContext camel = (CamelContext) context.getBean("camel-client");

yjet the endpoint from the camel context

Endpoint endpoint = camel.getEndpoint ("jms:queue:numbers") ;

~ate the exchange used for the communication

use the in out pattern for a synchronized exchange where we expect a re
Exchange exchange = endpoint.createExchange (ExchangePattern.InOut) ;
set the input n 1

the in body

must you correc ty to matc

// st £ type to h the
exchange.getIn() .setBody(11);

type of an Integer object

TUTORIALS

to send the exchange we need an producer to do it for us

Producer producer = endpoint.createProducer();

start the prod it can operate

producer.start();

et the producer
1eline of code
System.out.println("Invoking the multiply with 11");

rocess the exchange where it does all the work in this

producer.process (exchange) ;

the response from the out body and cast it to an integer
int response = exchange.getOut () .getBody(Integer.class);
System.out.println("... the result is: " + response);

top and exit the client
producer.stop () ;
System.exit (0);

Switching to a different component is just a matter of using the correct endpoint. So if we had
defined a TCP endpoint as: "mina:tcp://localhost:61610" then its just a matter of
getting hold of this endpoint instead of the JMS and all the rest of the java code is exactly the
same.

Run the Clients

The Clients is started using their main class respectively.
= as a standard java main application - just start their main class
= using maven jave:exec

In this sample we start the clients using maven:

mvn compile exec:java —-PCamelClient

mvn compile exec:java -PCamelClientRemoting

mvn compile exec:java -PCamelClientEndpoint

Also see the Maven pom. xm1 file how the profiles for the clients is defined.

USING THE CAMEL MAVEN PLUGIN

The Camel Maven Plugin allows you to run your Camel routes directly from Maven. This
negates the need to create a host application, as we did with Camel server, simply to start up
the container. This can be very useful during development to get Camel routes running quickly.

Listing 7. pom.xml
<build>

<plugins>
<plugin>

TUTORIALS

102

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin

103

<groupld>org.apache.camel</groupld>
<artifactId>camel-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

All that is required is a new plugin definition in your Maven POM. As we have already placed
our Camel config in the default location (camel-server.xml has been placed in META-INF/
spring/) we do not need to tell the plugin where the route definitions are located. Simply run
mvn camel:run.

USING CAMEL JMX

Camel has extensive support for JMX and allows us to inspect the Camel Server at runtime. As
we have enabled the JMXAgent in our tutorial we can fire up the jconsole and connect to the
following service URI: service:jmx:rmi:///jndi/rmi://localhost:1099/
jmxrmi/camel. Notice that Camel will log at INFO level the JMX Connector URI:

INFO JMX connector thread started on

service:jmx:rmi:///jndi/rmi://claus-

DefaultInstrumentationAgent

:1099/jmxrmi/camel

In the screenshot below we can see the route and its performance metrics:

J2SE 5.0 Monitoring & Management Console: service:jmx:rmi:///jndi/rmi://claus-acer:1099/jmxrmi/camel

Connection
Summary | ‘Memory | Threads | Classes | mBeans rVM_\
MBeans
T Tree Attributes | Operations | Notifications | Info |

o= 3 nMimplementation

Name Walue
¢ [org.apache.camel

& [claus-acercamel

| [ims]queue® 3anumbers@i4E039348

o [processar

¢ CF route

@ [[ms]gueuesk3anumbers @e46039348|
¢ 3 context
@ claus-acerficamel

&= [F endpoint

‘| Descrntion

A|[EndpaintUri

irnsgueleiumbers

irstExchangeCompletionTime

Wied Jun 25 07:00:56 CEST 2008

irstExchangeFailureTime

astExchangeCornpletionTirne

Wied Jun 25 07:01:36 CEST 2008

LastExchangeFailureTirme

MaxProcessingTimehdillis 14.827862
“|MeanProcessingTimeMillis 7.400568
*|MinProcessingTimenilis 3573918
S|[MumCompleted 3
“|MumExchanoes 3
{[NumFailed]

#| TotalProcessingTimehillis 22.201704

SEE ALSO

+ Spring Remoting with JMS Example on Amin Abbaspour's Weblog

TUTORIALS

EventDrivenConsurnerRoute[Endpointim sigusue:..

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

TUTORIAL - CAMEL-EXAMPLE-REPORTINCIDENT

INTRODUCTION

Creating this tutorial was inspired by a real life use-case | discussed over the phone with a
colleague. He was working at a client whom uses a heavy-weight integration platform from a
very large vendor. He was in talks with developer shops to implement a new integration on this
platform. His trouble was the shop tripled the price when they realized the platform of choice.
So | was wondering how we could do this integration with Camel. Can it be done, without

tripling the cost @

This tutorial is written during the development of the integration. | have decided to start off
with a sample that isn't Camel's but standard Java and then plugin Camel as we goes. Just as
when people needed to learn Spring you could consume it piece by piece, the same goes with
Camel.

The target reader is person whom hasn't experience or just started using Camel.

MOTIVATION FOR THIS TUTORIAL

| wrote this tutorial motivated as Camel lacked an example application that was based on the
web application deployment model. The entire world hasn't moved to pure OSGi deployments
yet.

THE USE-CASE

The goal is to allow staff to report incidents into a central administration. For that they use
client software where they report the incident and submit it to the central administration. As
this is an integration in a transition phase the administration should get these incidents by email
whereas they are manually added to the database. The client software should gather the
incident and submit the information to the integration platform that in term will transform the
report into an email and send it to the central administrator for manual processing.

The figure below illustrates this process. The end users reports the incidents using the client
applications. The incident is sent to the central integration platform as webservice. The
integration platform will process the incident and send an OK acknowledgment back to the
client. Then the integration will transform the message to an email and send it to the
administration mail server. The users in the administration will receive the emails and take it
from there.

TUTORIALS

104

105

= B = —

A CI‘iI:anltion Integration Mail
PP Platform Server

= @]

Administraton

User Application Administrator

reporting incident

In EIP patterns

We distill the use case as EIP patterns:
——— Mail

Incident ir
Message |
I
—— g LT 2
> 1> —1»
. = O o
| Web Translator . Polling Mail
| Service Mail BaFcIII:Jp Consumer Endpoint
tﬁ : Message
oK <: 1 Integration Platform
Repy -——1""—++""F">""""-"""""—""-"—-"—-"—"—-"—"—"—"—"—"—"—"—"—"—"—"—"—"—"—"———~—————

This tutorial is divided into sections and parts:
Section A: Existing Solution, how to slowly use Camel

Part | - This first part explain how to setup the project and get a webservice exposed using
Apache CXF. In fact we don't touch Camel yet.

Part 2 - Now we are ready to introduce Camel piece by piece (without using Spring or any
XML configuration file) and create the full feature integration. This part will introduce different
Camel's concepts and How we can build our solution using them like :

= CamelContext

* Endpoint, Exchange & Producer

= Components : Log, File
Part 3 - Continued from part 2 where we implement that last part of the solution with the
event driven consumer and how to send the email through the Mail component.

Section B: The Camel Solution

Part 4 - We now turn into the path of Camel where it excels - the routing.
Part 5 - Is about how embed Camel with Spring and using CXF endpoints directly in Camel

LINKS

= Introduction
= Part |
= Part2

TUTORIALS

http://www.enterpriseintegrationpatterns.com
http://cxf.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2

& Using Axis 2
See this blog entry by Sagara demonstrating how to use Apache Axis 2 instead of
Apache CXF as the web service framework.

= Part 3
= Part 4
= Part5

PART |

PREREQUISITES

This tutorial uses the following frameworks:
e Maven 2.0.9
* Apache Camel 1.4.0
* Apache CXF 2.1.1
* Spring 2.5.5
Note: The sample project can be downloaded, see the resources section.

INITIAL PROJECT SETUP

We want the integration to be a standard .war application that can be deployed in any web
container such as Tomcat, Jetty or even heavy weight application servers such as WebLogic or
WebSphere. There fore we start off with the standard Maven webapp project that is created
with the following long archetype command:

mvn archetype:create -Dgroupld=org.apache.camel
-DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupld etc. doens't have to be org.apache.camel it can be
com.mycompany.whatever. But | have used these package names as the example is an official
part of the Camel distribution.

Then we have the basic maven folder layout. We start out with the webservice part where
we want to use Apache CXF for the webservice stuff. So we add this to the pom.xml

<properties>
<cxf-version>2.1.1</cxf-version>
</properties>

TUTORIALS

106

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5
http://ws.apache.org/axis2/
http://cxf.apache.org/

<dependency>
<groupld>org.apache.cxf</groupId>
<artifactId>cxf-rt-core</artifactId>
<version>${cxf-version}</version>
</dependency>
<dependency>
<groupld>org.apache.cxf</groupIld>
<artifactId>cxf-rt-frontend-jaxws</artifactId>
<version>${cxf-version}</version>
</dependency>
<dependency>
<groupld>org.apache.cxf</groupIld>
<artifactId>cxf-rt-transports-http</artifactId>
<version>${cxf-version}</version>
</dependency>

DEVELOPING THE WEBSERVICE

As we want to develop webservice with the contract first approach we create our .wsdl file. As
this is a example we have simplified the model of the incident to only include 8 fields. In real life
the model would be a bit more complex, but not to much.

We put the wsdl file in the folder src/main/webapp/WEB-INF/wsdl and name the
file report incident.wsdl.

<?xml version="1.0" encoding="ISO-8859-1"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
<xs:element name="inputReportIncident">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="incidentId"/>
<xs:element type="xs:string"
name="incidentDate"/>
<xs:element type="xs:string"
name="givenName" />
<xs:element type="xs:string"
name="familyName" />
<xs:element type="xs:string"
name="summary"/>
<xs:element type="xs:string"

107 TUTORIALS

name="details"/>
<xs:element type="xs:string"
name="email" />
<xs:element type="xs:string"
name="phone" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident'">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="code" />
</xs:sequence>
</xs:complexType>
</xs:element>
</x%s:schema>
</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">
<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>
</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->
<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">
<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"

style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>

<wsdl:output>
<soap:body parts="parameters" use="literal"/>

</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->

TUTORIALS

108

<wsdl:service name="ReportIncidentService">
<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">
<soap:address
location="http://reportincident.example.camel.apache.org"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

CXF wsdl2java

Then we integration the CXF wsdl2java generator in the pom.xml so we have CXF generate
the needed POJO classes for our webservice contract.

However at first we must configure maven to live in the modern world of Java 1.5 so we must
add this to the pom.xml

<!-- to compile with 1.5 -->
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>
</configuration>
</plugin>

And then we can add the CXF wsdl2java code generator that will hook into the compile goal so
its automatic run all the time:

<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>${cxf-version}</version>
<executions>
<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>
<sourceRoot>${basedir}/target/
generated/src/main/java</sourceRoot>
<wsdlOptions>
<wsdlOption>

<wsdl>$ {basedir}/src/main/webapp/WEB-INF/wsdl/report incident.wsdl</wsdl>

</wsdlOption>
</wsdlOptions>

109 TUTORIALS

</configuration>

<goals>
<goal>wsdl2java</goal>
</goals>
</execution>
</executions>
</plugin>

You are now setup and should be able to compile the project. So running the mvn compile
should run the CXF wsdl2java and generate the source code in the folder & {basedir}/
target/generated/src/main/java that we specified in the pom.xml above. Since its in
the target/generated/src/main/java maven will pick it up and include it in the build
process.

Configuration of the web.xml

Next up is to configure the web.xml to be ready to use CXF so we can expose the webservice.
As Spring is the center of the universe, or at least is a very important framework in today's Java
land we start with the listener that kick-starts Spring. This is the usual piece of code:

<!-- the listener that kick-starts Spring -->

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

And then we have the CXF part where we define the CXF servlet and its URI mappings to
which we have chosen that all our webservices should be in the path /webservices/

<!-- CXF servlet -->
<servlet>
<servlet-name>CXFServlet</servlet-name>

<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<!-- all our webservices are mapped under this URI pattern -->
<servlet-mapping>
<servlet-name>CXFServlet</servlet-name>
<url-pattern>/webservices/*</url-pattern>
</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring XML that we link
to fron the web.xml by the standard Spring contextConfigLocation property in the
web.xml

TUTORIALS

110

<!-- location of spring xml files -->

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:cxf-config.xml</param-value>

</context-param>

We have named our CXF configuration file cxf-config.xml and its located in the root of
the classpath. In Maven land that is we can have the cxf-config.xml file in the src/
main/resources folder. We could also have the file located in the WEB-INF folder for
instance <param-value>/WEB-INF/cxf-config.xml</param-value>.

Getting rid of the old jsp world

The maven archetype that created the basic folder structure also created a sample .jsp file
index.jsp. This file src/main/webapp/index. jsp should be deleted.

Configuration of CXF

The cxf-config.xml is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemalLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<!-- implementation of the webse ==3
<bean id="reportIncidentEndpoint"
class="org.apache.camel.example.reportincident.ReportIncidentEndpointImpl" />

<jaxws:endpoint id="reportIncident"
implementor="#reportIncidentEndpoint"
address="/incident"
wsdlLocation="/WEB-INF/wsdl/report incident.wsdl"
endpointName="s:ReportIncidentPort"
serviceName="s:ReportIncidentService"
xmlns:s="http://reportincident.example.camel.apache.org"/>

</beans>

The configuration is standard CXF and is documented at the Apache CXF website.
The 3 import elements is needed by CXF and they must be in the file.

Il TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cxf.apache.org/

Noticed that we have a spring bean reportincidentEndpoint that is the implementation
of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use the # mark to
identify its a reference to a spring bean. We could have stated the classname directly as
implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint
but then we lose the ability to let the ReportincidentEndpoint be configured by spring.
The address attribute defines the relative part of the URL of the exposed webservice.
wsdlLocation is an optional parameter but for persons like me that likes contract-first we
want to expose our own .wsdl contracts and not the auto generated by the frameworks, so
with this attribute we can link to the real .wsdl file. The last stuff is needed by CXF as you could
have several services so it needs to know which this one is. Configuring these is quite easy as all
the information is in the wsdl already.

Implementing the ReportincidentEndpoint

Phew after all these meta files its time for some java code so we should code the implementor
of the webservice. So we fire up mvn compile to let CXF generate the POJO classes for our
webservice and we are ready to fire up a Java editor.

You canusemvn idea:idea ormvn eclipse:eclipse to create project files for
these editors so you can load the project. However IDEA has been smarter lately and can load
a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and dirty as it can get.
At first beware that since its jaxws and Java |.5 we get annotations for the money, but they

reside on the interface so we can remove them from our implementations so its a nice plain
POJO again:

package org.apache.camel.example.reportincident;

/**
* The webservice we have implemented.
*/
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

public OutputReportIncident reportIncident (InputReportIncident parameters) {
System.out.println("Hello ReportIncidentEndpointImpl is called from " +

parameters.getGivenName ()) ;
OutputReportIncident out = new OutputReportIncident();

out.setCode ("OK") ;
return out;

We just output the person that invokes this webservice and returns a OK response. This class
should be in the maven source root folder src/main/java under the package name

TUTORIALS 112

13

org.apache.camel.example.reportincident. Beware that the maven archetype
tool didn't create the src/main/java folder, so you should create it manually.

To test if we are home free we run mvn clean compile.

Running our webservice

Now that the code compiles we would like to run it in a web container, so we add jetty to our
pom.xml so we can run mvn jetty:run:

<properties>

<jetty-version>6.1.1</jetty-version>
</properties>

<build>
<plugins>

so we can run mvn jetty:run -->

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>${jetty-version}</version>

</plugin>

Notice: We use Jetty v6.1.1 as never versions has troubles on my laptop. Feel free to try a
newer version on your system, but vé6.l.| works flawless.

So to see if everything is in order we fire up jetty with mvn jetty:run and if everything
is okay you should be able to access http://localhost:8080.

Jetty is smart that it will list the correct URI on the page to our web application, so just click on
the link. This is smart as you don't have to remember the exact web context URI for your
application - just fire up the default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the web.xml to instruct
the CXF servlet to accept the pattern /webservices/* we should hit this URL to get the
attention of CXF: http://localhost:8080/camel-example-reportincident/
webservices.

) CXF - Service list - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ 2 C fa¥ I_. http://localhost:8080/my-webapp/webservices
Available services:
ReportIncidentServiceImpl Endpoint address: http:/localhost:8080/my-webapp/webservices/incident
® Reportlncident Wsdl: {http://reportincident. example.camel apache.org} ReportlncidentService

Target namespace: http-//reportincident example camel apache org

TUTORIALS

http://localhost:8080
http://localhost:8080/camel-example-reportincident/webservices
http://localhost:8080/camel-example-reportincident/webservices

Hitting the webservice

Now we have the webservice running in a standard .war application in a standard web container
such as Jetty we would like to invoke the webservice and see if we get our code executed.
Unfortunately this isn't the easiest task in the world - its not so easy as a REST URL, so we
need tools for this. So we fire up our trusty webservice tool SoapUI and let it be the one to fire
the webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the expected OK response
and the console outputs the System.out so we are ready to code.
Fle Tools Desktop Help

Bal ¥ @
8= 2 Request & E
8| 29 demo
L [P =E0O ® [ntto:/flocalhost:8080/my-webapp/webservices incident W+ @
% emo
= 5T ReportindidentBinding < <soapenv:Envelope xulns:soapenv="http://schemas. i; < <soap: Envelope xmlns:soap="http: //schie
N = <soapenw:Header /> = <soap:Bodys
=2 Reportincident 3 <zoapenv:Bodyr 5 <nsZ:outputDeportIncident xmlns
~ R Request 1 2 <rep: inpucleportIncident> 3 =codes0K=/code>
<incidentId=1Z3</incidentId> </nsZ: outputBeportIncident >
“incidentDate=>Z008-07-16</incidentDate> =/soap:Body>

<givenNamer Ibsent/givenianss </s0ap: Enveloper
<familyNaneClaus</ fanilyNanes
<summary~bla bla</sunmary>
<detailssmore bla blat/detailss
<email-davsclaus@apache. org</enails
<phone=+4E Z53627E76=/phone~

+/rep:inputReportIncidents
</soapenv:Body>
+/soapenv: Enveloper

[INFO] Started Jetty Server
Hello ReportIncidentlWebService is called from Ibsen

Remote Debugging

Okay a little sidestep but wouldn't it be cool to be able to debug your code when its fired up
under Jetty? As Jetty is started from maven, we need to instruct maven to use debug mode.
Se we set the MAVEN_OPTS environment to start in debug mode and listen on port 5005.

MAVEN OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug
-Xrunjdwp:transport=dt_socket, server=y, suspend=n, address=5005

Then you need to restart Jetty so its stopped with ctrl + €. Remember to start a new shell to
pickup the new environment settings. And start jetty again.

Then we can from our IDE attach a remote debugger and debug as we want.
First we configure IDEA to attach to a remote debugger on port 5005:

TUTORIALS

114

http://www.soapui.org/

I ﬂ] Run/Debug Configurations _

]

ET + & Marne: |Remote debug 5005 |
| | Z'Remoate) Configuration | Logs |

; Remote debugging allows you to connect IDEA to & running JYh,

Use the following command line arguments for running remate ¥M (rou may copy and
paste them)

Frdebug -srunjdwipransport=dt_socket server=y suspend=n,address=5005

If the application runs on JOK 1.3.% or earlier, use following argurments
Frnoagent -Djava.compiler =MOME -Xdebug
Frrumjdp: ransport=dt_socket server =y suspend=n,address=5005

| [Settings
» Transport: @ Socket O Shared memory

Debugger mode: @ attach O Listen

Host: [locahost |

Part: |5005 |

Then we set a breakpoint in our code ReportIncidentEndpoint and hit the SoapUI
once again and we are breaked at the breakpoint where we can inspect the parameters:

115 TUTORIALS

ava - IntelliJ IDEA 7

Fle Edit Search View GoTo Code Analyze Refactor Build Run Tools Version Control Window Hep

CEH® 595G RhE|aA 6N | Frereshnns] b $[4 2B

- D= e ReportincidentEndpoint java
3| & = g =
i DR S
& 8 G
;II Wiew as: @Pro}ect E]‘ El # The webservice we khave implemented.
| - =/ (|20 =
- @ Camy-webapp 11 public class ReportInci int i FeportIncidentServicelmpl {
3 >- B my-webapp (D:\demao\my-webapp) 1z [@304FEinding(paraneterStyle = 30APBinding. Parameterdtyle.BARE)
E) o~ 3 projectFiesBackup 13 @WebResultiname = "outputReportIncident,
& o Frsrc 14 targetNamespace = "http:ffreportincident.example.camel.apache.ory’, parthiame = "parameters')
R~ 15 WeblMethod {operationllane = "ReportIncident! ,
2| & & main ¢ for “Rep
i 16 action = "http://reportincident 1 1 I Incident")
= =java || |27 ot public DutputReportIncident reportIncident((UchParan(partNane - 'parameters”,
ﬁﬁ'org.apache camel.example reportncid 18 neme = i Incident", tar: = "http://reportincident.example.camel.apache .org" |
L@®w ReportincidentEndpaint] 19 InputReportIncident paremeters) {
¥ resources b
21 Systen. omt.println{"Hello ReportIncident¥ehService is called from " + parameters.getGivenName(}):
cxfconfig.xml
ll log4j.properties
& webapp 24 .setlode
b B WEB-INE z: , return out;
Swsd 27
G web xml 28 '
o- B target 29
= generated
=T
= main
<] 1 IZ!E]

0
& | Debugger | Elcansole =

= SRR
P | [EFrames = Varizbles
| % |s‘§i "btpoocl0-2"@26 in group "main': RUNNING = this = {org.apache.camel example.reportincident.Repor incidentEndpoint@ 187}
@ | + Greportincident():23, ReportincidentEndpoint (org.apache.camel.example.repor tincident) E S parameters = {org.apache.camel.example.reportincident InputReportincident@2017}
- "23

AL B ethod : B incidentid = o 1:3)

Einv B incidentDate = 2008-07-16'
@ B @ = givenhame = "Ibsen"
Ein o E famiyName = "Claus”

[=] invoker) o & summary = "blabla"
2 @n o = detais = "mre bla bla”
X Ein o Hemal = "davsclaus@apache.org”
3 @iy © = phone = "+45 29627576"
Y Eiru o parameters.getGivenName () = "bsen"

o System.cUt = {java.io.PrintStream@2019}
L o . -

[%5: bebug] [@& To00 |

Adding a unit test

Oh so much hard work just to hit a webservice, why can't we just use an unit test to invoke
our webservice? Yes of course we can do this, and that's the next step.

First we create the folder structure src/test/java and src/test/resources. We
then create the unit test in the src/test/java folder.

package org.apache.camel.example.reportincident;
import junit.framework.TestCase;

/**

* Plain JUnit test of our webservice.

*/

public class ReportIncidentEndpointTest extends TestCase {

TUTORIALS

116

Here we have a plain old JUnit class. As we want to test webservices we need to start and
expose our webservice in the unit test before we can test it. And JAXWS has pretty decent
methods to help us here, the code is simple as:

import javax.xml.ws.Endpoint;

private static String ADDRESS = "http://localhost:9090/unittest";
protected void startServer () throws Exception ({
// >d t t a server that expos or rvi Jurir tl it t t
We use jaxws to do this pretty simple

ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl () ;
Endpoint.publish (ADDRESS, server);

The Endpoint class is the javax.xml.ws.Endpoint that under the covers looks for a
provider and in our case its CXF - so its CXF that does the heavy lifting of exposing out
webservice on the given URL address. Since our class ReportincidentEndpointimpl implements
the interface ReportincidentEndpoint that is decorated with all the jaxws annotations it
got all the information it need to expose the webservice. Below is the CXF wsdl2java generated
interface:

/*

*

*/
package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.ParameterStyle;

import javax.xml.bind.annotation.XmlSeeAlso;

/**

* This class was generated by Apache CXF 2.1.1
* Wed Jul 16 12:40:31 CEST 2008

* Generated source version: 2.1.1

*

*/

/*

*

*/

"

.org", name =

@WebService (targetNamespace = "http://reportincident.example.camel.a

117 TUTORIALS

"ReportIncidentEndpoint")

@XmlSeeAlso ({ObjectFactory.class})

@SOAPBinding (parameterStyle =

SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*

*

*/

@SOAPBinding (parameterStyle

= SOAPBinding.ParameterStyle.BARE)

@WebResult (name = "outputReportIncident", targetNamespace =
"http://reportincident.example.camel.apache.org", partName = "parameters")
@WebMethod (operationName = "ReportIncident", action =
"http://reportincident.example.camel.apache.org/ReportIncident")
public OutputReportIncident reportIncident (
@WebParam (partName = "parameters'", name = "inputReportIncident",
targetNamespace = "http://reportincident.example amel .apache.org")

InputReportIncident parameters

)i

Next up is to create a webservice client so we can invoke our webservice. For this we actually
use the CXF framework directly as its a bit more easier to create a client using this framework
than using the JAXWS style. We could have done the same for the server part, and you should
do this if you need more power and access more advanced features.

import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;

protected ReportIncidentEndpoint createCXFClient () {

/)

// we use CXE

JaxWsProxyFactoryBean factory =

to create

its
new JaxWsProxyFactoryBean() ;

a client for us as easier than JA3

factory.setServiceClass (ReportIncidentEndpoint.class);
factory.setAddress (ADDRESS) ;

return

(ReportIncidentEndpoint)

factory.create();

So now we are ready for creating a unit test. We have the server and the client. So we just
create a plain simple unit test method as the usual junit style:

public void testRendportIncident ()

startServer();

ReportIncidentEndpoint

InputReportIncident input =

throws Exception {

client = createCXFClient();

new InputReportIncident();

input.setIncidentId("123");
input.setIncidentDate ("2008-07-16") ;
input.setGivenName ("Claus") ;

TUTORIALS

118

19

input.setFamilyName ("Ibsen") ;
input.setSummary ("bla bla");
input.setDetails ("more bla bla");
input.setEmail ("davsclaus@apache.org");
input.setPhone ("+45 2962 7576");

OutputReportIncident out = client.reportIncident (input) ;
assertEquals ("Response code is wrong", "OK", out.getCode());

Now we are nearly there. But if you run the unit test with mvn test then it will fail. Why!!!
Well its because that CXF needs is missing some dependencies during unit testing. In fact it
needs the web container, so we need to add this to our pom.xmil.

<1 e=F il eemEalne:

<dependency>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http-jetty</artifactId>
<version>${cxf-version}</version>
<scope>test</scope>

</dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how agile, embedable
and popular Jetty is.
So lets run our junit test with, and it reports:

mvn test
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

END OF PART I

Thanks for being patient and reading all this more or less standard Maven, Spring, JAXWS and
Apache CXEF stuff. Its stuff that is well covered on the net, but | wanted a full fledged tutorial on
a maven project setup that is web service ready with Apache CXF. We will use this as a base
for the next part where we demonstrate how Camel can be digested slowly and piece by piece
just as it was back in the times when was introduced and was learning the Spring framework
that we take for granted today.

RESOURCES
* Apache CXF user guide

TUTORIALS

http://cwiki.apache.org/CXF20DOC/index.html

Name Size Creator Creation Comment

Date
Lg_' 14 Claus Jul 17,

tutorial_reportincident_part- KB Ibsen 2008 23:34
one.zi... '

LINKS

* Introduction
= Part |
= Part2
* Part3
= Part4
= Part5

PART 2

ADDING CAMEL

In this part we will introduce Camel so we start by adding Camel to our pom.xml:

<properties>

<camel-version>1.4.0</camel-version>
</properties>

<!-- camel -->

<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>${camel-version}</version>

</dependency>

That's it, only one dependency for now.

Now we turn towards our webservice endpoint implementation where we want to let Camel
have a go at the input we receive. As Camel is very non invasive its basically a .jar file then we
can just grap Camel but creating a new instance of DefaultCamelContext that is the
hearth of Camel its context.

CamelContext camel = new DefaultCamelContext () ;

In fact we create a constructor in our webservice and add this code:

TUTORIALS 120

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=createddate
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/90920/tutorial_reportincident_part-one.zip
https://cwiki.apache.org/confluence/download/attachments/90920/tutorial_reportincident_part-one.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5

& Synchronize IDE
If you continue from part |, remember to update your editor project settings since
we have introduce new .jar files. For instance IDEA has a feature to synchronize
with Maven projects.

private CamelContext camel;

public ReportIncidentEndpointImpl () throws Exception ({

create the camel context that is the "heart" of Camel

camel = new DefaultCamelContext () ;

add the log compon

camel.addComponent ("log", new LogComponent());

start Camel

camel.start();

LOGGING THE "HELLO WORLD"

Here at first we want Camel to log the givenName and familyName parameters we
receive, so we add the LogComponent with the key log. And we must start Camel before
its ready to act.

Then we change the code in the method that is invoked by Apache CXF when a webservice
request arrives. We get the name and let Camel have a go at it in the new method we create
sendToCamel:

public OutputReportIncident reportIncident (InputReportIncident parameters) {
String name = parameters.getGivenName() + " " + parameters.getFamilyName () ;

let Camel do something with the name
sendToCamelLog (name) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

Next is the Camel code. At first it looks like there are many code lines to do a simple task of
logging the name - yes it is. But later you will in fact realize this is one of Camels true power. Its
concise API. Hint: The same code can be used for any component in Camel.

121 TUTORIALS

& Component Documentation
The Log and File components is documented as well, just click on the links. Just
return to this documentation later when you must use these components for real.

private void sendToCamellog (String name) {
try {

// get the log cor

Component component = camel.getComponent ("log");

1ent

// eate an endpoint and configure it.

// the URI parameters this is a common pratice in Camel to configure
// URI.

// us Will 1c level as

default

Endpoint endpoint = component.createEndpoint ("log:com.mycompany.part2") ;

// create an Exchange that we want to send to the endpoint

Exchange exchange = endpoint.createExchange () ;

ody) with the name parame

// set the in me payload

exchange.getIn () .setBody (name) ;

// now we want to send the exchange to this endpoint and we then need a

// for this, so we create and start the producer.

Producer producer = endpoint.createProducer();

producer.start();
§ that

producer.process (exchange) ;

// stop the producer

producer.stop () ;

} catch (Exception e) {

and just

ignore any exc

throw new RuntimeException(e);

Okay there are code comments in the code block above that should explain what is happening.
We run the code by invoking our unit test with maven mvn test, and we should get this log

line:

TUTORIALS

122

https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/File

123

INFO: Exchange[BodyType:String, Body:Claus Ibsen]

WRITE TO FILE - EASY WITH THE SAME CODE STYLE

Okay that isn't to impressive, Camel can log @ Well | promised that the above code style can
be used for any component, so let's store the payload in a file. We do this by adding the file
component to the Camel context

camel.addComponent ("file", new FileComponent());

And then we let camel write the payload to the file after we have logged, by creating a new
method sendToCamelFile. We want to store the payload in filename with the incident id so
we need this parameter also:

let Camel do something with the name
sendToCamelLog (name) ;
sendToCamelFile (parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI configuration when we create
the endpoint as we pass in configuration parameters to the file component.

And then we need to set the output filename and this is done by adding a special header to the
exchange. That's the only difference:

private void sendToCamelFile (String incidentId, String name) {

try {
get the file component
Component component = camel.getComponent ("file");
T pratice in Camel t igu
he files. We i
the target fold
then its actumatically cleaned by mvn clean
Endpoint endpoint = component.createEndpoint ("file://target");
create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange () ;
set the in message payload (=body) with the name parameter
exchange.getIn() .setBody (name) ;
a special header is set to instruct the file component what the

TUTORIALS

exchange.getIn() .setHeader (FileComponent.HEADER FILE NAME, "incident-" +
incidentId + ".txt");

want to send the exchange to this endpoint and we then need a
roducer
/ for this, so we create and start the e
Producer producer = endpoint.createProducer();
producer.start () ;
'/ prc s the hang: i1l th xchange t
ill

// the exchange and yes write the payload to the

producer.process (exchange) ;

stop the pro

producer.stop () ;
} catch (Exception e) {

we 1lgnore any e tions ana just

throw new RuntimeException(e);

After running our unit test again with mvn test we have a output file in the target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

FULLY JAVA BASED CONFIGURATION OF ENDPOINTS

In the file example above the configuration was URI based. What if you want 100% java setter
based style, well this is of course also possible. We just need to cast to the component specific
endpoint and then we have all the setters available:

wanted
FileEndpoint endpoint = (FileEndpoint)component.createEndpoint ("");
endpoint.setFile (new File("target/subfolder"));
endpoint.setAutoCreate (true);

That's it. Now we have used the setters to configure the FileEndpoint that it should store
the file in the folder target/subfolder. Of course Camel now stores the file in the subfolder.

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

TUTORIALS

124

125

LESSONS LEARNED

Okay | wanted to demonstrate how you can be in 100% control of the configuration and usage
of Camel based on plain Java code with no hidden magic or special XML or other configuration
files. Just add the camel-core.jar and you are ready to go.

You must have noticed that the code for sending a message to a given endpoint is the same
for both the log and file, in fact any Camel endpoint. You as the client shouldn't bother with
component specific code such as file stuff for file components, jms stuff for JMS messaging etc.
This is what the Message Endpoint EIP pattern is all about and Camel solves this very very nice -
a key pattern in Camel.

REDUCING CODE LINES

Now that you have been introduced to Camel and one of its masterpiece patterns solved
elegantly with the Message Endpoint its time to give productive and show a solution in fewer
code lines, in fact we can get it down to 5, 4, 3, 2 .. yes only 1 line of code.

The key is the ProducerTemplate that is a Spring'ish xxxTemplate based producer.
Meaning that it has methods to send messages to any Camel endpoints. First of all we need to
get hold of such a template and this is done from the CamelContext

private ProducerTemplate template;

public ReportIncidentEndpointImpl () throws Exception ({

ge he ProducerTemplate thst is a Spring'ish xxxTemplate based producer

easy sending exchanges to Camel.

template = camel.createProducerTemplate () ;

start Camel

camel.start () ;
Now we can use template for sending payloads to any endpoint in Camel. So all the logging
gabble can be reduced to:

template.sendBody ("log:com.mycompany.part2.easy", name);

And the same goes for the file, but we must also send the header to instruct what the output
filename should be:

String filename = "easy-incident-" + incidentId + ".txt";
template.sendBodyAndHeader ("file: target/subfolder", name,
FileComponent.HEADER FILE NAME, filename);

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint

REDUCING EVEN MORE CODE LINES

Well we got the Camel code down to |-2 lines for sending the message to the component that
does all the heavy work of wring the message to a file etc. But we still got 5 lines to initialize
Camel.

camel = new DefaultCamelContext () ;
camel.addComponent ("log", new LogComponent());
camel.addComponent ("file", new FileComponent());
template = camel.createProducerTemplate () ;
camel.start();

This can also be reduced. All the standard components in Camel is auto discovered on-the-fly
so we can remove these code lines and we are down to 3 lines.
Okay back to the 3 code lines:

camel = new DefaultCamelContext () ;
template = camel.createProducerTemplate () ;
camel.start () ;

Later will we see how we can reduce this to ... in fact 0 java code lines. But the 3 lines will do
for now.

MESSAGE TRANSLATION

Okay lets head back to the over goal of the integration. Looking at the EIP diagrams at the
introduction page we need to be able to translate the incoming webservice to an email. Doing
so we need to create the email body. When doing the message translation we could put up our
sleeves and do it manually in pure java with a StringBuilder such as:

private String createMailBody (InputReportIncident parameters) {
StringBuilder sb = new StringBuilder();

sb.append ("Incident ") .append(parameters.getIncidentId());
sb.append (" has been reported on the ") .append(parameters.getIncidentDate());
sb.append (" by ") .append(parameters.getGivenName ()) ;
sb.append (" ") .append(parameters.getFamilyName ()) ;
and the rest of the mail body with more appends to the string builder

return sb.toString() ;

But as always it is a hardcoded template for the mail body and the code gets kinda ugly if the
mail message has to be a bit more advanced. But of course it just works out-of-the-box with
just classes already in the JDK.

TUTORIALS

126

127

© Component auto discovery
When an endpoint is requested with a scheme that Camel hasn't seen before it will
try to look for it in the classpath. It will do so by looking for special Camel
component marker files that reside in the folder META-INF/services/org/
apache/camel/component. If there are files in this folder it will read them as
the filename is the scheme part of the URL. For instance the log component is
defined in this file META-INF/services/org/apache/component/log
and its content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same technique and have
them been auto discovered on-the-fly.

Lets use a template language instead such as Apache Velocity. As Camel have a component
for Velocity integration we will use this component. Looking at the Component List overview
we can see that camel-velocity component uses the artifactld camel-velocity so therefore
we need to add this to the pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-velocity</artifactId>
<version>${camel-version}</version>
</dependency>

And now we have a Spring conflict as Apache CXF is dependent on Spring 2.0.8 and camel-
velocity is dependent on Spring 2.5.5. To remedy this we could wrestle with the pom.xml
with excludes settings in the dependencies or just bring in another dependency camel-
spring:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>${camel-version}</version>
</dependency>

In fact camel-spring is such a vital part of Camel that you will end up using it in nearly all

situations - we will look into how well Camel is seamless integration with Spring in part 3. For
now its just another dependency.

TUTORIALS

http://velocity.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/Component

We create the mail body with the Velocity template and create the file src/main/
resources/MailBody.vm. The content in the MailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by
Sbody.givenName S$body.familyName.

The person can be contact by:
- email: S$body.email
- phone: $body.phone

Summary: $body.summary

Details:
Sbody.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the following 3 code
lines:

private void generateEmallBodyAndStoreAsFlle(InputReportIn01dent parameters) {

mail

fror

Object response = template sendBody(”veloc1ty MailBody.vm", parameters);

lote: the response is a String and can be cast to String if needed
// store the mail in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader ("file://target/sub -"", response,

FileComponent.HHADHRiF][HiNAMH, filename) ;
}

What is impressive is that we can just pass in our POJO object we got from Apache CXF to
Velocity and it will be able to generate the mail body with this object in its context. Thus we
don't need to prepare anything before we let Velocity loose and generate our mail body.
Notice that the template method returns a object with out response. This object contains
the mail body as a String object. We can cast to String if needed.

If we run our unit test with mvn test we can in fact see that Camel has produced the file
and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org

- phone: +45 2962 7576

Summary: bla bla

TUTORIALS

128

Details:
more bla bla

This is an auto generated email. You can not reply.

FIRST PART OF THE SOLUTION

What we have seen here is actually what it takes to build the first part of the integration flow.
Receiving a request from a webservice, transform it to a mail body and store it to a file, and
return an OK response to the webservice. All possible within 10 lines of code. So lets wrap it
up here is what it takes:

/**
* The webservice we have implemented.
o/
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl () throws Exception {

// te the camel 1text that is the "heart" of Camel
camel = new DefaultCamelContext () ;
// get the ProducerTemplate thst is a Spring'ish xxxTemplate basec

easy sending exchar s to Camel.
template camel.createProducerTemplate () ;
// start Camel

camel.start () ;

public OutputReportIncident reportIncident (InputReportIncident parameters) {
g >dy
Object mailBody = template.sendBody ("velocity:MailBody.vm", parameters);

// transform the rec st into a mail &

// the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader ("file://target/subfolder", mailBody,

FileComponent .HEADER FILE NAME, filename);

// return an OK reply

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;

return out;

129 TUTORIALS

Okay | missed by one, its in fact only 9 lines of java code and 2 fields.

END OF PART 2

| know this is a bit different introduction to Camel to how you can start using it in your
projects just as a plain java .jar framework that isn't invasive at all. | took you through the
coding parts that requires 6 - 10 lines to send a message to an endpoint, buts it's important to
show the Message Endpoint EIP pattern in action and how its implemented in Camel. Yes of
course Camel also has to one liners that you can use, and will use in your projects for sending
messages to endpoints. This part has been about good old plain java, nothing fancy with Spring,
XML files, auto discovery, OGSi or other new technologies. | wanted to demonstrate the basic
building blocks in Camel and how its setup in pure god old fashioned Java. There are plenty of
eye catcher examples with one liners that does more than you can imagine - we will come
there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets interesting since
we have to wrestle with the event driven consumer.

Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us some fun with the
Camel. See you in part 3.

RESOURCES

. Name Size Creator Creation Date Comment

i1 part-two.zip 17kB Claus Ibsen Jul 19, 2008 00:52

LINKS

= Introduction
= Part |
= Part2
= Part3
* Part4
= Part5

TUTORIALS

130

https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/90919/part-two.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5

PART 3

RECAP

Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl () throws Exception {
create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very
// easy sending “hanges to Camel.
template = camel.createProducerTemplate () ;
// start Camel
camel.start ()
}
/**
* This is the last solution displayed that is the most simple
*/
public OutputReportIncident reportIncident (InputReportIncident parameters) {

transform the request into a mail body

Object mailBody

template.sendBody ("velocity:MailBody.vm", parameters);

store the mail body in a file

String filename "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader ("file://target/subfolder", mailBody,

’
FileComponent .HEADER FILE NAME, filename);

return an OK reply

OutputReportIncident out
out.setCode ("OK") ;
return out;

new OutputReportIncident();

This completes the first part of the solution: receiving the message using webservice, transform
it to a mail body and store it as a text file.

What is missing is the last part that polls the text files and send them as emails. Here is where
some fun starts, as this requires usage of the Event Driven Consumer EIP pattern to react when
new files arrives. So lets see how we can do this in Camel. There is a saying: Many roads lead to
Rome, and that is also true for Camel - there are many ways to do it in Camel.

131 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer

ADDING THE EVENT DRIVEN CONSUMER

We want to add the consumer to our integration that listen for new files, we do this by
creating a private method where the consumer code lives. We must register our consumer in
Camel before its started so we need to add, and there fore we call the method
addMailSenderConsumer in the constructor below:

public ReportIncidentEndpointImpl () throws Exception ({
create he camel contex ha is the "heart" of Camel
camel = new DefaultCamelContext();

for very

eas se

template = camel.createProducerTemplate () ;

1 and pz

add the event driven consumer that will listen for mail i
addMailSendConsumer () ;

start Camel

camel.start () ;

The consumer needs to be consuming from an endpoint so we grab the endpoint from Camel
we want to consume. It's file://target/subfolder. Don't be fooled this endpoint
doesn't have to 100% identical to the producer, i.e. the endpoint we used in the previous part
to create and store the files. We could change the URL to include some options, and to make it
more clear that it's possible we setup a delay value to 10 seconds, and the first poll starts after
2 seconds. This is done by adding
?consumer.delay=10000&consumer.initialDelay=2000 to the URL.

When we have the endpoint we can create the consumer (just as in part | where we created a
producer}. Creating the consumer requires a Processor where we implement the java code
what should happen when a message arrives. To get the mail body as a String object we can use
the getBody method where we can provide the type we want in return.

Sending the email is still left to be implemented, we will do this later. And finally we must
remember to start the consumer otherwise its not active and won't listen for new files.

private void addMailSendConsumer () throws Exception {
Grab the endpoint where we should consume. Option - the first poll starts
A er « ecC nas
Endpoint endpint = camel.getEndpoint("file://target

subfolder?consumer.initialDelay=2000") ;

Consumer consumer = endpint.createConsumer (new Processor() {

TUTORIALS

132

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
/target/subfolder
https://cwiki.apache.org/confluence/display/CAMEL/Processor

133

& URL Configuration
The URL configuration in Camel endpoints is just like regular URL we know from
the Internet. You use ? and & to set the options.

! Camel Type Converter
Why don't we just cast it as we always do in Java? Well the biggest advantage when
you provide the type as a parameter you tell Camel what type you want and Camel
can automatically convert it for you, using its flexible Type Converter mechanism.
This is a great advantage, and you should try to use this instead of regular type
casting.

public void process (Exchange exchange) throws Exception ({

get the mail body as a String

String mailBody = exchange.getIn().getBody(String.class);

okay now we are read to send it as an email

System.out.println("Sending email..." + mailBody);

star the consumer, it will listen for files
consumer.start () ;

Before we test it we need to be aware that our unit test is only catering for the first part of the
solution, receiving the message with webservice, transforming it using Velocity and then storing
it as a file - it doesn't test the Event Driven Consumer we just added. As we are eager to see it
in action, we just do a common trick adding some sleep in our unit test, that gives our Event
Driven Consumer time to react and print to System.out. We will later refine the test:

public void testRendportIncident () throws Exception {

OutputReportIncident out = client.reportIncident (input) ;
assertEquals ("Response code is wrong", "OK", out.getCode()):;

yive the event driven consumer time to react

Thread.sleep (10 * 1000);

We run the test with mvn clean test and have eyes fixed on the console output.
During all the output in the console, we see that our consumer has been triggered, as we want.

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter

2008-07-19 12:09:24,140 [mponent@lfl2c4e] DEBUG FileProcessStrategySupport - Locking
the file: target\subfolder\mail-incident-123.txt
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.
2008-07-19 12:09:24,156 [mponent@1fl2c4e] DEBUG FileConsumer - Done processing file:
target\subfolder\mail-incident-123.txt. Status is: OK

SENDING THE EMAIL

Sending the email requires access to a SMTP mail server, but the implementation code is very
simple:

private void sendEmail (String body) {
// send the email to your mail server
String url =

incident@mycc any.com";

"smtp://someone@localhost?pa rd=secre

template.sendBodyAndHeader (url, body, "subject", "New incident reported");

And just invoke the method from our consumer:

okay now we are read to send it as an email
System.out.println("Sending email...");
sendEmail (mailBody) ;
System.out.println("Email sent");

UNIT TESTING MAIL

For unit testing the consumer part we will use a mock mail framework, so we add this to our
pom.xml:

I—— unit te

<l C te ng mail using mock -->

<dependency>
<groupld>org.jvnet.mock-javamail</groupId>
<artifactId>mock-javamail</artifactId>

TUTORIALS

134

135

<version>1.7</version>
<scope>test</scope>
</dependency>

Then we prepare our integration to run with or without the consumer enabled. We do this to

separate the route into the two parts:
* receive the webservice, transform and save mail file and return OK as repose
* the consumer that listen for mail files and send them as emails

So we change the constructor code a bit:

public ReportIncidentEndpointImpl () throws Exception {
init (true);

public ReportIncidentEndpointImpl (boolean enableConsumer) throws Exception {

init (enableConsumer) ;

private void init (boolean enableConsumer) throws Exception {

create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext ();
Is ProducerTemplate thst is a Spring'ish xxxTemplate based pro er
for very
easy i exct Camel.
template camel.createProducerTemplate () ;

driven consumer that will listen for mail files and process

if (enableConsumer) {
addMailSendConsumer () ;

start Camel

camel.start();

Then remember to change the ReportincidentEndpointTest to pass in false in the
ReportIncidentEndpointImpl constructor.
And as always runmvn clean test to be sure that the latest code changes works.

ADDING NEW UNIT TEST

We are now ready to add a new unit test that tests the consumer part so we create a new test
class that has the following code structure:

TUTORIALS

/**
* Plain JUnit test of our consumer.
*/
public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer () throws Exception {
// we run this unit test with the <

sumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl (true);

As we want to test the consumer that it can listen for files, read the file content and send it as
an email to our mailbox we will test it by asserting that we receive | mail in our mailbox and
that the mail is the one we expect. To do so we need to grab the mailbox with the mockmail
APIL. This is done as simple as:

public void testConsumer () throws Exception {
’/ we run this unit test with the ¢ umer,

e true parameter
endpoint = new ReportIncidentEndpointImpl (true);

get the mailbox

Mailbox box = Mailbox.get ("incident@mycompany.com") ;
assertEquals ("Should not have mails", 0, box.size());

How do we trigger the consumer? Well by creating a file in the folder it listen for. So we could
use plain java.io.File API to create the file, but wait isn't there an smarter solution? ... yes Camel
of course. Camel can do amazing stuff in one liner codes with its ProducerTemplate, so we
need to get a hold of this baby. We expose this template in our ReportincidentEndpointimpl
but adding this getter:

protected ProducerTemplate getTemplate () {
return template;

Then we can use the template to create the file in one code line:

that

> Came

ge that create the file for us
endpoint.getTemplate () .sendBodyAndHeader ("file://target/
folder? nd=false", "Hello World",

FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

t
.
[V}

Then we just need to wait a little for the consumer to kick in and do its work and then we
should assert that we got the new mail. Easy as just:

TUTORIALS

136

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals ("Should have got 1 mail", 1, box.size());
assertEquals ("Subject wrong", "New incident reported",

box.get (0) .getSubject ());
assertEquals ("Mail body wrong", "Hello World", box.get (0).getContent());

The final class for the unit test is:

/‘k*
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {
private ReportIncidentEndpointImpl endpoint;

public void testConsumer () throws Exception {
the true parameter

with the onsumer, h

we run this unit t
endpoint = new ReportIncidentEndpointImpl (true);

// get the mailbox
Mailbox box = Mailbox.get ("incident@mycompany.com") ;
assertEquals ("Should not have mails", 0, box.size());

// drop a file in the folder that the consumer listen
the

// here is a trick to reuse Camel! so et producer template and just

file for us

// fire a message that will create the
endpoint.getTemplate () .sendBodyAndHeader ("file://target/
subfolder?append=false", "Hello World",
FileComponent .HEADER FILE NAME, "mail-incident-test.txt");

// let the consumer have time to run
Thread.sleep (3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals ("Should have got 1 mail", 1, box.size());
assertEquals ("Subject wrong", "New incident reported",

box.get (0) .getSubject());
assertEquals ("Mail body wrong", "Hello World", box.get(0).getContent());

END OF PART 3

Okay we have reached the end of part 3. For now we have only scratched the surface of what
Camel is and what it can do. We have introduced Camel into our integration piece by piece and

137 TUTORIALS

slowly added more and more along the way. And the most important is: you as the
developer never lost control. We hit a sweet spot in the webservice implementation
where we could write our java code. Adding Camel to the mix is just to use it as a regular java
code, nothing magic. We were in control of the flow, we decided when it was time to translate
the input to a mail body, we decided when the content should be written to a file. This is very
important to not lose control, that the bigger and heavier frameworks tend to do. No names
mentioned, but boy do developers from time to time dislike these elephants. And Camel is no
elephant.

| suggest you download the samples from part | to 3 and try them out. It is great basic
knowledge to have in mind when we look at some of the features where Camel really excel -
the routing domain language.

From part | to 3 we touched concepts such as::
* Endpoint
= URI configuration
= Consumer
* Producer
= Event Driven Consumer
= Component
= CamelContext
* ProducerTemplate
= Processor
= Type Converter

RESOURCES

. Name Size Creator Creation Date Comment

th part-threezip |8 kB Claus Ibsen Jul 20, 2008 03:34

LINKS

* Introduction
= Part |
= Part2
= Part3
= Part4
= Part5

TUTORIALS

138

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Component
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/90999/part-three.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5

139

PART 4

INTRODUCTION

This section is about regular Camel. The examples presented here in this section is much more
in common of all the examples we have in the Camel documentation.

ROUTING

Camel is particular strong as a light-weight and agile routing and mediation framework. In
this part we will introduce the routing concept and how we can introduce this into our
solution.

Looking back at the figure from the Introduction page we want to implement this routing.
Camel has support for expressing this routing logic using Java as a DSL (Domain Specific
Language). In fact Camel also has DSL for XML and Scala. In this part we use the Java DSL as its
the most powerful and all developers know Java. Later we will introduce the XML version that
is very well integrated with Spring.

Before we jump into it, we want to state that this tutorial is about Developers not
loosing control. In my humble experience one of the key fears of developers is that they are
forced into a tool/framework where they loose control and/or power, and the possible is now
impossible. So in this part we stay clear with this vision and our starting point is as follows:

* We have generated the webservice source code using the CXF wsdl2java generator
and we have our ReportincidentEndpointimpl.java file where we as a Developer feels
home and have the power.

So the starting point is:

/**
* The webservice we have implemented.
*/
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

/**
* This is the last solution displayed that is the most simple
*/
public OutputReportIncident reportIncident (InputReportIncident parameters) ({

return null;

Yes we have a simple plain Java class where we have the implementation of the webservice. The
cursor is blinking at the WE ARE HERE block and this is where we feel home. More or less any
Java Developers have implemented webservices using a stack such as: Apache AXIS, Apache

CXF or some other quite popular framework. They all allow the developer to be in control and

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Routes

' If you have been reading the previous 3 parts then, this quote applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again! @

implement the code logic as plain Java code. Camel of course doesn't enforce this to be any
different. Okay the boss told us to implement the solution from the figure in the Introduction
page and we are now ready to code.

RouteBuilder

RouteBuilder is the hearth in Camel of the Java DSL routing. This class does all the heavy
lifting of supporting EIP verbs for end-users to express the routing. It does take a little while to
get settled and used to, but when you have worked with it for a while you will enjoy its power
and realize it is in fact a little language inside Java itself. Camel is the only integration
framework we are aware of that has Java DSL, all the others are usually only XML based.
As an end-user you usually use the RouteBuilder as of follows:

= create your own Route class that extends RouteBuilder

= implement your routing DSL in the configure method
So we create a new class ReportincidentRoutes and implement the first part of the routing:

import org.apache.camel.builder.RouteBuilder;
public class ReportIncidentRoutes extends RouteBuilder ({

public void configure () throws Exception {

r example

start is a internal

use this as the starting

ransform the mail

.to("velocity:MailBody.vm") ;

What to notice here is the configure method. Here is where all the action is. Here we have
the Java DSL langauge, that is expressed using the fluent builder syntax that is also known
from Hibernate when you build the dynamic queries etc. What you do is that you can stack
methods separating with the dot.

TUTORIALS

140

In the example above we have a very common routing, that can be distilled from pseudo
verbs to actual code with:
= fromAtoB
= From Endpoint A To Endpoint B
= from("endpointA").to("endpointB")
= from("direct:start").to("velocity:MailBody.vm");
from("direct:start™) is the consumer that is kick-starting our routing flow. It will wait for
messages to arrive on the direct queue and then dispatch the message.
to("velocity:MailBody.vm") is the producer that will receive a message and let Velocity
generate the mail body response.
So what we have implemented so far with our ReportincidentRoutes RouteBuilder is this
part of the picture:

3

Translator

Mail
Message

Adding the RouteBuilder

Now we have our RouteBuilder we need to add/connect it to our CamelContext that is the
hearth of Camel. So turning back to our webservice implementation class
ReportincidentEndpointlmpl we add this constructor to the code, to create the CamelContext
and add the routes from our route builder and finally to start it.

private CamelContext context;

public ReportIncidentEndpointImpl () throws Exception {
create the contex

context = new DefaultCamelContext () ;

append the routes to the context

context.addRoutes (new ReportIncidentRoutes());

at the end start the camel context

context.start();

Okay how do you use the routes then? Well its just as before we use a ProducerTemplate to
send messages to Endpoints, so we just send to the direct:start endpoint and it will take it
from there.

So we implement the logic in our webservice operation:

141 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Direct

/**
* This is the last solution displayed that is the most simple
*/
public OutputReportIncident reportIncident (InputReportIncident parameters) {
Object mailBody = context.createProducerTemplate () .sendBody("direct:start",
parameters) ;
System.out.println("Body:" + mailBody) ;

/ return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

Notice that we get the producer template using the createProducerTemplate method on
the CamelContext. Then we send the input parameters to the direct:start endpoint and it
will route it to the velocity endpoint that will generate the mail body. Since we use direct as
the consumer endpoint (=from) and its a synchronous exchange we will get the response
back from the route. And the response is of course the output from the velocity endpoint.

We have now completed this part of the picture:

Incident
Message

Web Translator

I

I

| Service Mail
tD : Message

UNIT TESTING

Now is the time we would like to unit test what we got now. So we call for camel and its great
test kit. For this to work we need to add it to the pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.4.0</version>
<scope>test</scope>
<type>test-jar</type>

</dependency>

After adding it to the pom.xml you should refresh your Java Editor so it pickups the new jar.

Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class ContextTestSupport

TUTORIALS 142

 About creating ProducerTemplate
In the example above we create a new ProducerTemplate when the
reportIncident method is invoked. However in reality you should only create
the template once and re-use it. See this FAQ entry.

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
* Unit test of our routes
*/
public class ReportIncidentRoutesTest extends ContextTestSupport {

ContextTestSupport is a supporting unit test class for much easier unit testing with
Apache Camel. The class is extending JUnit TestCase itself so you get all its glory. What we
need to do now is to somehow tell this unit test class that it should use our route builder as
this is the one we gonna test. So we do this by implementing the createRouteBuilder
method.

@Override
protected RouteBuilder createRouteBuilder () throws Exception {
return new ReportIncidentRoutes() ;

That is easy just return an instance of our route builder and this unit test will use our routes.
We then code our unit test method that sends a message to the route and assert that its
transformed to the mail body using the Velocity template.

public void testTransformMailBody () throws Exception {
/ create a dummy input witl some 1nput data

InputReportIncident parameters = createInput();

tha

Object out = context.createProducerTemplate () .sendBody("direct:start",
parameters) ;

vert the res

143 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Why+does+Camel+use+too+many+threads+with+ProducerTemplate

& Itis quite common in Camel itself to unit test using routes defined as an anonymous
inner class, such as illustrated below:

protected RouteBuilder createRouteBuilder () throws Exception {
return new RouteBuilder () {
public void configure() throws Exception ({

\ad your rou tes here, such

from("jms:queue:inbox") .to("file://target/out");

The same technique is of course also possible for end-users of Camel to create parts of your
routes and test them separately in many test classes.

However in this tutorial we test the real route that is to be used for production, so we just
return an instance of the real one.

=d it to

/

// a string directly but using the type converters ensure that Camel can

convert it 1f it 1't a stri

// in the first pl

i1l later learn to
// ciate them and wonder why its not build in Java out-c
String body = context.getTypeConverter ().convertTo(String.class, out);

// do >f the mail body
assertTrue (body.startsWith ("Incident 123 has been reported on the 2008-07-16
by Claus Ibsen."));

}

simple a rtions

/**
* Creates a dummy request to be used for input
*/
protected InputReportIncident createlInput() {
InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate ("2008-07-16") ;
input.setGivenName ("Claus") ;
input.setFamilyName ("Ibsen") ;
input.setSummary ("bla bla");
input.setDetails ("more bla bla");
input.setEmail ("davsclaus@apache.org") ;
input.setPhone ("+45 2962 7576");
return input;

TUTORIALS

~ful and you

144

145

ADDING THE FILE BACKUP

The next piece of puzzle that is missing is to store the mail body as a backup file. So we turn
back to our route and the EIP patterns. We use the Pipes and Filters pattern here to chain the
routing as:

public void configure () throws Exception {
from("direct:start")
.to("velocity:MailBody.vm")

Notice that we just add a 2nd .to on the newline. Camel will default use the Pipes and Filters
pattern here when there are multi endpoints chained liked this. We could have used the
pipeline verb to let out stand out that its the Pipes and Filters pattern such as:

from("direct:start")

1sing pipes-and-filters we send the outpu

.pipeline ("velocity:MailBody.vm", "file://targ

But most people are using the multi .to style instead.
We re-run out unit test and verifies that it still passes:

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also be created as the
backup file. If we look in the target/subfolder we can see that something happened.

On my humble laptop it created this folder: target\subfolder\ID-claus-acer. So the file
producer create a sub folder named ID-claus-acer what is this? Well Camel auto
generates an unique filename based on the unique message id if not given instructions to use a
fixed filename. In fact it creates another sub folder and name the file as: target\subfolder\ID-
claus-acer\3750-1219148558921\1-0 where |-0 is the file with the mail body. What we want is
to use our own filename instead of this auto generated filename. This is archived by adding a
header to the message with the filename to use. So we need to add this to our route and
compute the filename based on the message content.

Setting the filename

For starters we show the simple solution and build from there. We start by setting a constant
filename, just to verify that we are on the right path, to instruct the file producer what filename
to use. The file producer uses a special header FileComponent .HEADER FILE NAME to
set the filename.

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters

What we do is to send the header when we "kick-start" the routing as the header will be
propagated from the direct queue to the file producer. What we need to do is to use the
ProducerTemplate.sendBodyAndHeader method that takes both a body and a
header. So we change out webservice code to include the filename also:

public OutputReportIncident reportIncident (InputReportIncident parameters) {

create the producer template to use for sending messages
ProducerTemplate producer = context.createProducerTemplate () ;
1 the body and the filename defined with the special header
Object mailBody = producer.sendBodyAndHeader ("direct:start", parameters,
FileComponent.HEADER FILE NAME, "incident.txt");
System.out.println("Body:" + mailBody) ;

return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;

return out;

However we could also have used the route builder itself to configure the constant filename as
shown below:

public void configure() throws Exception ({
from("direct:start")
.to("velocity:MailBody.vm")

set the i lename to a constant before the ile producer receives

.setHeader (FileComponent .HEADER FILE NAME, constant("incident.txt"))

.to("file: target er");

But Camel can be smarter and we want to dynamic set the filename based on some of the input
parameters, how can we do this?

Well the obvious solution is to compute and set the filename from the webservice
implementation, but then the webservice implementation has such logic and we want this
decoupled, so we could create our own POJO bean that has a method to compute the
filename. We could then instruct the routing to invoke this method to get the computed
filename. This is a string feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename

First we create our plain java class that computes the filename, and it has 100% no
dependencies to Camel what so ever.

/**
* Plain java class to be used for filename generation based on the reported incident

TUTORIALS

146

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

147

*/

public class FilenameGenerator ({

public String generateFilename (InputReportIncident input) {
/ compute the filename

return "incident-" + input.getIncidentId() + ".txt";

The class is very simple and we could easily create unit tests for it to verify that it works as
expected. So what we want now is to let Camel invoke this class and its generateFilename with
the input parameters and use the output as the filename. Pheeeww is this really possible out-of-
the-box in Camel? Yes it is. So lets get on with the show. We have the code that computes the
filename, we just need to call it from our route using the Bean Language:

public void configure() throws Exception ({
from("direct:start")
set the filename using the bean lanc

the 2nd null parameter is optional methodname, to be used to avoid
if not provided Camel will try to figure out the best method to invoke,

bnly have one method this is very simple
.setHeader (FileComponent .HEADER FILE NAME,
BeanlLanguage.bean (FilenameGenerator.class, null))
.to("velocity:MailBody.vm")
.to("file: target/subfolder") ;

Notice that we use the bean language where we supply the class with our bean to invoke.
Camel will instantiate an instance of the class and invoke the suited method. For completeness
and ease of code readability we add the method name as the 2nd parameter

.setHeader (FileComponent .HEADER FILE NAME,
BeanLanguage.bean (FilenameGenerator.class, "generateFilename"))

Then other developers can understand what the parameter is, instead of null.

Now we have a nice solution, but as a sidetrack | want to demonstrate the Camel has other
languages out-of-the-box, and that scripting language is a first class citizen in Camel where it etc.
can be used in content based routing. However we want it to be used for the filename
generation.

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

Using a script language to set the filename

We could do as in the previous parts where we send the computed filename as a message
header when we "kick-start" the route. But we want to learn new stuff so we look for a
different solution using some of Camels many Languages. As OGNL is a favorite language of
mine (used by WebWork) so we pick this baby for a Camel ride. For starters we must add it
to our pom.xml:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>${camel-version}</version>
</dependency>

And remember to refresh your editor so you got the new .jars.

We want to construct the filename based on this syntax: mail-incident-#ID#.txt
where #|D# is the incident id from the input parameters. As OGNL is a language that can
invoke methods on bean we can invoke the getIncidentId () on the message body and
then concat it with the fixed pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:
= request is the IN message. See the OGNL for other predefined objects
available
= body is the body of the in message
* incidentld will invoke the getIncidentId () method on the body.
The rest is just more or less regular plain code where we can concat
strings.

Now we got the expression to dynamic compute the filename on the fly we need to set it on
our route so we turn back to our route, where we can add the OGNL expression:

public void configure() throws Exception ({
from("direct:start")

ve need to set the filename and uses OGNL for this
.setHeader (FileComponent .HEADER FILE NAME,
OgnlExpression.ognl ("'mail-incident-' + request.body.incidentId + '.txt'"))

TUTORIALS

148

https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL

d-filters send the output from the previous

// using pipe

to the next

.pipeline ("velocity:MailBody.vm", "file://target/subfolder");

And since we are on Java |.5 we can use the static import of ognl so we have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;

.setHeader (FileComponent.HEADER FILE_NAME, ognl("'mail-incident-' +
request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as the Bean Language
we used previously.

Whatever worked for you we have now implemented the backup of the data files:

Incident :
Message |
|:5:{> - |}{| |:'> >
| — (S—
I Web Translator i
A File
: Service Mail Backup
% | Message
ok —
Reply _—— = — == ——————— = — =

SENDING THE EMAIL

What we need to do before the solution is completed is to actually send the email with the mail
body we generated and stored as a file. In the previous part we did this with a File consumer,
that we manually added to the CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;
public class ReportIncidentRoutes extends RouteBuilder ({

public void configure() throws Exception ({

// first part from the oservice -> file backup
from("direct:start")
.setHeader (FileComponent .HEADER FILE NAME, bean(FilenameGenerator.class,
"generateFilename"))
.to("velocity:MailBody.vm")
.to("file://target/subfolder") ;

1499 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

d part £

from("file://tar
/ set the sub the

.setHeader ("subject", constant("new incident reported"))

email

send the email

.to("smtp://sc secret&to=incident@mycompany.com") ;

The last 3 lines of code does all this. It adds a file consumer from(“file://target/
subfolder™), sets the mail subject, and finally send it as an email.

The DSL is really powerful where you can express your routing integration logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

Incident ir
Message |
|
»
f) {) EEI ':1[> =') __0 U
: Web Palling Mail
| e Translator ‘ File Consumer Endpoint
Service Mail Backup
t:} : Message
oK : Integration Platform
Repy - -"—-"—""—"—"—"—"—"—"—"—"—{—"—{—"—{—{—"—"—{—¥—"—"—"—"——"———

We have just briefly touched the routing in Camel and shown how to implement them using
the fluent builder syntax in Java. There is much more to the routing in Camel than shown
here, but we are learning step by step. We continue in part 5. See you there.

RESOURCES

. Name Size Creator Creation Date Comment

i1 part-fourzip 11 kB Claus Ibsen Aug 25, 2008 07:24

LINKS

= Introduction
= Part |
= Part2
= Part3

TUTORIALS

150

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/93043/part-four.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3

151

= Part 4
= Part5

BETTER JMS TRANSPORT FOR CXF WEBSERVICE USING
APACHE CAMEL

Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really easy or nice. This
article shows how to use Apache Camel to provide a better JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the
JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using Camel for JMS is
still a good idea if you want to use the rich feature of Camel for routing and other Integration
Scenarios that CXF does not support.

You can find the original announcement for this Tutorial and some additional info on
Christian Schneider—¥s Blog

So how to connect Apache Camel and CXF

The best way to connect Camel and CXF is using the Camel transport for CXF. This is a camel
module that registers with cxf as a new transport. It is quite easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<property name="transportIds">
<list>
<value>http://cxf.apache.org/transports/camel</value>
</list>
</property>
</bean>

This bean registers with CXF and provides a new transport prefix camel:// that can be used in
CXF address configurations. The bean references a bean cxf which will be already present in
your config. The other refrenceis a camel context. We will later define this bean to provide the
routing config.

How is JMS configured in Camel

In camel you need two things to configure JMS. A ConnectionFactory and a JMSComponent. As
ConnectionFactory you can simply set up the normal Factory your JMS provider offers or bind
a JNDI ConnectionFactory. In this example we use the ConnectionFactory provided by
ActiveMQ.

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5
https://cwiki.apache.org/confluence/display/CXF20DOC/Using+the+JMSConfigFeature
https://cwiki.apache.org/confluence/display/CXF20DOC/Using+the+JMSConfigFeature
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single

<bean id="jmsConnectionFactory" class="org.apache.activemg.ActiveMQConnectionFactory">
st:61616" />

<property name="brokerURL" value="tcp://localh
</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel that we simply
call jms. If we need several [MSComponents we can differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="useMessageIDAsCorrelationID" value="true" />
</bean>

You can find more details about the JMSComponent at the Camel Wiki. For example you find
the complete configuration options and a JNDI sample there.

Setting up the CXF client

We will configure a simple CXF webservice client. It will use stub code generated from a wsdl.
The webservice client will be configured to use JMS directly. You can also use a direct: Endpoint
and do the routing to JMS in the Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws"
xmlns:customer="http://customerservice.example.com/"
serviceName="customer:CustomerServiceService"
endpointName="customer:CustomerServiceEndpoint"
address="camel:jms:queue:CustomerService"
serviceClass="com.example.customerservice.CustomerService">
</client>

We explicitly configure serviceName and endpointName so they are not read from the wsdl.
The names we use are arbitrary and have no further function but we set them to look nice. The
serviceclass points to the service interface that was generated from the wsdl. Now the
important thing is address. Here we tell cxf to use the camel transport, use the JmsComponent
who registered the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext
As we do not need additional routing an empty CamelContext bean will suffice.

<camelContext id="camelContext" xmlns="http://activemq.
</camelContext>

.org/camel/schema/spring">

TUTORIALS

152

http://activemq.apache.org/camel/jms.html
http://activemq.apache.org/camel/spring.html

153

Running the Example

* Download the example project here
* Follow the readme.txt

Conclusion

As you have seen in this example you can use Camel to connect services to JMS easily while
being able to also use the rich integration features of Apache Camel.

TUTORIAL USING AXIS 1.4 WITH APACHE CAMEL

* Tutorial using Axis |.4 with Apache Camel
* Prerequisites

» Distribution

* Introduction

» Setting up the project to run Axis
* Maven 2

* wsdl

» Configuring Axis

* Running the Example

* Integrating Spring

» Using Spring

* Integrating Camel

* CamelContext

* Store a file backup

* Running the example

* Unit Testing

* Smarter Unit Testing with Spring
* Unit Test calling WebService

* Annotations

* The End

* See Also

Prerequisites

This tutorial uses Maven 2 to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel |.5 distribution as examples/camel-example-

axis.

TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/95908/cxfcamelexample.zip?version=2&modificationDate=1219861188000

Introduction

Apache Axis is/was widely used as a webservice framework. So in line with some of the other
tutorials to demonstrate how Camel is not an invasive framework but is flexible and integrates
well with existing solution.

We have an existing solution that exposes a webservice using Axis |.4 deployed as web
applications. This is a common solution. We use contract first so we have Axis generated
source code from an existing wsdl file. Then we show how we introduce Spring and Camel to
integrate with Axis.

This tutorial uses the following frameworks:
* Maven 2.0.9
* Apache Camel 1.5.0
* Apache Axis 1.4
* Spring 2.5.5

Setting up the project to run Axis

This first part is about getting the project up to speed with Axis. We are not touching Camel or
Spring at this time.

Maven 2

Axis dependencies is available for maven 2 so we configure our pom.xml as:

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis</artifactId>
<version>1l.4</version>
</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-jaxrpc</artifactId>
<version>1l.4</version>

</dependency>

<dependency>
<groupld>org.apache.axis</groupld>
<artifactId>axis-saaj</artifactId>
<version>1l.4</version>
</dependency>

<dependency>
<groupId>axis</groupId>
<artifactId>axis-wsdl4j</artifactId>
<version>1.5.1</version>
</dependency>

TUTORIALS

154

http://ws.apache.org/axis/

<dependency>
<groupId>commons-discovery</groupId>
<artifactId>commons-discovery</artifactId>
<version>0.4</version>

</dependency>

<dependency>
<groupld>log4j</groupIld>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
</dependency>

Then we need to configure maven to use Java 1.5 and the Axis maven plugin that generates the
source code based on the wsdl file:

<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1l.5</target>
</configuration>
</plugin>

<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>axistools-maven-plugin</artifactId>
<configuration>
<sourceDirectory>src/main/resources/</sourceDirectory>
<packageSpace>com.mycompany.myschema</packageSpace>
<testCases>false</testCases>
<serverSide>true</serverSide>
<subPackageByFileName>false</subPackageByFileName>
</configuration>
<executions>
<execution>
<goals>
<goal>wsdl2java</goal>
</goals>
</execution>
</executions>
</plugin>

wsdl

We use the same .wsdl file as the Tutorial-Example-Reportincident and copy it to src/main/
webapp/WEB-INF/wsdl

I55 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident

<?xml version="1.0" encoding="ISO-8859-1"?2>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
<xs:element name="inputReportIncident">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="incidentId"/>
<xs:element type="xs:string"
name="incidentDate"/>
<xs:element type="xs:string"
name="givenName" />
<xs:element type="xs:string"
name="familyName" />
<xs:element type="xs:string"
name="summary" />
<xs:element type="xs:string"
name="details"/>
<xs:element type="xs:string"
name="email"/>
<xs:element type="xs:string"
name="phone" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="code" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

TUTORIALS

156

157

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>
</wsdl:operation>
</wsdl:portType>

Ll==

orts and er

>ort bindin ding - HTTP, document literal

encoding is used -->
<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">
<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"

style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>

<wsdl:output>
<soap:body parts="parameters" use="literal"/>

</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">
<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">
<soap:address
location="http://reportincident.example.camel.apache.org"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Configuring Axis

Okay we are now setup for the contract first development and can generate the source file. For
now we are still only using standard Axis and not Spring nor Camel. We still need to setup Axis
as a web application so we configure the web.xml in src/main/webapp/WEB-INF/

web.xml as:

<servlet>
<servlet-name>axis</servlet-name>
<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>axis</servlet-name>

TUTORIALS

<url-pattern>/services/*</url-pattern>
</servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web requests to its servlet
mapping. We still need to configure Axis itself and this is done using its special configuration file
server-config.wsdd. We nearly get this file for free if we let Axis generate the source
code so we run the maven goal:

mvn axistools:wsdl2java

The tool will generate the source code based on the wsdl and save the files to the following
folder:

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd

InputReportIncident.java

OutputReportIncident.java

ReportIncidentBindingImpl.java

ReportIncidentBindingStub. java

ReportIncidentService PortType.java

ReportIncidentService Service.java

ReportIncidentService_ServicelLocator.java

undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To implement our
webservice we will add our code, so we create a new class
AxisReportIncidentService that implements the port type interface where we can
implement our code logic what happens when the webservice is invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService PortType;

import java.rmi.RemoteException;

/**
* Axis webservice
*/
public class AxisReportIncidentService implements ReportIncidentService PortType {
public OutputReportIncident reportIncident (InputReportIncident parameters) throws
RemoteException {
System.out.println("Hello AxisReportIncidentService is called from " +

parameters.getGivenName ()) ;

OutputReportIncident out = new OutputReportIncident();

TUTORIALS

158

159

out.setCode ("OK") ;
return out;

Now we need to configure Axis itself and this is done using its server-config.wsdd file.
We nearly get this for for free from the auto generated code, we copy the stuff from
deploy.wsdd and made a few modifications:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/" xmlns:java="http://xml.apache.org/
axis/wsdd/providers/java">
<!-- global configuration -->
<globalConfiguration>
<parameter name="sendXsiTypes" value="true"/>
<parameter name="sendMultiRefs" value="true"/>
<parameter name="sendxXMLDeclaration" value="true"/>
<parameter name="axis.sendMinimizedElements" value="true"/>
</globalConfiguration>
<handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>

<!-- this service is from deploy.wsdd -->
<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">
<parameter name="wsdlTargetNamespace"
value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServiceElement" value="ReportIncidentService"/>
<parameter name="schemaUnqualified"
value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServicePort" value="ReportIncidentPort"/>
<parameter name="className"
value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl" />
<parameter name="wsdlPortType" value="ReportIncidentService"/>
<parameter name="typeMappingVersion" value="1.2"/>
<operation name="reportIncident" gname="ReportIncident"
returnQName="retNS:outputReportIncident"
xmlns:retNS="http://reportincident.example.camel.apache.org"
returnType="rtns:>outputReportIncident"
xmlns:rtns="http://reportincident.example.camel.apache.org"
soapAction="http://reportincident.example.camel.apache.org/
ReportIncident" >
<parameter gname="pns:inputReportIncident"
xmlns:pns="http://reportincident.example.camel.apache.org"
type="tns:>inputReportIncident"
xmlns:tns="http://reportincident.example.camel.apache.org"/>
</operation>
<parameter name="allowedMethods" value="reportIncident"/>

<typeMapping

xmlns:ns="http://reportincident.example.camel.apache.org"
gname="ns:>outputReportIncident"

TUTORIALS

type="java:org.apache.camel.example.reportincident.OutputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>

<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
gname="ns:>inputReportIncident"
type="java:org.apache.camel.example.reportincident.InputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"

encodingStyle=""
/>
</service>
<!-- part of Axis configuration -->

<transport name="http">

<requestFlow>
<handler type="URLMapper"/>
<handler
type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
</requestFlow>
</transport>

</deployment>

The globalConfiguration and transport is not in the deploy.wsdd file so you gotta write
that yourself. The service is a 100% copy from deploy.wsdd. Axis has more configuration to it
than shown here, but then you should check the Axis documentation.

What we need to do now is important, as we need to modify the above configuration to use
our webservice class than the default one, so we change the classname parameter to our class
AxisReportincidentService:

<parameter name="className"
value="org.apache.camel.example.axis.AxisReportIncidentService" />

Running the Example

Now we are ready to run our example for the first time, so we use Jetty as the quick web
container using its maven command:

mvn jetty:run
Then we can hit the web browser and enter this URL: http://localhost:8080/

camel-example-axis/services and you should see the famous Axis start page with the
text And now... Some Services.

TUTORIALS

160

http://ws.apache.org/axis/
http://localhost:8080/camel-example-axis/services
http://localhost:8080/camel-example-axis/services

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto generated one and not
our original .wsdl file. So we need to fix this ASAP and this is done by configuring Axis in the
server-config.wsdd file:

<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">
<wsdlFile>/WEB-INF/wsdl/report_incident.wsdl</wsdlFile>

We do this by adding the wsdlFile tag in the service element where we can point to the real
.wsdl file.

Integrating Spring

First we need to add its dependencies to the pom.xml.

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>2.5.5</version>

</dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml and a context
parameter to be able to configure precisely what spring xml files to use:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
classpath:axis-example-context.xml
</param-value>
</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Next is to add a plain spring XML file named axis-example-context.xml in the src/main/
resources folder.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

</beans>

161 TUTORIALS

The spring XML file is currently empty. We hit jetty again with mvn Jjetty:run just to make
sure Spring was setup correctly.

Using Spring

We would like to be able to get hold of the Spring ApplicationContext from our webservice so
we can get access to the glory spring, but how do we do this? And our webservice class
AxisReportincidentService is created and managed by Axis we want to let Spring do this. So we
have two problems.

We solve these problems by creating a delegate class that Axis creates, and this delegate
class gets hold on Spring and then gets our real webservice as a spring bean and invoke the
service.

First we create a new class that is 100% independent from Axis and just a plain POJO. This is
our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Our real service that is not tied to Axis
*/

public class ReportIncidentService {

public OutputReportIncident reportIncident (InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +
parameters.getGivenName ()) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

So now we need to get from AxisReportincidentService to this one ReportincidentService using
Spring. Well first of all we add our real service to spring XML configuration file so Spring can
handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?2>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

TUTORIALS

162

163

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>

And then we need to modify AxisReportincidentService to use Spring to lookup the spring bean
id="incidentservice" and delegate the call. We do this by extending the spring class
org.springframework.remoting.jaxrpc.ServletEndpointSupport so the
refactored code is:

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;

import org.apache.camel.example.reportincident.OutputReportIncident;

import org.apache.camel.example.reportincident.ReportIncidentService PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/‘k‘k

* Axis webservice

*/
public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService PortType {

public OutputReportIncident reportIncident (InputReportIncident parameters) throws
RemoteException {

// get hold of the spring bean from the blication context

ReportIncidentService service = (ReportIncidentService)
getApplicationContext () .getBean ("incidentservice") ;

// deleg to the real service

return service.reportIncident (parameters);

To see if everything is okay we run mvn jetty:run.

In the code above we get hold of our service at each request by looking up in the application
context. However Spring also supports an init method where we can do this once. So we
change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService PortType {

private ReportIncidentService service;

@QOverride
protected void onInit() throws ServiceException ({

TUTORIALS

get hold of the spring bean from the

service = (ReportIncidentService)
getApplicationContext () .getBean("incidentservice");

}

public OutputReportIncident reportIncident (InputReportIncident parameters) throws
RemoteException ({
delegate to the real service

return service.reportIncident (parameters);

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel

Again the first step is to add the dependencies to the maven pom.xml file:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.5.0</version>
</dependency>

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-spring</artifactId>
<version>1.5.0</version>

</dependency>

Now that we have integrated with Spring then we easily integrate with Camel as Camel works
well with Spring.
We choose to integrate Camel in the Spring XML file so we add the camel namespace and the
schema location:

xmlns:camel="http://
- rg/camel/schema

CamelContext

CamelContext is the heart of Camel its where all the routes, endpoints, components, etc. is
registered. So we setup a CamelContext and the spring XML files looks like:

TUTORIALS

164

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

165

% Camel does not require Spring
Camel does not require Spring, we could easily have used Camel without Spring,
but most users prefer to use Spring also.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://activemq.apache.org/camel/schema/spring"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd
http://activemqg.apache.org/camel/schema/spring http://activemq.apache.org/
camel/schema/spring/camel-spring.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camel">
<!—— T

: Here we can add Camel stuff -->
</camel:camelContext>

</beans>

Store a file backup

We want to store the web service request as a file before we return a response. To do this we
want to send the file content as a message to an endpoint that produces the file. So we need to
do two steps:

= configure the file backup endpoint

= send the message to the endpoint
The endpoint is configured in spring XML so we just add it as:

<camel:camelContext id="camelContext">
<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>
</camel:camelContext>

In the CamelContext we have defined our endpoint with the id backup and configured it use
the URL notation that we know from the internet. Its a £i1le scheme that accepts a context
and some options. The contest is target and its the folder to store the file. The option is just
as the internet with ? and & for subsequent options. We configure it to not append, meaning
than any existing file will be overwritten. See the File component for options and how to use
the camel file endpoint.

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/How+do+I+configure+endpoints
https://cwiki.apache.org/confluence/display/CAMEL/File

Next up is to be able to send a message to this endpoint. The easiest way is to use a
ProducerTemplate. A ProducerTemplate is inspired by Spring template pattern with for
instance J/msTemplate or JdbcTemplate in mind. The template that all the grunt work and
exposes a simple interface to the end-user where he/she can set the payload to send. Then the
template will do proper resource handling and all related issues in that regard. But how do we
get hold of such a template? Well the CamelContext is able to provide one. This is done by
configuring the template on the camel context in the spring XML as:

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->

<camel:template id="camelTemplate"/>

‘ponen —

configued as a file comp

<!-- endpoint named backup that is n
<camel:endpoint id="backup" uri="file://target?append=false"/>
</camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a setter in the Java
code as:

public class ReportIncidentService {
private ProducerTemplate template;

public void setTemplate (ProducerTemplate template) {
this.template = template;

And then let Spring handle the dependency inject as below:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService">
<!-- set the producer template to use from the camel context below -->
<property name="template" ref="camelTemplate"/>
</bean>

Now we are ready to use the producer template in our service to send the payload to the
endpoint. The template has many sendXXX methods for this purpose. But before we send
the payload to the file endpoint we must also specify what filename to store the file as. This is
done by sending meta data with the payload. In Camel metadata is sent as headers. Headers is
just a plain Map<String, Object>. So if we needed to send several metadata then we
could construct an ordinary HashMap and put the values in there. But as we just need to send
one header with the filename Camel has a convenient send method sendBodyAndHeader so

we choose this one.

public OutputReportIncident reportIncident (InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

TUTORIALS

166

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

167

parameters.getGivenName ()) ;
String data = parameters.getDetails();
store the data as a file

String filename = parameters.getIncidentId() + ".txt";
>nd the data to the endpoint and the header contains what filename it

as
template.sendBodyAndHeader ("backup", data, "org.apache.camel.file.name",

filename) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

The template in the code above uses 4 parameters:
= the endpoint name, in this case the id referring to the endpoint defined in Spring XML
in the camelContext element.
= the payload, can be any kind of object
= the key for the header, in this case a Camel keyword to set the filename
= and the value for the header

Running the example

We start our integration with maven using mvn Jjetty:run. Then we open a browser and
hithttp://localhost:8080. Jetty is so smart that it display a frontpage with links to the
deployed application so just hit the link and you get our application. Now we hit append
/services to the URL to access the Axis frontpage. The URL should be
http://localhost:8080/camel-example-axis/services.

You can then test it using a web service test tools such as SoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

TUTORIALS

http://localhost:8080
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

Unit Testing

We would like to be able to unit test our ReportincidentService class. So we add junit to
the maven dependency:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.2</version>

<scope>test</scope>
</dependency>

And then we create a plain junit testcase for our service class.

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;

import org.apache.camel.example.reportincident.OutputReportIncident;

Vals

* Unit test of service

*/

public class ReportIncidentServiceTest extends TestCase {

public void testIncident() {

ReportIncidentService service = new ReportIncidentService();

InputReportIncident input = createDummyIncident();

OutputReportIncident output = service.reportIncident (input) ;

assertEquals ("OK", output.getCode());

protected InputReportIncident createDummyIncident () {

InputReportIncident input = new InputReportIncident();

input.
input.
.setIncidentDate ("2008-07-13");

input

input.
input.
input.
input.
input.

setEmail ("davsclaus@apache.org");
setIncidentId("12345678");

setPhone ("+45 2962 7576");

setSummary ("Failed operation");

setDetails ("The wrong foot was operated."):;
setFamilyName ("Ibsen") ;

setGivenName ("Claus") ;

return input;

Then we can run the test with maven using

:mvn test. But we will get a failure:

TUTORIALS

168

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results

Tests in error:
testIncident (org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template) to send a message
to the file endpoint so the message will be stored in a file. What we need is to get hold of such
a producer and inject it on our service, by calling the setter.

Since Camel is very light weight and embedable we are able to create a CamelContext and
add the endpoint in our unit test code directly. We do this to show how this is possible:

private CamelContext context;

@Override
protected void setUp() throws Exception {
super.setUp () ;

// Camel is just cre like this
context = new DefaultCamelContext () ;
// then we an create our endpoint and set the tions
FileEndpoint endpoint = new FileEndpoint () ;
the endpoint must have the camel context set also

endpoint.setCamelContext (context) ;
// our output folder

endpoint.setFile (new File("target"));

option not to 1d

// and the

endpoint.setAppend (false) ;

// d the e t just in j just as the spring XML, we
ter it with the "backup" o

context.addSingletonEndpoint ("backup", endpoint);

// finally we need to start the 1text Camel is ready to

context.start();

QOverride
protected void tearDown () throws Exception {
super.tearDown () ;

and we are nice

context.stop();

So now we are ready to set the ProducerTemplate on our service, and we get a hold of that
baby from the CamelContext as:

169 TUTORIALS

public void testIncident () {
ReportIncidentService service = new ReportIncidentService();

X

get a producer template from the camel context

ProducerTemplate template = context.createProducerTemplate();
inject 1T Oor our service uslng the setter

service.setTemplate (template) ;

InputReportIncident input = createDummyIncident () ;
OutputReportIncident output = service.reportIncident (input) ;
assertEquals ("OK", output.getCode());

And this time when we run the unit test its a success:

Results

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test method:

should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue ("File should exists", file.exists()):;

Smarter Unit Testing with Spring

The unit test above requires us to assemble the Camel pieces manually in java code. What if we
would like our unit test to use our spring configuration file axis-example-context.xml
where we already have setup the endpoint. And of course we would like to test using this
configuration file as this is the real file we will use. Well hey presto the xml file is a spring
ApplicationContext file and spring is able to load it, so we go the spring path for unit testing.
First we add the spring-test jar to our maven dependency:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<scope>test</scope>

</dependency>

And then we refactor our unit test to be a standard spring unit class. What we need to do is to
extend AbstractJUnit38SpringContextTests instead of TestCase in our unit test.
Since Spring 2.5 embraces annotations we will use one as well to instruct what our xml
configuration file is located:

TUTORIALS

170

171

@ContextConfiguration (locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the classpath: prefix as our xml file is located in src/
main/resources. If we omit the prefix then Spring will by default try to locate the xml file
in the current package and that is org.apache.camel.example.axis. If the xml file is located
outside the classpath you can use file: prefix instead. So with these two modifications we can
get rid of all the setup and teardown code we had before and now we will test our real
configuration.

The last change is to get hold of the producer template and now we can just refer to the
bean id it has in the spring xml file:

with this id -->

<!-- producer template expo

<camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as all spring users is
used to do:

et a producer template from the the spring context
ProducerTemplate template = (ProducerTemplate)
applicationContext.getBean ("camelTemplate");

L @Eic dic G©F our service usling the

service.setTemplate (template) ;

Now our unit test is much better, and a real power of Camel is that is fits nicely with Spring
and you can use standard Spring'ish unit test to test your Camel applications as well.

Unit Test calling WebService

What if you would like to execute a unit test where you send a webservice request to the
AxisReportincidentService how do we unit test this one? Well first of all the code is
merely just a delegate to our real service that we have just tested, but nevertheless its a good
question and we would like to know how. Well the answer is that we can exploit that fact that
Jetty is also a slim web container that can be embedded anywhere just as Camel can. So we add
this to our pom.xml:

<dependency>
<groupIld>org.mortbay.jetty</groupIld>
<artifactId>jetty</artifactId>
<version>${jetty-version}</version>
<scope>test</scope>

</dependency>

TUTORIALS

Then we can create a new class AxisReportincidentServiceTest to unit test with Jetty.
The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {
private Server server;

private void startJetty() throws Exception {

// create an embedded Jetty server

server = new Server();

// add a listener on port 8080 on localhost (127.0.0.1)
Connector connector = new SelectChannelConnector();

connector.setPort (8080) ;
connector.setHost ("127.0.0.1");
server.addConnector (connector) ;
// add our w ext path
WebAppContext wac = new WebAppContext () ;
wac.setContextPath ("/unittest");

// set the location of

D con

WEB-INF is loc

1 point to src/main

// this is a nice feature of Je
wac.setWar ("./src/main/webapp") ;
server.setHandler (wac) ;

// then start Jetty
server.setStopAtShutdown (true) ;
server.start();

@QOverride

protected void setUp() throws Exception {
super.setUp () ;
startJetty () ;

QOverride

protected void tearDown () throws Exception ({
super.tearDown () ;
server.stop();

Now we just need to send the incident as a webservice request using Axis. So we add the
following code:

public void testReportIncidentWithAxis () throws Exception {
// the url to the axi e i >
URL url = new URL("http:

rtIncidentPort") ;

30/unittest/services/

TUTORIALS 172

173

wk

Axis stuff to get the rt 2 3 €
ReportIncidentService ServicelLocator locator

re we can

ReportIncidentService ServicelLocator();
ReportIncidentService PortType port = locator.getReportIncidentPort (url);
create input to send
InputReportIncident input = createDummyIncident();

send the we ervice and get the respo

se

OutputReportIncident output = port.reportIncident (input) ;
assertEquals ("OK", output.getCode());

should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue ("File should exists", file.exists()):;

protected InputReportIncident createDummyIncident () {
InputReportIncident input = new InputReportIncident();
input.setEmail ("davsclaus@apache.org") ;
input.setIncidentId("12345678");
input.setIncidentDate ("2008-07-13");
input.setPhone ("+45 2962 7576");
input.setSummary ("Failed operation");
input.setDetails ("The wrong foot was operated.");
input.setFamilyName ("Ibsen") ;
input.setGivenName ("Claus") ;
return input;

And now we have an unittest that sends a webservice request using good old Axis.

Annotations

Both Camel and Spring has annotations that can be used to configure and wire trivial settings
more elegantly. Camel has the endpoint annotation @EndpointInjected that is just what
we need. With this annotation we can inject the endpoint into our service. The annotation
takes either a name or uri parameter. The name is the bean id in the Registry. The uri is the
URI configuration for the endpoint. Using this you can actually inject an endpoint that you have
not defined in the camel context. As we have defined our endpoint with the id backup we use
the name parameter.

@EndpointInject (name = "backup")
private ProducerTemplate template;

Camel is smart as @EndpointInjected supports different kinds of object types. We like
the ProducerTemplate so we just keep it as it is.

Since we use annotations on the field directly we do not need to set the property in the spring
xml file so we change our service bean:

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with mvn test reveals that it works nicely.

And since we use the @EndpointInjected that refers to the endpoint with the id
backup directly we can loose the template tag in the xml, so its shorter:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->

<camel:template id="camelTemplate"/>

<!-- endpoint named backup that is configued as a file con

<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

And the final touch we can do is that since the endpoint is injected with concrete endpoint to
use we can remove the "backup" name parameter when we send the message. So we change
from:

// send the data to the endpoint and the header contains what filename it
should be stored as
template.sendBodyAndHeader ("backup", data, "org.apache.camel.file.name",

filename) ;

To without the name:

ns what filename it

Then we avoid to duplicate the name and if we rename the endpoint name then we don't forget
to change it in the code also.

The End

This tutorial hasn't really touched the one of the key concept of Camel as a powerful routing
and mediation framework. But we wanted to demonstrate its flexibility and that it integrates
well with even older frameworks such as Apache Axis |.4.

Check out the other tutorials on Camel and the other examples.

TUTORIALS

174

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

Note that the code shown here also applies to Camel |.4 so actually you can get started
right away with the released version of Camel. As this time of writing Camel 1.5 is work in
progress.

See Also

= Tutorials
= Examples

TUTORIAL ON USING CAMEL IN A WEB APPLICATION

Camel has been designed to work great with the Spring framework; so if you are already a
Spring user you can think of Camel as just a framework for adding to your Spring XML files.

So you can follow the usual Spring approach to working with web applications; namely to
add the standard Spring hook to load 2 /WEB-INF/applicationContext.xml file. In that
file you can include your usual Camel XML configuration.

Stepl: Edit your web.xml

To enable spring add a context loader listener to your /WEB=INF/web.xml file

<?xml version="1.0" encoding="UTF-8"?2>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/

w3.0rg/2001/XMLSchema-instance"

ns/javaee/web-app 2 5.xsd"
version="2.5">

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

</web-app>

This will cause Spring to boot up and look for the /WEB-INF/applicationContext.xml
file.

Step 2: Create a /WEB-INF/applicationContext.xml file

Now you just need to create your Spring XML file and add your camel routes or configuration.

For example

175 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorials
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Spring

<?xml version="1.0" encoding="UTF-8"?2>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:foo"/>
<to uri="mock:results"/>
</route>
</camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips

If you use Maven to build your application your directory tree will look like this...

src/main/webapp/WEB-INF
web . xml
applicationContext.xml

To enable more rapid development we hightly recommend the jetty:run maven plugin.

Please refer to the help for more information on using jetty:run - but briefly if you add the
following to your pom.xml

<build>
<plugins>
<plugin>
<groupld>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<configuration>
<webAppConfig>
<contextPath>/</contextPath>
</webAppConfig>
<scanIntervalSeconds>10</scanIntervalSeconds>
</configuration>
</plugin>
</plugins>
</build>

TUTORIALS

176

http://maven.apache.org/
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

Then you can run your web application as follows

mvn Jjetty:run

Then Jetty will also monitor your target/classes directory and your src/main/webapp directory
so that if you modify your spring XML, your web.xml or your java code the web application will
be restarted, re-creating your Camel routes.

If your unit tests take a while to run, you could miss them out when running your web
application via

mvn -Dtest=false jetty:run

TUTORIAL BUSINESS PARTNERS

BACKGROUND AND INTRODUCTION

Business Background

So there's a company, which we'll call Acme. Acme sells widgets, in a fairly unusual way. Their
customers are responsible for telling Acme what they purchased. The customer enters into
their own systems (ERP or whatever) which widgets they bought from Acme. Then at some
point, their systems emit a record of the sale which needs to go to Acme so Acme can bill them
for it. Obviously, everyone wants this to be as automated as possible, so there needs to be
integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell all their prospects,
"you can send us the data in whatever format, using whatever protocols, whatever. You just
can't change once it's up and running."

The result is pretty much what you'd expect. Taking a random sample of 3 customers:

* Customer I: XML over FTP

* Customer 2: CSV over HTTP

* Customer 3: Excel via e-mail
Now on the Acme side, all this has to be converted to a canonical XML format and submitted
to the Acme accounting system via JMS. Then the Acme accounting system does its stuff and
sends an XML reply via JMS, with a summary of what it processed (e.g. 3 line items accepted,
line item #2 in error, total invoice $123.45). Finally, that data needs to be formatted into an e-
mail, and sent to a contact at the customer in question ("Dear Joyce, we received an invoice on
[/2/08. We accepted 3 line items totaling $123.45, though there was an error with line items
#2 [invalid quantity ordered]. Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:
¢ Listen for HTTP, e-mail, and FTP files

177 TUTORIALS

Under Construction
This tutorial is a work in progress.

Grab attachments from the e-mail messages

Convert XML, XLS, and CSYV files to a canonical XML format
read and write JMS messages

route based on company ID

format e-mails using Velocity templates

send outgoing e-mail messages

Tutorial Background

This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:

Camel concepts including the CamelContext, Routes, Components and Endpoints,
and Enterprise Integration Patterns
Configuring Camel with the XML or Java DSL

You'll learn:

How to set up a Maven build for a Camel project
How to transform XML, CSV, and Excel data into a standard XML format with Camel
° How to write POJOs (Plain Old Java Objects), Velocity templates, and XSLT
stylesheets that are invoked by Camel routes for message transformation
How to configure simple and complex Routes in Camel, using either the XML or the
Java DSL format
How to set up unit tests that load a Camel configuration and test Camel routes
How to use Camel's Data Formats to automatically convert data between Java objects
and XML, CSV files, etc.
How to send and receive e-mail from Camel
How to send and receive JMS messages from Camel
How to use Enterprise Integration Patterns including Message Router and Pipes and
Filters
° How to use various languages to express content-based routing rules in
Camel
How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through building the code and
configuration files yourself. Each of the sections gives detailed descriptions of the steps that
need to be taken to get the components and routes working in Camel, and takes you through
tests to make sure they are working as expected.

But each section also links to working copies of the source and configuration files, so if you
don't want the hands-on approach, you can simply review and/or download the finished files.

TUTORIALS

178

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Spring#Spring-UsingSpringtoconfiguretheCamelContext
https://cwiki.apache.org/confluence/display/CAMEL/DSL

179

High-Level Diagram

Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

XML File XSLT

FTP » Component » template

CSvV Jetty (auto type POJO writes

HTTP » Component converter) —» JAXB beans

XLS » IMAP POJO uses \

e-mail Component POl to write JAXB

JAXB beans marshaller
And then, the output from Acme to the customers:
Velocity —m» SMTP
template component
Response —»- pPOJO ™ Routing Velocity —w» SMTP

queue expression template component
Velocity —» SMTP
template component

Tutorial Tasks

To get through this scenario, we're going to break it down into smaller pieces, implement and
test those, and then try to assemble the big scenario and test that.

Here's what we'll try to accomplish:
I. Create a Maven build for the project

oA wnp

the canonical format

TUTORIALS

Get sample files for the customer Excel, CSV, and XML input
Get a sample file for the canonical XML format that Acme's accounting system uses
Create an XSD for the canonical XML format
Create JAXB POJOs corresponding to the canonical XSD
Create an XSLT stylesheet to convert the Customer | (XML over FTP) messages to

14.
I5.

Create a unit test to ensure that a simple Camel route invoking the XSLT stylesheet
works
Create a POJO that converts a List<List<String>> to the above JAXB POJOs
° Note that Camel can automatically convert CSV input to a List of Lists of
Strings representing the rows and columns of the CSV, so we'll use this
POJO to handle Customer 2 (CSV over HTTP)
Create a unit test to ensure that a simple Camel route invoking the CSV processing
works
Create a POJO that converts a Customer 3 Excel file to the above JAXB POJOs
(using POI to read Excel)
Create a unit test to ensure that a simple Camel route invoking the Excel processing
works
Create a POJO that reads an input message, takes an attachment off the message, and
replaces the body of the message with the attachment
o This is assuming for Customer 3 (Excel over e-mail) that the e-mail contains
a single Excel file as an attachment, and the actual e-mail body is throwaway
Build a set of Camel routes to handle the entire input (Customer -> Acme) side of
the scenario.
Build unit tests for the Camel input.
TODO: Tasks for the output (Acme -> Customer) side of the scenario

LET'S GET STARTED!

Step I: Initial Maven build

We'll use Maven for this project as there will eventually be quite a few dependencies and it's
nice to have Maven handle them for us. You should have a current version of Maven (e.g. 2.0.9)

installed.

You can start with a pretty empty project directory and a Maven POM file, or use a simple
JAR archetype to create one.

Here's a sample POM. We've added a dependency on camel=-core, and set the compile
version to |.5 (so we can use annotations):

Listing 8. pom.xml

<?xml version="1.0" encoding="UTF-8"?2>

<project xmlns="http://maven.apache.org/POM/4.0.0">

<modelVersion>4.0.0</modelVersion>

<groupld>org.apache.camel.tutorial</groupId>

<artifactId>business-partners</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Camel Business Partners Tutorial</name>

<dependencies>

<dependency>

TUTORIALS

180

<artifactId>camel-core</artifactId>
<groupld>org.apache.camel</groupId>
<version>1.4.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1l.5</target>
</configuration>
</plugin>
</plugins>
</build>
</project>

Step 2: Get Sample Files

You can make up your own if you like, but here are the "off the shelf"

ones. You can save

yourself some time by downloading these to src/test/resources in your Maven project.

* Customer | (XML): input-customer|.xml

* Customer 2 (CSV): input-customer2.csv

* Customer 3 (Excel): input-customer3.xls

* Canonical Acme XML Request: canonical-acme-request.xml
* Canonical Acme XML Response: TODO

If you look at these files, you'll see that the different input formats use different field names and/
or ordering, because of course the sales guys were totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format

Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?>

<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">

<partner-id>2</partner-id>
<date-received>9/12/2008</date-received>
<line-item>
<product-id>134</product-id>
<description>A widget</description>
<quantity>3</quantity>
<item-price>10.45</item-price>
<order-date>6/5/2008</order-date>
</line-item>
<!-- // more line-item elements he

181 TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer2.csv?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer3.xls?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/canonical-acme-request.xml?version=1&modificationDate=1221319297000

<order-total>218.82</order-total>
</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that look like this, and
save it to src/main/xsd.

Solution: If not, you can download mine, and save that to save it to src/main/xsd.

Generating JAXB Beans

Down the road we'll want to deal with the XML as Java POJOs. We'll take a moment now to
set up those XML binding POJOs. So we'll update the Maven POM to generate JAXB beans
from the XSD file.

We need a dependency:

<dependency>
<artifactId>camel-jaxb</artifactId>
<groupld>org.apache.camel</groupId>
<version>1.4.0</version>
</dependency>

And a plugin configured:

<plugin>
<groupld>org.codehaus.mojo</groupIld>
<artifactId>jaxb2-maven-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>xjc</goal>
</goals>
</execution>
</executions>
</plugin>

That should do it (it automatically looks for XML Schemas in src/main/xsd to generate
beans for). Run mvn install and it should emit the beans into target/generated-
sources/jaxb. Your IDE should see them there, though you may need to update the
project to reflect the new settings in the Maven POM.

Step 4: Initial Work on Customer | Input (XML over FTP)

To get a start on Customer |, we'll create an XSLT template to convert the Customer |
sample file into the canonical XML format, write a small Camel route to test it, and build that

TUTORIALS

182

https://cwiki.apache.org/confluence/download/attachments/97175/canonical-acme-request.xsd?version=1&modificationDate=1221569994000

183

into a unit test. If we get through this, we can be pretty sure that the XSLT template is valid and
can be run safely in Camel.

Create an XSLT template

Start with the Customer | sample input. You want to create an XSLT template to generate
XML like the canonical XML sample above —an invoice element with 1ine-item elements
(one per item in the original XML document). If you're especially clever, you can populate the
current date and order total elements too.

Solution: My sample XSLT template isn't that smart, but it'll get you going if you don't
want to write one of your own.

Create a unit test

Here's where we get to some meaty Camel work. We need to:

* Set up a unit test

* That loads a Camel configuration

* That has a route invoking our XSLT

* Where the test sends a message to the route

* And ensures that some XML comes out the end of the route
The easiest way to do this is to set up a Spring context that defines the Camel stuff, and then
use a base unit test class from Spring that knows how to load a Spring context to run tests
against. So, the procedure is:

Set Up a Skeletal Camel/Spring Unit Test

I. Add dependencies on Camel-Spring, and the Spring test JAR (which will automatically
bring in JUnit 3.8.x) to your POM:

<dependency>
<artifactId>camel-spring</artifactId>
<groupld>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

<dependency>
<artifactId>spring-test</artifactId>
<groupId>org.springframework</groupId>
<version>2.5.5</version>
<scope>test</scope>

</dependency>

2. Create a new unit test class in src/test/java/your-package-here, perhaps
called XMLInputTest.java

TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLConverter.xsl?version=1&modificationDate=1221329900000

Make the test extend Spring's Abstract)Unit38SpringContextTests class, so it can load

a Spring context for the test

Create a Spring context configuration file in src/test/resources, perhaps

called XMLInputTest-context.xml

In the unit test class, use the class-level @ContextConfiguration annotation to

indicate that a Spring context should be loaded

° By default, this looks for a Context configuration file called
TestClassName-context.xml in a subdirectory corresponding to the
package of the test class. For instance, if your test class was
org.apache.camel.tutorial.XMLInputTest, it would look for
org/apache/camel/tutorial/XMLInputTest-context.xml
o To override this default, use the locations attribute on the

@ContextConfiguration annotation to provide specific context file
locations (starting each path with a / if you don't want it to be relative to
the package directory). My solution does this so | can put the context file
directly in src/test/resources instead of in a package directory
under there.

Add a CamelContext instance variable to the test class, with the @Autowired

annotation. That way Spring will automatically pull the CamelContext out of the

Spring context and inject it into our test class.

Add a ProducerTemplate instance variable and a setUp method that instantiates it

from the CamelContext. We'll use the ProducerTemplate later to send messages to

the route.

protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception ({
super.setUp() ;
template = camelContext.createProducerTemplate () ;

Put in an empty test method just for the moment (so when we run this we can see
that "l test succeeded")

Add the Spring <beans> element (including the Camel Namespace) with an empty
<camelContext> element to the Spring context, like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd
http://activemqg.apache.org/camel/schema/spring
http://activemg.apache.org/camel/schema/spring/
camel-spring-1.4.0.xsd">

TUTORIALS

184

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
https://cwiki.apache.org/confluence/display/CAMEL/Spring#Spring-UsingSpringtoconfiguretheCamelContext

185

<camelContext id="camel" xmlns="http://activemqg.apache.org/camel/schema/
spring">

</camelContext>
</beans>

Test it by running mvn install and make sure there are no build errors. So far it doesn't test
much; just that your project and test and source files are all organized correctly, and the one
empty test method completes successfully.
Solution: Your test class might look something like this:
* src/test/java/org/apache/camel/tutorial/ XMLInputTest.java
* src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test

So now we're going to write a Camel route that applies the XSLT to the sample Customer |
input file, and makes sure that some XML output comes out:
I. Save the input-customer|.xml file to src/test/resources
2. Save your XSLT file (created in the previous step) to src/main/resources
3. Write a Camel Route, either right in the Spring XML, or using the Java DSL (in
another class under src/test/java somewhere). This route should use the Pipes
and Filters integration pattern to:
I. Start from the endpoint direct:start (which lets the test conveniently pass
messages into the route)
2. Call the endpoint xslt:YourXSLTFile.xs| (to transform the message with the
specified XSLT template)
3. Send the result to the endpoint mock:finish (which lets the test verify the
route output)
4. Add a test method to the unit test class that:
I. Get a reference to the Mock endpoint mock: finish using code like this:

MockEndpoint finish = MockEndpoint.resolve (camelContext,
"mock:finish");

2. Set the expectedMessageCount on that endpoint to |
3. Get a reference to the Customer | input file, using code like this:

InputStream in =
XMLInputTest.class.getResourceAsStream("/input-partnerl.xml") ;
assertNotNull (in) ;

4. Send that InputStream as a message to the direct:start endpoint,
using code like this:

TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/97175/empty-XMLInputTest.java?version=3&modificationDate=1221648819000
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/XSLT
https://cwiki.apache.org/confluence/display/CAMEL/Mock
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)

template.sendBody ("direct:start", in);

Note that we can send the sample file body in several formats (File,
InputStream, String, etc.) but in this case an InputStream is pretty
convenient.

5. Ensure that the message made it through the route to the final endpoint, by
testing all configured Mock endpoints like this:

MockEndpoint.assertIsSatisfied(camelContext);

6. If you like, inspect the final message body using some code like
finish.getExchanges () .get (0) .getIn () .getBody ().
= If you do this, you'll need to know what format that body is —
String, byte array, InputStream, etc.
5. Run your test with mvn install and make sure the build completes successfully.
Solution: Your finished test might look something like this:
* src/test/java/org/apache/camel/tutorial/ XMLInputTest.java
* For XML Configuration:
o src/test/resources/XMLInputTest-context.xml
* Oir, for Java DSL Configuration:
o src/test/resources/XMLInputTest-dsl-context.xml
° src/test/java/org/apache/camel/tutorial/routes/XMLInputTestRoute.java

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)

To get a start on Customer 2, we'll create a POJO to convert the Customer 2 sample CSV data
into the JAXB POJOs representing the canonical XML format, write a small Camel route to test
it, and build that into a unit test. If we get through this, we can be pretty sure that the CSV
conversion and JAXB handling is valid and can be run safely in Camel.

Create a CSV-handling POJO

To begin with, CSV is a known data format in Camel. Camel can convert a CSV file to a List
(representing rows in the CSV) of Lists (representing cells in the row) of Strings (the data for
each cell). That means our POJO can just assume the data coming in is of type
List<List<String>>, and we can declare a method with that as the argument.

Looking at the JAXB code in target/generated-sources/Jjaxb, it looks like an
Invoice object represents the whole document, with a nested list of LineltemType objects
for the line items. Therefore our POJO method will return an Invoice (a document in the
canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:

TUTORIALS

186

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest.java?version=3&modificationDate=1221651730000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest-context.xml?version=1&modificationDate=1221574632000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest-dsl-context.xml?version=1&modificationDate=1221641531000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTestRoute.java?version=1&modificationDate=1221641531000
https://cwiki.apache.org/confluence/display/CAMEL/CSV

187

i Test Base Class
Once your test class is working, you might want to extract things like the
@Autowired CamelContext, the ProducerTemplate, and the setUp method to a
custom base class that you extend with your other tests.

I. Create a new class under src/main/java, perhaps called CSVConverterBean.
2. Add a method, with one argument of type List<List<String>> and the return
type Invoice
> You may annotate the argument with @Body to specifically designate it as
the body of the incoming message
3. In the method, the logic should look roughly like this:
I. Create a new Invoice, using the method on the generated
ObjectFactory class
Loop through all the rows in the incoming CSV (the outer List)
Skip the first row, which contains headers (column names)
4. For the other rows:
I. Create a new LineItemType (using the ObjectFactory
again)
2. Pick out all the cell values (the Strings in the inner List) and put

w N

them into the correct fields of the LineItemType
* Not all of the values will actually go into the line item in
this example
* You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line
= Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML — which probably means
using a SimpleDateFormat to parse the date and
setting that date on a GregorianCalendar
3. Add the line item to the invoice
5. Populate the partner ID, date of receipt, and order total on the Invoice
6. Throw any exceptions out of the method, so Camel knows something went
wrong
7. Return the finished Invoice
Solution: Here's an example of what the CSVConverterBean might look like.

TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Bean#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
https://cwiki.apache.org/confluence/download/attachments/97175/CSVConverterBean.java?version=1&modificationDate=1221648421000

Create a unit test

Start with a simple test class and test Spring context like last time, perhaps based on the name
CSVInputTest:

Listing 9. CSVInputTest.java
/**

* A test class the ensure we can convert Partner 2 CSV input files to the
* canonical XML output format, using JAXB POJOs.

*/
@ContextConfiguration (locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests ({
QAutowired

protected CamelContext camelContext;
protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {

super.setUp () ;
template = camelContext.createProducerTemplate () ;

public void testCSVConversion() {

Listing 10. CSVInputTest-context.xml

<?xml version="1.0" encoding="UTF-8"?2>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd
http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/
camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemqg.apache.org/camel/schema/spring">
<!-- TODO -->
</camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.
I. Update the Maven POM to include CSV Data Format support:

<dependency>
<artifactId>camel-csv</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>
</dependency>

TUTORIALS

188

https://cwiki.apache.org/confluence/display/CAMEL/CSV
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

2. Write the routes (right in the Spring XML context, or using the Java DSL) for the
CSV conversion process, again using the Pipes and Filters pattern:

Start from the endpoint direct:CSVstart (which lets the test conveniently
pass messages into the route). We'll name this differently than the starting
point for the previous test, in case you use the Java DSL and put all your
routes in the same package (which would mean that each test would load
the DSL routes for several tests.)

This time, there's a little preparation to be done. Camel doesn't know that
the initial input is a CSV, so it won't be able to convert it to the expected
List<List<String>> without a little hint. For that, we need an
unmarshal transformation in the route. The unmarshal method (in the
DSL) or element (in the XML) takes a child indicating the format to
unmarshal; in this case that should be csv.

Next invoke the POJO to transform the message with a
bean:CSVConverter endpoint

As before, send the result to the endpoint mock:finish (which lets the test
verify the route output)

Finally, we need a Spring <bean> element in the Spring context XML file
(but outside the <camelContext> element) to define the Spring bean
that our route invokes. This Spring bean should have a name attribute that
matches the name used in the bean endpoint (CSVConverter in the
example above), and a class attribute that points to the CSV-to-JAXB
POJO class you wrote above (such as,
org.apache.camel.tutorial.CSVConverterBean). When
Spring is in the picture, any bean endpoints look up Spring beans with the
specified name.

3. Write a test method in the test class, which should look very similar to the previous

test class:
l.

Get the MockEndpoint for the final endpoint, and tell it to expect one
message
Load the Partner 2 sample CSV file from the ClassPath, and send it as the
body of a message to the starting endpoint
Verify that the final MockEndpoint is satisfied (that is, it received one
message) and examine the message body if you like
= Note that we didn't marshal the JAXB POJOs to XML in this test,
so the final message should contain an Invoice as the body. You
could write a simple line of code to get the Exchange (and
Message) from the MockEndpoint to confirm that.

4. Run this new test with mvn install and make sure it passes and the build completes
successfully.
Solution: Your finished test might look something like this:
* src/test/java/org/apache/camel/tutorial/CSVInputTest.java

* For XML

189 TUTORIALS

Configuration:

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format#DataFormat-Unmarshalling
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format#DataFormat-Marshalling
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest.java?version=2&modificationDate=1221693356000

o src/test/resources/CSVInputTest-context.xml
* Or, for Java DSL Configuration:
o src/test/resources/CSVInputTest-dsl-context.xml
° src/test/java/org/apache/camel/tutorial/routes/CSVInputTestRoute.java

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)

To get a start on Customer 3, we'll create a POJO to convert the Customer 3 sample Excel
data into the JAXB POJOs representing the canonical XML format, write a small Camel route
to test it, and build that into a unit test. If we get through this, we can be pretty sure that the
Excel conversion and JAXB handling is valid and can be run safely in Camel.

Create an Excel-handling POJO

Camel does not have a data format handler for Excel by default. We have two options — create
an Excel DataFormat (so Camel can convert Excel spreadsheets to something like the CSV
List<List<String>> automatically), or create a POJO that can translate Excel data
manually. For now, the second approach is easier (if we go the DataFormat route, we need
code to both read and write Excel files, whereas otherwise read-only will do).

So, we need a POJO with a method that takes something like an InputStream or
byte[] as an argument, and returns in Invoice as before. The process should look
something like this:

I. Update the Maven POM to include POI support:

<dependency>
<artifactId>poi</artifactId>
<groupId>org.apache.poi</groupId>
<version>3.1-FINAL</version>
</dependency>

2. Create a new class under src/main/java, perhaps called
ExcelConverterBean.
3. Add a method, with one argument of type InputStream and the return type
Invoice
o You may annotate the argument with @Body to specifically designate it as
the body of the incoming message
4. In the method, the logic should look roughly like this:
I. Create a new Invoice, using the method on the generated
ObjectFactory class
2. Create a new HSSFWorkbook from the InputStream, and get the first
sheet from it
3. Loop through all the rows in the sheet
4. Skip the first row, which contains headers (column names)

TUTORIALS

190

https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest-context.xml?version=2&modificationDate=1221693356000
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest-dsl-context.xml?version=1&modificationDate=1221693356000
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTestRoute.java?version=2&modificationDate=1221693442000
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://poi.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Bean#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFSheet.html#rowIterator()

5. For the other rows:

I. Create a new LineItemType (using the ObjectFactory
again)

2. Pick out all the cell values and put them into the correct fields of
the LineItemType (you'll need some data type conversion
logic)

= Not all of the values will actually go into the line item in
this example
* You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line
= Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML — which probably means
setting the date from a date cell on a
GregorianCalendar
3. Add the line item to the invoice
6. Populate the partner ID, date of receipt, and order total on the Invoice
7. Throw any exceptions out of the method, so Camel knows something went
wrong
8. Return the finished Invoice
Solution: Here's an example of what the ExcelConverterBean might look like.

Create a unit test

The unit tests should be pretty familiar now. The test class and context for the Excel bean
should be quite similar to the CSV bean.
I. Create the basic test class and corresponding Spring Context XML configuration file
2. The XML config should look a lot like the CSV test, except:
o Remember to use a different start endpoint name if you're using the Java
DSL and not use separate packages per test
° You don't need the unmarshal step since the Excel POJO takes the raw
InputStream from the source endpoint
o You'll declare a <bean> and endpoint for the Excel bean prepared above
instead of the CSV bean
3. The test class should look a lot like the CSV test, except use the right input file name
and start endpoint name.
Solution: Your finished test might look something like this:
* src/test/java/org/apache/camel/tutorial/ExcellnputTest.java
* For XML Configuration:
° src/test/resources/ExcellnputTest-context.xml

191 TUTORIALS

http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRow.html#cellIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelConverterBean.java?version=1&modificationDate=1221716652000
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest.java?version=1&modificationDate=1221746613000
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest-context.xml?version=1&modificationDate=1221746613000

& Logging
You may notice that your tests emit a lot less output all of a sudden. The
dependency on POI brought in Log4] and configured commons-logging to use it, so
now we need a log4j.properties file to configure log output. You can use the
attached one (snarfed from ActiveMQ) or write your own; either way save it to
src/main/resources to ensure you continue to see log output.

* Or, for Java DSL Configuration:
o src/test/resources/ExcellnputTest-dsl-context.xml
° src/test/java/org/apache/camel/tutorial/routes/ExcellnputTestRoute.java

Step 7: Put this all together into Camel routes for the Customer Input

With all the data type conversions working, the next step is to write the real routes that listen
for HTTP, FTP, or e-mail input, and write the final XML output to an ActiveMQ queue. Along
the way these routes will use the data conversions we've developed above.
So we'll create 3 routes to start with, as shown in the diagram back at the beginning:
I. Accept XML orders over FTP from Customer | (we'll assume the FTP server dumps
files in a local directory on the Camel machine)
2. Accept CSV orders over HTTP from Customer 2
3. Accept Excel orders via e-mail from Customer 3 (we'll assume the messages are sent
to an account we can access via IMAP)

Step 8: Create a unit test for the Customer Input Routes

TUTORIALS 192

https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest-dsl-context.xml?version=1&modificationDate=1221746832000
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTestRoute.java?version=1&modificationDate=1221746832000
https://cwiki.apache.org/confluence/download/attachments/97175/log4j.properties?version=1&modificationDate=1221746968000

To support flexible and powerful Enterprise Integration Patterns Camel supports various
Languages to create an Expression or Predicate within either the Routing Domain Specific
Language or the Xml Configuration. The following languages are supported

BEAN LANGUAGE

The purpose of the Bean Language is to be able to implement an Expression or Predicate using
a simple method on a bean.

So the idea is you specify a bean name which will then be resolved in the Registry such as
the Spring ApplicationContext then a method is invoked to evaluate the Expression or
Predicate.

If no method name is provided then one is attempted to be chosen using the rules for Bean
Binding; using the type of the message body and using any annotations on the bean methods.

The Bean Binding rules are used to bind the Message Exchange to the method parameters;
so you can annotate the bean to extract headers or other expressions such as XPath or
XQuery from the message.

Using Bean Expressions from the Java DSL

from("activemqg:topic:0rdersTopic") .
filter () .method("myBean", "isGoldCustomer").
to("activemg:BigSpendersQueue") ;

Using Bean Expressions from XML

<route>
<from uri="activemq:topic:0OrdersTopic"/>
<filter>
<method bean="myBean" method="isGoldCustomer"/>
<to uri="activemqg:BigSpendersQueue"/>
</filter>
</route>

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery

Writing the expression bean

The bean in the above examples is just any old Java Bean with a method called
isGoldCustomer() that returns some object that is easily converted to a boolean value in this
case, as its used as a predicate.

So we could implement it like this...

public class MyBean {
public boolean isGoldCustomer (Exchange exchange) {

We can also use the Bean Integration annotations. For example you could do...

public boolean isGoldCustomer (String body) {...}

or

public boolean isGoldCustomer (@Header (name = "foo") Integer fooHeader) {...}

So you can bind parameters of the method to the Exchange, the Message or individual headers,
properties, the body or other expressions.

Non registry beans

As of Camel 1.5 the Bean Language also supports invoking beans that isn't registered in the
Registry. This is usable for quickly to invoke a bean from Java DSL where you don't need to
register the bean in the Registry such as the Spring ApplicationContext.

Camel can instantiate the bean and invoke the method if given a class or invoke an already

existing instance. This is illustrated from the example below:
NOTE This bean DSL is supported since Camel 2.0-M2

from("activemqg:topic:0rdersTopic") .
filter () .expression (BeanlLanguage (MyBean.class, "isGoldCustomer")).
to("activemg:BigSpendersQueue") ;

The 2nd parameter 1sGoldCustomer is an optional parameter to explicit set the method
name to invoke. If not provided Camel will try to invoke the best suited method. If case of
ambiguity Camel will thrown an Exception. In these situations the 2nd parameter can solve this
problem. Also the code is more readable if the method name is provided. The |st parameter
can also be an existing instance of a Bean such as:

LANGUAGES SUPPORTED APPENDIX

194

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring

195

private MyBean my;
from("activemqg:topic:0rdersTopic") .

filter () .expression (Beanlanguage.bean (my, "isGoldCustomer")).
to("activemg:BigSpendersQueue") ;

In Camel 2.2 onwards you can avoid the BeanLanguage and have it just as:

private MyBean my;

from("activemqg:topic:0rdersTopic") .
filter () .expression(bean (my, "isGoldCustomer")) .
to("activemg:BigSpendersQueue") ;

Which also can be done in a bit shorter and nice way:

private MyBean my;

from("activemqg:topic:0rdersTopic") .
filter () .method(my, "isGoldCustomer").
to("activemg:BigSpendersQueue") ;

Other examples

We have some test cases you can look at if it'll help
* MethodFilterTest is a JUnit test case showing the Java DSL use of the bean expression
being used in a filter
» aggregator.xml is a Spring XML test case for the Aggregator which uses a bean
method call to test for the completion of the aggregation.

Dependencies

The Bean language is part of camel-core.

CONSTANT EXPRESSION LANGUAGE

The Constant Expression Language is really just a way to specify constant strings as a type of
expression.

Available as of Camel 1.5

Example usage

The setHeader element of the Spring DSL can utilize a constant expression like:

LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MethodFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/DSL
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/aggregator.xml
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator

<route>
<from uri="seda:a"/>
<setHeader headerName="theHeader">
<constant>the value</constant>

</setHeader>
<to uri="mock:b"/>
</route>

in this case, the Message coming from the seda:a Endpoint will have "theHeader' header set to
the constant value 'the value'.
And the same example using Java DSL:

from("seda:a") .setHeader ("theHeader", constant ("the value")).to("mock:b");

Dependencies

The Constant language is part of camel-core.

EL

Camel supports the unified JSP and JSF Expression Language via the JUEL to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

For example you could use EL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>

<filter>
<el>${in.headers.foo == 'bar'}</el>
<to uri="seda:bar"/>
</filter>
</route>

You could also use slightly different syntax, e.g. if the header name is not a valid identifier:

<route>
<from uri="seda:foo"/>

<filter>
<el>${in.headers['My Header'] == 'bar'}</el>
<to uri="seda:bar"/>
</filter>
</route>

You could use EL to create an Predicate in a Message Filter or as an Expression for a Recipient
List

LANGUAGES SUPPORTED APPENDIX

196

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://juel.sourceforge.net/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message
out Message the exchange.out message
Samples

You can use EL dot notation to invoke operations. If you for instance have a body that contains
a POJO that has a getFamiliyName method then you can construct the syntax as follows:

"$in.body.familyName"

Dependencies

To use EL in your camel routes you need to add the a dependency on camel-juel which
implements the EL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-juel</artifactId>
<version>1.6.1</version>
</dependency>

Otherwise you'll also need to include JUEL.

HEADER EXPRESSION LANGUAGE

The Header Expression Language allows you to extract values of named headers.
Available as of Camel 1.5

Example usage
The recipientList element of the Spring DSL can utilize a header expression like:

<route>
<from uri="direct:a" />

<!-- use comma as a delimitez

197 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://repo2.maven.org/maven2/de/odysseus/juel/juel/2.1.3/juel-2.1.3.jar

<recipientList delimiter=",">
<header>myHeader</header>
</recipientList>
</route>

In this case, the list of recipients are contained in the header 'myHeader".

And the same example in Java DSL:

from("direct:a") .recipientlList (header ("myHeader")) ;

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using
parameters but using stacked operations, notice that header is not a parameter but a stacked
method call)

from("direct:a") .recipientList () .header ("myHeader") ;

Dependencies

The Header language is part of camel-core.

JXPATH

Camel supports JXPath to allow XPath expressions to be used on beans in an Expression or
Predicate to be used in the DSL or Xml Configuration. For example you could use JXPath to
create an Predicate in a Message Filter or as an Expression for a Recipient List.

From 1.3 of Camel onwards you can use XPath expressions directly using smart completion
in your IDE as follows

from("queue:foo").filter ().
jxpath ("/in/body/foo") .
to("queue:bar")

Variables

Variable Type Description

this Exchange the Exchange object
in Message the exchange.in message
out Message the exchange.out message

LANGUAGES SUPPORTED APPENDIX

198

http://commons.apache.org/jxpath/
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

199

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use JXPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="activemqg:MyQueue" />
<filter>
<jxpath>in/body/name = 'James'</xpath>
<to uri="mgseries:SomeOtherQueue"/>
</filter>
</route>
</camelContext>
</beans>

Examples
Here is a simple example using a JXPath expression as a predicate in a Message Filter
from("direct:start").

filter () .jxpath("in/body/name="'James'") .
to("mock:result");

JXPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
JXPath to extract a value from the message and bind it to a method parameter.

For example

public class Foo {

@MessageDriven (uri = "activemg:my.queue")
public void doSomething (@JXPath ("in/body/foo") String correlationID, @Body String
body) {

process the inbound message here

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

Dependencies
To use JXpath in your camel routes you need to add the a dependency on camel-jxpath
which implements the JXpath language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupIld>
<artifactId>camel-jxpath</artifactId>
<version>1.4.0</version>
</dependency>

Otherwise, you'll also need Commons JXPath.

MVEL

Avialable in Camel 2.0
Camel allows Mvel to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use Mvel to create an Predicate in a Message Filter or as an Expression for a
Recipient List

You can use Mvel dot notation to invoke operations. If you for instance have a body that
contains a POJO that has a getFamiliyName method then you can construct the syntax as
follows:

"request.body.familyName"

"getRequest () .getBody () .getFamilyName ()"

Variables

Variable Type Description

this Exchange the Exchange is the root object
exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)
exchangeld String the exchange id

fault Message the Fault message (if any)
request Message the exchange.in message
response Message the exchange.out message (if any)

LANGUAGES SUPPORTED APPENDIX

200

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://repo2.maven.org/maven2/commons-jxpath/commons-jxpath/1.3/commons-jxpath-1.3.jar
http://mvel.codehaus.org/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

201

properties Map the exchange properties

property(name) Object the property by the given name
property(name, type) Type the property by the given name as the given type
Samples

For example you could use Mvel inside a Message Filter in XML

<route>

<from uri="seda:foo"/>

<filter>
<mvel>request.headers.foo == 'bar'</mvel>
<to uri="seda:bar"/>
</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter () .mvel ("request.headers.foo == 'bar'").to("seda:bar");

Dependencies

To use Mvel in your camel routes you need to add the a dependency on camel-mvel which
implements the Mvel language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-mvel</artifactId>
<version>2.0.0</version>
</dependency>

Otherwise, you'll also need MVEL

OGNL

Camel allows OGNL to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use OGNL to create an Predicate in a Message Filter or as an Expression for a
Recipient List

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://repo2.maven.org/maven2/org/mvel/mvel2/2.0.18/mvel2-2.0.18.jar
http://www.opensymphony.com/ognl/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

You can use OGNL dot notation to invoke operations. If you for instance have a body that
contains a POJO that has a getFamiliyName method then you can construct the syntax as

follows:

"request.body.familyName"

/ or

"getRequest () .getBody () .getFamilyName ()"

Variables

Variable Type Description

this Exchange the Exchange is the root object
exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)
exchangeld String the exchange id

fault Message the Fault message (if any)
request Message the exchange.in message
response Message the exchange.out message (if any)
properties Map the exchange properties
property(name) Object the property by the given name

property(name, type) Type

the property by the given name as the given type

Samples

For example you could use OGNL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>

<filter>
<ognl>request.headers.foo = 'bar'</ognl>
<to uri="seda:bar"/>
</filter>
</route>

And the sample using Java DSL:

from("seda:foo") .filter () .ognl ("request.headers.foo = 'bar'").to("seda:bar");

LANGUAGES SUPPORTED APPENDIX

202

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

203

Dependencies
To use OGNL in your camel routes you need to add the a dependency on camel-ognl which
implements the OGNL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupIld>
<artifactId>camel-ognl</artifactId>
<version>1.4.0</version>
</dependency>

Otherwise, you'll also need OGNL

PROPERTY EXPRESSION LANGUAGE

The Property Expression Language allows you to extract values of named exchange properties.
Available as of Camel 2.0

Example usage

The recipientList element of the Spring DSL can utilize a property expression like:

<route>
<from uri="direct:a" />
<recipientList>
<property>myProperty</property>
</recipientList>
</route>

In this case, the list of recipients are contained in the property 'myProperty'.

And the same example in Java DSL:

from("direct:a") .recipientList (property ("myProperty"));
And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using

parameters but using stacked operations, notice that property is not a parameter but a stacked
method call)

from("direct:a") .recipientList () .property ("myProperty") ;

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://repo2.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.ognl/2.7.3_4/org.apache.servicemix.bundles.ognl-2.7.3_4.jar

Dependencies

The Property language is part of camel-core.

SCRIPTING LANGUAGES

Camel supports a number of scripting languages which can be used to create an Expression or
Predicate via the standard JSR 223 which is a standard part of Java 6.

The following scripting languages are integrated into the DSL:

Language DSL keyword

EL el
Groovy groovy
JavaScript javaScript
JoSQL sql
JXPath jxpath
MVEL mvel
OGNL ognl
PHP php
Python python
Ruby ruby
XPath xpath
XQuery xquery

However any JSR 223 scripting language can be used using the generic DSL methods.

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel .Message The IN message
response org.apache.camel .Message The OUT message

LANGUAGES SUPPORTED APPENDIX

204

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated

as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that

is returned.
from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

205 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Dependencies
To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

SEE ALSO

* Languages
+ DSL
* Xml Configuration

BEANSHELL

Camel supports BeanShell among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a BeanShell expression use the following Java code:

...choice()
.when (script ("beanshell", "request.getHeaders().get (\"foo\").equals (\"bar\")"))
.to("...M)

Or the something like this in your Spring XML:

<filter>
<language language="beanshell">request.getHeaders().get ("Foo") == null</language>

You could follow the examples above to create an Predicate in a Message Filter or as an
Expression for a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

LANGUAGES SUPPORTED APPENDIX

206

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://www.beanshell.org/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

! BeanShell Issues
You must use BeanShell 2.0b5 or greater. Note that as of 2.0b5 BeanShell cannot
compile scripts, which causes Camel releases before 2.6 to fail when configured
with BeanShell expressions.

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel.Message The IN message
response org.apache.camel.Message The OUT message
Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that

is returned.
from("direct:in") .setHeader ("name") .groovy (" 'Suser.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

207 LANGUAGES SUPPORTED APPENDIX

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Dependencies
To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

JAVASCRIPT

Camel supports JavaScript/ECMAScript among other Scripting Languages to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

To use a JavaScript expression use the following Java code

. javaScript ("someJavaScriptExpression")

For example you could use the javaScript function to create an Predicate in a Message Filter
or as an Expression for a Recipient List

Example

In the sample below we use JavaScript to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

LANGUAGES SUPPORTED APPENDIX

208

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://en.wikipedia.org/wiki/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

209

from("direct:start")

.choice ()
.when () .javaScript ("request.headers.get ('user') ==
'admin'") .to ("seda:adminQueue")
.otherwise ()

.to("seda:regularQueue") ;

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>

<choice>
<when>
<javaScript>request.headers.get ('user') == 'admin'</javaScript>
<to uri="seda:adminQueue"/>
</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>
</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel .Message The IN message
response org.apache.camel.Message The OUT message
Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

LANGUAGES SUPPORTED APPENDIX

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupId>

LANGUAGES SUPPORTED APPENDIX

210

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar
https://cwiki.apache.org/confluence/display/CAMEL/Download

211

<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

GROOVY

Camel supports Groovy among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a Groovy expression use the following Java code

. groovy ("someGroovyExpression")

For example you could use the groovy function to create an Predicate in a Message Filter or
as an Expression for a Recipient List

Example
lets route if a line item is over $100
from("queue:foo") .filter (groovy("request.lineItems.any { i -> i.value > 100

}")) .to("queue:bar")

And the Spring DSL:

<route>
<from uri="queue:foo"/>
<filter>
<groovy>request.linelItems.any { i -> i.value > 100 }</groovy>
<to uri="queue:bar"/>
</filter>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel.Message The IN message

LANGUAGES SUPPORTED APPENDIX

http://groovy.codehaus.org/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

response org.apache.camel .Message The OUT message

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the

message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" 'Suser.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

LANGUAGES SUPPORTED APPENDIX

212

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages

213

BeanShell BeanShell 2.0b5 beanshell or bsh

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

PYTHON
Camel supports Python among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a Python expression use the following Java code

. python ("somePythonExpression")

For example you could use the python function to create an Predicate in a Message Filter or

as an Expression for a Recipient List

Example

In the sample below we use Python to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start"
.choice ()
.when () .python ("request.headers['user'] == 'admin'") .to("seda:adminQueue")
.otherwise ()
.to("seda:regularQueue") ;

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>

<choice>

LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.python.org/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

<when>
<python>request.headers['user'] == 'admin'</python>
<to uri="seda:adminQueue" />

</when>

<otherwise>
<to uri="seda:regularQueue"/>

</otherwise>

</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel .Message The IN message
response org.apache.camel .Message The OUT message
Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

LANGUAGES SUPPORTED APPENDIX

214

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Dependencies
To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

PHP

Camel supports PHP among other Scripting Languages to allow an Expression or Predicate to
be used in the DSL or Xml Configuration.

To use a PHP expression use the following Java code

215 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.php.net/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration

. php ("somePHPExpression")

For example you could use the php function to create an Predicate in a Message Filter or as an
Expression for a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel .Message The IN message
response org.apache.camel .Message The OUT message
Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX

216

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

217

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Dependencies
To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

RUBY

Camel supports Ruby among other Scripting Languages to allow an Expression or Predicate to
be used in the DSL or Xml Configuration.

To use a Ruby expression use the following Java code

. ruby ("someRubyExpression")

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.ruby-lang.org/en/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration

For example you could use the ruby function to create an Predicate in a Message Filter or as
an Expression for a Recipient List

Example

In the sample below we use Ruby to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice ()
.when () .ruby ("Srequest.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise ()
.to("seda:regularQueue") ;

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>
<when>
<ruby>$request.headers|['user'] == 'admin'</ruby>
<to uri="seda:adminQueue"/>
</when>
<otherwise>
<to uri="seda:regularQueue"/>
</otherwise>
</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context
exchange org.apache.camel.Exchange The current Exchange
request org.apache.camel.Message The IN message
response org.apache.camel.Message The OUT message
Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

LANGUAGES SUPPORTED APPENDIX

218

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

219

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="7jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>
</dependency>

SIMPLE EXPRESSION LANGUAGE

The Simple Expression Language was a really simple language you can use, but has since grown
more powerful. Its primarily intended for being a really small and simple language for evaluating
Expression and Predicate without requiring any new dependencies or knowledge of XPath; so
its ideal for testing in camel-core. Its ideal to cover 95% of the common use cases when you
need a little bit of expression based script in your Camel routes.
However for much more complex use cases you are generally recommended to choose a
more expressive and powerful language such as:
* JavaScript
+ EL
+ OGNL
* Mvel
* Groovy
» one of the supported Scripting Languages
The simple language uses $ {body} placeholders for complex expressions where the
expression contains constant literals. The ${ } placeholders can be omitted if the expression is
only the token itself.
To get the body of the in message: "body", or "in.body" or "$ {body}".
A complex expression must use ${ } placeholders, such as: "Hello
${in.header.name} how are you?".
You can have multiple tokens in the same expression: "Hello ${in.header.name}
this is ${in.header.me} speaking".

However you can not nest tokens (i.e. having another ${ } placeholder in an existing, is not
allowed).

Variables

Variable Type Description

exchangeld String Camel 2.3: the exchange id
id String the input message id

LANGUAGES SUPPORTED APPENDIX

220

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/EL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages

221

& Alternative syntax
From Camel 2.5 onwards you can also use the alternative syntax which uses
$simple{ } as placeholders.
This can be used in situations to avoid clashes when using for example Spring
property placeholder together with Camel.

© File language is now merged with Simple language
From Camel 2.2 onwards, the File Language is now merged with Simple language
which means you can use all the file syntax directly within the simple language.

body Object the input body
in.body Object the input body
. Camel 2.3: the input body invoked using a Camel
body. OGNL Object OGNL expression.
) . Camel 2.3: the input body invoked using a Camel
in.body.OGNL Object OGNL expression.
Camel 2.3: Converts the body to the given type
bodyAs(type) Type determined by its classname. The converted body can
be null.
Camel 2.5: Converts the body to the given type
mandatoryBodyAs(type) Type determined by its classname, and expects the body to
be not null.
out.body Object the output body
header.foo Object refer to the input foo header
headers.foo Object refer to the input foo header
in.header.foo Object refer to the input foo header
in.headers.foo Object refer to the input foo header
header-foo[bar] Object Camel 2.3: regard input foo .header as a map and
perform lookup on the map with bar as key
in header foo[bar] Object Camel 2.3: regard input foo header as a map and

perform lookup on the map with bar as key

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple

Camel 2.3: regard input foo header as a map and

in-headers.foo[bar] Object perform lookup on the map with bar as key
header foo.OGNL Object Famel 2.?: refer to the input foo hea}der and invoke
its value using a Camel OGNL expression.
in header foo.OGNL Object Famel 2..3: refer to the input foo he;?der and invoke
its value using a Camel OGNL expression.
1 2.3: ref he i foo head d invok
in.headersfoo.OGNL ~ Object —amel 2.3: refer to the input foo header and invoke
its value using a Camel OGNL expression.
out.header.foo Object refer to the out header foo
out.headers.foo Object refer to the out header foo
Camel 2.5: Converts the header to the given type
headerAs(key, T))
eaderAs(key.type) ype determined by its classname
property.foo Object refer to the foo property on the exchange
sys.foo String refer to the system property
sysenv.foo String Camel 2.3: refer to the system environment
Camel 2.4: Refer to the exception object on the
exchange, is null if no exception set on exchange. Will
exception Object fallback and grab caught exceptions
(Exchange .EXCEPTION CAUGHT) if the Exchange
has any.
exception. OGNL Object C:amel 2.4: Refer to the exch'ange e?<cept|on invoked
using a Camel OGNLE expression object
Camel 2.0. Refer to the exception.message on the
exchange, is null if no exception set on exchange. Will
exception.message String fallback and grab caught exceptions
(Exchange .EXCEPTION CAUGHT) if the Exchange
has any.
Camel 2.6. Refer to the exception.stracktrace on the
exchange, is null if no exception set on exchange. Will
exception.stacktrace String fallback and grab caught exceptions

(Exchange .EXCEPTION CAUGHT) if the Exchange
has any.

LANGUAGES SUPPORTED APPENDIX

222

Camel 1.5. Date formatting using the
java.text.SimpleDataFormat patterns.
Supported commands are: now for current timestamp,

date:command:pattern String in.header.xxx or header.xxx to use the Date
object in the IN header with the key xxx.
out.header.xxx to use the Date object in the OUT
header with the key xxx.

Camel 1.5. Invoking a bean expression using the Bean
language. Specifying a method name you must use dot as

bean:bean expression Object separator. In Camel 2.0 we also support the
!method=methodname syntax that is used by the Bean
component.

Camel 2.3: Lookup a property with the given key. The
properties:locations:key ~ String locations option is optional. See more at Using
PropertyPlaceholder.

Camel 2.3: Returns the name of the current thread.

threadName String Can be used for logging purpose.

OGNL support

Available as of Camel 2.3

The Simple and Bean language now supports a Camel OGNL notation for invoking beans in
a chain like fashion.
Suppose the Message IN body contains a POJO which has a getAddress () method.

Then you can use Camel OGNL notation to access the address object:

simple ("${body.address}")
simple ("${body.address.street}")
$

simple ("${body.address.zip}")

Camel understands the shorthand names for getters, but you can invoke any method or use the
real name such as:

simple ("${body.address}")
"${body.getAddress.getStreet}")

(
simple ("${
simple ("S${body.address.getzZip}")
simple ("${body.doSomething}")

You can also use the null safe operator (2 .) to avoid NPE if for example the body does NOT
have an address

223 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Using+PropertyPlaceholder
https://cwiki.apache.org/confluence/display/CAMEL/Using+PropertyPlaceholder
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean

simple ("${body?.address?.street}")
Its also possible to index in Map or List types, so you can do:
simple ("${body[foo] .name}")

To assume the body is Map based and lookup the value with foo as key, and invoke the
getName method on that value.

Suppose there was no value with the key foo then you can use the null safe operator to
avoid the NPE as shown:

simple ("${body[foo]?.name}")
You can also access List types, for example to get lines from the address you can do:

simple ("${body.address.lines[0]}")
simple ("${body.address.lines[1]}")

simple ("${body.address.lines[2]}")
There is a special Last keyword which can be used to get the last value from a list.
simple ("${body.address.lines[last]}")
And to get the 2nd last you can subtract a number, so we can use last-1 to indicate this:
simple ("${body.address.lines[last-1]1}")
And the 3rd last is of course:
simple ("${body.address.lines[last-2]}")

And yes you can combine this with the operator support as shown below:

simple ("${body.address.zip} > 1000"

Operator support

Available as of Camel 2.0
We added a basic set of operators supported in the simple language in Camel 2.0. The parser is
limited to only support a single operator.

To enable it the left value must be enclosed in ${ }. The syntax is:

LANGUAGES SUPPORTED APPENDIX

224

${leftvValue} OP rightValue

Where the rightValue can be a String literal enclosed in ' ', null, a constant value or
another expression enclosed in ${ }.

Camel will automatically type convert the rightValue type to the leftValue type, so its able to eg.
convert a string into a numeric so you can use > comparison for numeric values.

The following operators is supported:

Operator Description

== equals
> greater than
>= greater than or equals
< less than
<= less than or equals
= not equals
contains For testing if contains in a string based value
not . . :
. For testing if not contains in a string based value
contains
Fegex For matching against a given regular expression pattern defined as a String
g value
For not matching against a given regular expression pattern defined as a String
not regex
value
in For matching if in a set of values, each element must be separated by comma.
not in For matching if not in a set of values, each element must be separated by
comma.
is For matching if the left hand side type is an instanceof the value.
not is For matching if the left hand side type is not an instanceof the value.
For matching if the left hand side is within a range of values defined as
range
numbers: from. .to
For matching if the left hand side is not within a range of values defined as
not range

numbers: from. .to

And the following operators can be used to group expressions:

Operator Description

and and is used to group two expressions

225 LANGUAGES SUPPORTED APPENDIX

or or is used to group two expressions

The syntax for AND is:

${leftvValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for OR is:

${leftValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

simple ("${in.header.foo} == 'foo'")
// " > omitted
simple ("${in.header.foo} == foo")

// here Camel will type convert '100' into the type of in.header.bar and if its an
Integer '100' will also be converter to an Integer

simple("${in.header.bar} == '100'")

simple ("${in.header.bar} == 100")

// 100 will be converter to the type of in.header.bar so we can do > comparison

simple ("${in.header.bar} > 100")

// testing for null
simple ("${in.header.baz} == null")
// testing for not null

simple ("${in.header.baz} != null")
And a bit more advanced example where the right value is another expression

simple ("${in.header.date} == ${date:now:yyyyMMdd}")

simple ("${in.header.type} == ${bean:orderService?method=getOrderType}")

And an example with contains, testing if the title contains the word Camel

simple ("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a 4 digit value:

simple ("${in.header.number} regex '\d{4}'")

LANGUAGES SUPPORTED APPENDIX

226

© Using and,or operators
In Camel 2.4 or older the and or or can only be used once in a simple
language expression. From €Camel 2.5 onwards you can use these operators
multiple times.

i] Comparing with different types
When you compare with different types such as String and int, then you have to
take a bit care. Camel will use the type from the left hand side as Ist priority. And
fallback to the right hand side type if both values couldn't be compared based on
that type.
This means you can flip the values to enforce a specific type. Suppose the bar value
above is a String. Then you can flip the equation:

simple ("100 < ${in.header.bar}")

which then ensures the int type is used as |st priority.

This may change in the future if the Camel team improves and let the binary comparision
operations be smarter and prefer numeric types over String based. It's most often the String
type which causes problem when comparing with numbers.

And finally an example if the header equals any of the values in the list. Each element must be
separated by comma, and no space around.

This also works for numbers etc, as Camel will convert each element into the type of the left
hand side.

simple ("${in.header.type} in 'gold,silver'")

And for all the last 3 we also support the negate test using not:
simple ("${in.header.type} not in 'gold,silver'")

And you can test for if the type is a certain instance, eg for instance a String
simple ("${in.header.type} is 'java.lang.String'")

We have added a shorthand for all java.lang types so you can write it as:

227 LANGUAGES SUPPORTED APPENDIX

simple ("${in.header.type} is String")

Ranges is also supported. The range interval requires numbers and both from and end is
inclusive. For instance to test whether a value is between 100 and 199:

simple ("${in.header.number} range 100..199"

Notice we use . . in the range without spaces. Its based on the same syntax as Groovy.

Using and / or
If you have two expressions you can combine them with the and or or operator.

For instance:

simple ("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course the or is also supported. The sample example would be:

simple ("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

Notice: Currently and or or can only be used once in a simple language expression. This
might change in the future.
So you cannot do:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and
${in.header.number} range 100..200")

Samples

In the Spring XML sample below we filter based on a header value:

<from uri="seda:orders">
<filter>
<simple>in.header.foo</simple>
<to uri="mock:fooOrders"/>
</filter>
</from>

The Simple language can be used for the predicate test above in the Message Filter pattern,
where we test if the in message has a foo header (a header with the key foo exists). If the

LANGUAGES SUPPORTED APPENDIX

228

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

% Can be used in Spring XML
As the Spring XML does not have all the power as the Java DSL with all its various
builder methods, you had to resort to use some other languages
for testing with simple operators. Now you can do this with the simple language. In
the sample below we want to test if the header is a widget order:

<from uri="seda:orders">

<filter>
<simple>${in.header.type} == 'widget'</simple>
<to uri="bean:orderService?method=handleWidget"/>
</filter>
</from>

expression evaluates to true then the message is routed to the mock: foo endpoint,

otherwise its lost in the deep blue sea @
The same example in Java DSL:

from("seda:orders")

.filter () .simple ("in.header.foo") .to("seda:fooOrders") ;

You can also use the simple language for simple text concatenations such as:

from("direct:hello") .transform() .simple("Hello ${in.header.user} how are
you?") .to("mock:reply");

Notice that we must use ${ } placeholders in the expression now to let Camel be able to parse
it correctly.

And this sample uses the date command to output current date.

from("direct:hello") .transform() .simple ("The today is ${date:now:yyyyMMdd} and its
a great day.").to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on a bean to be
included in the returned string:

from("direct:order") .transform() .simple ("OrderId:
$S{bean:orderIdGenerator}") .to("mock:reply") ;

Where orderIdGenerator is the id of the bean registered in the Registry. If using Spring
then its the Spring bean id.

229 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Registry

If we want to declare which method to invoke on the order id generator bean we must
prepend .method name such as below where we invoke the generateId method.

from("direct:order") .transform() .simple ("OrderId:
${bean:orderIdGenerator.generateId}") .to ("mock:reply") ;

And in Camel 2.0 we can use the ?method=methodname option that we are familiar with
the Bean component itself:

from("direct:order") .transform() .simple ("OrderId:
${bean:orderIdGenerator?method=generateId}") .to("mock:reply");

And from Camel 2.3 onwards you can also convert the body to a given type, for example to
ensure its a String you can do:

<transform>
<simple>Hello ${bodyAs(String)} how are you?</simple>
</transform>

There is a few types which have a shorthand notation, hence why we can use String instead
of java.lang.String. These are: byte[], String, Integer, Long.All other
types must use their FQN name, e.g. org.w3c.dom.Document.

Its also possible to lookup a value from a header Map in Camel 2.3 onwards:

<transform>
<simple>The gold value is ${header.typel[gold]}</simple>
</transform>

In the code above we lookup the header with name type and regard itasa java.util.Map
and we then lookup with the key gold and return the value.

If the header is not convertible to Map an exception is thrown. If the header with name type
does not exists null is returned.

Dependencies

The Simple language is part of camel-core.

FILE EXPRESSION LANGUAGE

Available as of Camel 1.5
The File Expression Language is an extension to the Simple language, adding file related
capabilities. These capabilities is related to common use cases working with file path and names.

LANGUAGES SUPPORTED APPENDIX

230

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple

© File language is now merged with Simple language
From Camel 2.2 onwards, the file language is now merged with Simple language
which means you can use all the file syntax directly within the simple language.

The goal is to allow expression to be used with the File and FTP components for setting
dynamic file patterns for both consumer and producer.

Syntax

This language is an extension to the Simple language so the Simple syntax applies also. So the
table below only lists the additional.
As opposed to Simple language File Language also supports Constant expressions so you can
enter a fixed filename.

All the file tokens uses the same expression name as the method on the java.io.File
object, for instance file:absolute refers to the java.io.File.getAbsolute ()
method. Notice that not all expressions is supported by the current Exchange. For instance the

FTP component supports some of the options, where as the File component support all of
them.

File File FTP FTP

Expression Type Consumer Producer Consumer Producer

Description

refers to the file name (is relative to the

file:name Strin; es no es no
s Y 4 starting directory, see note below)
: Camel 2.3: refers to the file extension
file:name.ext String yes no yes no
only
refers to the file name with no extension
file:name.noext String yes no yes no (is relative to the starting directory, see
note below)
. Camel 2.0: refers to the file name only
file:onlyname String yes no yes no . .
with no leading paths.
Camel 2.0: refers to the file name only
file:onlyname.noext String yes no yes no with no extension and with no leading
paths.
. Camel 1.6.1/Camel 2.0: refers to the
file:ext String yes no yes no N .
file extension only
file:parent String yes no yes no refers to the file parent
file:path String yes no yes no refers to the file path
Camel 2.0: refers to whether the file is
file:absolute Boolean yes no no no N
regarded as absolute or relative
file:absolute.path String yes no no no refers to the absolute file path
refers to the file length returned as a Long
file:length Long yes no yes no
type
. Camel 2.5: refers to the file length
file:size Long yes no yes no
returned as a Long type
. Camel 2.0: refers to the file last modified
file:modified Date yes no yes no

returned as a Date type

231 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Constant
absolute
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/File
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
length
size
modified
https://cwiki.apache.org/confluence/display/CAMEL/Simple

date:command:pattern String

yes yes yes yes

for date formatting using the
java.text.SimepleDataFormat
patterns. Is an extension to the Simple
language. Additional command is: file
(consumers only) for the last modified
timestamp of the file. Notice: all the
commands from the Simple language can
also be used.

File token example

Relative paths

We have a java.io.File handle for the file hello. txt in the following relative
directory: .\filelanguage\test. And we configure out endpoint to use this starting

directory .\filelanguage. The the file tokens will return as:

Expression Returns

file:name test\hello.txt
file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt
file:onlyname.noext hello

file:ext txt

file:parent filelanguage\test

file:path filelanguage\test\hello.txt
file:absolute false

file:absolute.path

\workspace\camel\camel-core\target\filelanguage\test\hello.txt

Absolute paths

We have a java.io.File handle for the file hello. txt in the following absolute

directory: \workspace\camel\camel-core\target\filelanguage\test. And
we configure out endpoint to use the absolute starting directory
\workspace\camel\camel-core\target\filelanguage. The the file tokens will

return as:
Expression Returns
file:zname test\hello.txt

LANGUAGES SUPPORTED APPENDIX

232

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
name

233

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:ext txt

file:parent \workspace\camel\camel-core\target\filelanguage\test

file:path \workspace\camel\camel-core\target\filelanguage\test\hello.txt
file:absolute true

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt
Samples

You can enter a fixed Constant expression such as myfile.txt:

fileName="myfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup
folder with the current date as a sub folder. This can be archived using an expression like:

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names is also supported so suppose the backup folder should be a sibling folder
then you can append .. as:

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to the Simple language we have access to all the goodies from this
language also, so in this use case we want to use the in.header.type as a parameter in the
dynamic expression:

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/
backup-of-${file:name.noext}.bak"

If you have a custom Date you want to use in the expression then Camel supports retrieving
dates from the message header.

fileName="orders/
order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd} .xml"

LANGUAGES SUPPORTED APPENDIX

name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
https://cwiki.apache.org/confluence/display/CAMEL/Constant
https://cwiki.apache.org/confluence/display/CAMEL/Simple

And finally we can also use a bean expression to invoke a POJO class that generates some
String output (or convertible to String) to be used:

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

And of course all this can be combined in one expression where you can use the File Language,
Simple and the Bean language in one combined expression. This is pretty powerful for those
common file path patterns.

Using Spring PropertyPlaceholderConfigurer together with the File
component

In Camel you can use the File Language directly from the Simple language which makes a
Content Based Router more easy to do in Spring XML, where we can route based on file
extensions as shown below:

<from uri="file://input/orders"/>
<choice>
<when>
<simple>${file:ext} == 'txt'</simple>
<to uri="bean:orderService?method=handleTextFiles"/>
</when>
<when>
<simple>${file:ext} == 'xml'</simple>
<to uri="bean:orderService?method=handleXmlFiles"/>
</when>
<otherwise>
<to uri="bean:orderService?method=handleOtherFiles"/>
</otherwise>
</choice>

If you use the £ileName option on the File endpoint to set a dynamic filename using the File
Language then make sure you

use the alternative syntax (available from Camel 2.5 onwards) to avoid clash with Springs
PropertyPlaceholderConfigurer.

Listing 11. bundle-context.xml

<bean id="propertyPlaceholder"

class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="location" value="classpath:bundle-context.cfg" />

</bean>

<bean id="sampleRoute" class="SampleRoute">
<property name="fromEndpoint" value="${fromEndpoint}" />

<property name="toEndpoint" wvalue="${toEndpoint}" />
</bean>

Listing 12. bundle-context.cfg

LANGUAGES SUPPORTED APPENDIX

234

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

235

fromEndpoint=activemqg:queue:test
toEndpoint=file: fileRoute/out?fileName=test-$simple{date:now:yyyyMMdd} . txt

Notice how we use the $simple{ } syntax in the toEndpoint above.
If you don't do this, there is a class and Spring will thrown an exception like

org.springframework.beans.factory.BeanDefinitionStoreException:

Invalid bean definition with name 'sampleRoute' defined in class path resource
[bundle-context.xml] :

Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies

The File language is part of camel-core.

SQL

The SQL support is added by JoSQL and is primarily used for performing SQL queries on in-
memory objects. If you prefer to perform actual database queries then check out the JPA
component.

To use SQL in your camel routes you need to add the a dependency on camel-josql
which implements the SQL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-josqgl</artifactId>
<version>2.5.0</version>
</dependency>

Camel supports SQL to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use SQL to create an Predicate in a Message Filter or as
an Expression for a Recipient List.

from("queue:foo") .setBody () .sqgl ("select * from MyType").to("queue:bar")

And the spring DSL:

<from uri="queue:foo"/>
<setBody>
<sgl>select * from MyType</sqgl>

LANGUAGES SUPPORTED APPENDIX

http://josql.sourceforge.net/
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://en.wikipedia.org/wiki/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

</setBody>
<to uri="queue:bar"/>

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message
out Message the exchange.out message

the property

key Object the Exchange properties

the header key = Object the exchange.in headers

the variable key Object irm;ar:r): accliditional variables is added using setVariables
etho

XPATH

Camel supports XPath to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use XPath to create an Predicate in a Message Filter or
as an Expression for a Recipient List.

from("queue:foo") .
filter().xpath("//foo")).
to("queue:bar")

from("queue:foo") .

choice() .xpath("//foo")) .to("queue:bar") .
otherwise () .to("queue:others");
Namespaces

In 1.3 onwards you can easily use namespaces with XPath expressions using the Namespaces
helper class.

Namespaces ns = new Namespaces("c", "http://acme.com/c

from("direct:start") .filter ().

LANGUAGES SUPPORTED APPENDIX 236

http://www.w3.org/TR/xpath
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

xpath ("/c:person[@name="James']", ns).
to("mock:result");

Variables

Variables in XPath is defined in different namespaces. The default namespace is
http://camel.apache.org/schema/spring.

Local
Namespace URI p::: Type Description
. . the exchange.in
http://camel.apache.org/xml/in/ in Message
message
http://camel.apache.org/xml/out/ out Message the exchange.out
message
http://camel.apache.org/xml/functions/ functions Object Camel 2.5: Additional
functions
http://camel.apache.org/xml/variables/ . OS environment
i . env Object .
environment-variables variables
http: l.apache. I/variabl
ttp://camel.apache.org/xml/variables/ system Object Java System properties

system-properties

http://camel.apache.org/xml/variables/

exchange-property Object the exchange property

Camel will resolve variables according to either:
* namespace given
* no namespace given

Namespace given

If the namespace is given then Camel is instructed exactly what to return. However when
resolving either in or out Camel will try to resolve a header with the given local part first, and
return it. If the local part has the value body then the body is returned instead.

No namespace given

If there is no namespace given then Camel resolves only based on the local part. Camel will try
to resolve a variable in the following steps:
* from variables that has been set using the variable (name, value) fluent
builder

237 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/
http://camel.apache.org/xml/out/
http://camel.apache.org/xml/functions/
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property
http://camel.apache.org/xml/variables/exchange-property

* from message.in.header if there is a header with the given key
= from exchange.properties if there is a property with the given key

Functions

Camel adds the following XPath functions that can be used to access the exchange:

Function Argument Type Description
in:body none Object Will return the in message body.
he head
in:header the header Object Will return the in message header.
name
out:body none Object Will return the out message body.
out:header :\:;f;eader Object Will return the out message header.

Camel 2.5: To lookup a property using the

. . key for . .
function:properties String Properties component (property
property
placeholders).
function:simple simple . Object Camel. 2.5: To evaluate a Simple
expression expression.

Here's an example showing some of these functions in use.

from("direct:start") .choice ()

.when () .xpath("in:header ('foo') = 'bar'").to("mock:x")
.when () .xpath ("in:body () = '<two/>'").to("mock:y")
.otherwise () .to("mock:z");

And the new functions introduced in Camel 2.5:

tup properties component

PropertiesComponent properties = new PropertiesComponent();
properties.setLocation("classpath:org/apache/camel/builder/xml/myprop.properties");
context.addComponent ("properties", properties);

files

.when () .xpath ("$type = function:properties('foo')")
.to("mock:camel")

/ here we use the simple lanc

> evaluate the express

LANGUAGES SUPPORTED APPENDIX

238

https://cwiki.apache.org/confluence/display/CAMEL/Properties
https://cwiki.apache.org/confluence/display/CAMEL/Simple

/ which at runtime will

.when () .xpath ("//name = fu

.to("mock:donkey")
.otherwise ()

.to("mock:other"
.end();

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.0.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"
xmlns:foo="http://example.com/person">
<route>
<from uri="activemq:MyQueue" />
<filter>
<xpath>/foo:person[@name="'James"']</xpath>

<to uri="mgseries:SomeOtherQueue"/>
</filter>
</route>
</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for
easier namespace based XPath expressions!

See also this discussion on the mailinglist about using your own namespaces with xpath

Setting result type

The XPath expression will return a result type using native XML objects such as
org.w3c.dom.NodeList. But many times you want a result type to be a String. To do this
you have to instruct the XPath which result type to use.

In Java DSL:

xpath ("/foo:person/@id", String.class)

In Spring DSL you use the resultType attribute to provide a fully qualified classname:

239 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring
http://www.nabble.com/fail-filter-XPATH-%28camel%29-td25531213.html
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XPath

<xpath resultType="java.lang.String">/foo:person/@id</xpath>

In @XPath:
Available as of Camel 2.1

@XPath (value = "concat ('foo-',//order/name/)", resultType = String.class) String name)

Where we use the xpath function concat to prefix the order name with foo-. In this case we
have to specify that we want a String as result type so the concat function works.

Examples

Here is a simple example using an XPath expression as a predicate in a Message Filter

from("direct:start") .

filter () .xpath("/person[@name="'James']").
to("mock:result");

If you have a standard set of namespaces you wish to work with and wish to share them across
many different XPath expressions you can use the NamespaceBuilder as shown in this example

lets define the namespaces we'll need in
Namespaces ns = new Namespaces("c", "http:
.add ("xsd", "http://www.w3.0rg/2001/
v lets create an xpath based Message Filter

from("direct:start").

filter (ns.xpath("/c:person[@name="'James"']")) .
to ("mock:result");

In this sample we have a choice construct. The first choice evaulates if the message has a header
key type that has the value Camel.

The 2nd choice evaluates if the message body has a name tag <name> which values is Kong.
If neither is true the message is routed in the otherwise block:

from("direct:in") .choice ()
using $headerName is ¢
.when () .xpath("S$Stype = 'Camel'")
.to("mock:camel")
here we test for the k
.when () .xpath ("//name "Kc

.to ("mock:donkey")
.otherwise ()

.to("mock:other")
.end () ;

LANGUAGES SUPPORTED APPENDIX

240

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java

241

And the spring XML equivalent of the route:

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="direct:in"/>

<choice>

</choice>

<when>
<xpath>$type = 'Camel'</xpath>
<to uri="mock:camel"/>

</when>

<when>
<xpath>//name = 'Kong'</xpath>
<to uri="mock:donkey"/>

</when>

<otherwise>

<to uri="mock:other"/>
</otherwise>

</route>
</camelContext>

XPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
XPath to extract a value from the message and bind it to a method parameter.

The default XPath annotation has SOAP and XML namespaces available. If you want to use
your own namespace URIs in an XPath expression you can use your own copy of the XPath
annotation to create whatever namespace prefixes you want to use.

import
import
import
import

import
import

import
import

java
Jjava
java
Jjava

.lang.
.lang.
.lang.
.lang.

annotation
annotation
annotation
annotation

.ElementType;
.Retention;
.RetentionPolicy;
.Target;

org.w3c.dom.NodeList;

org.apache.camel.component.bean.XPathAnnotationExpressionFactory;
org.apache.camel.language.LanguageAnnotation;
org.apache.camel.language.NamespacePrefix;

QRetention (RetentionPolicy.RUNTIME)
@Target ({ElementType.FIELD,
@LanguageAnnotation (language = "xpath", factory =

ElementType.METHOD, ElementType.PARAMETER})

XPathAnnotationExpressionFactory.class)
public @interface MyXPath ({
String value();

NamespacePrefix[]

You

can add the name

as the default value of the annotation

namespaces () default {

LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html

@NamespacePrefix (prefix = "nl", uri = "http:
@NamespacePrefix (prefix = "n2", uri = "http:

Class<?> resultType () default Nodelist.class;

i.e. cut and paste upper code to your own project in a different package and/or annotation
name then add whatever namespace prefix/uris you want in scope when you use your
annotation on a method parameter. Then when you use your annotation on a method
parameter all the namespaces you want will be available for use in your XPath expression.

NOTE this feature is supported from Camel |.6.1.

For example

public class Foo {

@MessageDriven (uri = "activemg:my.queue")
public void doSomething (@Path("/nsl:foo/ns2:bar/text()") String correlationID,
@Body String body) {

process the inbound message here

Using XPathBuilder without an Exchange

Available as of Camel 2.3

You can now use the org.apache.camel .builder.XPathBuilder without the
need for an Exchange. This comes handy if you want to use it as a helper to do custom xpath
evaluations.

It requires that you pass in a CamelContext since a lot of the moving parts inside the
XPathBuilder requires access to the Camel Type Converter and hence why CamelContext is
needed.

For example you can do something like this:

boolean matches = XPathBuilder.xpath("/foo/bar/@xyz") .matches (context, "<foo><bar
xyz="cheese'/></foo>"));

This will match the given predicate.

You can also evaluate for example as shown in the following three examples:

String name = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>cheese</bar></foo>", String.class);

Integer number = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>123</bar></foo>", Integer.class);

LANGUAGES SUPPORTED APPENDIX

242

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

Boolean bool = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>true</bar></foo>", Boolean.class);

Evaluating with a String result is a common requirement and thus you can do it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate (context,

"<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder

Available as of Camel 2.3

You need to add camel-saxon as dependency to your project.

Its now easier to use Saxon with the XPathBuilder which can be done in several ways as
shown below.
Where as the latter ones are the easiest ones.

Using a factory

// create a Saxon factory

XPathFactory fac = new net.sf.saxon.xpath.XPathFactoryImpl ()

// create a builder to evaluate the xpath using the saxon factory

XPathBuilder builder = XPathBuilder.xpath ("tokenize (/foo/bar, ' ") [2]").factory(fac);
// evaluate as a String result

String result = builder.evaluate (context, "<foo><bar>abc def ghi</bar></foo>");

assertEquals ("def", result);

Using ObjectModel

model uri

valuate the xpath using saxon based on its

// cre e a builder) e
XPathBuilder builder = XPathBuilder.xpath ("tokenize (/foo/bar,
' ") [2]") .objectModel ("http://saxon.sf.net/jaxp/xpath/om") ;
// evaluate as a String result

String result = builder.evaluate (context, "<foo><bar>abc_def ghi</bar></foo>");

assertEquals ("def", result);

The easy one

create a builder to evaluate the xpath using saxon

XPathBuilder builder = XPathBuilder.xpath("tokenize (/foo/bar, ' ')[2]").saxon();
// evaluate as a String result

String result = builder.evaluate (context, "<foo><bar>abc def ghi</bar></foo>");

assertEquals ("def", result);

243 LANGUAGES SUPPORTED APPENDIX

http://saxon.sourceforge.net/

Setting a custom XPathFactory using System Property

Available as of Camel 2.3

Camel now supports reading the]VM system property
javax.xml.xpath.XPathFactory that can be used to set a custom XPathFactory to
use.

This unit test shows how this can be done to use Saxon instead:

S€ system property with he XPath factory o0 use which is Saxc
System.setProperty (XPathFactory.DEFAULT PROPERTY NAME + ":" + "http://saxon.sf.net
axp/xpath/om", "net.sf.saxon.xpath.XPathFactoryImpl");
create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, ' ')[2]");
valuate as a String result

String result = builder.evaluate (context, "<foo><bar>abc def ghi</bar></foo>");
assertEquals ("def", result);

Camel will log at INFO level if it uses a non default XPathFactory such as:

XPathBuilder INFO Using system property
javax.xml.xpath.XPathFactory:http://saxon.sf.net/jaxp/xpath/om with value:
net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

Dependencies

The XPath language is part of camel-core.

XQUERY

Camel supports XQuery to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use XQuery to create an Predicate in a Message Filter or
as an Expression for a Recipient List.

from("queue:foo") .filter ().
xquery ("//foo") .
to("queue:bar")

You can also use functions inside your query, in which case you need an explicit type
conversion (or you will get a org.w3c.dom.DOMException: HERARCHY_REQUEST_ERR) by
passing the Class as a second argument to the xquery() method.

LANGUAGES SUPPORTED APPENDIX

244

http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://www.w3.org/TR/xquery/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

from("direct:start").

recipientList () .xquery ("concat ('mock:foo.', /person/@city)", String.class):;

Variables

The IN message body will be set as the contextItem. Besides this these Variables is also
added as parameters:

t
Variable Type Description Sup|?or
version
exchange Exchange The current Exchange
in.body Object The In message's body >=1.6.1
out.body Object The OUT message's body (if any) >= |.6.1
You can access the value of exchange.in.headers
in.headers.* Object with key foo by using the variable which name is >=1.6.1
in.headers.foo
You can access the value of exchange.out.headers
out.headers.* Object with key foo by using the variable which name is >=1.6.1
out.headers.foo variable
Any exchange.properties and exchange.in.headers
(exchange.in.headers support was removed since
camel 1.6.1) and any additional parameters set
key name Object using setParameters (Map). These parameters

is added with they own key name, for instance if
there is an IN header with the key name foo then
its added as foo.

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:foo="http://example.com/person"

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.0.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

245 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="activemqg:MyQueue"/>
<filter>
<xquery>/foo:person[@name="'James"']</xquery>
<to uri="mgseries:SomeOtherQueue"/>
</filter>
</route>
</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for
easier namespace based XQuery expressions!

When you use functions in your XQuery expression you need an explicit type conversion
which is done in the xml configuration via the @type attribute:

<xquery type="java.lang.String">concat ('mock:foo.', /person/@city)</xquery>

Using XQuery as an endpoint
Sometimes an XQuery expression can be quite large; it can essentally be used for Templating.
So you may want to use an XQuery Endpoint so you can route using XQuery templates.

The following example shows how to take a message of an ActiveMQ queue (MyQueue) and
transform it using XQuery and send it to MQSeries.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="activemq:MyQueue" />
<to uri="xquery:com/acme/someTransform.xquery"/>
<to uri="mgseries:SomeOtherQueue"/>
</route>
</camelContext>

Examples

Here is a simple example using an XQuery expression as a predicate in a Message Filter

from("direct:start").filter () .xquery (" /person[@name="James']") .to("mock:result");

This example uses XQuery with namespaces as a predicate in a Message Filter

LANGUAGES SUPPORTED APPENDIX

246

https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/XQuery+Endpoint
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryWithNamespacesFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

Namespaces ns = new Namespaces ("c", "http://acme.com/cheese'");

from("direct:start").
filter () .xquery("/c:person[@name="'James']", ns).
to("mock:result");

Learning XQuery

XQuery is a very powerful language for querying, searching, sorting and returning XML. For
help learning XQuery try these tutorials

* Mike Kay's XQuery Primer

* the W3Schools XQuery Tutorial
You might also find the XQuery function reference useful

Dependencies

To use XQuery in your camel routes you need to add the a dependency on camel-saxon
which implements the XQuery language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-saxon</artifactId>
<version>1.4.0</version>
</dependency>

247 LANGUAGES SUPPORTED APPENDIX

http://www.stylusstudio.com/xquery_primer.html
http://www.w3schools.com/xquery/default.asp
http://www.w3.org/TR/xpath-functions/
https://cwiki.apache.org/confluence/display/CAMEL/Download

DATA FORMAT

Camel supports a pluggable DataFormat to allow messages to be marshalled to and from binary

or text formats to support a kind of Message Translator.

The following data formats are currently supported:
+ Standard JVM object marshalling
o Serialization
o String
» Object marshalling
> JSON
> Protobuf
* Object/XML marshalling
o Castor
> JAXB
o XmlBeans
o XStream
* Object/XML/Webservice marshalling
> SOAP
* Flat data structure marshalling
o Artix Data Services
o Bindy
o CSV
> EDI
° Flatpack DataFormat
* Domain specific marshalling
o HL7 DataFormat
* Compression
o GZip data format
o Zip DataFormat
* Security
> Crypto
o XMLSecurity DataFormat
* Misc.
o TidyMarkup
o Syslog
And related is the following Type Converters:
= Dozer Type Conversion

DATA FORMAT APPENDIX

248

https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Serialization
https://cwiki.apache.org/confluence/display/CAMEL/String
https://cwiki.apache.org/confluence/display/CAMEL/JSON
https://cwiki.apache.org/confluence/display/CAMEL/Protobuf
https://cwiki.apache.org/confluence/display/CAMEL/Castor
https://cwiki.apache.org/confluence/display/CAMEL/JAXB
https://cwiki.apache.org/confluence/display/CAMEL/XmlBeans
https://cwiki.apache.org/confluence/display/CAMEL/XStream
https://cwiki.apache.org/confluence/display/CAMEL/SOAP
https://cwiki.apache.org/confluence/display/CAMEL/Artix+Data+Services
https://cwiki.apache.org/confluence/display/CAMEL/Bindy
https://cwiki.apache.org/confluence/display/CAMEL/CSV
https://cwiki.apache.org/confluence/display/CAMEL/EDI
https://cwiki.apache.org/confluence/display/CAMEL/Flatpack+DataFormat
https://cwiki.apache.org/confluence/display/CAMEL/HL7+DataFormat
https://cwiki.apache.org/confluence/display/CAMEL/GZip+data+format
https://cwiki.apache.org/confluence/display/CAMEL/Zip+DataFormat
https://cwiki.apache.org/confluence/display/CAMEL/Crypto
https://cwiki.apache.org/confluence/display/CAMEL/XMLSecurity+DataFormat
https://cwiki.apache.org/confluence/display/CAMEL/TidyMarkup
https://cwiki.apache.org/confluence/display/CAMEL/Syslog
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Dozer+Type+Conversion

Unmarshalling

If you receive a message from one of the Camel Components such as File, HTTP or JMS you
often want to unmarshal the payload into some bean so that you can process it using some
Bean Integration or perform Predicate evaluation and so forth. To do this use the unmarshal
word in the DSL in Java or the Xml Configuration.

For example

DataFormat jaxb = new JaxbDataFormat ("com.acme.model");

from("activemg:My.Queue") .
unmarshal (jaxb) .
to("mgseries:Another.Queue") ;

The above uses a named DataFormat of jaxb which is configured with a number of Java package
names. You can if you prefer use a named reference to a data format which can then be defined
in your Registry such as via your Spring XML file.

You can also use the DSL itself to define the data format as you use it. For example the
following uses Java serialization to unmarshal a binary file then send it as an ObjectMessage to
ActiveMQ

from("file: foo/bar") .
unmarshal () .serialization() .
to("activemqg:Some.Queue") ;

Marshalling
Marshalling is the opposite of unmarshalling, where a bean is marshalled into some binary or
textual format for transmission over some transport via a Camel Component. Marshalling is
used in the same way as unmarshalling above; in the DSL you can use a DataFormat instance,
you can configure the DataFormat dynamically using the DSL or you can refer to a named
instance of the format in the Registry.

The following example unmarshals via serialization then marshals using a named JAXB data
format to perform a kind of Message Translator

from("file: foo/bar") .
unmarshal () .serialization() .
marshal ("jaxb") .
to("activemg:Some.Queue") ;

Using Spring XML

This example shows how to configure the data type just once and reuse it on multiple routes

249 DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>
</route>
<route>
<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>
</route>

</camelContext>

You can also define reusable data formats as Spring beans

<bean id="myJaxb" class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>

</bean>

ARTIX DATA SERVICES

Deprecated, will be removed in Apache Camel 2.1

The Artix DS Data Format supports the Artix Data Services (ADS) product which provides
a framework for reading and writing a huge number of vertical message payloads like SWIFT,
SEPA, FpML, TWIST, ISO 20022, CREST and FIX. In addition ADS provides tooling and a
framework for reading and writing any legacy binary or text file using any kind of encoding like
fixed width, delimited, XML, CSV and so forth.

ADS also provides a transformation framework making it very easy to implement the
Message Translator pattern using the ADS tooling to design the transformation.

Unmarhalling
The first step to using ADS is usually to unmarshal some message from one of the Camel
Components like File, HTTP or JMS etc.

from("activemqg: InputQueue") .
unmarshal () .artixDS (DocumentElement.class) .
to ("mgseries:OutputQueue") ;

DATA FORMAT APPENDIX

250

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://www.iona.com/artix/ds
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/JMS

251

The above unmarshals using the Artix DS Data Format for the element DocumentElement
which is generated by the Artix DS tooling; DocumentElement is the root element of the
message structure.

The above will use the default formatting for the data type. However with Artix DS you can
switch from the default format to other formats easily. So you could add a specific format if you
wish...

from("activemqg: InputQueue") .
unmarshal () .artixDS (DocumentElement.class, ArtixDSContentType.Xml) .

to("mgseries:OutputQueue") ;

If you use static imports this can be even more readable...

unmarshal () .artixDS (DocumentElement.class, Xml).

Unmarshalling SWIFT messages

If you are working with SWIFT messages then as of camel-artixds version 1.3.6.0 or later there
is a handy SwiftFormat helper class which avoids you having to know which Element class you
want to use.

So you can unmarshal SWIFT messages using this code

from("activemqg:InputQueue") .
unmarshal (new SwiftFormat()) .
to("mgseries:OutputQueue") ;

Marshalling

Marshalling is the reverse of unmarshalling suprise suprise @

Here's an example which unmarshals using one format (XML) and then marshals using a
different format (in this case tagged value pairs).

from("activemg:XmlInput") .
unmarshal () .artixDS (DocumentElement.class, ArtixDSContentType.Xml) .
marshal () .artixDS (ArtixDSContentType.TagValuePair) .
to("mgseries:TagOutput");

Type conversions

An alternative to explicit unmarshalling in the DSL you can just use the common
convertBodyTo(Class) method in the DSL to convert using the default content type to a

DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://en.wikipedia.org/wiki/Society_for_Worldwide_Interbank_Financial_Telecommunication

particular ComplexDataObject from Artix DS. This mechanism uses the inbuilt Camel Type
Converter mechanism ot automatically marshal and unmarshal using the default content type

for a model.
For example the following...

from("activemqg: InputQueue") .
convertBodyTo (DocumentElement.class) .

to("mgseries:OutputQueue") ;

Is equivalent to this

from("activemqg: InputQueue") .
unmarshal () .artixDS (DocumentElement.class) .

to ("mgseries:OutputQueue") ;

Using Transformations

To use the Message Translator pattern with ADS its a simple matter of using the ADS tooling
to create your transformation, then just using the generated transformation class in the Bean

Integration in Camel.

For example image you define a transformation in the ADS IDE to translate SWIFT to FIX
format. You will then have a generated SwiftToFix Java class. You can then use the
transformation in your Camel DSL via Java or the Xml Configuration as follows

from("activemqg: SwiftQueue") .
bean (SwiftToFix.class) .
to("mgseries:FixQueue") ;

Configuring via Spring XML

The following example shows how to use Artix DS using Spring XML; in this case it unmarshals
the content of a JMS queue as XML using the Artix DS data model; then marshals it using a tag/

value pair.

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="activemq:MyInputQueue"/>
<unmarshal>
<artixDS contentType="Xml"
elementTypeName="iso.std.is0.x20022.tech.xsd.pacs.x008.x001.x01.DocumentElement"/>
</unmarshal>
<marshal>
<artixDS contentType="TagValuePair"/>

</marshal>

DATA FORMAT APPENDIX

252

https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Spring

253

<to uri="mgseries:MyOutputQueue"/>
</route>
</camelContext>

Content Types and auto discovery

You may have spotted in the above that we use the ArtixDSContentType which is an enum in
Java and the Xml Configuration to describe the kind of XML format to use such as binary, XML,
Text etc.

If no content type is specified we always use the default content type of the Artix DS model
in question. This is equivalent to the Default content type.

If you wish to be flexible in what you accept or emit, we also support the Auto content
type which will look for the Content-Type header on the input message and use that to try
determine which of the content types to use; if none can be found then Default is used.

e.g. you could support content posted with a MIME type of application/xml to indicate
XML or application/x-java-serialized-object for serialization or text/plain for text
etc.

Using camel-artixds

To use this module you need to use the FUSE Mediation Router distribution. Or you could just
add the following to your pom.xml, substituting the version number for the latest & greatest
release.

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-artixds</artifactId>
<version>1.5.3.0-fuse</version>
</dependency>

And ensure you are pointing at the maven repo

<repository>
<id>open.iona.m2</id>
<name>FUSESource Open Source Community Release Repository</name>
<url>http://repo.fusesource
<snapshots>
<enabled>false</enabled>
</snapshots>

com/maven2/</url>

<releases>
<enabled>true</enabled>
</releases>
</repository>

DATA FORMAT APPENDIX

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/model/dataformat/ArtixDSContentType.html
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://fusesource.com/products/enterprise-camel

SERIALIZATION

Serialization is a Data Format which uses the standard Java Serialization mechanism to
unmarshal a binary payload into Java objects or to marshal Java objects into a binary blob.
For example the following uses Java serialization to unmarshal a binary file then send it as an
ObjectMessage to ActiveMQ

from("file: foo/bar") .
unmarshal () .serialization() .

to("activemg:Some.Queue") ;

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

JAXB

JAXB is a Data Format which uses the JAXB2 XML marshalling standard which is included in
Java 6 to unmarshal an XML payload into Java objects or to marshal Java objects into an XML
payload.

Using the Java DSL
For example the following uses a named DataFormat of jaxb which is configured with a number
of Java package names to initialize the JAXBContext.

DataFormat jaxb = new JaxbDataFormat ("com.acme.model");

from("activemg:My.Queue") .

unmarshal (jaxb) .
to("mgseries:Another.Queue") ;

You can if you prefer use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("activemg:My.Queue") .
unmarshal ("myJaxbDataType") .
to("mgseries:Another.Queue");

Using Spring XML

The following example shows how to use JAXB to unmarshal using Spring configuring the jaxb
data type

DATA FORMAT APPENDIX

254

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Spring

255

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<unmarshal>
<jaxb prettyPrint="true" contextPath="org.apache.camel.example"/>
</unmarshal>
<to uri="mock:result"/>
</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on multiple routes.
For Camel versions below 1.5.0 you have to set the <jaxb> element directly in
<camelContext>.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>
</route>
<route>
<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>
</route>

</camelContext>

Partial marshalling/unmarshalling

This feature is new to Camel 2.2.0.

JAXB 2 supports marshalling and unmarshalling XML tree fragments. By default JAXB looks for
@XmlRootElement annotation on given class to operate on whole XML tree. This is useful
but not always - sometimes generated code does not have @XmlIRootElement annotation,
sometimes you need unmarshall only part of tree.

In that case you can use partial unmarshalling. To enable this behaviours you need set property
partClass. Camel will pass this class to JAXB's unmarshaler.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:marshal"/>
<marshal>
<jaxb prettyPrint="false" contextPath="org.apache.camel.example"

DATA FORMAT APPENDIX

& Muitiple context paths
It is possible to use this data format with more than one context path. You can
specify context path using : as separator, for example
com.mycompany : com.mycompany?2. Note that this is handled by JAXB
implementation and might change if you use different vendor than RI.

partClass="org.apache.camel.example.PurchaseOrder"
partNamespace="{http://example.camel.org/apache}po" />

</marshal>

<to uri="mock:marshal"/>
</route>
<route>

<from uri="direct:unmarshal"/>

<unmarshal>
<jaxb prettyPrint="false" contextPath="org.apache.camel.example"
partClass="org.apache.camel.example.Partial" />
</unmarshal>
<to uri="mock:unmarshal"/>
</route>
</camelContext>

For marshalling you have to add partNamespace attribute with QName of destination
namespace. Example of Spring DSL you can find above.

Ignoring the NonXML Character

This feature is new to Camel 2.2.0.

JaxbDataFromat supports to ignore the NonXML Character, you just need to set the
filterNonXmIChars property to be true, JaxbDataFromat will replace the NonXML character
with " " when it is marshaling or unmarshaling the message. You can also do it by setting the
Exchange property Exchange .FILTER NON XML CHARS.

JDK 1.5 JDK 1.6+
Filtering in use StAX APl and implementation No
Filtering not in use StAX APl only No

This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX implementation.

Working with the ObjectFactory

If you use X]C to create the java class from the schema, you will get an ObjectFactory for you
JAXB context. Since the ObjectFactory uses JAXBElement to hold the reference of the schema
and element instance value, from Camel 1.5.1 jaxbDataformat will ignore the JAXBElement by

DATA FORMAT APPENDIX

256

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Char
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html

257

default and you will get the element instance value instead of the JAXBElement object form the
unmarshaled message body.

If you want to get the JAXBElement object form the unmarshaled message body, you need to
set the JaxbDataFormat object's ignoreJAXBElement property to be false.

Setting encoding

In Camel 1.6.1 and newer you can set the encoding option to use when marshalling. Its the
Marshaller.JAXB ENCODING encoding property on the JAXB Marshaller.

You can setup which encoding to use when you declare the JAXB data format. You can also
provide the encoding in the Exchange property Exchange . CHARSET NAME. This property
will overrule the encoding set on the JAXB data format.

In this Spring DSL we have defined to use 1s0-8859-1 as the encoding:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<marshal>
<jaxb prettyPrint="false" encoding="iso-8859-1"
contextPath="org.apache.camel.example"/>
</marshal>
<to uri="mock:result"/>
</route>
</camelContext>

Dependencies

To use JAXB in your camel routes you need to add the a dependency on camel=jaxb which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jaxb</artifactId>
<version>1.6.0</version>
</dependency>

XMLBEANS

XmlBeans is a Data Format which uses the XmlBeans library to unmarshal an XML payload into
Java objects or to marshal Java objects into an XML payload.

DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://xmlbeans.apache.org/

from("activemg:My.Queue") .
unmarshal () .xmlBeans () .

to("mgseries:Another.Queue") ;

Dependencies

To use XmlBeans in your camel routes you need to add the a dependency on camel-
xmlbeans which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xmlbeans</artifactId>
<version>1.5.0</version>

</dependency>

XSTREAM

XStream is a Data Format which uses the XStream library to marshal and unmarshal Java
objects to and from XML.

lets turn Object messages into XML then send to MQSeries
from("activemqg:My.Queue") .
marshal () .xstream() .
to("mgseries:Another.Queue") ;

XMLInputFactory and XMLOutputFactory

The XStream library uses the javax.xml.stream.XMLInputFactory and
javax.xml.stream.XMLOutputFactory, you can control which implementation of this
factory should be used.

The Factory is discovered using this algorithm:
I. Use the javax.xml.stream.XMLInputFactory,
javax.xml.stream.XMLOutputFactory system property.
2. Use the 1ib/xml.stream.properties file in the JRE_HOME directory.
3. Use the Services API, if available, to determine the classname by looking in the META-INF/
services/javax.xml.stream.XMLInputFactory, META-INF/services/
javax.xml.stream.XMLOutputFactory files in jars available to the JRE.
4. Use the platform default XMLInputFactory,XMLOutputFactory instance.

DATA FORMAT APPENDIX

258

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://xstream.codehaus.org/
http://xstream.codehaus.org/

259

How to set the XML encoding in Xstream DataFormat?

From Camel 1.6.3 or Camel 2.2.0, you can set the encoding of XML in Xstream DataFormat by
setting the Exchange's property with the key Exchange . CHARSET NAME, or setting the
encoding property on Xstream from DSL or Spring config.

from("activemg:My.Queue") .
marshal () .xstream ("UTF-8") .

to("mgseries:Another.Queue");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
!-- we define the son xstream data formats to be used (xstream is default) -->
<dataFormats>
<xstream id="xstream-utf8" encoding="UTF-8"/>
<xstream id="xstream-default"/>
</dataFormats>

<route>
<from uri="direct:in"/>
<marshal ref="xstream-default"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:in-UTF-8"/>
<marshal ref="xstream-utf8"/>
<to uri="mock:result"/>
</route>

</camelContext>

Dependencies

To use XStream in your camel routes you need to add the a dependency on camel-xstream
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-xstream</artifactId>
<version>1.5.0</version>

</dependency>

DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download

Csv

The CSV Data Format uses Apache Commons CSV to handle CSV payloads (Comma Separated
Values) such as those exported/imported by Excel.

Options

Option Type Description

config CSVConfig Can be used to set a custom CSVConfig object.
Camel by defaul

strategy CSVStrategy amel uses by default

CSVStrategy.DEFAULT STRATEGY.

Camel 1.6.1/2.0: Is default true. By default, columns
are autogenerated in the resulting CSV. Subsequent
messages use the previously created columns with new
fields being added at the end of the line.

autogenColumn boolean

Camel 2.4: |s default , . Can be used to configure the

delimiter Strin,
J delimiter, if it's not the comma.

Marshalling a Map to CSV

The component allows you to marshal a Java Map (or any other message type that can be
converted in a Map) into a CSV payload.

An example: if you send a message with this map...

Map<String, Object> body = new HashMap<String, Object>();
body.put ("foo", "abc");
body.put ("bar", 123);

... through this route ...

from("direct:start").
marshal () .csv () .
to ("mock:result");

... You will end up with a String containing this CSV message

abc, 123

Sending the Map below through this route will result in a CSV message that looks like
foo,bar

DATA FORMAT APPENDIX

260

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://commons.apache.org/sandbox/csv/
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter

261

Unmarshalling a CSV message into a Java List

Unmarshalling will transform a CSV messsage into a Java List with CSV file lines (containing
another List with all the field values).
An example: we have a CSV file with names of persons, their IQ and their current activity.

Jack Dalton, 115, mad at Averell

Joe Dalton, 105, calming Joe

William Dalton, 105, keeping Joe from killing Averell
Averell Dalton, 80, playing with Rantanplan

Lucky Luke, 120, capturing the Daltons

We can now use the CSV component to unmarshal this file:

from("file:src/test/resources/?fileName=daltons.csv&noop=true") .
unmarshal () .csv () .
to("mock:daltons") ;

The resulting message will contain a List<List<String>> like...

List<List<String>> data = (List<List<String>>) exchange.getIn().getBody();

for (List<String> line : data) ({
LOG.debug (String. format ("%s has an IQ of %$s and is currently %s",
line.get (0), line.get(l), line.get(2)));

Marshalling a List<Map> to CSV

Available as of Camel 2.1
If you have multiple rows of data you want to be marshalled into CSV format you can now
store the message payload as a List<Map<String, Object>> object where the list

contains a Map for each row.

File Poller of CSV, then unmarshaling
Given a bean which can handle the incoming data...
Listing 13. MyCsvHandler.java

Some comments here
public void doHandleCsvData (List<List<String>> csvData)

{

do magic here

... your route then looks as follows

DATA FORMAT APPENDIX

<route>

<!-- poll every 10 seconds -->

<from uri="file:///some/path/to/pickup/
csvfiles?delete=true&consumer.delay=10000" />

<unmarshal><csv /></unmarshal>

<to uri="bean:myCsvHandler?method=doHandleCsvData" />
</route>

Marshaling with a pipe as delimiter

Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<marshal>
<csv delimiter="|" />
</marshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
CSvConfig config = new CSVConfig();

config.setDelimiter('|");
csv.setConfig(config);

from("direct:start")

.marshal (csv)

.convertBodyTo (String.class)
.to("bean:myCsvHandler?method=doHandleCsv") ;

CsvDataFormat csv = new CsvDataFormat () ;
csv.setDelimiter (" |");

from("direct:start")

.marshal (csv)

.convertBodyTo (String.class)
.to("bean:myCsvHandler?method=doHandleCsv") ;

Unmarshaling with a pipe as delimiter

Using the Spring/XML DSL:

DATA FORMAT APPENDIX

262

<route>
<from uri="direct:start" />
<unmarshal>
<csv delimiter="|" />
</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat () ;

CSVStrategy strategy = CSVStrategy.DEFAULT STRATEGY;
strategy.setDelimiter('|"');
csv.setStrategy(strategy);

from("direct:start"
.unmarshal (csv)
.to("bean:myCsvHandler?method=doHandleCsv") ;

CsvDataFormat csv = new CsvDataFormat () ;
csv.setDelimiter (" |");

from("direct:start")
.unmarshal (csv)
.to("bean:myCsvHandler?method=doHandleCsv") ;

Dependencies

To use CSV in your camel routes you need to add the a dependency on camel-csv which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-csv</artifactId>
<version>2.0.0</version>
</dependency>

The String Data Format is a textual based format that supports encoding.

Options

Option Default Description

263 DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

To use a specific charset for encoding. If not provided Camel will use

charset null the JVM default charset.

Marshal

In this example we marshal the file content to String object in UTF-8 encoding.

from("file: data.csv") .marshal () .string ("UTF-8") .to ("jms://myqueue") ;

Unmarshal

In this example we unmarshal the payload from the JMS queue to a String object using UTF-8
encoding, before its processed by the newOrder processor.

from("jms://queue/order") .unmarshal () .string ("UTF-8") .processRef ("newOrder") ;

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

HL7 DataFormat

The HL7 component ships with a HL7 data format that can be used to format between
String and HL7 model objects.
= marshal = from Message to byte stream (can be used when returning as response
using the HL7 MLLP codec)
= unmarshal = from byte stream to Message (can be used when receiving streamed
data from the HL7 MLLP
To use the data format, simply instantiate an instance and invoke the marhsal or unmarshl
operation in the route builder:

DataFormat hl7 = new HL7DataFormat () ;

from("direct:hl7in") .marshal (h1l7) .to("jms:queue:hl7out") ;

In the sample above, the HL7 is marshalled from a HAPI Message object to a byte stream and
put on a JMS queue.
The next example is the opposite:

DATA FORMAT APPENDIX

264

https://cwiki.apache.org/confluence/display/CAMEL/HL7

265

DataFormat hl7 = new HL7DataFormat();

from("jms:queue:hl7out") .unmarshal (h1l7) .to ("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is passed to our patient
lookup service.

Notice there is a shorthand syntax in Camel for well-known data formats that is commonly
used.
Then you don't need to create an instance of the HL7DataFormat object:

from("direct:hl7in") .marshal () .hl7() .to("jms:queue:hl7out");
from("jms:queue:hl7out") .unmarshal () .hl7 () .to("patientLookupService");

EDI DATAFORMAT

This component ships with a EDI dataformat that can be used to format from a
java.io.InputStreamto XMLasa org.w3c.Document Object.

* marshal = currently not supported by Smooks

* unmarshal = from stream to XML (can be used when reading EDI files)
The EDIDataFormat must be configued with either a:

* setSmooksConfig(configfile) = afully Smooks configuration file

* setMappingModel (modelfile) = just the mapping model xml file and Camel

will use a default Smooks configuration

To use the data format simply instantiate an instance, set the configuration (above) and invoke
the unmarshal operation in the route builder:

DataFormat edi = new EDIDataFormat () ;
edi.setMappingModel ("my-order-mapping.xml") ;

from("file: edi/in") .
unmarshal (edi) .
to("jms:queue:edi") ;

And you can also provide the full Smooks configuration file where you can configure Smooks as
you want, in case the default configuration isn't useful:

DataFormat edi = new EDIDataFormat () ;
edi.setSmooksConfig ("my-smooks-config.xml") ;

from("file: edi/in") .

unmarshal (edi) .
to("jms:queue:edi");

DATA FORMAT APPENDIX

http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home

Dependencies

To use EDI in your camel routes you need to add the a dependency on camel-smooks
which implements this data format.

This component is hosted at the Camel Extra project since the Smooks library uses a
licenses which cant be included directly in an Apache project.

FLATPACK DATAFORMAT

The Flatpack component ships with the Flatpack data format that can be used to format
between fixed width or delimited text messages to a List of rows as Map.
* marshal = from List<Map<String, Object>>to OutputStream (can be
converted to String)
= unmarshal = from java.io.InputStream (suchasaFile or String)toa
java.util.List asan
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to process each row
one by one you can split the exchange, using Splitter.
Notice: The Flatpack library does currently not support header and trailers for the marshal
operation.

Options

The data format has the following options:

Option Default Description

The flatpack pzmap configuration file. Can be
definition null omitted in simpler situations, but its preferred to
use the pzmap.

fixed false Delimited or fixed.

Whether the first line is ignored for delimited files

ignoreFirstRecord true
g (for the column headers).

textQualifier " If the text is qualified with a char such as ".
delimiter ’ The delimiter char (could be ; , or similar)
parserFactory null Uses the default Flatpack parser factory.
Usage

To use the data format, simply instantiate an instance and invoke the marhsal or unmarshal
operation in the route builder:

DATA FORMAT APPENDIX

266

http://camel-extra.googlecode.com/
https://cwiki.apache.org/confluence/display/CAMEL/Flatpack
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

267

FlatpackDataFormat fp = new FlatpackDataFormat () ;
fp.setDefinition (new ClassPathResource ("INVENTORY-Delimited.pzmap.xml")) ;

from("file:order/in") .unmarshal (df) .to ("seda:queue:neworder") ;

The sample above will read files from the order/in folder and unmarshal the input using the
Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the
structure of the files. The resultis a DataSetList object we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat () ;

df.setDefinition(new ClassPathResource ("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);

df.setIgnoreFirstRecord(false);

from("seda:people"”) .marshal (df) .convertBodyTo (String.class) .to ("jms:queue:people");

In the code above we marshal the data from a Object representation as a List of rows as
Maps. The rows as Map contains the column name as the key, and the the corresponding
value. This structure can be created in Java code from e.g. a processor. We marshal the data
according to the Flatpack format and convert the result as a String object and store it on a
JMS queue.

Dependencies

To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>1.5.0</version>

</dependency>

JSON

JSON is a Data Format to marshal and unmarshal Java objects to and from JSON.
In Camel 1.6 its only the XStream library that is supported and its default.

In Camel 2.0 we added support for more libraries:
Camel provides integration with two popular JSon libraries:
= The XStream library and Jettsion
* The Jackson library

DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://www.json.org/
http://xstream.codehaus.org/
http://jettison.codehaus.org/
http://xircles.codehaus.org/projects/jackson

By default Camel uses the XStream library.

Using JSon data format with the XStream library

lets turn Object me age
from("activemg:My.Queue") .

marshal () .json() .
to("mgseries:Another.Queue") ;

Using Json data format with the Jackson library

lets turn Object messages into son then send to MQSeries
from("activemg:My.Queue") .
marshal () .json (JsonLibrary.Jackson) .
to("mgseries:Another.Queue") ;

Using Json in Spring DSL

When using Data Format in Spring DSL you need to declare the data formats first. This is done
in the DataFormats XML tag.

<dataFormats>
<!-- here we define a Json data format with the id jack and that it should
use the TestPojo as the class type when
doing unmarshal. The unmarshalTypeName is optional, if not provided
Camel will use a Map as the type -->
<json id="jack" library="Jackson"
unmarshalTypeName="org.apache.camel.component.jackson.TestPojo" />
</dataFormats>

And then you can refer to this id in the route:

<route>
<from uri="direct:back"/>
<unmarshal ref="jack"/>
<to uri="mock:reverse"/>
</route>

Dependencies for XStream

To use JSON in your camel routes you need to add the a dependency on camel-xstream
which implements this data format.

DATA FORMAT APPENDIX

268

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

269

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xstream</artifactId>
<version>2.0</version>

</dependency>

Dependencies for Jackson

To use JSON in your camel routes you need to add the a dependency on camel-jackson
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jackson</artifactId>
<version>2.0</version>

</dependency>

The Zip Data Format is a message compression and de-compression format. Messages
marshalled using Zip compression can be unmarshalled using Zip decompression just prior to
being consumed at the endpoint. The compression capability is quite useful when you deal with
large XML and Text based payloads. It facilitates more optimal use of network bandwidth while
incurring a small cost in order to compress and decompress payloads at the endpoint.

Options

Option Default Description

To specify a specific compression Level use

java.util.zip.Deflater settings. The possible

settings are

-Deflater.BEST SPEED
R -Deflater.BEST COMPRESSION
compressionLevel null -
-Deflater.DEFAULT COMPRESSION

If compressionLevel is not explicitly specified the
compressionLevel employed is
Deflater.DEFAULT COMPRESSION

DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

Marshal

In this example we marshal a regular text/XML payload to a compressed payload employing zip
compression Deflater.BEST COMPRESSION and send it an ActiveMQ queue called
MY_QUEUE.

from("direct:start").marshal().zip(Deflater.BEST_COMPRESSION) .to("activemg:queue:MY QUEUE");

Alternatively if you would like to use the default setting you could send it as

from("direct:start") .marshal().zip () .to("activemqg:queue:MY QUEUE");

Unmarshal

In this example we unmarshal a zipped payload from an ActiveMQ queue called MY_QUEUE to
its original format, and forward it for processing to the UnZippedMessageProcessor. Note that
the compression Level employed during the marshalling should be identical to the one
employed during unmarshalling to avoid errors.

from("activemqg:queue:MY QUEUE") .unmarshal().zip () .process (new
UnZippedMessageProcessor()) ;-1

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

TIDYMARKUP

TidyMarkup is a Data Format that uses the TagSoup to tidy up HTML. It can be used to parse
ugly HTML and return it as pretty wellformed HTML.
TidyMarkup only supports the unmarshal operation as we really don't want to turn well

formed HTML into ugly HTML

Java DSL Example

An example where the consumer provides some HTML

from("file: site/inbox") .unmarshal () .tidyMarkup() .to("file://site/blogs") ;

DATA FORMAT APPENDIX

270

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://www.ccil.org/~cowan/XML/tagsoup/
https://cwiki.apache.org/confluence/display/CAMEL/TidyMarkup

& Camel eats our own dog food soap

We had some issues in our pdf Manual where we had some strange symbols. So
Jonathan used this data format to tidy up the wiki html pages that are used as base
for rendering the pdf manuals. And then the mysterious symbols vanished.

Spring XML Example

The following example shows how to use TidyMarkup to unmarshal using Spring

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file: site/inbox"/>
<unmarshal>
<tidyMarkup/>
</unmarshal>
<to uri="file: site/blogs"/>
</route>
</camelContext>

Dependencies

To use TidyMarkup in your camel routes you need to add the a dependency on camel-
tagsoup which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-tagsoup</artifactId>
<version>1.6.0</version>

</dependency>

BINDY

Available as of Camel 2.0
The idea that the developers has followed to design this component was to allow the
parsing/binding of non structured data (or to be more precise non-XML data)
to Java Bean using annotations. Using Bindy, you can bind data like :
= CSV record,
= Fixedlength record,
* FIX messages,
= or any other non-structured data

271 DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/TidyMarkup
https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Manual
http://janstey.blogspot.com/

to one or many Plain Old Java Object (POJO) and to convert the data according to the type of
the java property. POJO can be linked together and relation one to many is available in some
cases. Moreover, for data type like Date, Double, Float, Integer, Short, Long and BigDecimal,
you can provide the pattern to apply during the formatting of the property.

For the BigDecimal number, you can also define the precision and the decimal or grouping
separators

Tvpe Format Pattern Link
YP Type example
Date DateFormat "dd-MM-yyyy" http://java.sun.com/j2se/1.5.0/docs/api/java/

text/SimpleDateFormat.html

http://java.sun.com/j2se/|.5.0/docs/apiljava/

. * . " "
Decimal Decimalformat "##.HHHH#H HHH text/DecimalFormat html

Decimal* = Double, Integer, Float, Short, Long

To work with camel-bindy, you must first define your model in a package (e.g.
com.acme.model) and for each model class (e.g. Order, Client, Instrument, ...) associate the
required annotations (described hereafter) with Class or property name.

ANNOTATIONS

The annotations created allow to map different concept of your model to the POJO like :
= Type of record (csv, key value pair (e.g. FIX message), fixed length ...),
* Link (to link object in another object),
* DataField and their properties (int, type, ...),
* KeyValuePairField (for key = value format like we have in FIX financial messages),
= Section (to identify header, body and footer section),
= OneToMany

This section will describe them :

I. CsvRecord

The CsvRecord annotation is used to identified the root class of the model. It represents a
record = a line of a CSV file and can be linked to several children model classes.

Annotation name Record type Level

CsvRecord csv Class

Parameter name type Info

DATA FORMAT APPENDIX

272

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html

273

! Format supported

This first release only support comma separated values fields and key value pair

fields (e.g. : FIX messages).

mandatory - can be ', or ;' or 'anything'. This value is
interpreted as a regular expression. If you want to use
a sign which has a special meaning in regular

separator string expressions, e.g. the '[' sign, than you have to mask it,
like '
||
e optional - default value = false - allow to skip the first
skipFirstLine boolean line of the CSV file
. optional - default value = WINDOWS - allow to
crif string

define the carriage return character to use

generateHeaderColumns boolean

optional - default value = false - uses to generate the
header columns of the CSV generates

isOrdered boolean

optional - default value = false - allow to change the
order of the fields when CSV is generated

This annotation is associated to the root class of the
model and must be declared one time.

case | : separator =',’

The separator used to segregate the fields in the CSV record is ',' :
10, J, Pauline, M, XD 12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

Listing 14. Separator ,

@CsvRecord(separator = ",")
public Class Order ({

}

case 2 : separator ="'

Compare to the previous case, the separator here is ;' instead of ', :
10; J; Pauline; M; XD 12345678; Fortis Dynamic |15/15; 2500; USD; 08-01-2009

Listing 15. Separator ;

@CsvRecord(separator = ";")
public Class Order ({

DATA FORMAT APPENDIX

case 3 : separator ='|'
Compare to the previous case, the separator here is '|' instead of ;' :

10] J| Pauline| M| XD 12345678| Fortis Dynamic 15/15] 2500] USD]| 08-01-2009

Listing 16. Separator

@CsvRecord(separator = "\\[")
public Class Order {

}

case 3 : separator = "\",\"

When the field to be parsed of the CSV record contains ', or ;' which is also used as
separator, we whould find another strategy
to tell camel bindy how to handle this case. To define the field containing the data with a
comma, you will use simple or double quotes
as delimiter (e.g: '10', 'Street 10, NY', 'USA' or "10", "Street 10, NY", "USA").
Remark : In this case, the first and last character of the line which are a simple or double quotes

will removed by bindy
"10",")","Pauline"," M","XD12345678","Fortis Dynamic 15,15" 2500","USD","08-01-2009"

Listing 17. Separator

@CsvRecord(separator = "\",\"")
public Class Order {

}

case 5 : separator & skipfirstline

The feature is interesting when the client wants to have in the first line of the file, the name
of the data fields :

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date

To inform bindy that this first line must be skipped during the parsing process, then we use
the attribute :

Listing 18. Separator & skipFirstLine

@CsvRecord (separator = ",", skipFirstLine = true)
public Class Order {

}

case 6 : generateHeaderColumns

DATA FORMAT APPENDIX

274

275

To add at the first line of the CSV generated, the attribute generateHeaderColumns must be
set to true in the annotation like this :

Listing 19. generateHeaderColumns

@CsvRecord(generateHeaderColumns = true)
public Class Order {

As a result, Bindy during the unmarshaling process will generate CSV like this :

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date
10, J, Pauline, M, XD 12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

case 7 : carriage return
If the platform where camel-bindy will run is not Windows but Macintosh or Unix, than you
can change the crlf property like this. Three values are available : WINDOWS, UNIX or MAC

Listing 20. carriage return

@CsvRecord (separator = ",", crlf="MAC")
public Class Order {

case 8 : isOrdered

Sometimes, the order to follow during the creation of the CSV record from the model is
different from the order used during the parsing. Then, in this case, we can use the attribute
isOrdered = true to indicate this in combination with attribute 'position' of the DataField
annotation.

Listing 21. isOrdered

@CsvRecord (isOrdered = true)
public Class Order {

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

Remark : pos is used to parse the file, stream while positions is used to generate the CSV

2. Link

The link annotation will allow to link objects together.

DATA FORMAT APPENDIX

Annotation name Record type Level

Link all Class & Property

Parameter

name type Info

optional - by default the value is LinkType.oneToOne - so you

linkT LinkT
Inklype INKIYPE are not obliged to mention it

Only one-to-one relation is allowed.

e.g : If the model Class Client is linked to the Order class, then use annotation Link in the
Order class like this :

Listing 22. Property Link

@CsvRecord (separator = ", ")
public class Order {

@DataField (pos = 1)
private int orderNr;

@Link
private Client client;

AND for the class Client :
Listing 23. Class Link

@QLink
public class Client {

}

3. DataField

The DataField annotation defines the property of the field. Each datafield is identified by its
position in the record, a type (string, int, date, ...) and optionally of a pattern

Annotation name Record type Level

DataField all Property
Parameter
type Info
name
pos int mandatory - digit number starting from | to ...
. optional - default value ="" - will be used to format Decimal,
pattern string Date

DATA FORMAT APPENDIX

276

277

optional - represents the length of the field for fixed length

length int
gt format
. . optional - represents the precision to be used when the Decimal
precision int)
number will be formatted/parsed
. optional - default value ="" - is used by the Java Formater
pattern string) .
(SimpleDateFormat by example) to format/validate data
. . optional - must be used when the position of the field in the CSV
position int i
generated must be different compare to pos
required boolean optional - default value = "false"
trim boolean optional - default value = "false"

case | : pos
This parameter/attribute represents the position of the field in the csv record

Listing 24. Position

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)
private String isinCode;

As you can see in this example the position starts at 'l' but continues at '5' in the class Order.
The numbers from '2' to '4' are defined in the class Client (see here after).

Listing 25. Position continues in another model class

public class Client ({

@DataField (pos = 2)
private String clientNr;

@DataField (pos = 3)
private String firstName;

@DataField(pos = 4)
private String lastName;

case 2: pattern
The pattern allows to enrich or validates the format of your data

DATA FORMAT APPENDIX

Listing 26. Pattern

@CsvRecord (separator = ", ")
public class Order ({

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)
private String isinCode;

@DataField(name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2)
private BigDecimal amount;

@DataField(pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy") -- pattern used during parsing or when
the date is created
private Date orderDate;

case 3 : precision
The precision is helpful when you want to define the decimal part of your number

Listing 27. Precision

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1)
private int orderNr;

@QLink
private Client client;

@DataField(pos = 5)
private String isinCode;

@DataField (name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2) -- precision
private BigDecimal amount;

@DataField (pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy")
private Date orderDate;

DATA FORMAT APPENDIX 278

279

case 4 : Position is different in output

The position attribute will inform bindy how to place the field in the CSV record generated.
By default, the position used corresponds to the position defined with the attribute 'pos'. If the
position is different (that means that we have an asymetric processus comparing marshaling
from unmarshaling) than we can use 'position’ to indicate this.

Here is an example
Listing 28. Position is different in output

@CsvRecord (separator = ", ")

public class Order {

@CsvRecord (separator = ",", isOrdered = true)
public class Order {

>ositions of the fields start from 1 and not from 0

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

@DataField(pos = 3, position = 9)
private String firstName;

@DataField(pos = 4, position = 8)
private String lastName;

@DataField(pos = 5, position = 7)
private String instrumentCode;

@DataField(pos = 6, position = 6)
private String instrumentNumber;

case 5 : required

If a field is mandatory, simply use the attribute 'required' setted to true
Listing 29. Required

@CsvRecord (separator = ", ")
public class Order ({

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2, required = true)

DATA FORMAT APPENDIX

. This attribute of the annotation @DataField must be used in combination with
attribute isOrdered = true of the annotation @CsvRecord

private String clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4, required = true)
private String lastName;

If this field is not present in the record, than an error will be raised by the parser with the
following information :

Some fields are missing (optional or mandatory), line :

case 6 : trim

If a field has leading and/or trailing spaces which should be removed before they are
processed, simply use the attribute 'trim' setted to true

Listing 30. Trim

@CsvRecord (separator = ", ")
public class Order ({

@DataField(pos = 1, trim = true)
private int orderNr;

@DataField(pos = 2, trim = true)
private Integer clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField (pos = 4)
private String lastName;

4. FixedLengthRecord

The FixedLengthRecord annotation is used to identified the root class of the model. It
represents a record = a line of a file/message containing data fixed length formatted

and can be linked to several children model classes. This format is a bit particular beause data of
a field can be aligned to the right or to the left.

DATA FORMAT APPENDIX 280

When the size of the data does not fill completely the length of the field, then we add 'padd'

characters.
Annotation name Record type Level
FixedLengthRecord fixed Class
P t

arameter type Info
name

. optional - default value = WINDOWS - allow to define the
crif string)
carriage return character to use

paddingChar char mandatory - default value ="'
length int mandatory = size of the fixed length record

hasHeader boolean optional - NOT YET IMPLEMENTED

hasFooter boolean optional - NOT YET IMPLEMENTED

This annotation is associated to the root class of the model and
must be declared one time.

case | : Simple fixed length record
This simple example shows how to design the model to parse/format a fixed message
[0A9PaulineMISINXD 12345678BUYShare2500.45USDO01-08-2009

Listing 31. Fixed-simple

@FixedLengthRecord(length=54, paddingChar=' ")
public static class Order {

@DataField(pos = 1, length=2)
private int orderNr;

@DataField(pos = 3, length=2)
private String clientNr;

@DataField(pos = 5, length=7)
private String firstName;

@DataField(pos = 12, length=1, align="L")
private String lastName;

@DataField(pos = 13, length=4)
private String instrumentCode;

@DataField(pos = 17, length=10)
private String instrumentNumber;

@DataField(pos = 27, length=3)
private String orderType;

281 DATA FORMAT APPENDIX

@DataField(pos = 30, length=5)
private String instrumentType;

@DataField(pos = 35, precision = 2, length=7)

private BigDecimal amount;

@DataField(pos = 42, length=3)

private String currency;

@DataField(pos = 45, length=10, pattern = "dd-MM-yyyy")

private Date orderDate;

case 2 : Fixed length record with alignment and padding

This more elaborated example show how to define the alignment for a field and how to
assign a padding character which is ' ' here"

[0A9 PaulineM ISINXD12345678BUYShare2500.45USDO [-08-2009

Listing 32. Fixed-padding-align

@FixedLengthRecord (length=60,

paddingChar="' ")

public static class Order {

@DataField (pos

= 1, length=2)

private int orderNr;

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos

DCK

private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos

= 3, length=2)
clientNr;

= 5, length=9)
firstName;
= 14, length=5, align="L")

// align text to the LEFT zone of

lastName;

= 19, length=4)
instrumentCode;

= 23, length=10)
instrumentNumber;

= 33, length=3)
orderType;

= 36, length=5)
instrumentType;
= 41,

precision = 2, length=7)

private BigDecimal amount;

@DataField (pos

= 48, length=3)

DATA FORMAT APPENDIX

282

private String currency;

@DataField(pos = 51, length=10, pattern = "dd-MM-yyyy")
private Date orderDate;

case 3 : Field padding

Sometimes, the default padding defined for record cannnot be applied to the field as we have
a number format where we would like to padd with '0' instead of ' ". In this case, you can use in
the model the attribute paddingField to set this value.

10A9 PaulineM ISINXD 12345678BUY Share000002500.45USD01-08-2009
Listing 33. Fixed-padding-field

@FixedLengthRecord(length = 65, paddingChar = ' ')
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 3, length = 2)
private String clientNr;

@DataField(pos = 5, length = 9)
private String firstName;

@DataField(pos = 14, length = 5, align = "L")
private String lastName;

@DataField(pos = 19, length = 4)
private String instrumentCode;

@DataField(pos = 23, length = 10)
private String instrumentNumber;

@DataField(pos = 33, length = 3)
private String orderType;

@DataField(pos = 36, length = 5)
private String instrumentType;

@DataField(pos = 41, precision = 2, length = 12, paddingChar = '0'")
private BigDecimal amount;

@DataField(pos = 53, length = 3)
private String currency;

@DataField(pos = 56, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

283 DATA FORMAT APPENDIX

5. Message

The Message annotation is used to identified the class of your model who will contain key value
pairs fields. This kind of format is used mainly in Financial Exchange Protocol Messages (FIX).
Nevertheless, this annotation can be used for any other format where data are identified by
keys. The key pair values are separated each other by a separator which can be a special
character like a tab delimitor (unicode representation : \u0009) or a start of heading (unicode
representation : \u0001)

Annotation name Record type Level

Message key value pair Class
Parameter
type Info
name
pairSeparator string mandatory - can be '=' or '}’ or 'anything'

keyValuePairSeparair string mandatory - can be '\u0001', \u0009', '#' or 'anything'

optional - default value = WINDOWS - allow to define

crif string)
the carriage return character to use
type string optional - define the type of message (e.g. FIX, EMX; ...)
version string optional - version of the message (e.g. 4.1)
<Ordered boolean optional - default value = false - allow to change the order

of the fields when FIX message is generated

This annotation is associated to the message class of the
model and must be declared one time.

case | : separator = "'u0001’

The separator used to segregate the key value pair fields in a FIX message is the ASCII '0I'
character or in unicode format "\u0001|". This character must be escaped a second time to avoid
a java runtime error. Here is an example :

8=FIX.4.1 9=20 34=1 35=0 49=INVMGR 56=BRKR I=BE.CHM.00| 11=CHMO0001-01 22=4

and how to use the annotation
Listing 34. FIX - message
@Message (keyValuePairSeparator = "=", pairSeparator = "\u0001l", type="FIX",

version="4.1"
public class Order {

}

DATA FORMAT APPENDIX

284

285

"FIX information"
More information about FIX can be found on this web site :
http://lwww.fixprotocol.org/. To work with FIX messages, the model must contain a
Header and Trailer classes linked to the root message class which could be a Order
class. This is not mandatory but will be very helpful when you will use camel-bindy
in combination with camel-fix which is a Fix gateway based on quickFix project
http://www.quickfixj.org/.

! Look at test cases
The ASCII character like tab, ... cannot be displayed in WIKI page. So, have a look to
the test case of camel-bindy to see exactly how the FIX message looks like
(src\test\datalfix\fix.txt) and the Order, Trailer, Header classes
(src\test\java\org\apache\camel\dataformat\bindy\model\fix\simple\Order.java)

6. KeyValuePairField

The KeyValuePairField annotation defines the property of a key value pair field. Each
KeyValuePairField is identified by a tag (= key) and its value associated, a type (string, int, date,
...), optionaly a pattern and if the field is required

Annotation name Record type Level

KeyValuePairField Key Value Pair - FIX Property

Parameter
type Info
name
2 int mandatory - digit number identifying the field in the message -
i :
& must be unique
. optional - default value ="" - will be used to format Decimal,
pattern string
Date, ...
.) optional - digit number - represents the precision to be used
precision int . .
when the Decimal number will be formatted/parsed
. . optional - must be used when the position of the key/tag in the
position int)
FIX message must be different
required boolean optional - default value = "false"

case | : tag

This parameter represents the key of the field in the message

Listing 35. FIX message - Tag

DATA FORMAT APPENDIX

http://www.fixprotocol.org/
http://www.quickfixj.org/

@Message (keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",
version="4.1"
public class Order ({

@Link Header header;

@Link Trailer trailer;

[
il
=
-

+
s

@KeyValuePairField(tag =
private String Account;

@KeyValuePairField(tag = 11) // O
private String ClOrdId;

@KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
private String IDSource;

@KeyValuePairField(tag = 48) // Fund
private String SecurityId;

@KeyValuePairField(tag = 54) //
private String Side;

@KeyValuePairField(tag = 58) //
private String Text;

case 2 : Different position in output

If the tags/keys that we will put in the FIX message must be sorted according to a predefine
order, then use the attribute 'position’ of the annotation @KeyValuePairField

Listing 36. FIX message - Tag - sort

@Message (keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version
= "4.1", isOrdered = true)
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) //
private String account;

@KeyValuePairField(tag = 11, position = 3) //
private String clOrdId;

DATA FORMAT APPENDIX 286

7. Section

In FIX message of fixed length records, it is common to have different sections in the
representation of the information : header, body and section. The purpose of the annotation
@Section is to inform bindy about which class of the model represents the header (= section
), body (= section 2) and footer (= section 3)

Only one attribute/parameter exists for this annotation.

Annotation name Record type Level

Section FIX Class

Parameter name type Info

number int digit number identifying the section position

case | : Section

A. Definition of the header section
Listing 37. FIX message - Section - Header

@Section (number = 1)
public class Header ({

@KeyValuePairField(tag = 8, position = 1)
private String beginString;

@KeyValuePairField(tag = 9, position = 2) Checksum
private int bodyLength;

B. Definition of the body section
Listing 38. FIX message - Section - Body
@Section (number = 2)
@Message (keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version

= "4.1", isOrdered = true)
public class Order {

@Link Header header;
@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) Client reference
private String account;

@KeyValuePairField(tag = 11, position = 3) Order reference
private String clOrdId;

C. Definition of the footer section

Listing 39. FIX message - Section - Footer

287 DATA FORMAT APPENDIX

@Section (number = 3)
public class Trailer {

@KeyValuePairField(tag = 10, position = 1)
CheckSum

private int checkSum;

public int getCheckSum() {
return checkSum;

}

8. OneToMany

The purpose of the annotation @OneToMany is to allow to work with a List<?> field defined a
POJO class or from a record containing repetitive groups.
The relation OneToMany ONLY WORKS in the following cases :

* Reading a FIX message containing repetitive groups (= group of tags/keys)

= Generating a CSV with repetitive data

Annotation name Record type Level

OneToMany all property

Parameter

name type Info

optional - string - class name associated to the type of the

mappedTo string List<Type of the Class>

case | : Generating CSV with repetitive data
Here is the CSV output that we want :

Claus,Ibsen,Camel in Action 1,2010,35
Claus,Ibsen,Camel in Action 2,2012,35
Claus,Ibsen,Camel in Action 3,2013,35
Claus,Ibsen,Camel in Action 4,2014,35

Remark : the repetitive data concern the title of the book and its publication date while first,
last name and age are common

and the classes used to modeling this. The Author class contains a List of Book.

Listing 40. Generate CSV with repetitive data

@CsvRecord (separator=",")
public class Author ({

@DataField(pos = 1)
private String firstName;

DATA FORMAT APPENDIX

288

289

! Restrictions OneToMany
Be careful, the one to many of bindy does not allow to handle repetitions defined
on several levels of the hierarchy

@DataField (pos = 2)
private String lastName;

@OneToMany
private List<Book> books;

@DataField(pos = 5)
private String Age;

public class Book ({

@DataField(pos = 3)
private String title;

@DataField (pos = 4)
private String year;

Very simple isn't it !!!
case 2 : Reading FIX message containing group of tags/keys
Here is the message that we would like to process in our model :

"8=FIX 4.19=2034=135=049=INVMGR56=BRKR"

"1=BE.CHM.00I | I=CHMO0001-0158=this is a camel - bindy test"
"22=448=BE000124567854=1"
"22=548=BE000987654354=2"
"22=648=BE000999999954=3"
"10=220"

tags 22, 48 and 54 are repeated

and the code

Listing 41. Reading FIX message containing group of tags/keys

public class Order {
@Link Header header;
@Link Trailer trailer;

@KeyValuePairField(tag = 1) “lient reference
private String account;

DATA FORMAT APPENDIX

@KeyValuePairField(tag = 11)
private String clOrdId;

@KeyValuePairField(tag = 58) Free text
private String text;

@OneToMany (mappedTo =

"org.apache.camel.dataformat.bindy.model.fix.complex.onetomany.Security")

List<Security> securities;

public class Security {

@KeyValuePairField(tag = 22) // Fund D type (Sedol, ISIN, ...
private String idSource;

@KeyValuePairField(tag = 48) // Fun
private String securityCode;

@KeyValuePairField(tag = 54) Movement type (1 Buy, 2 sell)
private String side;

Using the Java DSL

The next step consists in instantiating the DataFormat bindy class associated with this record
type and providing Java package name(s) as parameter.

For example the following uses the class CsvBindyFormat (who correspond to the class
associated with the CSV record type) which is configured with "com.acme.model"
package name to initialize the model objects configured in this package.

DataFormat bindy = new CsvBindyDataFormat ("com.acme.model") ;

x") .
unmarshal (bindy) .
to("bean:handleOrder") ;

from("file: ir

The Camel route will pick-up files in the inbox directory, unmarshall CSV records in a
collection of model objects and send the collection
to the bean referenced by 'handleOrder'.

The collection is a list of Map. Each Map of the list contains the objects of the model. Each
object can be retrieve using its class name.

int count = 0;

List<Map<String, Object>> models = new ArrayList<Map<String, Object>>();

DATA FORMAT APPENDIX

290

Map<String, Object> model = new HashMap<String, Object>();

models = (List<Map<String, Object>>) exchange.getIn () .getBody();

Iterator<Map<String, Object>> it = models.iterator();

while (it.hasNext ()) {

model = it.next();

for (String key : model.keySet()) {
Object obj = model.get (key);
LOG.info ("Count : "™ + count + ", " + obj.toString());
}
count++;
}
LOG.info ("Nber of CSV records received by the csv bean : " + count);

To generate CSV records from a collection of model objects, you create the following route :

from("bean:handleOrder")
marshal (bindy)
to("file://outk

ox")

You can if you prefer use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("file://inbox") .

unmarshal ("myBindyDataFormat") .
to("bean:handleOrder") ;

Unit test
Here is two examples showing how to marshall or unmarshall a CSV file with Camel
Listing 42. Marshall

package org.apache.camel.dataformat.bindy.csv;

import java.math.BigDecimal;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.GregorianCalendar;
import java.util.HashMap;

import java.util.List;

import java.util.Map;

291 DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring

import org.apache.camel.EndpointInject;

import org.apache.camel.Produce;

import org.apache.camel.ProducerTemplate;

import org.apache.camel.builder.RouteBuilder;

import org.apache.camel.component.mock.MockEndpoint;

import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Client;
import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Order;
import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;

import org.junit.Test;

import org.springframework.config.java.annotation.Bean;

import org.springframework.config.java.annotation.Configuration;

import org.springframework.config.java.test.JavaConfigContextLoader;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvMarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class BindyComplexCsvMarshallTest extends AbstractJUnit4SpringContextTests {

private List<Map<String, Object>> models = new ArrayList<Map<String, Object>>();
private String result = "10,Al,Julia,Roberts,BE123456789,Belgium Ventage 10/
12,150,USD,14-01-2009";

@Produce (uri = "direct:start")
private ProducerTemplate template;

@EndpointInject (uri = "mock:result")
private MockEndpoint resultEndpoint;

@Test
public void testMarshallMessage () throws Exception {
resultEndpoint.expectedBodiesReceived (result) ;

template.sendBody (generateModel ()) ;

resultEndpoint.assertIsSatisfied();

private List<Map<String, Object>> generateModel () {
Map<String, Object> model = new HashMap<String, Object>();

Order order = new Order();

order.setOrderNr (10) ;

order.setAmount (new BigDecimal ("150"));
order.setIsinCode ("BE123456789") ;
order.setInstrumentName ("Belgium Ventage 10/12");
order.setCurrency ("USD") ;

Calendar calendar = new GregorianCalendar () ;
calendar.set (2009, 0, 14);

order.setOrderDate (calendar.getTime()) ;

Client client = new Client();

DATA FORMAT APPENDIX

292

client.setClientNr ("A1");
client.setFirstName ("Julia");
client.setLastName ("Roberts") ;

order.setClient (client);

model.put (order.getClass () .getName (), order);
model.put (client.getClass () .getName (), client);

models.add (0, model);

return models;

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {
BindyCsvDataFormat camelDataFormat = new
BindyCsvDataFormat ("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink") ;

@Override
@Bean
public RouteBuilder route() {
return new RouteBuilder() {
@Override
public void configure() {
from("direct:start") .marshal (camelDataFormat) .to ("mock:result");

Listing 43. Unmarshall

package org.apache.camel.dataformat.bindy.csv;

import org.apache.camel.EndpointInject;

import org.apache.camel.builder.RouteBuilder;

import org.apache.camel.component.mock.MockEndpoint;

import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;

import org.junit.Test;

import org.springframework.config.java.annotation.Bean;

import org.springframework.config.java.annotation.Configuration;

import org.springframework.config.java.test.JavaConfigContextLoader;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration (locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvUnmarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class BindyComplexCsvUnmarshallTest extends AbstractJUnit4SpringContextTests {

293 DATA FORMAT APPENDIX

Q@EndpointInject (uri = "mock:result")
private MockEndpoint resultEndpoint;

@QTest

public void testUnMarshallMessage () throws Exception ({
resultEndpoint.expectedMessageCount (1) ;
resultEndpoint.assertIsSatisfied();

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {
BindyCsvDataFormat csvBindyDataFormat = new
BindyCsvDataFormat ("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink™) ;

QOverride
@Bean
public RouteBuilder route() {
return new RouteBuilder () {
@QOverride
public void configure() {
from("file://src/test/
data?noop=true") .unmarshal (csvBindyDataFormat) .to ("mock:result") ;
}
}i

In this example, BindyCsvDataFormat class has been instantiated in a traditional way but it is
also possible to provide information directly to the function (un)marshal like this where
BindyType corresponds to the Bindy DataFormat class to instantiate and the parameter
contains the list of package names.

public static class ContextConfig extends SingleRouteCamelConfiguration {
@QOverride
@Bean
public RouteBuilder route() {
return new RouteBuilder () {
@QOverride
public void configure() {
from("direct:start")
.marshal () .bindy (BindyType.Csv,
"org.apache.camel.dataformat.bindy.model.simple.oneclass")
.to("mock:result");

DATA FORMAT APPENDIX

294

295

Using Spring XML
This is really easy to use Spring as your favorite DSL language to declare the routes to be used
for camel-bindy. The following example shows two routes where the first will pick-up records
from files, unmarshal the content and bind it to their model. The result is then send to a pojo
(doing nothing special) and place them into a queue.
The second route will extract the pojos from the queue and marshal the content to

generate a file containing the csv record

Listing 44. spring dsl

<?xml version="1.0" encoding="UTF-8"?2>

ork.org/s

<beans xmlns="http://www.sp S
xmlns:xsi="http:// v3.0rg/2001/XMLSc e
xsi

http:
http:
http:/
http:

<bean id="bindyDataformat"
class="org.apache.camel.dataformat.bindy.csv.BindyCsvDataFormat">
<constructor-arg value="org.apache.camel.bindy.model™ />
</bean>

<bean id="csv" class="org.apache.camel.bindy.csv.HandleOrderBean" />
<!-- Queuing engine - ActiveMg - work locally in mode virtual memory -->

<bean id="activemg"
class="org.apache.activemqg.camel.component.ActiveMQComponent">

<property name="brokerURL" value="vm://localhost:¢ 6" />
</bean>
<camelContext xmlns="http://camel.apa =.org/schema/spring">
<jmxAgent id="agent" disabled="false" />
<route>
<from uri="file://src/data/csv/?noop=true" />

<unmarshal ref="bindyDataformat" />

<to uri="bean:csv" />

<to uri="activemqg:queue:in" />
</route>

<route>
<from uri="activemq:queue:in" />
<marshal ref="bindyDataformat" />

/

Jout/" />

<to uri="file://src/data/c
</route>
</camelContext>
</beans>

DATA FORMAT APPENDIX

! Be careful
Please verify that your model classes implements serializable otherwise the queue
manager will raise an error

Dependencies

To use Bindy in your camel routes you need to add the a dependency on camel-bindy which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-bindy</artifactId>
<version>2.1.0</version>
</dependency>

XMLSECURITY DATA FORMAT

Available as of Camel 2.0

The XMLSecurity DataFormat facilitates encryption and decryption of XML payloads at the
Document, Element and Element Content levels (including simultaneous multi-node encryption/
decryption using XPATH).

The encrytion capability is based on formats supported using the Apache XML Security
(Santaurio) project. Encryption/Decryption is "currently" supported using Triple-DES and AES
(128, 192 and 256) encryption formats. Additional formats can be easily added later as needed.
(Note: The support currently offered is for symmetric encryption. This means the same keyset
is needed at both ends of the communication to encrypt/decrypt payloads).

The capability allows Camel users to encrypt/decrypt payloads while being dispatched or
received along a route.

Options
Option Default Description

The XPATH reference to the XML Element selected
secureTag null for encryption/decryption. If no tag is specified, the

entire payload is encrypted/decrypted.

DATA FORMAT APPENDIX

296

https://cwiki.apache.org/confluence/display/CAMEL/Download

297

A boolean value to specify whether the XML Element
is to be encrypted or the contents of the XML

secureTagContents false Element
* false = Element Level

* true = Element Content Level

A String used as passPhrase to encrypt/decrypt
content. The passPhrase has to be provided. If no
passPhrase is specified, a default passPhrase is used.

passPhrase null The passPhrase needs to be put together in
conjunction with the appropriate encryption algorithm.
For example using TRIPLEDES the passPhase can be
a"Only another 24 Byte key"

The cipher algorithm to be used for encryption/
decryption. The available choices are:

* XMLCipher.TRIPLEDES

* XMLCipher.AES 128

* XMLCipher.AES 192

* XMLCipher.AES 256

xmlCipherAlgorithm TRIPLEDES

Marshal

In order to encrypt the payload, the marshal processor needs to be applied on the route
followed by the secureXML() tag.

Unmarshal

In order to decrypt the payload, the unmarshal processor needs to be applied on the route
followed by the secureXML() tag.

Examples

Given below are several examples of how marshalling could be performaed at the Document,
Element and Content levels.

Full Payload encryption/decryption

from("direct:start").
marshal () .secureXML () .
unmarshal () .secureXML () .

to("direct:end");

DATA FORMAT APPENDIX

Partial Payload Content Only encryption/decryption*

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;

from("direct:start").
marshal () .secureXML (tagXPATH , secureTagContent).
unmarshal () .secureXML (tagXPATH , secureTagContent) .
to("direct:end");

Partial Multi Node Payload Content Only encryption/
decryption*

String tagXPATH = "//cheesesites/*/cheese";
boolean secureTagContent = true;

from("direct:start") .
marshal () .secureXML (tagXPATH , secureTagContent).
unmarshal () .secureXML (tagXPATH , secureTagContent) .
to("direct:end") ;

Partial Payload Content Only encryption/decryption with
choice of passPhrase(password)*

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;

String passPhrase = "Just another 24 Byte key";
from("direct:start").
marshal () .secureXML (tagXPATH , secureTagContent , passPhrase).
unmarshal () .secureXML (tagXPATH , secureTagContent, passPhrase).
to("direct:end");

Partial Payload Content Only encryption/decryption with
passPhrase(password) and Algorithm*

import org.apache.xml.security.encryption.XMLCipher;

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;

DATA FORMAT APPENDIX

298

String passPhrase = "Just another 24 Byte key";
String algorithm= XMLCipher.TRIPLEDES;
from("direct:start").
marshal () .secureXML (tagXPATH , secureTagContent , passPhrase, algorithm).
unmarshal () .secureXML (tagXPATH , secureTagContent, passPhrase, algorithm).
to("direct:end") ;

Dependencies

This data format is provided in the camel-xmlsecurity component.

The GZip Data Format is a message compression and de-compression format. It uses the
same deflate algorithm that is used in Zip DataFormat, although some additional headers are
provided. This format is produced by popular gzip/gunzip tool. Messages marshalled using
GZip compression can be unmarshalled using GZip decompression just prior to being
consumed at the endpoint. The compression capability is quite useful when you deal with large
XML and Text based payloads or when you read messages previously comressed using gzip
tool.

Options

There are no options provided for this data format.

Marshal

In this example we marshal a regular text/XML payload to a compressed payload employing gzip
compression format and send it an ActiveMQ queue called MY_QUEUE.

from("direct:start").marshal().gzip().to("activemg:queue:MY QUEUE");

Unmarshal

In this example we unmarshal a gzipped payload from an ActiveMQ queue called
MY_QUEUE to its original format, and forward it for processing to the
UnGZippedMessageProcessor.

from("activemg:queue:MY QUEUE") .unmarshal () .gzip () .process (new
UnGZippedMessageProcessor ()) ;

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

299 DATA FORMAT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/Zip+DataFormat

CASTOR

Available as of Camel 2.1

Castor is a Data Format which uses the Castor XML library to unmarshal an XML payload
into Java objects or to marshal Java objects into an XML payload.

As usually you can use either Java DSL or Spring XML to work with Castor Data Format.

Using the Java DSL

from("direct:order").
marshal () .castor () .
to("activemg:queue:order");

For example the following uses a named DataFormat of Castor which uses default Castor data
binding features.

CastorDataFormat castor = new CastorDataFormat ();

from("activemg:My.Queue") .
unmarshal (castor) .

to("mgseries:Another.Queue") ;

If you prefer to use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("activemg:My.Queue") .
unmarshal ("mycastorType") .
to("mgseries:Another.Queue") ;

If you want to override default mapping schema by providing a mapping file you can set it as
follows.

CastorDataFormat castor = new CastorDataFormat ();
castor.setMappingFile ("mapping.xml") ;

Also if you want to have more control on Castor Marshaller and Unmarshaller you can access
them as below.

castor.getMarshaller();
castor.getUnmarshaller () ;

DATA FORMAT APPENDIX

300

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://www.castor.org/

Using Spring XML

The following example shows how to use Castor to unmarshal using Spring configuring the
castor data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<unmarshal>
<castor validation="true" />
</unmarshal>
<to uri="mock:result"/>
</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on multiple routes.
You have to set the <castor> element directly in <camelContext>.

<camelContext>
<camelContext id="camel" xmlns="http://camel.: ema ring">
<dataFormats>
<castor id="myCastor"/>
</dataFormats>
<route>
<from uri="direct:start"/>
<marshal ref="myCastor"/>
<to uri="direct:marshalled"/>
</route>
<route>
<from uri="direct:marshalled"/>
<unmarshal ref="myCastor"/>
<to uri="mock:result"/>
</route>
</camelContext>
Options
Castor supports the following options
Option Type Default Description
encoding String UTF-8 Encoding to use when marshalling an Object to XML
validation Boolean false Whether validation is turned on or off.

Path to a Castor mapping file to load from the

mappingFile String null classpath.

packages String[] null Add additional packages to Castor XmlContext

301 DATA FORMAT APPENDIX

classNames String[] null Add additional class names to Castor XmlContext

Dependencies

To use Castor in your camel routes you need to add the a dependency on camel-castor
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

"Protocol Buffers - Google's data interchange format"

Camel provides a Data Format to serialse between Java and the Protocol Buffer protocol. The
project's site details why you may wish to choose this format over xml. Protocol Buffer is
language-neutral and platform-neutral, so messages produced by your Camel routes may be
consumed by other language implementations.

API Site
Protobuf Implementation
Protobuf Java Tutorial

PROTOBUF OVERVIEW

This quick overview of how to use Protobuf. For more detail see the complete tutorial

Defining the proto format

The first step is to define the format for the body of your exchange. This is defined in a .proto
file as so:

Listing 45. addressbook.proto

package org.apache.camel.component.protobuf;

PROTOBUF - PROTOCOL BUFFERS

302

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/
http://code.google.com/p/protobuf/
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html

303

'ﬂ Available from Camel 2.2

option java package = "org.apache.camel.component.protobuf";
option java outer classname = "AddressBookProtos";

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {

MOBILE = 0;
HOME = 1;
WORK = 2;

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

repeated PhoneNumber phone = 4;

message AddressBook {
repeated Person person

1;

Generating Java classes

The Protobuf SDK provides a compiler which will generate the Java classes for the format we
defined in our .proto file. You can run the compiler for any additional supported languages you
require.

protoc --java out=. ./addressbook.proto

This will generate a single Java class named AddressBookProtos which contains inner classes
for Person and AddressBook. Builders are also implemented for you. The generated classes
implement com.google.protobuf.Message which is required by the serialisation mechanism. For
this reason it important that only these classes are used in the body of your exchanges. Camel
will throw an exception on route creation if you attempt to tell the Data Format to use a class
that does not implement com.google.protobuf.Message. Use the generated builders to translate
the data from any of your existing domain classes.

PROTOBUF - PROTOCOL BUFFERS

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

JAVA DSL

You can use create the ProtobufDataFormat instance and pass it to Camel DataFormat marshal
and unmarsha API like this.

ProtobufDataFormat format = new ProtobufDataFormat (Person.getDefaultInstance());

from("direct:in") .marshal (format) ;

from("direct:back") .unmarshal (format) .to ("mock:reverse") ;

Or use the DSL protobuf() passing the unmarshal default instance or default instance class name
like this.

// You don't
marshaling

from("direct:marshal") .marshal () .protobuf () ;

from("direct:unmarshalA") .unmarshal () .

fy the default instance for protobuf

protobuf ("org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person") .

to ("mock:reverse");
from("direct:unmarshalB") .unmarshal () .protobuf (Person.getDefaultInstance()) .to("mock:reverse");

The following example shows how to use Castor to unmarshal using Spring configuring the
protobuf data type

<camelContext id="camel" xmlns="http://camel.ay
<route>

.org/schema/spring">

<from uri="direct:start"/>
<unmarshal>
<protobuf

instanceClass="org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person"
/>
</unmarshal>
<to uri="mock:result"/>
</route>
</camelContext>

Dependencies

To use Protobuf in your camel routes you need to add the a dependency on camel-
protobuf which implements this data format.

PROTOBUF - PROTOCOL BUFFERS

304

305

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-protobuf</artifactId>
<version>2.2.0</version>

</dependency>

SOAP DATAFORMAT

Available as of Camel 2.3

SOAP is a Data Format which uses JAXB2 and JAX-WS annotations to marshal and
unmarshal SOAP payloads. It provides the basic features of Apache CXF without need for the
CXEF Stack.

ElementNameStrategy

An element name strategy is used for two purposes. The first is to find a xml element name for
a given object and soap action when marshalling the object into a SOAP message. The second is
to find an Exception class for a given soap fault name.

Strategy Usage

Uses a fixed gName that is configured on instantiation. Exception

N
QNameStrategy lookup is not supported

Uses the name and namespace from the @XMLType annotation
TypeNameStrategy of the given type. If no namespace is set then package-info is used.
Exception lookup is not supported

Uses information from a webservice interface to determine the

icelnterf;
ServicelnterfaceStrategy type name and to find the exception class for a SOAP fault

If you have generated the web service stub code with cxf-codegen or a similar tool then you
probably will want to use the ServicelnterfaceStrategy. In the case you have no annotated
service interface you should use QNameStrategy or TypeNameStrategy.

Using the Java DSL

The following example uses a named DataFormat of soap which is configured with the package
com.example.customerservice to initialize the JAXBContext. The second parameter is the
ElementNameStrategy. The route is able to marshal normal objects as well as exceptions. (Note
the below just sends a SOAP Envelope to a queue. A web service provider would actually need
to be listening to the queue for a SOAP call to actually occur, in which case it would be a one
way SOAP request. If you need request reply then you should look at the next example.)

PROTOBUF - PROTOCOL BUFFERS

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html

SoapJaxbDataFormat soap = new SoapJaxbDataFormat ("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:start")

.marshal (soap)

.to("jms:myQueue") ;

Examples

Webservice client

The following route supports marshalling the request and unmarshalling a response or fault.

String WS URI = "cxf://http://myserver/

customerservice?serviceClass=com.example.customerservice&dataFormat=MES

GE";
SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat ("com.example.customerservice", new
ServiceInterfaceStrategy (CustomerService.class)) ;
from("direct:customerServiceClient")
.onException (Exception.class)
.handled (true)
.unmarshal (soapDF)
.end ()
.marshal (soapDF)
.to (WS_URI)
.unmarshal (soapDF) ;

The below snippet creates a proxy for the service interface and makes a SOAP call to the
above route.

import org.apache.camel.Endpoint;
import org.apache.camel.component.bean.ProxyHelper;

Endpoint startEndpoint = context.getEndpoint ("direct:customerServiceClient");
ClassLoader classLoader = Thread.currentThread() .getContextClassLoader () ;

vice below is the service endpoint interface, *not* the

javax.xml.ws.Service subc

CustomerService proxy = ProxyHelper.createProxy(startEndpoint, classLoader,
CustomerService.class) ;

GetCustomersByNameResponse response = proxy.getCustomersByName (new
GetCustomersByName ()) ;

Webservice Server

Using the following route sets up a webservice server that listens on jms queue
customerServiceQueue and processes requests using the class CustomerServicelmpl. The

PROTOBUF - PROTOCOL BUFFERS

306

307

i Seealso
As the SOAP dataformat inherits from the JAXB dataformat most settings apply
here as well

customerServicelmpl of course should implement the interface CustomerService. Instead of
directly instantiating the server class it could be defined in a spring context as a regular bean.

SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat ("com.example.customerservice", new
ServiceInterfaceStrategy (CustomerService.class));
CustomerService serverBean = new CustomerServicelImpl () ;
from("jms: queue:customerServiceQueue")
.onException (Exception.class)
.handled (true)
.marshal (soapDF)
.end ()
.unmarshal (soapDF)
.bean (serverBean)
.marshal (soapDF) ;

Dependencies

To use the SOAP dataformat in your camel routes you need to add the following dependency
to your pom.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-soap</artifactId>
<version>2.3.0</version>
</dependency>

CRYPTO

Available as of Camel 2.3

The Crypto Data Format integrates the Java Cryptographic Extension into Camel, allowing
simple and flexible encryption and decryption of messages using Camel's familiar marshall and
unmarshal formatting mechanism. It assumes marshalling to mean encryption to cyphertext and
unmarshalling decryption back to the original plaintext.

Options

Name Type Default Description

PROTOBUF - PROTOCOL BUFFERS

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/JAXB

DES/CBC/

algorithm String PKCS5Padding The JCE algoorithm name indicating the cryptographic algorithm that will be used.

algorithmParamterSpec AlgorithmParameterSpec null A JCE AlgorithmParameterSpec used to initialize the Cipher.

bufferSize Integer 2048 the size of the buffer used in the signature process.

cryptoProvider String null The name of the JCE Security Provider that should be used.

initializationVector pyte(] null A'byte array containing the Initialization Vector that will be used to initialize the
Cipher.

inline boolean false Flag indicating that the configured IV should be inlined into the encrypted data
stream.

macAlgorithm String null The JCE algorithm name indicating the Message Authentication algorithm.

shouldAppendHMAC boolean null Flag indicating that a Message Authentication Code should be calculated and

appended to the encrypted data.

Basic Usage

At its most basic all that is required to encrypt/decrypt an exchange is a shared secret key. If
one or more instances of the Crypto data format are configured with this key the format can
be used to encrypt the payload in one route (or part of one) and decrypted in another. For

example, using the Java DSL as follows:

KeyGenerator generator = KeyGenerator.getInstance ("DES") ;

CryptoDataFormat cryptoFormat =

from("direct:basic-encryption")

.marshal (cryptoFormat)

.to("mock:encrypted")

.unmarshal (cryptoFormat)

.to("mock:unencrypted") ;

new CryptoDataFormat ("DES",

generator.generateKey());

In Spring the dataformat is configured first and then used in routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>

<crypto id="basic" algorithm="DES"

</dataFormats>

<route>

<from uri="direct:basic-encryption"

<marshal ref="basic" />

<to uri="mock:encrypted" />

<unmarshal ref="basic" />

<to uri="mock:unencrypted"

</route>
</camelContext>

/>

Specifying the Encryption Algorithm.

/>

keyRef="desKey" />

Changing the algorithm is a matter of supplying the JCE algorithm name. If you change the

algorithm you will need to use a compatible key.

PROTOBUF - PROTOCOL BUFFERS

308

309

KeyGenerator generator = KeyGenerator.getInstance ("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC (true) ;
cryptoFormat.setMacAlgorithm ("HmacMD5") ;

from("direct:hmac-algorithm")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

Specifying an Initialization Vector.

Some crypto algorhithms, particularly block algorithms, require configuration with an initial
block of data known as an Initialization Vector. In the JCE this is passed as an
AlgorithmParameterSpec when the Cipher is initialized. To use such a vector with the
CryptoDataFormat you can configure it with a byte[] contianing the required data e.g.

KeyGenerator generator = KeyGenerator.getInstance ("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES/CBC/PKCS5Padding",
generator.generateKey());
cryptoFormat.setInitializationVector (initializationVector) ;

from("direct:init-vector")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

or with spring, suppling a reference to a byte[]

<crypto id="initvector" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector" />

The same vector is required in both the encryption and decryption phases. As it is not
necessary to keep the IV a secret, the DataFormat allows for it to be inlined into the encrypted
data and subsequently read out in the decryption phase to initialize the Cipher. To inline the IV
set the /oinline flag.

KeyGenerator generator = KeyGenerator.getInstance ("DES");

byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};

SecretKey key = generator.generateKey();

PROTOBUF - PROTOCOL BUFFERS

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES/CBC/PKCS5Padding", key):
cryptoFormat.setInitializationVector (initializationVector);
cryptoFormat.setShouldInlineInitializationVector (true);

CryptoDataFormat decryptFormat = new CryptoDataFormat ("DES/CBC/PKCS5Padding", key);
decryptFormat.setShouldInlineInitializationVector (true);

from("direct:inline")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (decryptFormat)
.to("mock:unencrypted") ;

or with spring.

<crypto id="inline" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector"

inline="true" />
<crypto id="inline-decrypt" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
inline="true" />

For more information of the use of Initialization Vectors, consult
* http://en.wikipedia.org/wiki/Initialization_vector
* http://www.herongyang.com/Cryptography/
* http://en.wikipedia.org/wiki/Block_cipher_modes_of operation

Hashed Message Authentication Codes (HMAC)

To avoid attacks against the encrypted data while it is in transit the CryptoDataFormat can also
calculate a Message Authentication Code forthe encrypted exchange contents based on a
configurable MAC algorithm. The calculated HMAC is appended to the stream after encryption.
It is separated from the stream in the decryption phase. The MAC is recalculated and verified
against the transmitted version to insure nothing was tampered with in transit.For more
information on Message Authentication Codes see http://en.wikipedia.org/wiki’HMAC

KeyGenerator generator = KeyGenerator.getInstance ("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC (true) ;

from("direct:hmac")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

or with spring.

PROTOBUF - PROTOCOL BUFFERS

310

http://en.wikipedia.org/wiki/Initialization_vector
http://www.herongyang.com/Cryptography/
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/HMAC

<crypto id="hmac" algorithm="DES" keyRef="desKey" shouldAppendHMAC="true" />

By default the HMAC is calculated using the HmacSHA| mac algorithm though this can be easily
changed by supplying a different algorithm name. See [here] for how to check what algorithms
are available through the configured security providers

KeyGenerator generator = KeyGenerator.getInstance ("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC (true) ;
cryptoFormat.setMacAlgorithm ("HmacMD5") ;

from("direct:hmac-algorithm")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

or with spring.

<crypto id="hmac-algorithm" algorithm="DES" keyRef="desKey" macAlgorithm="HmacMD5"
shouldAppendHMAC="true" />

Supplying Keys dynamically.

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically.
Using the same key across all recipients may neither be feasible or desirable. It would be useful
to be able to specify keys dynamically on a per exchange basis. The exchange could then be
dynamically enriched with the key of its target recipient before being processed by the data
format. To facilitate this the DataFormat allow for keys to be supplied dynamically via the
message headers below

* CryptoDataFormat.KEY "CamelCryptoKey"

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", null);
/**
* Note: the header containing the key should be cleared after
* marshalling to stop it from leaking by accident and
* potentially being compromised. The processor version below is
* arguably better as the key is left in the header when you use
* the DSL leaks the fact that camel encryption was used.
*/
from("direct:key-in-header-encrypt")
.marshal (cryptoFormat)
.removeHeader (CryptoDataFormat.KEY)
.to("mock:encrypted") ;

311 PROTOBUF - PROTOCOL BUFFERS

from("direct:key-in-header-decrypt") .unmarshal (cryptoFormat) .process (new Processor() {
public void process (Exchange exchange) throws Exception ({
exchange.getIn() .getHeaders () .remove (CryptoDataFormat .KEY) ;
exchange.getOut () .copyFrom (exchange.getIn());
}

}) .to("mock:unencrypted") ;
or with spring.

<crypto id="nokey" algorithm="DES" />

Dependencies

To use the Crypto dataformat in your camel routes you need to add the following dependency
to your pom.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>2.3.0</version>
</dependency>

See Also

* Data Format
* Crypto (Digital Signatures)

SYSLOG DATAFORMAT

Available as of Camel 2.6
The syslog dataformat is used for working with RFC3 |64 messages.
This component supports the following:
= UDP consumption of syslog messages
= Agnostic data format using either plain String objects or SyslogMessage model objects.
= Type Converter from/to SyslogMessage and String
= Integration with the camel-mina component.
* Integration with the camel-netty component.
Maven users will need to add the following dependency to their pom. xm1 for this component:

<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-syslog</artifactId>

PROTOBUF - PROTOCOL BUFFERS

312

https://cwiki.apache.org/confluence/display/CAMEL/Crypto
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/Crypto+(Digital+Signatures)
http://www.ietf.org/rfc/rfc3164.txt
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/MINA
https://cwiki.apache.org/confluence/display/CAMEL/Netty

313

<version>x.x.x</version>
K== se the same version as your Camel core version -->

</dependency>

RFC3164 Syslog protocol

Syslog uses the user datagram protocol (UDP) [1] as its underlying transport layer mechanism.
The UDP port that has been assigned to syslog is 514.

To expose a Syslog listener service we reuse the existing camel-mina component or camel-
netty where we just use the Rf c3164SyslogDataFormat to marshal and unmarshal
messages

Exposing a Syslog listener

In our Spring XML file, we configure an endpoint to listen for udp messages on port 10514,
note that in netty we disable the defaultCodec, this
will allow a fallback to a NettyTypeConverter and delivers the message as an InputStream:

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>
</dataFormats>

<route>
<from
uri="netty:udp://localhost:10514?sync=false&allowDefaultCodec=false"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stopl"/>
</route>

</camelContext>

The same route using camel-mina

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>
</dataFormats>

<route>
<from uri="mina:udp://localhost:10514"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stopl"/>

</route>

PROTOBUF - PROTOCOL BUFFERS

https://cwiki.apache.org/confluence/display/CAMEL/MINA
https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/MINA

</camelContext>

Sending syslog messages to a remote destination

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>
</dataFormats>

<route>
<from uri="direct:syslogMessages"/>
<marshal ref="mySyslog"/>
<to uri="mina:udp://remotehost:10514"/>
</route>

</camelContext>

See Also

» Configuring Camel
* Component

* Endpoint

* Getting Started

PROTOBUF - PROTOCOL BUFFERS

314

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

315

There now follows a breakdown of the various Enterprise Integration Patterns that Camel
supports

MESSAGING SYSTEMS

Message Channel

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal
implementation detail of the Endpoint interface and all interactions with the Message Channel

are via the Endpoint interfaces.

Message
Channel .

Sender Messaging Receiver
Application Systemn Application

For more details see
* Message
* Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message

Camel supports the Message from the EIP patterns using the Message interface.

CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Message.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html

-

Sender Message Receiver

To support various message exchange patterns like one way Event Message and Request
Reply messages Camel uses an Exchange interface which has a pattern property which can be
set to INnOnly for an Event Message which has a single inbound Message, or InOut for a
Request Reply where there is an inbound and outbound message.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Pipes and Filters

Camel supports the Pipes and Filters from the EIP patterns in various ways.

Pipe Pipe Pipe Pipe
—| Decrypt Authenticate De-Dup |—

InGoming Fitter Fitter Fitter Clean’
Ordler Ordler

With Camel you can split your processing across multiple independent Endpoint instances
which can then be chained together.

Using Routing Logic

You can create pipelines of logic using multiple Endpoint or Message Translator instances as
follows

from("direct:a") .pipeline ("direct:x", "direct:y", "direct:z", "mock:result"):;

Though pipeline is the default mode of operation when you specify multiple outputs in Camel.
The opposite to pipeline is multicast; which fires the same message into each of its outputs.
(See the example below).

In Spring XML you can use the <pipeline/> element as of 1.4.0 onwards

<route>
<from uri="activemq:SomeQueue"/>
<pipeline>
<bean ref="foo"/>
<bean ref="bar"/>

CHAPTER 10 - PATTERN APPENDIX

316

https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator

<to uri="activemqg:OutputQueue"/>
</pipeline>
</route>

In the above the pipeline element is actually unnecessary, you could use this...

<route>
<from uri="activemq:SomeQueue"/>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemg:OutputQueue"/>
</route>

Its just a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send
the same message into multiple pipelines - then the <pipeline/> element comes into its own.

<route>
<from uri="activemq:SomeQueue"/>
<multicast>
<pipeline>
<bean ref="something"/>
<to uri="log:Something"/>
</pipeline>
<pipeline>
<bean ref="foo"/>
<pbean ref="bar"/>
<to uri="activemqg:OutputQueue"/>
</pipeline>
</multicast>
</route>

In the above example we are routing from a single Endpoint to a list of different endpoints
specified using URIs. If you find the above a bit confusing, try reading about the Architecture or
try the Examples

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Router

The Message Router from the EIP patterns allows you to consume from an input destination,
evaluate some predicate then choose the right output destination.

317 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

outGueue 1

J—{%—-:)»

inGueus
)+~ — H
E outEueue 2
Message :
Router

The following example shows how to route a request from an input queue:a endpoint to
either queue:b, queue:c or queue:d depending on the evaluation of various Predicate

expressions
Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:erroxr")) ;

from("seda:a")

.choice ()
.when (header ("foo") .isEqualTo ("bar")
.to("seda:b")
.when (header ("foo") .isEqualTo ("cheese"))

.to("seda:c")
.otherwise ()
.to("seda:d");

}i

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/

spring”>
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>
</when>
<otherwise>
<to uri="seda:d"/>
</otherwise>
</choice>
</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX

318

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

319

Choice without otherwise

If you use a choice without adding an otherwise, any unmatched exchanges will be
dropped by default. If you prefer to have an exception for an unmatched exchange, you can add
a throwFault to the otherwise.

....otherwise () .throwFault ("No matching when clause found on choice block");

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Translator

Camel supports the Message Translator from the EIP patterns by using an arbitrary Processor
in the routing logic, by using a bean to perform the transformation, or by using transform() in
the DSL. You can also use a Data Format to marshal and unmarshal messages in different
encodings.

Translator

—

Incoming Message Translated Message

Using the Fluent Builders

You can transform a message using Camel's Bean Integration to call any method on a bean in
your Registry such as your Spring XML configuration file as follows

from("activemqg: SomeQueue") .
beanRef ("myTransformerBean", "myMethodName") .
to("mgseries:AnotherQueue") ;

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI etc.
You can omit the method name parameter from beanRef() and the Bean Integration will try to
deduce the method to invoke from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start") .process (new Processor () {
public void process (Exchange exchange) {
Message in = exchange.getIn();
in.setBody (in.getBody (String.class) + " World!");

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Processor

}

}) .to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start") .transform(body () .append (" World!")) .to("mock:result");

Use Spring XML
You can also use Spring XML Extensions to do a transformation. Basically any Expression
language can be substituted inside the transform element as shown below

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<transform>
<simple>${in.body} extra data!</simple>
</transform>
<to uri="mock:end"/>
</route>
</camelContext>

Or you can use the Bean Integration to invoke a bean

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemqg:Output"/>

</route>

You can also use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") .
to("activemg:Another.Queue") ;

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this.

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") ;

For further examples of this pattern in use you could look at one of the JUnit tests

CHAPTER 10 - PATTERN APPENDIX

320

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

321

e TransformTest

¢ TransformViaDSLTest

e TransformProcessorTest

* TransformWithExpressionTest (test resource)

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Endpoint

Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

o 1%t =%l ¢

Data
Message Message
Endpoint Massage Channel Endpoint
Sender Receiver
Application Application

When using the DSL to create Routes you typically refer to Message Endpoints by their
URIs rather than directly using the Endpoint interface. Its then a responsibility of the
CamelContext to create and activate the necessary Endpoint instances using the available
Component implementations.

For more details see

* Message

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGING CHANNELS

Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following
components

» SEDA for in-VM seda based messaging

* JMS for working with JMS Queues for high performance, clustering and load balancing

CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformProcessorTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/TransformWithExpressionTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/transformWithExpressionContext.xml?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/URIs
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS

» JPA for using a database as a simple message queue
» XMPP for point-to-point communication over XMPP (Jabber)
* and others

Yty = % % % —

Sender Order Order Order Puaint-to-Foint Order Order Order Receiver
#3 #2 # Channel #3 #2 #

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using the following
components
* JMS for working with JMS Topics for high performance, clustering and load balancing
* XMPP when using rooms for group communication

— %, —

Address Subscriber
Changed

¢, —a=—— 9, —

Fublisher Address Address Subscriber
Changed Changed
tﬂ
Fublish-Subscribe Address Subscriber
Channel Changed

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this
keeps the producer and consumer decoupled but lets you control the fine grained routing
configuration using the DSL or Xml Configuration.

Using the Fluent Builders
Error formatting macro: snippet: java.lang.IndexOutOfBoundsException: Index: 20, Size: 20
Using the Spring XML Extensions

CHAPTER 10 - PATTERN APPENDIX

322

https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/XMPP
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/XMPP
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

323

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="seda:a"/>
<multicast>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</multicast>
</route>
</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

DEAD LETTER CHANNEL

Camel supports the Dead Letter Channel from the EIP patterns using the DeadlLetterChannel
processor which is an Error Handler.

— %

Sender Message

Delivery Fails

Channel Intended

Receiver

Reroute Delivery -

—
®

Dead Dead Letter
Message Channel

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to
process; but the chances are if its tried a few more times with some time delay then it will
complete fine. So we typically wish to use some kind of redelivery policy to decide how many
times to try redeliver a message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize
things like

* how many times a message is attempted to be redelivered before it is considered a
failure and sent to the dead letter channel

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

% Difference between Dead Letter Channel and Default Error
Handler
The major difference is that Dead Letter Channel has a dead letter queue that
whenever an Exchange could not be processed is moved to. It will always moved
failed exchanges to this queue.

Unlike the Default Error Handler that does not have a dead letter queue. So whenever an
Exchange could not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with
the handled option.

* the initial redelivery timeout
* whether or not exponential backoff is used (i.e. the time between retries increases
using a backoff multiplier)
* whether to use collision avoidance to add some randomness to the timings
* delay pattern a new option in Camel 2.0, see below for details.
Once all attempts at redelivering the message fails then the message is forwarded to the dead
letter queue.

About moving Exchange to dead letter queue and using handled

Handled on Dead Letter Channel was introduced in Camel 2.0, this feature does not exist in
Camel |.x

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue
(the dead letter endpoint). The exchange is then complete and from the client point of view it
was processed. As such the Dead Letter Channel have handled the Exchange.

For instance configuring the dead letter channel as:

errorHandler (deadLetterChannel (" jms:queue:dead")
.maximumRedeliveries (3) .redeliverDealy (5000)) ;

The Dead Letter Channel above will clear the caused exception when the Exchange is moved to
the jms : queue : dead destination and the client will not notice the failure.

By default handled is t rue.

How to let the client notice the error?

If you want to move the message to the dead letter queue and also let the client notice the
error, then you can configure the Dead Letter Channel to not handle the error. For example:

CHAPTER 10 - PATTERN APPENDIX

324

https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/DefaultErrorHandler
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

325

errorHandler (deadLetterChannel ("jms:queue:dead")
.maximumRedeliveries (3) .redeliverDealy (5000) .handled (false));

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue
(the dead letter endpoint). As the Dead Letter Channel

is configured to not handle it, it will mark the Exchange as failed so the client will be notified of
this error.

About moving Exchange to dead letter queue and using the original message

Available as of Camel 2.0
The option useOriginalMessage is used for routing the original input message instead of
the current message that potentially is modified during routing.

For instance if you have this route:

from("jms:queue:order:input")
.to("bean:validateOrder")

.to("bean:transformOrder

")

.to("bean:handleOrder") ;

The route listen for JMS messages and validates, transforms and handle it. During this the
Exchange payload is transformed/modified. So in case something goes wrong and we want to
move the message to another JMS destination, then we can configure our Dead Letter Channel
with the useOriginalBody option. But when we move the Exchange to this destination we
do not know in which state the message is in. Did the error happen in before the
transformOrder or after? So to be sure we want to move the original input message we
received from jms: queue:order:input. So we can do this by enabling the
useOriginalMessage option as shown below:

will use original

errorHandler (deadLetterChannel ("jms:queue:dead")
.useOriginalMessage () .mamimumRedeliveries (5) .redeliverDelay (5000) ;

Then the messages routed to the jms : queue:dead is the original input. If we want to
manually retry we can move the JMS message from the failed to the input queue, with no
problem as the message is the same as the original we received.

OnRedelivery

Available in Camel 1.6.0 onwards

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you
need to alter the message before its redelivered. See below for sample.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Processor

& Handled
See also Exception Clause for more details on the handled policy as this feature
was first introduced here and thus we have more docuemntation and samples there.

& onException and onRedeliver
In Camel 2.0 we also added support for per onException to set a
onRedeliver. That means you can do special on redelivery for different
exceptions, as opposed to onRedelivery set on Dead Letter Channel can be viewed
as a global scope.

Redelivery default values

In Camel 2.0 redelivery is disabled by default, as opposed to Camel |.x in which Dead Letter
Channel is configured with maximumRedeliveries=5.

The default redeliver policy will use the following values:
* maximumRedeliveries=0 (in Camel | .x the default value is 5)
* redeliverDelay=1000L (I second, new as of Camel 2.0)
o use initialRedeliveryDelay for previous versions
* maximumRedeliveryDelay = 60 * 1000L (60 seconds)
* And the exponential backoff and collision avoidance is turned off.
* The retriesExhaustedLoglevel are set to Logginglevel. ERROR
* The retryAttemptedLoglevel are set to Loggingleve. DEBUG
* Stack traces is logged for exhausted messages from Camel 2.2 onwards.
* Handled exceptions is not logged from Camel 2.3 onwards
The maximum redeliver delay ensures that a delay is never longer than the value, default |
minute. This can happen if you turn on the exponential backoff.

The maximum redeliveries is the number of re delivery attempts. By default Camel will try
to process the exchange | + 5 times. | time for the normal attempt and then 5 attempts as
redeliveries.

Setting the maximumRedeliveries to a negative value such as -1 will then always redelivery
(unlimited).
Setting the maximumRedeliveries to O will disable any re delivery attempt.

Camel will log delivery failures at the DEBUG logging level by default. You can change this by
specifying retriesExhaustedLoglevel and/or retryAttemptedLoglevel. See
ExceptionBuilderWithRetryLogginglLevelSetTest for an example.

In Camel 2.0 you can turn logging of stack traces on/off. If turned off Camel will still log the
redelivery attempt. Its just much less verbose.

CHAPTER 10 - PATTERN APPENDIX

326

https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel

327

Redeliver Delay Pattern

Available as of Camel 2.0
Delay pattern is used as a single option to set a range pattern for delays. If used then the
following options does not apply: (delay, backOffMultiplier, useExponentialBackOff,
useCollisionAvoidance, maximumRedeliveryDelay).
The idea is to set groups of ranges using the following syntax: 1imit:delay;limit
2:delay 2;1limit 3:delay 3;...;limit N:delay N
Each group has two values separated with colon
= limit = upper limit
= delay = delay in millis
And the groups is again separated with semi colon.
The rule of thumb is that the next groups should have a higher limit than the previous
group.
Lets clarify this with an example:
delayPattern=5:1000;10:5000;20:20000

That gives us 3 groups:

= 5:1000

= 10:5000

= 20:20000
Resulting in these delays for redelivery attempt:

= Attempt number 0.4 = 0 millis (as the first group start with 5)

* Attempt number 5..9 = 1000 millis (the first group)

= Attempt number 10..19 = 5000 millis (the second group)

= Attempt number 20.. = 20000 millis (the last group)
You can start a group with limit O to eg have a starting delay:
delayPattern=0:1000;5:5000

= Attempt number 0..4 = 1000 millis (the first group)

* Attempt number 5.. = 5000 millis (the last group)
There is no requirement that the next delay should be higher than the previous. You can use
any delay value you like. For example with delayPattern=0:5000;3:1000 we start with
5 sec delay and then later reduce that to | second.

Redelivery header

When a message is redelivered the DeadlLetterChannel will append a customizable header to
the message to indicate how many times its been redelivered.

In Camel |.x: The header is org.apache.camel.redeliveryCount.

In Camel 2.0: The header is CamelRedeliveryCounter, which is also defined on the
Exchange.REDELIVERY COUNTER.

And a boolean flag whether it is being redelivered or not (first attempt)
In Camel |.x: The header org.apache.camel.Redelivered contains a boolean if the
message is redelivered or not.

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html

In Camel 2.0: The header CamelRedelivered contains a boolean if the message is
redelivered or not, which is also defined on the Exchange . REDELIVERED.

Which endpoint failed

Available as of Camel 2.1

When Camel routes messages it will decorate the Exchange with a property that contains
the last endpoint Camel send the Exchange to:

String lastEndpointUri = exchange.getProperty (Exchange.TO ENDPOINT, String.class);

The Exchange.TO _ENDPOINT have the constant value CamelToEndpoint.

This information is updated when Camel sends a message to any endpoint. So if it exists its
the last endpoint which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be
moved into the dead letter queue, then Camel also decorates the Exchange with another
property that contains that last endpoint:

String failedEndpointUri = exchange.getProperty (Exchange.FAILURE ENDPOINT,

String.class);

The Exchange.FAILURE ENDPOINT have the constant value
CamelFailureEndpoint.

This allows for example you to fetch this information in your dead letter queue and use that
for error reporting.
This is useable if the Camel route is a bit dynamic such as the dynamic Recipient List so you
know which endpoints failed.

Notice: These information is kept on the Exchange even if the message was successfully
processed by a given endpoint, and then later fails for example in a local Bean processing
instead. So beware that this is a hint that helps pinpoint errors.

from("activemqg:queue: foo")
.to("http: someserver/somepath")
.beanRef ("foo");

Now suppose the route above and a failure happens in the foo bean. Then the

Exchange.TO ENDPOINT and Exchange.FAILURE ENDPOINT will still contain the
value of http://someserver/somepath.

CHAPTER 10 - PATTERN APPENDIX

328

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://someserver/somepath

Samples

The following example shows how to configure the Dead Letter Channel configuration using
the DSL

RouteBuilder builder = new RouteBuilder () {
public void configure() {
’/ using dead letter channel with a se

errorHandler (deadLetterChannel ("seda:errors"));

/ here is our route
from("seda:a") .to("seda:b");

bi
You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder () {

public void configure () {
onfigures dead letter channel to use seda queue for errors and use at most
2 redelve
0 tial ackoff
errorHandler (deadLetterChannel ("seda:errors") .maximumRedeliveries (2) .useExponentialBackOff ());
here is our route
from("seda:a").to("seda:b");

How can | modify the Exchange before redelivery?

In Camel 1.6.0 we added support directly in Dead Letter Channel to set a Processor that is
executed before each redelivery attempt.

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you
need to alter the message before its redelivered.

Here we configure the Dead Letter Channel to use our processor
MyRedeliveryProcessor to be executed before each redelivery.

attempted This allows us tc = € ore
errorHandler (deadLetterChannel ("mock:error") .maximumRedeliveries (5)
.onRedelivery (new MyRedeliverPrcessor ()

settling delay to zero is Just TO make unit tetling faster

.redeliveryDelay (0L)) ;

329 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/DSL
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel

And this is the processor MyRedeliveryProcessor where we alter the message.

elivery at
altering th

public class MyRedeliverPrcessor implements Processor ({

public void process (Exchange exchange) throws Exception ({

s5sage 1s being redelivered so we can alter it

r to the body

“an of e do 1d of stuff inst

String body = exchange.getIn().getBody(String.class);
int count = exchange.getIn().getHeader ("CamelRedeliveryCounter",

Integer.class);

exchange.getIn() .setBody(body + count);

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

= Error Handler

= Exception Clause

Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using the following components
* File for using file systems as a persistent store of messages
» JMS when using persistent delivery (the default) for working with JMS Queues and
Topics for high performance, clustering and load balancing
» JPA for using a database as a persistence layer

Wi %

Sender Receiver

Disk Disk

Computer 1 Computer 2

CHAPTER 10 - PATTERN APPENDIX

330

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA

331

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Bus

Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message
Bus itself as it allows producers and consumers to be decoupled.

Application

Application + >

Message Application
Bus

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the JMS
component for traditional MOM support.

Also worthy of node is the XMPP component for supporting messaging over XMPP (Jabber)

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Construction

EVENT MESSAGE

Camel supports the Event Message from the EIP patterns by supporting the Exchange Pattern
on a Message which can be set to InOnly to indicate a oneway event message. Camel
Components then implement this pattern using the underlying transport or protocols.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/XMPP
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/EventMessage.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Components

Observer
8 % | @
Subject Event Observer
Message
|E| = aPriceChangedEvent Observer

The default behaviour of many Components is InOnly such as for JMS or SEDA

Explicitly specifying InOnly

If you are using a component which defaults to InOut you can override the Exchange Pattern
for an endpoint using the pattern property.

foo:bar?exchangePattern=InOnly

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl.

from("mg:someQueue") .
inOnly () .
bean (Foo.class) ;

or you can invoke an endpoint with an explicit pattern

from("mg:someQueue") .
inOnly ("mg:AnotherQueue") ;

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

REQUEST REPLY

Camel supports the Request Reply from the EIP patterns by supporting the Exchange Pattern
on a Message which can be set to InOut to indicate a request/reply. Camel Components then
implement this pattern using the underlying transport or protocols.

CHAPTER 10 - PATTERN APPENDIX

332

https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/RequestReply.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Components

333

N -

Request Request

Channel
e P, —
Reply Reply
Reguestar Channel Replier

For example when using JMS with InOut the component will by default perform these
actions

* create by default a temporary inbound queue

* set the JMSReplyTo destination on the request message

* set the JMSCorrelationID on the request message

* send the request message

* consume the response and associate the inbound message to the request using the
JMSCorrelationID (as you may be performing many concurrent request/responses).

Explicitly specifying InOut

When consuming messages from JMS a Request-Reply is indicated by the presence of the
JMSReplyTo header.

You can explicitly force an endpoint to be in Request Reply mode by setting the exchange
pattern on the URI. e.g.

Jjms :MyQueue?exchangePattern=InOut

NOTE
From Camel |.5.1 you can specify the exchange pattern in DSL rule or Spring configuration.

/ Send to an endpoint using InOut

from("direct:testInOut") .inOut ("mock:result");

/ Send to an endpoint using InOut

from("direct:testInOnly") .inOnly ("mock:result");

Set the exchange pattern to InOut, then send it from direct:inOnly to mock:result
endpoint
from("direct:testSetToInOnlyThenTo") .inOnly () .to ("mock:result");
from("direct:testSetToInOutThenTo") .inOut () .to("mock:result");

/ Or we can the pattern as a parameter to the to() method

from("direct:testToWithInOnlyParam") .to (ExchangePattern.InOnly, "mock:result");
from("direct:testToWithInOutParam") .to (ExchangePattern.InOut, "mock:result");
from("direct:testToWithRobustInOnlyParam") .to (ExchangePattern.RobustInOnly,
"mock:result") ;

Set the excha

pattern to InOut, then send it on

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMS

from("direct:testSetExchangePatternInOnly")
.setExchangePattern (ExchangePattern.InOnly) .to("mock:result");

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- Send the exchange as InOnly -->
<route>
<from uri="direct:testInOut"/>
<inOut uri="mock:result"/>
</route>

<!-- Send the exchange as InOnly -->
<route>
<from uri="direct:testInOnly"/>
<inOnly uri="mock:result"/>
</route>

<!-- lets set the exchange pattern then send it on -->
<route>
<from uri="direct:testSetToInOnlyThenTo"/>
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>
</route>
<route>
<from uri="direct:testSetToInOutThenTo"/>
<setExchangePattern pattern="InOut"/>
<to uri="mock:result"/>
</route>
<route>
<from uri="direct:testSetExchangePatternInOnly" />
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>
</route>

<!-- Lets pass the pattern as an argument in the to element -->
<route>
<from uri="direct:testToWithInOnlyParam"/>
<to uri="mock:result" pattern="InOnly"/>
</route>
<route>
<from uri="direct:testToWithInOutParam"/>
<to uri="mock:result" pattern="InOut"/>
</route>
<route>
<from uri="direct:testToWithRobustInOnlyParam"/>
<to uri="mock:result" pattern="RobustInOnly"/>
</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX

334

335

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Correlation Identifier

Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header
on a Message.

When working with the ActiveMQ or JMS components the correlation identifier header is
called JMSCorrelationID. You can add your own correlation identifier to any message
exchange to help correlate messages together to a single conversation (or business process).

Colrrefat.fon Message I0)
— —
7 il
Requests
W “& \\
Reguestar Replies " Replier

Clorrefat.fon D

The use of a Correlation Identifier is key to working with the Camel Business Activity
Monitoring Framework and can also be highly useful when testing with simulation or canned
data such as with the Mock testing framework

See Also
+ BAM

RETURN ADDRESS

Camel supports the Return Address from the EIP patterns by using the JMSReplyTo header.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/BAM
https://cwiki.apache.org/confluence/display/CAMEL/BAM
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/BAM
http://www.enterpriseintegrationpatterns.com/ReturnAddress.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

Reply Reply

Chanpel 1 Channel 2
Reqguest
Requestor 1 f——» E E Channel
. 7 3 —’: b
% N
Requests
" - t .
Reply
Reply
Reguestor 2 J Channel 1

Reply
Channel 2 Reply

For example when using JMS with InOut the component will by default return to the address
given in JMSReplyTo.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGE ROUTING

Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct
destination based on the contents of the message exchanges.

> Widget
Inventory
t% —r —/: —
—
Gadget
NewOrder N
Router @ P Q| Inventory

The following example shows how to route a request from an input sedasa endpoint to
either seda:b, seda:c or seda:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")

.choice ()
.when (header ("foo") .isEqualTo ("bar"))

CHAPTER 10 - PATTERN APPENDIX

336

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

337

.to("seda:b")

.when (header ("foo") .isEqualTo ("cheese"))
.to("seda:c")

.otherwise ()
.to("seda:d");

}i
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>
</when>
<otherwise>
<to uri="seda:d"/>
</otherwise>
</choice>
</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Filter

The Message Filter from the EIP patterns allows you to filter messages

w % o e Y -@tnmtm]]

Widget Gadget ‘Widget Widget wWidget
Quote Quote Quote Message Quote Quote

Filter

The following example shows how to create a Message Filter route consuming messages
from an endpoint called queuesa which if the Predicate is true will be dispatched to queue:b

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Filter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")
.filter (header ("foo") .isEqualTo ("bar"))
.to("seda:b");

bi

You can of course use many different Predicate languages such as XPath, XQuery, SQL or
various Scripting Languages. Here is an XPath example

from("direct:start").
filter () .xpath("/person[@name="'James']").
to("mock:result");

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="seda:a"/>

<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>
</filter>
</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using stop

Available as of Camel 2.0

Stop is a bit different than a message filter as it will filter out all messages. Stop is convenient
to use in a Content Based Router when you for example need to stop further processing in one
of the predicates.

In the example below we do not want to route messages any further that has the word Bye
in the message body. Notice how we prevent this in the when predicate by using the
.stop ().

from("direct:start")
.choice ()

CHAPTER 10 - PATTERN APPENDIX

338

https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router

339

.when (body () .contains ("Hello")) .to("mock:hello")
.when (body () .contains ("Bye")) .to ("mock:bye") .stop ()
.otherwise () .to("mock:other")

.end ()

.to("mock:result");

Knowing if Exchange was filtered or not

Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange which states if it was filtered or
not.

The property has the key Exchannge . FILTER MATCHED which has the String value of
CamelFilterMatched. Its value is a boolean indicating t rue or false. If the value is
true then the Exchange was routed in the filter block.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

DYNAMIC ROUTER

The Dynamic Router from the EIP patterns allows you to route messages while avoiding the
dependency of the router on all possible destinations while maintaining its efficiency.

Dynamic Router Qutput Channel

Message Router
Input Channel Qutput Channel
— G|~ — || 5 |

=] =
—_—
| Qutput Channel
C

O

Drynamic Eule Base

Contral Channel

In Camel 2.5 we introduced a dynamicRouter in the DSL which is like a dynamic
Routing Slip which evaluates the slip on-the-fly.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DynamicRouter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip

@ Beware
You must ensure the expression used for the dynamicRouter such as a bean,
will return null to indicate the end. Otherwise the dynamicRouter will keep
repeating endlessly.

Dynamic Router in Camel 2.5 onwards

From Camel 2.5 the Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the
Exchange which contains the current endpoint as it advanced though the slip. This allows you to
know how far we have processed in the slip. (It's a slip because the Dynamic Router
implementation is based on top of Routing Slip).

Java DSL

In Java DSL you can use the routingSlip as shown below:

from("direct:start")
a bean as the dynamic

.dynamicRouter (bean (DynamicRouterTest.class, "slip"));

Which will leverage a Bean to compute the slip on-the-fly, which could be implemented as
follows:

/**
* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @return endpoints to go, or <tt>null</tt> to indicate the end
Y/
public String slip(String body) {
bodies.add (body) ;
invoked++;

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) ({
return "mock:result";

> more so return null

CHAPTER 10 - PATTERN APPENDIX

340

https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Bean

return null;

Spring XML

The same example in Spring XML would be:

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>

<dynamicRouter>
<!-- use a method call on a bean as dynamic router -->
<method ref="mySlip" method="slip"/>
</dynamicRouter>
</route>
<route>

<from uri="direct:foo"/>
<transform><constant>Bye World</constant></transform>
<to uri="mock:foo"/>

</route>

</camelContext>

@DynamicRouter annotation

You can also use the @DynamicRouter annotation, for example the Camel 2.4 example
below could be written as follows. The route method would then be invoked repeatedly as
the message is processed dynamically. The idea is to return the next endpoint uri where to go.
Return null to indicate the end. You can return multiple endpoints if you like, just as the
Routing Slip, where each endpoint is separated by a delimiter.

public class MyDynamicRouter {

@Consume (uri = "activemg:foo")

@DynamicRouter

public String route (@XPath("/customer/id") String customerId, @Header ("Location")
String location, Document body) {

query a dat

parameteres

// return the next endpoint uri, where to go. Return null to indicate the end.

341 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip

Dynamic Router in Camel 2.4 or older

The simplest way to implement this is to use the RecipientList Annotation on a Bean method to
determine where to route the message.

public class MyDynamicRouter {

@Consume (uri = "activemg:foo")
QRecipientList
public List<String> route (@XPath("/customer/id") String customerId,
@Header ("Location") String location, Document body) {
/ query a database to find the best match of the endpoint based on the input
parameteres

In the above we can use the Parameter Binding Annotations to bind different parts of the
Message to method parameters or use an Expression such as using XPath or XQuery.

The method can be invoked in a number of ways as described in the Bean Integration such
as
* POJO Producing
» Spring Remoting
* Bean component

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Recipient List

The Recipient List from the EIP patterns allows you to route messages to a number of
dynamically specified recipients.

f@ —am—{ & |
@ —{_c |
fﬂ —@—{ o |

The recipients will receive a copy of the same Exchange and Camel will execute them
sequentially.

=<

Recipient List

CHAPTER 10 - PATTERN APPENDIX

342

https://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/RecipientList.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

343

Static Recipient List

The following example shows how to route a request from an input queue:a endpoint to a
static list of destinations

Using Annotations
You can use the RecipientList Annotation on a POJO to create a Dynamic Recipient List. For
more details see the Bean Integration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")
.multicast().to("seda:b", "seda:c", "seda:d");

}i
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/

spring">
<route>
<from uri="seda:a"/>
<multicast>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</multicast>
</route>
</camelContext>

Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients
is dynamic and calculated at runtime. The following example demonstrates how to create a
dynamic recipient list using an Expression (which in this case it extracts a named header value
dynamically) to calculate the list of endpoints which are either of type Endpoint or are
converted to a String and then resolved using the endpoint URls.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/RecipientList.html
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

.recipientList (header ("foo"));

bi

The above assumes that the header contains a list of endpoint URIs. The following takes a single
string header and tokenizes it

from("direct:a") .recipientList (
header ("recipientListHeader") .tokenize (","));

Iteratable value

The dynamic list of recipients that are defined in the header must be iteratable such as:
* java.util.Collection
* java.util.Iterator
= arrays
* org.w3c.dom.NodelList
= Camel 1.6.0: a single String with values separated with comma
= any other type will be regarded as a single value
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="seda:a"/>
<recipientList>
<xpath>$foo</xpath>
</recipientList>
</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using delimiter in Spring XML

Available as of Camel 1.6.0

In Spring DSL you can set the delimiter attribute for setting a delimiter to be used if the
header value is a single String with multiple separated endpoints. By default Camel uses comma
as delimiter, but this option lets you specify a customer delimiter to use instead.

<route>
<from uri="direct:a" />
<!-- use comma as a delimiter for String based values -->

<recipientList delimiter=",">

CHAPTER 10 - PATTERN APPENDIX

344

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup

345

<header>myHeader</header>
</recipientList>
</route>

So if myHeader contains a String with the value "activemqg: queue: foo,
activemqg:topic:hello , log:bar" then Camel will split the String using the
delimiter given in the XML that was comma, resulting into 3 endpoints to send to. You can use
spaces between the endpoints as Camel will trim the value when it lookup the endpoint to send
to.

Note: In Java DSL you use the tokenizer to archive the same. The route above in Java
DSL:

from("direct:a") .recipientlList (header ("myHeader") .tokenize(","));

In Camel 2.1 its a bit easier as you can pass in the delimiter as 2nd parameter:

from("direct:a") .recipientlList (header ("myHeader"), "#");

Sending to multiple recipients in parallel

Available as of Camel 2.2

The Recipient List now supports parallelProcessing that for example Splitter also
supports. You can use it to use a thread pool to have concurrent tasks sending the Exchange to
multiple recipients concurrently.

from("direct:a") .recipientList (header ("myHeader")) .parallelProcessing() ;

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList parallelProcessing="true">
<header>myHeader</header>
</recipientList>
</route>

Stop continuing in case one recipient failed

Available as of Camel 2.2
The Recipient List now supports stopOnException that for example Splitter also
supports. You can use it to stop sending to any further recipients in case any recipient failed.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

from("direct:a") .recipientList (header ("myHeader")) .stopOnException () ;

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList stopOnException="true">
<header>myHeader</header>
</recipientList>
</route>

Note: You can combine parallelProcessing and stopOnException and have them
both true.

Ignore invalid endpoints

Available as of Camel 2.3
The Recipient List now supports ignoreInvalidEndpoints which the Routing Slip
also supports. You can use it to skip endpoints which is invalid.

from("direct:a") .recipientList (header ("myHeader")) .ignoreInvalidEndpoints () ;

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientlList ignorelInvalidEndpoints="true">
<header>myHeader</header>
</recipientList>
</route>

Then lets say the myHeader contains the following two endpoints direct: foo, xxx:bar.
The first endpoint is valid and works. However the 2nd is invalid and will just be ignored. Camel
logs at INFO level about, so you can see why the endpoint was invalid.

Using custom AggregationStrategy

Available as of Camel 2.2

You can now use you own AggregationStrategy with the Recipient List. However its
not that often you need that. What its good for is that in case you are using Request Reply
messaging then the replies from the recipient can be aggregated. By default Camel uses
UselatestAggregationStrategy which just keeps that last received reply. What if you
must remember all the bodies that all the recipients send back, then you can use your own

CHAPTER 10 - PATTERN APPENDIX

346

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply

347

custom aggregator that keeps those. Its the same principle as with the Aggregator EIP so check
it out for details.

from("direct:a")
.recipientList (header ("myHeader")) .aggregationStrategy (new
MyOwnAggregationStrategy())
.to("direct:b");

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientlist strategyRef="myStrategy">
<header>myHeader</header>
</recipientList>
<to uri="direct:b"/>
</route>

<bean id="myStrategy" class="com.mycompany.MyOwnAggregationStrategy"/>

Using custom thread pool

Available as of Camel 2.2

This is only needed when you use parallelProcessing. By default Camel uses a
thread pool with 10 threads. Notice this is subject to change when we overhaul thread pool
management and configuration later (hopefully in Camel 2.2).

You configure this just as you would with the custom aggregation strategy.

Using method call as recipient list

You can use a Bean to provide the recipients, for example:

from("activemg:queue:test") .recipientlList () .method (MessageRouter.class, "routeTo");

And then MessageRouter:

public class MessageRouter ({
public String routeTo() {

String queueName = "activemqg:queue:test2";

return queueName;

When you use a Bean then do not also use the @RecipientList annotation as this will in
fact add yet another recipient list, so you end up having two. Do not do like this.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean

public class MessageRouter {

@RecipientList

public String routeTo() {
String queueName = "activemq:queue:test2";
return queueName;

Well you should only do like that above (using @RecipientList) if you route just route to a
Bean which you then want to act as a recipient list.
So the original route can be changed to:

from("activemg:queue:test") .bean (MessageRouter.class, "routeTo");

Which then would invoke the routeTo method and detect its annotated with
@RecipientList and then act accordingly as if it was a recipient list EIP.

Using timeout

Available as of Camel 2.5

If you use parallelProcessing then you can configure a total timeout value in millis.
Camel will then process the messages in parallel until the timeout is hit. This allows you to
continue processing if one message is slow. For example you can set a timeout value of 20 sec.

For example in the unit test below you can see we multicast the message to 3 destinations.
We have a timeout of 2 seconds, which means only the last two messages can be completed
within the timeframe. This means we will only aggregate the last two which yields a result
aggregation which outputs "BC".

from("direct:start")
.multicast (new AggregationStrategy() {
public Exchange aggregate (Exchange oldExchange, Exchange newExchange) ({
if (oldExchange == null) {
return newExchange;

String body = oldExchange.getIn() .getBody(String.class);
oldExchange.getIn () .setBody (body +

newExchange.getIn() .getBody(String.class));
return oldExchange;

})

.parallelProcessing () .timeout (250) .to("direct:a", "direct:b", "direct:c")

use 1 to indicate end of multicast route
.end ()
.to("mock:result") ;

CHAPTER 10 - PATTERN APPENDIX

348

https://cwiki.apache.org/confluence/display/CAMEL/Bean

from("direct:a") .delay(500) .to("mock:A") .setBody (constant ("A")) ;
from("direct:b") .to("mock:B") .setBody (constant ("B")) ;

from("direct:c") .to("mock:C") .setBody (constant ("C")) ;

By default if a timeout occurs the AggregationStrategy is not invoked. However you can
implement a specialized version

public interface TimeoutAwareAggregationStrategy extends AggregationStrategy {

/**

* A timeout occurred

*

* @param oldExchange the oldest exchange (is <tt>null</tt> on first aggregation
as we only have the new exchange)

* @param index the index

* @param total the total

* @param timeout the timeout value in millis
®/

void timeout (Exchange oldExchange, int index, int total, long timeout);

This allows you to deal with the timeout in the AggregationStrategy if you really need
to.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Splitter

The Splitter from the EIP patterns allows you split a message into a number of pieces and
process them individually

% %

Order Order Order
ltem 1 ltem 2 ltem 3

Mew Order Splitter

As of Camel 2.0, you need to specify a Splitter as split (). In earlier versions of Camel,
you need to use splitter ().

349 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Sequencer.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

Timeout in other EIPs
This timeout feature is also supported by Splitter and both multicast and
recipientList.

Timeout is total

The timeout is total, which means that after X time, Camel will aggregate the
messages which has completed within the timeframe. The remainders will be
cancelled. Camel will also only invoke the timeout method in the
TimeoutAwareAggregationStrategy once, for the first index which caused
the timeout.

What does the splitter return?
Camel 2.2 or older:
The Splitter will by default return the last splitted message.

Camel 2.3 and newer
The Splitter will by default return the original input message.

For all versions
You can override this by suppling your own strategy as an AggregationStrategy.
There is a sample on this page (Split aggregate request/reply sample). Notice its the same
strategy as the Aggregator supports. This Splitter can be viewed as having a build in light
weight Aggregator.

Example

The following example shows how to take a request from the queue:a endpoint the split it
into pieces using an Expression, then forward each piece to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {

public void configure() {

errorHandler (deadLetterChannel ("mock:error")) ;
from("seda:a")

.split (body(String.class) .tokenize ("\n"))
.to("seda:b");

CHAPTER 10 - PATTERN APPENDIX

350

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator

351

The splitter can use any Expression language so you could use any of the Languages Supported
such as XPath, XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

from("activemg:my.queue") .split (xpath("//foo
bar")) .convertBodyTo (String.class) .to("file://some/directory")

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/

spring">
<route>
<from uri="seda:a"/>
<split>
<xpath>/invoice/lineltems</xpath>
<to uri="seda:b"/>
</split>
</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using Tokenizer from Spring XML Extensions
Avaiaible as of Camel 2.0

You can use the tokenizer expression in the Spring DSL to split bodies or headers using a
token. This is a common use-case, so we provided a special tokenizer tag for this.
In the sample below we split the body using a @ as separator. You can of course use comma or
space or even a regex pattern, also set regex=true.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<split>
<tokenize token="@"/>
<to uri="mock:result"/>
</split>
</route>
</camelContext>

Splitting the body in Spring XML is a bit harder as you need to use the Simple language to
dictate this

<split>
<simple>${body}</simple>
<to uri="mock:result"/>
</split>

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Languages+Supported
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Simple

Message Headers

The following headers is set on each Exchange that are split:

header type description
Camel |.x: A split counter that
org.apache.camel.splitCounter int increases for each Exchange being
split. The counter starts from 0.
Camel |.x: The total number of
Exch h litted. Thi
org.apache.camel.splitSize int xchanges that was spiitce 'S

header is not applied for stream based
splitting.

Exchange properties

The following properties is set on each Exchange that are split:

header

type

description

org.apache.camel.splitCounter

int

Camel 1.6.2: A split counter that
increases for each Exchange being
split. The counter starts from 0.

org.apache.camel.splitSize

int

Camel 1.6.2: The total number of
Exchanges that was splitted. This
header is not applied for stream
based splitting.

CamelSplitIndex

int

Camel 2.0: A split counter that
increases for each Exchange being
split. The counter starts from 0.

CamelSplitSize

int

Camel 2.0: The total number of

Exchanges that was splitted. This
header is not applied for stream

based splitting.

CamelSplitComplete

boolean

Camel 2.4: Whether or not this
Exchange is the last.

Parallel execution of distinct "parts’

If you want to execute all parts in parallel you can use special notation of split () with two

arguments, where the second one is 2 boolean flag if processing should be parallel. e.g.

CHAPTER 10 - PATTERN APPENDIX

352

353

XPathBuilder xPathBuilder = new XPathBuilder ("//foo/bar");
from("activemg:my.queue") .split (xPathBuilder, true).to("activemg:my.parts");

In Camel 2.0 the boolean option has been refactored into a builder method
parallelProcessing so its easier to understand what the route does when we use a

method instead of truelfalse.

XPathBuilder xPathBuilder = new XPathBuilder ("//foo/bar");
from("activemg:my.queue") .split (xPathBuilder) .parallelProcessing() .to("activemg:my.parts");

Stream based

Available as of Camel 1.5
You can split streams by enabling the streaming mode using the streaming builder
method.

from("direct:streaming") .split (body () .tokenize (", ")) .streaming() .to("activemg:my.parts")!;

You can also supply your custom splitter to use with streaming like this:

import static org.apache.camel.builder.ExpressionBuilder.beanExpression;
from("direct:streaming")
.split (beanExpression(new MyCustomIteratorFactory(), "iterator")
.streaming () .to("activemg:my.parts"

Specifying a custom aggregation strategy

Available as of Camel 2.0
This is specified similar to the Aggregator.

Specifying a custom ThreadPoolExecutor

You can customize the underlying ThreadPoolExecutor used in the parallel splitter. In the Java
DSL try something like this:

Camel 1.x:

XPathBuilder xPathBuilder = new XPathBuilder (" oo/bar") ;

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Aggregator

ThreadPoolExecutor pool = new ThreadPoolExecutor (8, 16, 0L,
TimeUnit .MILLISECONDS, new LinkedBlockingQueue());

from("activemg:my.queue")
.split (xPathBuilder, true, pool)
.to("activemg:my.parts") ;

In the Spring XML try this:
Available as of Camel 1.6.0

Listing 46. Spring DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:parallel-custom-pool"/>
<split executorServiceRef="myThreadPoolExecutor">
<xpath>/invoice/lineltems</xpath>
<to uri="mock:result"/>

</split>
</route>
</camelContext>
<!-- There's an easier way of specifying constructor args, just can't remember it
at the moment... old Spring syntax will do for now! -->

<bean id="myThreadPoolExecutor" class="java.util.concurrent.ThreadPoolExecutor">
<constructor-arg index="0" value="8"/>
<constructor-arg index="1" value="16"/>
<constructor-arg index="2" value="0"/>
<constructor-arg index="3" value="MILLISECONDS"/>
<constructor-arg index="4"><bean
class="java.util.concurrent.LinkedBlockingQueue"/></constructor-arg>
</bean>

Camel 2.x:

XPathBuilder xPathBuilder = new XPathBuilder ("//foo/bar");

ThreadPoolExecutor pool = new ThreadPoolExecutor (8, 16, 0L,
TimeUnit .MILLISECONDS, new LinkedBlockingQueue());

from("activemg:my.queue")

.split (xPathBuilder) .parallelProcessing() .executeService (pool)
.to("activemg:my.parts") ;

Using a Pojo to do the splitting

As the Splitter can use any Expression to do the actual splitting we leverage this fact and use a
method expression to invoke a Bean to get the splitted parts.

CHAPTER 10 - PATTERN APPENDIX

354

https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Bean

355

The Bean should return a value that is iterable such as: java.util.Collection,
java.util.Iterator or an array.

In the route we define the Expression as a method call to invoke our Bean that we have
registered with the id mySplitterBean in the Registry.

from("direct:body")

/ / netre we ce D(
// here we use a ©

JO bean mySplitterBean to do the split of the payload
.split () .method ("mySplitterBean", "splitBody")

.to("mock:result");
from("direct:message")

// h

// with a certain ¥

an mySplitterBean to do the split of the

eader value
.split () .method ("mySplitterBean", "splitMessage")
.to("mock:result");

And the logic for our Bean is as simple as. Notice we use Camel Bean Binding to pass in the
message body as a String object.

public class MySplitterBean ({

/‘k‘k

* The split body method returns something that is iteratable such as a
java.util.List.

*

* @param body the payload of the incoming message

* @return a list containing each part splitted

*/
public List<String> splitBody (String body) {
// since this is based on an unit test you can of cause
// use di splitting as Camel ha
// of the box su splitting a String bas
// but this is for show ell, si > this is java
// you have the full er how you like to split your messages

List<String> answer = new ArrayList<String>();
String[] parts = body.split(",");
for (String part : parts) {
answer.add (part) ;
}

return answer;

/**
* The split message method returns something that is iteratable such as a
java.util.List.
*
* @param header the header of the incoming message with the name user
* @param body the payload of the incoming message
* @return a list containing each part splitted
*/
public List<Message> splitMessage (@Header (value = "user") String header, @Body
String body) {

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding

>arameter Binding Annotations

/1

// arameter-binding-annotations.html
// and body at same time,

// want, >litter will

//

// *NOTE* this feature requires Camel version >= 1.6.1
List<Message> answer = new ArrayList<Message>();
String[] parts = header.split(",");
for (String part : parts) {
DefaultMessage message = new DefaultMessage () ;
message.setHeader ("user", part);
message.setBody (body) ;
answer.add (message) ;
}

return answer;

Split aggregate request/reply sample

This sample shows how you can split an Exchange, process each splitted message, aggregate and
return a combined response to the original caller using request/reply.

The route below illustrates this and how the split supports a aggregationStrategy to
hold the in progress processed messages:

> direct:start

sed on @ ator

and for that we need

=d to send back, so we provide our

// own strategy with
from("direct:start")

.split (body () .tokenize ("@"), new MyOrderStrategy())

s MyOrderStrategy.

// each splitted message is then send to this bean where we it
.to("bean:MyOrderService?method=handleOrder")
// this is important to end the splitter route as we do not want to do more

routing

// on each splitted me

itted and handled each r

a single

// response back to the original caller, so we let this bean build it for us

// this bean will receive the result of the gate strategy: MyOrderStrategy

.to("bean:MyOrderService?method=buildCombinedResponse™)

And the OrderService bean is as follows:

public static class MyOrderService {

CHAPTER 10 - PATTERN APPENDIX 356

https://cwiki.apache.org/confluence/display/CAMEL/Exchange

private static int counter;

/**
* We just handle the order by returning a id line for the order
*/
public String handleOrder (String line) {
LOG.debug ("HandleOrder: " + line);
return " (id=" + ++counter + ",item=" + line + ")";
}
/**

* We use the same bean for building the combined response to send
* back to the original caller

*/
public String buildCombinedResponse (String line) {
LOG.debug ("BuildCombinedResponse: " + line);
return "Response[" + line + "]";

And our custom aggregationStrategy that is responsible for holding the in progress
aggregated message that after the splitter is ended will be sent to the
buildCombinedResponse method for final processing before the combined response can
be returned to the waiting caller.

* This is our own order aggregation strategy where we can control
* how each splitted message should be combined. As we do not want to
* loos any message we copy from the new to the old to preserve the
* order lines as long we process them
*/
public static class MyOrderStrategy implements AggregationStrategy {

public Exchange aggregate (Exchange oldExchange, Exchange newExchange) {

// put order together in old exchange by adding the order from new exchange

if (oldExchange == null) {

// the first time we : we only have the new exchange,

just return it
return newExchange;

String orders = oldExchange.getIn() .getBody(String.class);
String newLine = newExchange.getIn () .getBody(String.class);

LOG.debug ("Aggregate old orders: " + orders);
LOG.debug ("Aggregate new order: " + newLine);

// put orders together parating by semi colon
orders = orders + ";" + newLine;

// put combined order back on old to pr it

oldExchange.getIn() .setBody (orders) ;

357 CHAPTER 10 - PATTERN APPENDIX

return old as this is the one that has all the orders gathered until now

return oldExchange;

So lets run the sample and see how it works.
We send an Exchange to the direct:start endpoint containing a IN body with the String
value: ARB@C. The flow is:

HandleOrder: A

HandleOrder: B

Aggregate old orders: (id=1,item=A)

Aggregate new order: (id=2,item=B)

HandleOrder: C

Aggregate old orders: (id=1,item=A); (id=2,item=B)

Aggregate new order: (id=3,item=C)
BuildCombinedResponse: (id=1l,item=A); (id=2,item=B); (1id=3,item=C)
Response to caller: Response[(id=1,item=A); (id=2,item=B); (1id=3,item=C)]

Stop processing in case of exception

Available as of Camel 2.1

The Splitter will by default continue to process the entire Exchange even in case of one of
the splitted message will thrown an exception during routing.
For example if you have an Exchange with 1000 rows that you split and route each sub
message. During processing of these sub messages an exception is thrown at the |7th. What
Camel does by default is to process the remainder 983 messages. You have the chance to
remedy or handle this in the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be propagated back, and
let the Camel error handler handle it. You can do this in Camel 2.1 by specifying that it should
stop in case of an exception occurred. This is done by the stopOnException option as
shown below:

from("direct:start")
.split (body () .tokenize(",")) .stopOnException ()
.process (new MyProcessor ()
.to("mock:split");

And using XML DSL you specify it as follows:

<route>
<from uri="direct:start"/>
<split stopOnException="true">

CHAPTER 10 - PATTERN APPENDIX

358

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

359

<tokenize token=","/>
<process ref="myProcessor"/>
<to uri="mock:split"/>
</split>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Aggregator

This applies for Camel version 2.3 or newer. If you use an older version then
use this Aggregator link instead.

The Aggregator from the EIP patterns allows you to combine a number of messages
together into a single message.

% % %]

Inventory Inventory Inventory
ltern 1 ltern 2 ltern 3 Aggregator Inventory
Order

A correlation Expression is used to determine the messages which should be aggregated
together. If you want to aggregate all messages into a single message, just use a constant
expression. An AggregationStrategy is used to combine all the message exchanges for a single
correlation key into a single message exchange.

Aggregator options

The aggregator supports the following options:

Option Default Description

Mandatory Expression which evaluates the correlation key to use for aggregation. The Exchange which has the same
correlationExpression correlation key is aggregated together. If the correlation key could not be evaluated an Exception is thrown. You can
disable this by using the ignoreBadCorrelationKeys option.

Mandatory AggregationStrategy which is used to merge the incoming Exchange with the existing already merged
aggregationStrategy exchanges. At first call the o1dExchang parameter is null. On subsequent invocations the o1dExchnage contains
the merged exchanges and newExchange is of course the new incoming Exchange.

strategyRef A reference to lookup the AggregationStrategy in the Registry.

Number of messages aggregated before the aggregation is complete. This option can be set as either a fixed value or
completionSize using an Expression which allows you to evaluate a size dynamically - will use Integer as result. If both are set Camel
will fallback to use the fixed value if the Expression result was null or 0.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
http://www.enterpriseintegrationpatterns.com/Aggregator.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Expression

Time in millis that an aggregated exchange should be inactive before its complete. Camel has a background task that runs
once a minute to check for inactive aggregated exchanges. This option can be set as either a fixed value or using an

completionTimeout Expression which allows you to evaluate a timeout dynamically - will use Long as result. If both are set Camel will
fallback to use the fixed value if the Expression result was null or 0. You cannot use this option together with
completioninterval, only one of the can be used.

A repeating period in millis by which the aggregator will complete all current aggregated exchanges. Camel has a
completionlnterval background tasks which is trigger every period. You cannot use this option together with completionTimeout, only one
of the can be used.

completionPredicate A Predicate to indicate when an aggregated exchange is complete.

This option is if the exchanges is coming from a Batch Consumer. Then when enabled the Aggregator2 will use the batch
completionFromBatchConsumer false size determined by the Batch Consumer in the message header Came1BatchSize. See more details at Batch
Consumer. This can be used to aggregate all files consumed from a File endpoint in that given poll.

Whether or not to eager check for completion when a new incoming Exchange has been received. This option
influences the behavior of the completionPredicate option as the Exchange being passed in changes accordingly.
When false the Exchange passed in the Predicate is the aggregated Exchange which means any information you may
store on the aggregated Exchange from the AggregationStrategy is avail for the Predicate. When true the
Exchange passed in the Predicate is the incoming Exchange, which means you can access data from the incoming
Exchange.

eagerCheckCompletion false

If enabled then Camel will group all aggregated Exchanges into a single combined
org.apache.camel.impl.GroupedExchange holder class that holds all the aggregated Exchanges. And as a
result only one Exchange is being sent out from the aggregator. Can be used to combine many incomming Exchanges
into a single output Exchange without coding a custom AggregationStrategy yourself.

groupExchanges false

Whether or not to ignore correlation keys which could not be evaluated to a value. By default Camel will thrown an

ignorelnvalidCorrelationKeys false RPN
Exception, but you can enable this option and ignore the situation instead.

Whether or not too late Exchange should be accepted or not. You can enable this to indicate that if a correlation key
has already been completed, then any new exchanges with the same correlation key be denied. Camel will then throw a
closedCorrelationKeyException exception. When using this option you pass in a integer whichisa
number for a LRUCache which keeps that last X number of closed correlation keys. You can pass in 0 or a negative
value to indicate a unbounded cache. By passing in a number you are ensured that cache wont grown too big if you use a
log of different correlation keys.

closeCorrelationKeyOnCompletion

Camel 2.5: Whether or not exchanges which completes due a timeout should be discarded. If enabled then the when

discardOnCompletionTi t fal
\scardnt-ompletion Timeou atee a timeout occurs the aggregated message will not be sent out but dropped (discarded).

Allows you to plugin you own implementation of org.apache.camel.spi.AggregationRepository which

(onR. .
aggregationRepository keeps track of the current inflight aggregated exchanges. Camel uses by default a memory based implementation.

aggregationRepositoryRef Reference to lookup a aggregationRepository in the Registry.

When aggregated are completed they are being send out of the aggregator. This option indicates whether or not Camel
parallelProcessing false should use a thread pool with multiple threads for concurrency. If not custom thread pool has been specified then
Camel creates a default pool with 10 concurrent threads.

If using parallelProcessing you can specify a custom thread pool to be used. In fact also if you are not using

executorService . . :
parallelProcessing this custom thread pool is used to send out aggregated exchanges as well.

executorServiceRef Reference to lookup a executorService in the Registry

Exchange Properties

The following properties is set on each Exchange that are aggregated:

header type description

CamelAggregatedSize int The total number of Exchanges aggregated into this combined Exchange.

Indicator how the aggregation was completed as a value of either: predicate, size, consumer, timeout or

CamelAggregatedCompletedBy String int 1
interval.

About AggregationStrategy

The AggregationStrategy is used for aggregate the old (lookup by its correlation id) and
the new exchanges together into a single exchange. Possible implementations include
performing some kind of combining or delta processing, such as adding line items together into
an invoice or just using the newest exchange and removing old exchanges such as for state
tracking or market data prices; where old values are of little use.

CHAPTER 10 - PATTERN APPENDIX

360

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

361

Notice the aggregation strategy is a mandatory option and must be provided to the
aggregator.

About completion

When aggregation Exchanges at some point you need to indicate that the aggregated exchanges
is complete, so they can be send out of the aggregator. Camel allows you to indicate
completion in various ways as follows:
= completionTimeout - Is an inactivity timeout in which is triggered if no new exchanges
has been aggregated for that particular correlation key within the period.
= completioninterval - Once every X period all the current aggregated exchanges is
completed.
= completionSize - Is a number indicating that after X aggregated exchanges its
complete.
= completionPredicate - Runs a Predicate when a new exchange is aggregated to
determine if we are complete or not
= completionFromBatchConsumer - Special option for Batch Consumer which allows
you to complete when all the messages from the batch has been aggregated. |
Notice that all the completion ways are per correlation key. And you can combine them in any
way your like. Its basically the first which triggers that wins. So you can use a completion size
together with a completion timeout. Only completionTimeout and completioninterval cannot
be used at the same time.

Notice the completion is a mandatory option and must be provided to the aggregator. If not
provided Camel will thrown an Exception on startup.

Persistent AggregationRepository

The aggregator provides a pluggable repository which you can implement your own
org.apache.camel.spi.AggregationRepository.
If you need persistent repository then you can use the Camel HawtDB component.

Examples

See some examples from the old Aggregator which is somewhat similar to this new aggregator.

Using completionTimeout

In this example we want to aggregate all incoming messages and after 3 seconds of inactivity we
want the aggregation to complete. This is done using the completionTimeout option as
shown:

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/HawtDB
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator

(2 Setting options in Spring XML
Many of the options are configurable as attributes on the <aggregate> tag when
using Spring XML.

from("direct:start")
> all e

and a f inc

// and send it to mock:aggr
.aggregate (header ("id"), new BodyInAggregatingStrategy()) .completionTimeout (3000)
.to("mock:aggregated") ;

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="3000">
<correlationExpression>
<simple>header.id</simple>
</correlationExpression>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using completionSize

In this example we want to aggregate all incoming messages and when we have 3 messages
aggregated (in the same correlation group) we want the aggregation to complete. This is done
using the completionSize option as shown:

from("direct:start")

5 has

// and send it to mock:aggregated
.aggregate (header ("id"), new BodyInAggregatingStrategy()) .completionSize (3)
.to("mock:aggregated") ;

And the same example using Spring XML:

CHAPTER 10 - PATTERN APPENDIX

362

363

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" completionSize="3">
<correlationExpression>
<simple>header.id</simple>
</correlationExpression>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using completionPredicate

In this example we want to aggregate all incoming messages and use a Predicate to determine
when we are complete. The Predicate can be evaluated using either the aggregated exchange
(default) or the incoming exchange. We will so both situations as examples. We start with the

default situation as shown:

from("direct:start")

ation

// and send it to mock:a

.aggregate (header ("1id"), new
BodyInAggregatingStrategy()) .completionPredicate (body () .contains ("A+B+C"))

.to("mock:aggregated") ;

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">
<correlationExpression>
<simple>header.id</simple>
</correlationExpression>
<completionPredicate>
<simple>${body} contains 'A+B+C'</simple>
</completionPredicate>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

And the other situation where we use the eagerCheckCompletion option to tell Camel to
use the incoming Exchange. Notice how we can just test in the completion predicate that the
incoming message is the END message:

from("direct:start")

.aggregate (header ("id"), new BodyInAggregatingStrategy())
.eagerCheckCompletion() .completionPredicate (body () .isEqualTo ("END"))

.to("mock:aggregated") ;

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" eagerCheckCompletion="true">
<correlationExpression>
<simple>header.id</simple>
</correlationExpression>
<completionPredicate>
<simple>${body} == 'END'</simple>
</completionPredicate>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using dynamic completionTimeout

In this example we want to aggregate all incoming messages and after a period of inactivity we
want the aggregation to complete. The period should be computed at runtime based on the
timeout header in the incoming messages. This is done using the completionTimeout

option as shown:

CHAPTER 10 - PATTERN APPENDIX

364

365

from("direct:start")
correlated by the id header.

BodyInAgg
ntains the

timeout and tion
// and send it to mock:a gated
.aggregate (header ("1id"), new
BodyInAggregatingStrategy()) .completionTimeout (header ("timeout"))

.to("mock:aggregated") ;

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">
<correlationExpression>
<simple>header.id</simple>
</correlationExpression>
<completionTimeout>
<header>timeout</header>
</completionTimeout>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Note: You can also add a fixed timeout value and Camel will fallback to use this value if the
dynamic value was null or 0.

Using dynamic completionSize

In this example we want to aggregate all incoming messages based on a dynamic size per
correlation key. The size is computed at runtime based on the mySize header in the incoming
messages. This is done using the completionSize option as shown:

from("direct:start")

= all exche

// and send it to mock:a

.aggregate (header ("id"), new
BodyInAggregatingStrategy()) .completionSize (header ("mySize"))
.to("mock:aggregated") ;

CHAPTER 10 - PATTERN APPENDIX

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">
<correlationExpression>
<simple>header.id</simple>
</correlationExpression>
<completionSize>
<header>mySize</header>
</completionSize>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Note: You can also add a fixed size value and Camel will fallback to use this value if the
dynamic value was null or 0.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

See also

* The Loan Broker Example which uses an aggregator

= Blog post by Torsten Mielke about using the aggregator correctly.
* The old Aggregator

= HawtDB for persistence support

» Aggregate Example for an example application

Resequencer

The Resequencer from the EIP patterns allows you to reorganise messages based on some
comparator. By default in Camel we use an Expression to create the comparator; so that you
can compare by a message header or the body or a piece of a message etc.

0% [} el

Resequencer

CHAPTER 10 - PATTERN APPENDIX

366

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Loan+Broker+Example
http://tmielke.blogspot.com/2009/01/using-camel-aggregator-correctly.html
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/HawtDB
https://cwiki.apache.org/confluence/display/CAMEL/Aggregate+Example
http://www.enterpriseintegrationpatterns.com/Resequencer.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Expression

367

Camel supports two resequencing algorithms:
* Batch resequencing collects messages into a batch, sorts the messages and sends
them to their output.
* Stream resequencing re-orders (continuous) message streams based on the
detection of gaps between messages.
By default the Resequencer does not support duplicate messages and will only keep the last
message, in case a message arrives with the same message expression. However in the batch
mode you can enable it to allow duplicates.

Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages
are sorted in order of the body() expression. That is messages are collected into a batch
(either by a maximum number of messages per batch or using a timeout) then they are sorted
in order and then sent out to their output.

Using the Fluent Builders

from("direct:start")
.resequence (body ())
.to("mock:result");

This is equvalent to

from("direct:start")
.resequence (body ()) .batch ()
.to("mock:result");

The batch-processing resequencer can be further configured via the size () and timeout ()
methods.

from("direct:start")
.resequence (body ()) .batch() .size (300) .timeout (4000L)
.to("mock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch size is
100 and the timeout is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start")
.resequence (body ()) .batch (new BatchResequencerConfig (300, 4000L))
.to("mock:result")

So the above example will reorder messages from endpoint direct:a in order of their bodies,
to the endpoint mock:resulit.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

Typically you'd use a header rather than the body to order things; or maybe a part of the body.
So you could replace this expression with

resequencer (header ("mySegNo"))

for example to reorder messages using a custom sequence number in the header mySegNo.

You can of course use many different Expression languages such as XPath, XQuery, SQL or
various Scripting Languages.

You can also use multiple expressions; so you could for example sort by priority first then
some other custom header

resequence (header ("mySegNo"), header ("MyCustomerRating"))

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start" />
<resequence>
<simple>body</simple>
<to uri="mock:result" />
€ll==

batch-config can be ommitted for default (batch) resequencer settings
-——>
<batch-config batchSize="300" batchTimeout="4000" />
</resequence>
</route>
</camelContext>

Allow Duplicates

Available as of Camel 2.4

In the batch mode, you can now allow duplicates. In Java DSL there is a
allowDuplicates () method and in Spring XML there is an allowDuplicates=true
attribute on the <batch-config/> you can use to enable it.

Reverse

Available as of Camel 2.4

In the batch mode, you can now reverse the expression ordering. By default the order is
based on 0..9,A..Z, which would let messages with low numbers be ordered first, and thus also
also outgoing first. In some cases you want to reverse order, which is now possible.

CHAPTER 10 - PATTERN APPENDIX

368

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

369

In Java DSL there is a reverse () method and in Spring XML there is an reverse=true
attribute on the <batch-config/> you can use to enable it.

Resequence JMS messages based on JMSPriority

Available as of Camel 2.4

It's now much easier to use the Resequencer to resequence messages from JMS queues
based on JMSPriority. For that to work you need to use the two new options
allowDuplicates and reverse.

from("jms:queue:foo")
sort by JMSPriority by allowing dup

.resequence (header ("JMSPriority")) .batch () .timeout (3000) .allowDuplicates () .reverse ()
.to("mock:result");

Notice this is only possible in the batch mode of the Resequencer.

Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are re-
ordered based on their sequence numbers given by a segnum header using gap detection and
timeouts on the level of individual messages.

Using the Fluent Builders

from("direct:start") .resequence (header ("segnum")) .stream() .to ("mock:result") ;

The stream-processing resequencer can be further configured via the capacity () and
timeout () methods.

from("direct:start")
.resequence (header ("seqnum")) .stream() .capacity (5000) . timeout (4000L)
.to("mock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the
capacity is 100 and the timeout is 1000 ms). Alternatively, you can provide a configuration
object.

from("direct:start")
.resequence (header ("seqnum")) .stream(new StreamResequencerConfig (5000, 4000L))
.to("mock:result")

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

The stream-processing resequencer algorithm is based on the detection of gaps in a message
stream rather than on a fixed batch size. Gap detection in combination with timeouts removes
the constraint of having to know the number of messages of a sequence (i.e. the batch size) in
advance. Messages must contain a unique sequence number for which a predecessor and a
successor is known. For example a message with the sequence number 3 has a predecessor
message with the sequence number 2 and a successor message with the sequence number 4.
The message sequence 2,3,5 has a gap because the sucessor of 3 is missing. The resequencer
therefore has to retain message 5 until message 4 arrives (or a timeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship
with respect to the sequence number) in a message stream is known, then the resequencer's
timeout parameter should be set to this value. In this case it is guaranteed that all messages of a
stream are delivered in correct order to the next processor. The lower the timeout value is
compared to the out-of-sequence time difference the higher is the probability for out-of-
sequence messages delivered by this resequencer. Large timeout values should be supported by
sufficiently high capacity values. The capacity parameter is used to prevent the resequencer
from running out of memory.

By default, the stream resequencer expects 1ong sequence numbers but other sequence
numbers types can be supported as well by providing a custom expression.

public class MyFileNameExpression implements Expression {

public String getFileName (Exchange exchange) {
return exchange.getIn() .getBody(String.class);

public Object evaluate (Exchange exchange) {
parser the file name with YYYYMMDD-DNNN pat
String fileName = getFileName (exchange) ;
String[] files = fileName.split("-D");
Long answer = Long.parselong(files[0]) * 1000 + Long.parselong(files[1l]);
return answer;

public <T> T evaluate (Exchange exchange, Class<T> type) {
Object result = evaluate (exchange) ;

return exchange.getContext () .getTypeConverter () .convertTo (type, result);
}
}
from("direct:start") .resequence (new
MyFileNameExpression()) .stream() .timeout (100) .to ("mock:result");

or custom comparator via the comparator () method

CHAPTER 10 - PATTERN APPENDIX

370

371

ExpressionResultComparator<Exchange> comparator = new MyComparator();
from("direct:start")
.resequence (header ("segnum")) .stream() .comparator (comparator)
.to("mock:result");

or viaa StreamResequencerConfig object.

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig (100, 1000L, comparator);

from("direct:start")
.resequence (header ("segnum")) .stream(config)
.to("mock:result");

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<resequence>
<simple>in.header.seqgnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>
</resequence>
</route>
</camelContext>

Further Examples

For further examples of this pattern in use you could look at the batch-processing resequencer
junit test case and the stream-processing resequencer junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Composed Message Processor

The Composed Message Processor from the EIP patterns allows you to process a composite
message by splitting it up, routing the sub-messages to appropriate destinations and the re-
aggregating the responses back into a single message.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DistributionAggregate.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

Widget Inventory

Z
O O
| b || g0 [—
O — O
New Crder Splitter Router Aggregator walidated
Ordder

Gadget Inventory

Composite Message Processor

Available in Camel 1.5.

Example

In this example we want to check that a multipart order can be filled. Each part of the order
requires a check at a different inventory.

split up the order so individual OrderItems can be validated by the appr
from("direct:start")

.split () .body ()

.choice ()

.when () .method ("orderItemHelper", "isWidget")
.to("bean:widgetInventory")
.otherwise ()
.to("bean:gadgetInventory")
.end ()
.to("seda:aggregate") ;

/ collect and re-assemble the validated OrderItems into an order again
from("seda:aggregate")
.aggregate (new
MyOrderAggregationStrategy ()) .header ("orderId") .completionTimeout (1000L)
.to("mock:result");

To do this we split up the order using a Splitter. The Splitter then sends individual
OrderItems to a Content Based Router which checks the item type. Widget items get sent
for checking in the widgetInventory bean and gadgets get sent to the
gadgetInventory bean. Once these OrderItems have been validated by the appropriate
bean, they are sent on to the Aggregator which collects and re-assembles the validated
OrderItems into an order again.

When an order is sent it contains a header with the order id. We use this fact when we
aggregate, as we configure this . header ("orderId") on the aggregate DSL to instruct
Camel to use the header with the key orderId as correlation expression.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java

CHAPTER 10 - PATTERN APPENDIX

372

https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java

373

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Scatter-Gather

The Scatter-Gather from the EIP patterns allows you to route messages to a number of
dynamically specified recipients and re-aggregate the responses back into a single message.

Cluote

™
Broadcast

CQuote Request

?
m}
% =3
"Best" Quote

Aggregator

Available in Camel |.5.

Dynamic Scatter-Gather Example

In this example we want to get the best quote for beer from several different vendors. We use
a dynamic Recipient List to get the request for a quote to all vendors and an Aggregator to pick
the best quote out of all the responses. The routes for this are defined as:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<recipientList>
<header>listOfVendors</header>
</recipientList>
</route>
<route>
<from uri="seda:quoteAggregator"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="1000">
<correlationExpression>
<header>quoteRequestId</header>
</correlationExpression>
<to uri="mock:result"/>
</aggregate>
</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator

So in the first route you see that the Recipient List is looking at the 11 stOfVendors header
for the list of recipients. So, we need to send a message like

Map<String, Object> headers = new HashMap<String, Object>():;

headers.put ("1listOfVendors", "bean:vendorl, bean:vendor2, bean:vendor3");

headers.put ("quoteRequestId", "quoteRequest-1");

template.sendBodyAndHeaders ("direct:start"”, "<quote request item=\"beer\"/>", headers);

This message will be distributed to the following Endpoints: bean:vendorl,
bean:vendor?2, and bean:vendor3. These are all beans which look like

public class MyVendor ({
private int beerPrice;

@Produce (uri = "seda:quoteAggregator")
private ProducerTemplate quoteAggregator;

public MyVendor (int beerPrice) {
this.beerPrice = beerPrice;

public void getQuote (@XPath ("/quote request/@item") String item, Exchange
exchange) throws Exception {
if ("beer".equals(item)) {
exchange.getIn() .setBody (beerPrice);
quoteAggregator.send (exchange) ;
} else {
throw new Exception("No quote available for " + item);

and are loaded up in Spring like

<bean id="aggregatorStrategy"
class="org.apache.camel.spring.processor.scattergather.LowestQuoteAggregationStrategy"/>

<bean id="vendorl" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>
<value>1</value>
</constructor-arg>
</bean>

<bean id="vendor2" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>
<value>2</value>
</constructor-arg>
</bean>

<bean id="vendor3" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

CHAPTER 10 - PATTERN APPENDIX

374

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint

375

<value>3</value>
</constructor-arg>
</bean>

Each bean is loaded with a different price for beer. When the message is sent to each bean
endpoint, it will arrive at the MyVendor .getQuote method. This method does a simple
check whether this quote request is for beer and then sets the price of beer on the exchange
for retrieval at a later step. The message is forwarded on to the next step using POJO
Producing (see the @Produce annotation).

At the next step we want to take the beer quotes from all vendors and find out which one
was the best (i.e. the lowest!). To do this we use an Aggregator with a custom aggregation
strategy. The Aggregator needs to be able to compare only the messages from this particular
quote; this is easily done by specifying a correlationExpression equal to the value of the
quoteRequestld header. As shown above in the message sending snippet, we set this header to
quoteRequest-1. This correlation value should be unique or you may include responses
that are not part of this quote. To pick the lowest quote out of the set, we use a custom
aggregation strategy like

public class LowestQuoteAggregationStrategy implements AggregationStrategy {
public Exchange aggregate (Exchange oldExchange, Exchange newExchange) {
the first time we only have the new exchange
if (oldExchange == null) {
return newExchange;

if (oldExchange.getIn() .getBody(int.class) <
newExchange.getIn() .getBody (int.class)) {
return oldExchange;
} else {
return newExchange;

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

result.expectedBodiesReceived (1) ; expect the lowest quote

You can find the full example source here:

camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-
gather.xml

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml

Static Scatter-Gather Example

You can lock down which recipients are used in the Scatter-Gather by using a static Recipient
List. It looks something like this

from("direct:start") .multicast() .to("seda:vendorl", "seda:vendor2", "seda:vendor3");
from("seda:vendorl") .to("bean:vendorl") .to ("seda:quoteAggregator") ;
from("seda:vendor2") .to("bean:vendor2") .to ("seda:quoteAggregator") ;
from("seda:vendor3") .to("bean:vendor3") .to ("seda:quoteAggregator") ;

from("seda:quoteAggregator")
.aggregate (header ("quoteRequestId"), new
LowestQuoteAggregationStrategy()) .to("mock:result")

A full example of the static Scatter-Gather configuration can be found in the Loan Broker
Example.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Routing Slip

The Routing Slip from the EIP patterns allows you to route a message consecutively through a
series of processing steps where the sequence of steps is not known at design time and can
vary for each message.

Proc A

‘Eéz — OO-0O0 p—» —_—
Proc B

Attach Routing Slip
to Message >

—

Route Message
According to Slip

Proc C

Example

The following route will take any messages sent to the Apache ActiveMQ queue SomeQueue
and pass them into the Routing Slip pattern.

from("activemqg: SomeQueue") .routingSlip ("headerName") ;

CHAPTER 10 - PATTERN APPENDIX

376

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Loan+Broker+Example
https://cwiki.apache.org/confluence/display/CAMEL/Loan+Broker+Example
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org
http://www.enterpriseintegrationpatterns.com/RoutingTable.html

377

Messages will be checked for the existance of the "headerName" header. The value of this
header should be a comma-delimited list of endpoint URIs you wish the message to be routed
to. The Message will be routed in a pipeline fashion (i.e. one after the other).

Note: In Camel |.x the default header name routingSlipHeader has been
@deprecated and is removed in Camel 2.0. We feel that the DSL needed to express, the
header it uses to locate the destinations, directly in the DSL to not confuse readers. So the
header name must be provided.

From Camel 2.5 the Routing Slip will set a property (Exchange.SLIP_ENDPOINT) on
the Exchange which contains the current endpoint as it advanced though the slip. This allows
you to know how far we have processed in the slip.

The Routing Slip will compute the slip beforehand which means, the slip is only computed
once. If you need to compute the slip on-the-fly then use the Dynamic Router pattern instead.

Configuration options

Here we set the header name and the URI delimiter to something different.
Using the Fluent Builders

from("direct:c") .routingSlip ("aRoutingSlipHeader", "#");

Using the Spring XML Extensions

<camelContext id="buildRoutingSlip" xmlns="http: activemg.

spring">

<route>
<from uri="direct:c"/>
<routingSlip headerName="aRoutingSlipHeader" uriDelimiter="#"/>
</route>
</camelContext>

Ignore invalid endpoints

Available as of Camel 2.3
The Routing Slip now supports ignoreInvalidEndpoints which the Recipient List
also supports. You can use it to skip endpoints which is invalid.

from("direct:a") .routingSlip ("myHeader") .ignoreInvalidEndpoints() ;

And in Spring XML its an attribute on the recipient list tag.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

<route>

<from uri="direct:a"/>

<routingSlip headerName="myHeader" ignoreInvalidEndpoints="true"/>
</route>

Then lets say the myHeader contains the following two endpoints direct: foo, xxx:bar.
The first endpoint is valid and works. However the 2nd is invalid and will just be ignored. Camel
logs at INFO level about, so you can see why the endpoint was invalid.

Expression supporting

Available as of Camel 2.4

The Routing Slip now supports to take the expression parameter as the Recipient List does.
You can tell the camel the expression that you want to use to get the routing slip.

from("direct:a") .routingSlip (header ("myHeader")) .ignoreInvalidEndpoints () ;

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<!--NOTE from Camel 2.4.0, you need to specify the expression element inside of
the routingSlip element -->
<routingSlip ignoreInvalidEndpoints="true">
<header>myHeader</header>
</routingSlip>
</route>

Further Examples

For further examples of this pattern in use you could look at the routing slip test cases.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Throttler

The Throttler Pattern allows you to ensure that a specific endpoint does not get overloaded, or
that we don't exceed an agreed SLA with some external service.

CHAPTER 10 - PATTERN APPENDIX

378

https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

379

Using the Fluent Builders

from("seda:a") .throttle(3).timePeriodMillis (10000) .to("log:result", "mock:result");

So the above example will throttle messages all messages received on sedasa before being sent
to mock:result ensuring that a maximum of 3 messages are sent in any 10 second window.
Note that typically you would often use the default time period of a second. So to throttle
requests at 100 requests per second between two endpoints it would look more like this...

from("seda:a") .throttle(100) .to("seda:b") ;

For further examples of this pattern in use you could look at the junit test case
Using the Spring XML Extensions

<route>
<from uri="seda:a" />
<throttle maximumRequestsPerPeriod="3" timePeriodMillis="10000">
<to uri="mock:result" />
</throttle>
</route>

Asynchronous delaying

Available as of Camel 2.4

You can let the Throttler use non blocking asynchronous delaying, which means Camel will
use a scheduler to schedule a task to be executed in the future. The task will then continue
routing. This allows the caller thread to not block and be able to service other messages etc.

from("seda:a").throttle(100) .asyncDelayed() .to("seda:b");

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

SAMPLING THROTTLER

Available as of Camel 2.1

A sampling throttler allowing you to extract a sample of exchanges from the traffic through a
route.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

It is configured with a sampling period during which only a single exchange is allowed to pass

through. All other exchanges will be stopped.
Will by default use a sample period of | seconds.

Samples

You use this EIP with the sample DSL as show in these samples.

Using the Fluent Builders
These samples also show how you can use the different syntax to configure the sampling
period:

from("direct:sample")
.sample ()
.to("mock:result");

from("direct:sample-configured")
.sample(l, TimeUnit.SECONDS)
.to("mock:result");

from("direct:sample-configured-via-dsl")
.sample () .samplePeriod(1l) .timeUnits (TimeUnit.SECONDS)
.to("mock:result");

Using the Spring XML Extensions
And the same example in Spring XML is:

<route>
<from uri="direct:sample"/>
<sample samplePeriod="1" units="seconds">
<to uri="mock:result"/>
</sample>
</route>

And since it uses a default of | second you can omit this configuration in case you also want to

use | second

<route>
<from uri="direct:sample"/>

<!-- will by default use 1 second period --
<sample>
<to uri="mock:result"/>
</sample>
</route>

CHAPTER 10 - PATTERN APPENDIX

380

https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

See Also

= Throttler
= Aggregator

Delayer

The Delayer Pattern allows you to delay the delivery of messages to some destination.
Using the Fluent Builders

from("seda:b") .delay(1000) .to("mock:result");

So the above example will delay all messages received on seda:b | second before sending
them to mock:result.

You can of course use many different Expression languages such as XPath, XQuery, SQL or
various Scripting Languages. You can just delay things a fixed amount of time from the point at
which the delayer receives the message. For example to delay things 2 seconds

delayer (2000)

The above assume that the delivery order is maintained and that the messages are delivered in
delay order. If you want to reorder the messages based on delivery time, you can use the
Resequencer with this pattern. For example

from("activemq: someQueue") .resequencer (header ("MyDeliveryTime")) .delay ("MyRedeliveryTime") .to ("activem

Camel 2.0 - Spring DSL

The sample below demonstrates the delay in Spring DSL:

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="seda:a"/>
<delay>
<header>MyDelay</header>
</delay>

38l CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer

© The Delayer in Camel |.x works a bit differently than Camel 2.0 onwards.

In Camel |.x the expression is used to calculate an absolute time in millis.
So if you want to wait 3 sec from now and want to use the expression for that you have to
set the absolute time as currentTimeInMillis () + 3000.

In Camel 2.0 the expression is a value in millis to wait from the current time, so the
expression should just be 3000.
However in both Camel |.x and 2.0 you can use a long value for a fixed value to indicate the
delay in millis.
See the Spring DSL samples for Delayer in Camel |.x vs. Camel 2.0.

<to uri="mock:result"/>
</route>
<route>
<from uri="seda:b"/>
<delay>
<constant>1000</constant>
</delay>

<to uri="mock:result"/>
</route>
</camelContext>

Camel |l.x - Spring DSL

The delayer is using slightly different names in Camel |.x:

<delayer>
<delayTime>3000</delayTime>
</expression>

</delayer>

The empty tag </expression> is needed to fulfill the XSD validation as its an optional
element and we use JAXB annotations to generated the XSD in Camel and some combinations
is hard to auto generate with optional elements.

For further examples of this pattern in use you could look at the junit test case

Asynchronous delaying

Available as of Camel 2.4

You can let the Delayer use non blocking asynchronous delaying, which means Camel will
use a scheduler to schedule a task to be executed in the future. The task will then continue
routing. This allows the caller thread to not block and be able to service other messages etc.

CHAPTER 10 - PATTERN APPENDIX

382

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Delayer
https://cwiki.apache.org/confluence/display/CAMEL/Delayer

383

From Java DSL

You use the asyncDelayed () to enable the async behavior.

from("activemg:queue:foo") .delay(1000) .asyncDelayed() .to ("activemg:aDelayedQueue") ;

From Spring XML

You use the asyncDelayed="true" attribute to enable the async behavior.

<route>
<from uri="activemq:queue:foo"/>
<delay asyncDelayed="true">
<constant>1000</constant>
</delay>
<to uri="activemqg:aDealyedQueue"/>
</route>

Creating a custom delay

You can use an expression to determine when to send a message using something like this

from("activemqg:foo") .
delay () .method ("someBean", "computeDelay").

to("activemg:bar") ;

then the bean would look like this...

public class SomeBean {
public long computeDelay() {
long delay = 0;
1se java code to compute a delay value in millis

return delay;

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

Load Balancer

The Load Balancer Pattern allows you to delegate to one of a number of endpoints using a
variety of different load balancing policies.

Build in load balancing policies

Camel has out of the box the following policies:

Policy Description

Round The exchanges is selected in a round robin fashion. This is a well known and
Robin classic policy. This spreads the load even.

Random A random endpoint is selected for each exchange

Sticky load balancing using an Expression to calculate a correlation key to
Sticky perform the sticky load balancing; rather like jsessionid in the web or
JMSXGrouplID in JMS.

Topic Topic which sends to all destinations (rather like JMS Topics)

Failover Camel 2.0: In case of failures the exchange is tried on the next endpoint.

Camel 2.5: The weighted load balancing policy allows you to specify a

Weighted . A .)
Rourg1d processing load distribution ratio for each server with respect to others.In
Robin addition to the weight, endpoint selection is then further refined using round-

robin distribution based on weight.

Camel 2.5: The weighted load balancing policy allows you to specify a
Weighted processing load distribution ratio for each server with respect to others.In
Random addition to the weight, endpoint selection is then further refined using
random distribution based on weight.

Round Robin

Camel |.x behavior
The round robin load balancer can actually be used to failover with Camel |.x. This is no longer
possible in Camel 2.x as the underlying Error Handler foundation has been significantly
overhauled in Camel 2.x. Frankly the round robin load balancer in Camel |.x was not thought
to be used in a failover scenario.

Camel 2.x behavior
The round robin load balancer is not meant to work with failover, for that you should use the
dedicated failover load balancer. The round robin load balancer will only change to next
endpoint per message.

The round robin load balancer is statefull as it keeps state which endpoint to use next time.

Using the Fluent Builders

CHAPTER 10 - PATTERN APPENDIX

384

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RoundRobinLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RoundRobinLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RandomLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/StickyLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/TopicLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/FailOverLoadBalancer.html
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

385

from("direct:start").loadBalance() .
roundRobin () .to ("mock:x", "mock:y", "mock:z");

Using the Spring configuration

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<roundRobin/>
<to uri="mock:x"/>

<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>
</camelContext>

So the above example will load balance requests from direct:start to one of the available
mock endpoint instances, in this case using a round robbin policy.
For further examples of this pattern in use you could look at the junit test case

Failover

Available as of Camel 2.0

The failover load balancer is capable of trying the next processor in case an Exchange failed
with an exception during processing.

You can configure the failover with a list of specific exception to only failover. If you do not
specify any exceptions it will failover over any exceptions. It uses the same strategy for
matching exceptions as the Exception Clause does for the onException.

It has the following options:

Option Type Default Description

CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoadBalanceTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause

inheritErrorHandler boolean

true

Camel 2.3: Whether or not the Error
Handler configured on the route should
be used or not. You can disable it if you
want the failover to trigger immediately
and failover to the next endpoint. On
the other hand if you have this option
enabled, then Camel will first let the
Error Handler try to process the
message. The Error Handler may have
been configured to redelivery and use
delays between attempts. If you have
enabled a number of redeliveries then
Camel will try to redeliver to the
same endpoint, and only failover to
the next endpoint, when the Error
Handler is exhausted.

maximumFailoverAttempts int

Camel 2.3: A value to indicate after X
failver attempts we should exhaust (give
up). Use -I to indicate newer give up
and always try to failover. Use 0 to
newer failover. And use e.g. 3 to
failover at most 3 times before giving
up. This option can be used whether or
not round robin is enabled or not.

roundRobin boolean

false

Camel 2.3: Whether or not the
failover load balancer should
operate in round robin mode or not. If
not, then it will always start from the
first endpoint when a new message is to
be processed. In other words it restart
from the top for every message. If
round robin is enabled, then it keeps
state and will continue with the next
endpoint in a round robin fashion.
When using round robin it will not stick
to last known good endpoint, it will
always pick the next endpoint to use.

Camel 2.2 or older behavior

The current implement of failover load balancer is a simple logic which always tries the first
endpoint, and in case of an exception being thrown it tries the next in the list, and so forth. It
has no state, and the next message will thus always start with the first endpoint.

CHAPTER 10 - PATTERN APPENDIX

386

https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler

Camel 2.3 onwards behavior
The failover load balancer now supports round robin mode, which allows you to failover in
a round robin fashion. See the roundRobin option.
Here is a sample to failover only if a TOException related exception was thrown:

from("direct:start")

in the

.loadBalance () .failover (IOException.class)
.to("direct:x", "direct:y", "direct:z");

You can specify multiple exceptions to failover as the option is varargs, for instance:

enable redelivery so failover can react

errorHandler (defaultErrorHandler () .maximumRedeliveries (5));

from("direct:foo").
loadBalance () .failover (IOException.class, MyOtherException.class)
.to("direct:a", "direct:b");

Using failover in Spring DSL

Failover can also be used from Spring DSL and you configure it as:

<route errorHandlerRef="myErrorHandler">
<from uri="direct:foo"/>
<loadBalance>
<failover>
<exception>java.io.IOException</exception>
<exception>com.mycompany.MyOtherException</exception>
</failover>
<to uri="direct:a"/>
<to uri="direct:b"/>
</loadBalance>
</route>

Using failover in round robin mode

An example using Java DSL:

from("direct:start")

387 CHAPTER 10 - PATTERN APPENDIX

! Redelivery must be enabled
In Camel 2.2 or older the failover load balancer requires you have enabled Camel
Error Handler to use redelivery. In Camel 2.3 onwards this is not required as such,
as you can mix and match. See the inheritErrorHandler option.

andler. It will also keep retrying as

its co ed tc ewe exhaust.
.loadBalance () .failover (-1, false, true).

to("direct:bad", "direct:bad2", "direct:good", "direct:good2"):;

1 U

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>
<!-- failover using stateful round robin,

which will keep retrying forever those 4 endpoints until success.
You can set the maximumFailoverAttempt to break out after X attempts -->
<failover roundRobin="true"/>
<to uri="direct:bad"/>
<to uri="direct:bad2"/>
<to uri="direct:good"/>
<to uri="direct:good2"/>
</loadBalance>
</route>

Weighted Round-Robin and Random Load Balancing

Available as of Camel 2.5

In many enterprise environments where server nodes of unequal processing power &
performance characteristics are utilized to host services and processing endpoints, it is
frequently necessary to distribute processing load based on their individual server capabilities so
that some endpoints are not unfairly burdened with requests. Obviously simple round-robin or
random load balancing do not alleviate problems of this nature. A Weighted Round-Robin and/
or Weighted Random load balancer can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio
for each server with respect to others. You can specify this as a positive processing weight for
each server. A larger number indicates that the server can handle a larger load. The weight is
utilized to determine the payload distribution ratio to different processing endpoints with
respect to others.

The parameters that can be used are

In Camel 2.5

CHAPTER 10 - PATTERN APPENDIX

388

https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler

389

@ Disabled inheritErrorHandler
You can configure inheritErrorHandler=false if you want to failover to
the next endpoint as fast as possible. By disabling the Error Handler you ensure it
does not intervene which allows the failover load balancer to handle failover
asap. By also enabling roundRobin mode, then it will keep retrying until it
success. You can then configure the maximumFailoverAttempts option to a
high value to let it eventually exhaust (give up) and fail.

@ Disabled inheritErrorHandler
As of Camel 2.6, the Weighted Load balancer usage has been further simplified,
there is no need to send in distributionRatio as a List<Integer>. It can be simply
sent as a delimited String of integer weights separated by a delimiter of choice.

Option Type Default Description

The default value for round-robin is false. In
roundRobin boolean false the absence of this setting or parameter the
load balancing algorithm used is random.

The distributionRatio is a list consisting on
integer weights passed in as a parameter.
The distributionRatio must match the

distributionRatio List<Integer> none number of endpoints and/or processors
specified in the load balancer list. In Camel
2.5 if endpoints do not match ratios, then a
best effort distribution is attempted.

Available In Camel 2.6

Option Type Default Description

The default value for round-robin is
false. In the absence of this setting or
parameter the load balancing algorithm
used is random.

roundRobin boolean false

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler

distributionRatio

The distributionRatio is a delimited
String consisting on integer weights
separated by delimiters for example

String none "2,3,5". The distributionRatio must
match the number of endpoints and/or
processors specified in the load balancer
list.

distributionRatioDelimiter

The distributionRatioDelimiter is the
delimiter used to specify the
distributionRatio. If this attribute is not
specified a default delimiter "," is
expected as the delimiter used for

specifying the distributionRatio.

String ,

Using Weighted round-robin & random load balancing

In Camel 2.5

An example using Java DSL:

Arraylist<integer> distributionRatio = new ArrayList<integer>();

distributionRatio.add (4);
distributionRatio.add(2);
distributionRatio.add (1) ;

round-robin
from("direct:start")
.loadBalance () .weighted(true, distributionRatio)
.to("mock:x", "mock:y", "mock:z");

random
from("direct:start")
.loadBalance () .weighted(false, distributionRatio)
.to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>
<weighted roundRobin="false" distributionRatio="4 2 1"/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>

CHAPTER 10 - PATTERN APPENDIX

390

391

Available In Camel 2.6
An example using Java DSL:

ound-robin
from("direct:start")
.loadBalance () .weighted(true, "4:2:1" distributionRatioDelimiter=":")

.to("mock:x", "mock:y", "mock:z");

random
from("direct:start")
.loadBalance () .weighted(false, "4,2,1"
.to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<weighted roundRobin="false" distributionRatio="4-2-1"
distributionRatioDelimiter="-" />
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>

Using this Pattern

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Multicast

The Multicast allows to route the same message to a number of endpoints and process them in
a different way. The main difference between the Multicast and Splitter is that Splitter will split
the message into several pieces but the Multicast will not modify the request message.

Example

The following example shows how to take a request from the direct:a endpoint, then
multicast these request to direct:x, direct:y, direct:z.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

Using the Fluent Builders

from("direct:a") .multicast() .to("direct:x", "direct:y", "direct:z");

Stop processing in case of exception

Available as of Camel 2.1

The Multicast will by default continue to process the entire Exchange even in case one of the
multicasted messages will thrown an exception during routing.
For example if you want to multicast to 3 destinations and the 2nd destination fails by an
exception. What Camel does by default is to process the remainder destinations. You have the
chance to remedy or handle this in the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be propagated back, and
let the Camel error handler handle it. You can do this in Camel 2.1 by specifying that it should
stop in case of an exception occurred. This is done by the stopOnException option as
shown below:

from("direct:start"
.multicast ()
.stopOnException() .to("direct:foo", "direct:bar", "direct:baz")
.end ()
.to("mock:result");

from("direct:foo") .to("mock:foo");
from("direct:bar") .process (new MyProcessor()) .to("mock:bar");
from("direct:baz").to("mock:baz");

And using XML DSL you specify it as follows:

<route>
<from uri="direct:start"/>
<multicast stopOnException="true">
<to uri="direct:foo"/>
<to uri="direct:bar"/>
<to uri="direct:baz"/>

</multicast>

<to uri="mock:result"/>
</route>
<route>

<from uri="direct:foo"/>
<to uri="mock:foo"/>
</route>

<route>

CHAPTER 10 - PATTERN APPENDIX

392

https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Multicast
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

393

<from uri="direct:bar"/>

<process ref="myProcessor"/>

<to uri="mock:bar"/>
</route>

<route>
<from uri="direct:baz"/>
<to uri="mock:baz"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

LOOP

The Loop allows to process the a message a number of times and possibly process them in a
different way. Useful mostly for testing.

For each iteration two properties are set on the Exchange that could be used by
processors down the pipeline to process the Message in different ways.

Property Description

CamelIterationCount Camel |.x: Total number of iterations to be run

CamelIterationIndex Camel |.x: Index of the current iteration (0 based)

CamelLoopSize Camel 2.0: Total number of loops

CamelLoopIndex Camel 2.0: Index of the current iteration (0 based)

that could be used by processors down the pipeline to process the Message in different ways.

Examples

The following example shows how to take a request from the direct:x endpoint, then send
the message repetitively to mock:result. The number of times the message is sent is either
passed as an argument to 1oop (), or determined at runtime by evaluating an expression. The
expression must evaluate to an int, otherwise a RuntimeCamelException is thrown.
Using the Fluent Builders
Pass loop count as an argument

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

from("direct:a") .loop(8) .to("mock:result");

Use expression to determine loop count

from("direct:b") .loop (header ("loop")) .to("mock:result");

Use expression to determine loop count

from("direct:c") .loop() .xpath("/hello/@times") .to ("mock:result");

Using the Spring XML Extensions
Pass loop count as an argument

<route>
<from uri="direct:a"/>
<loop>
<constant>8</constant>
<to uri="mock:result"/>
</loop>
</route>

Use expression to determine loop count

<route>
<from uri="direct:b"/>
<loop>
<header>loop</header>
<to uri="mock:result"/>
</loop>
</route>

For further examples of this pattern in use you could look at one of the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX

394

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

395

MESSAGE TRANSFORMATION

Content Enricher

Camel supports the Content Enricher from the EIP patterns using a Message Translator, an
artibrary Processor in the routing logic or using the enrich DSL element to enrich the message.

Enricher

tD—b o—[]|—»

Basic Message ¢ f Enriched Message

L

Resource

Content enrichment using a Message Translator or a Processor

Using the Fluent Builders

You can use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") .
to("activemg:Another.Queue") ;

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the

JMSReplyTo Destination you could use this.

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") ;

Here is a simple example using the DSL directly to transform the message body
from("direct:start") .setBody (body () .append (" World!")).to("mock:result");

In this example we add our own Processor using explicit Java code

from("direct:start") .process (new Processor () {
public void process (Exchange exchange) {
Message in = exchange.getIn();

CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/DataEnricher.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Processor

in.setBody(in.getBody (String.class) + " World!");
}

}).to("mock:result");

Finally we can use Bean Integration to use any Java method on any bean to act as the
transformer

from("activemqg:My.Queue") .
beanRef ("myBeanName", "myMethodName") .
to("activemg:Another.Queue") ;

For further examples of this pattern in use you could look at one of the JUnit tests
* TransformTest
* TransformViaDSLTest

Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemqg:Output"/>

</route>

Content enrichment using the enrich DSL element

Camel comes with two flavors of content enricher in the DSL
= enrich
* pollEnrich
enrich is using a Producer to obtain the additional data. It is usually used for Request Reply
messaging, for instance to invoke an external web service.
poolEnrich on the other hand is using a Polling Consumer to obtain the additional data. It is
usually used for Event Message messaging, for instance to read a file or download a FTP file.
This feature is available since Camel 2.0
Using the Fluent Builders
AggregationStrategy aggregationStrategy = ...
from("direct:start")
.enrich ("direct:resource", aggregationStrategy)

.to("direct:result");

from("direct:resource")

CHAPTER 10 - PATTERN APPENDIX

396

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

397

The content enricher (enrich) retrieves additional data from a resource endpoint in order to
enrich an incoming message (contained in the orginal exchange). An aggregation strategy is used
to combine the original exchange and the resource exchange. The first parameter of the
AggregationStrategy.aggregate (Exchange, Exchange) method corresponds
to the the original exchange, the second parameter the resource exchange. The results from
the resource endpoint are stored in the resource exchange's out-message. Here's an example
template for implementing an aggregation strategy.

public class ExampleAggregationStrategy implements AggregationStrategy {

public Exchange aggregate (Exchange original, Exchange resource) {
Object originalBody = original.getIn().getBody();
Object resourceResponse = resource.getOut ().getBody();
Object mergeResult = ... // combine original body
if (original.getPattern() .isOutCapable()) {
original.getOut () .setBody (mergeResult) ;
} else {

original.getIn() .setBody (mergeResult);

ana resource responsec

}

return original;

Using this template the original exchange can be of any pattern. The resource exchange created
by the enricher is always an in-out exchange.

Using Spring XML
The same example in the Spring DSL

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>

<enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
<to uri="direct:result"/>

</route>

<route>

<from uri="direct:resource"/>

</route>
</camelContext>

<bean id="aggregationStrategy" class="..." />

Aggregation strategy is optional

The aggregation strategy is optional. If you do not provide it Camel will by default just use the
body obtained from the resource.

CHAPTER 10 - PATTERN APPENDIX

from("direct:start")
.enrich("direct:resource")
.to("direct:result");

In the route above the message send to the direct:result endpoint will contain the
output from the direct: resource as we do not use any custom aggregation.

And in Spring DSL you just omit the strategyRef attribute:

<route>
<from uri="direct:start"/>
<enrich uri="direct:resource"/>
<to uri="direct:result"/>
</route>

Content enrich using pollEnrich

The pollEnrich works just as the enrich however as it uses a Polling Consumer we have
3 methods when polling
" receive
= receiveNoWait
= receive(timeout)
By default Camel will use the receiveNoWait.
If there is no data then the newExchange in the aggregation strategy is null.
You can pass in a timeout value that determines which method to use
= timeout is -| or negative then receive is selected
* timeout is 0 then receiveNoWait is selected
= otherwise receive (timeout) is selected
The timeout values is in millis.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Content Filter

Camel supports the Content Filter from the EIP patterns using one of the following mechanisms
in the routing logic to transform content from the inbound message.

* Message Translator

* invoking a Java bean

CHAPTER 10 - PATTERN APPENDIX

398

https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

& Data from current Exchange not used
pollEnrich does not access any data from the current Exchange which means

when polling it cannot use any of the existing headers you may have set on the
Exchange. For example you cannot set a filename in the Exchange .FILE NAME
header and use pol1Enrich to consume only that file. For that you must set the
filename in the endpoint URI.

* Processor object
Content Filter

—» []—nD —rtD

Message Message

A common way to filter messages is to use an Expression in the DSL like XQuery, SQL or
one of the supported Scripting Languages.

Using the Fluent Builders

Here is a simple example using the DSL directly

from("direct:start") .setBody (body () .append (" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start") .process (new Processor () {
public void process (Exchange exchange) {
Message in = exchange.getIn();
in.setBody (in.getBody (String.class) + " World!");
}
}) .to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests

¢ TransformTest
¢ TransformViaDSLTest
Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemg:Output"/>

</route>

You can also use XPath to filter out part of the message you are interested in:

399 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Processor
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

<route>
<from uri="activemq:Input"/>
<setBody><xpath resultType="org.w3c.dom.Document">//foo:bar</xpath></setBody>

<to uri="activemqg:Output"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Claim Check

The Claim Check from the EIP patterns allows you to replace message content with a claim
check (a unique key), which can be used to retrieve the message content at a later time. The
message content is stored temporarily in a persistent store like a database or file system. This
pattern is very useful when message content is very large (thus it would be expensive to send
around) and not all components require all information.

It can also be useful in situations where you cannot trust the information with an outside
party; in this case, you can use the Claim Check to hide the sensitive portions of data.

Check Luggage Data Enricher
B —— l:‘_, of ——» —_— | O _'D B ——
o B
essage Message essage
Wi Data wif Clairm Check Wi Data
Data Store

Available in Camel |.5.

Example

In this example we want to replace a message body with a claim check, and restore the body at
a later step.

from("direct:start").to ("bean:checkLuggage", "mock:testCheckpoint",
"bean:dataEnricher", "mock:result");

CHAPTER 10 - PATTERN APPENDIX

400

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/StoreInLibrary.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

The example route is pretty simple - its just a Pipeline. In a real application you would have
some other steps where the mock: testCheckpoint endpoint is in the example.

The message is first sent to the checkLuggage bean which looks like

public static final class CheckLuggageBean ({
public void checkLuggage (Exchange exchange, @Body String body, @XPath("/order/
@custId") String custId) {

store the mes:

/ into the data store, using the custId as the claim
check
dataStore.put (custId, body);
add the claim check as a header
exchange.getIn() .setHeader ("claimCheck", custId);

/ remove the body from the message

exchange.getIn() .setBody (null) ;

This bean stores the message body into the data store, using the custId as the claim check. In
this example, we're just using a HashMap to store the message body; in a real application you
would use a database or file system, etc. Next the claim check is added as a message header for
use later. Finally we remove the body from the message and pass it down the pipeline.

The next step in the pipeline is the mock: testCheckpoint endpoint which is just used
to check that the message body is removed, claim check added, etc.

To add the message body back into the message, we use the dataEnricher bean which
looks like

public static final class DataEnricherBean {
public void addDataBackIn (Exchange exchange, @Header ("claimCheck") String

claimCheck) {

“he claim ch

k into the mes

exchange.getIn() .setBody(dataStore.get (claimCheck)) ;
’/ remove the message data from the data store
dataStore.remove (claimCheck) ;

remove the claim check header

exchange.getIn () .removeHeader ("claimCheck") ;

This bean queries the data store using the claim check as the key and then adds the data back
into the message. The message body is then removed from the data store and finally the claim
check is removed. Now the message is back to what we started with!

For full details, check the example source here:
camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java

401 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Normalizer

Camel supports the Normalizer from the EIP patterns by using a Message Router in front of a
number of Message Translator instances.

Maormalizer

%% L ELe,

—

-%0%

Cormmaon Format

Different Message

Farmats Router
—

o

Translators

Example

This example shows a Message Normalizer that converts two types of XML messages into a
common format. Messages in this common format are then filtered.

Using the Fluent Builders

> need to normalize two t

from("direct:start")
.choice ()
.when () .xpath ("/employee") .to ("bean:normalizer?method=employeeToPerson)
.when () .xpath ("/customer") .to ("bean:normalizer?method=customerToPerson")
.end ()
.to("mock:result");

In this case we're using a Java bean as the normalizer. The class looks like this

public class MyNormalizer {
public void employeeToPerson (Exchange exchange, @XPath ("/employee/name/text ()")
String name) {
exchange.getOut () . setBody (createPerson (name)) ;

public void customerToPerson (Exchange exchange, @XPath ("/customer/@name") String
name) {
exchange.getOut () . setBody (createPerson (name)) ;

CHAPTER 10 - PATTERN APPENDIX

402

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Normalizer.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

private String createPerson(String name) {
return "<person name=\"" + name + "\"/>";

Using the Spring XML Extensions
The same example in the Spring DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<choice>
<when>
<xpath>/employee</xpath>
<to uri="bean:normalizer?method=employeeToPerson"/>
</when>
<when>
<xpath>/customer</xpath>
<to uri="bean:normalizer?method=customerToPerson"/>
</when>
</choice>
<to uri="mock:result"/>
</route>
</camelContext>

<bean id="normalizer" class="org.apache.camel.processor.MyNormalizer"/>

See Also

* Message Router
» Content Based Router
* Message Translator

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

SORT

Available as of Camel 2.0

403 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Message+Router
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

Sort can be used to sort a message. Imagine you consume text files and before processing
each file you want to be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles numeric values or
uses the string representation. You can provide your own comparator, and even an expression
to return the value to be sorted. Sort requires the value returned from the expression
evaluation is convertible to java.util.List as this is required by the JDK sort operation.

Using from Java DSL

In the route below it will read the file content and tokenize by line breaks so each line can be
sorted.

from("file: inbox") .sort (body () .tokenize ("\n")) .to ("bean:MyServiceBean.processLine") ;

You can pass in your own comparator as a 2nd argument:

from("file://inbox") .sort (body () .tokenize ("\n"), new
MyReverseComparator ()) .to ("bean:MyServiceBean.processLine") ;

Using from Spring DSL

In the route below it will read the file content and tokenize by line breaks so each line can be
sorted.

<route>
<from uri="file://inbox"/>

<sort>
<tokenizer token="\n"/>
</sort>
<beanRef ref="myServiceBean" method="processLine"/>
</route>

And to use our own comparator we can refer to it as a spring bean:

<route>
<from uri="file://inbox"/>
<sort comparatorRef="myReverseComparator">
<tokenizer token="\n"/>
</sort>
<beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

CHAPTER 10 - PATTERN APPENDIX

404

405

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGING ENDPOINTS

Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Message Translator
pattern or the Type Converter module.

Messaging
Mapper

Business Messaging
Ohject Infrastructure

See also

* Message Translator

* Type Converter

* CXF for JAX-WS support for binding business logic to messaging & web services
* Pojo

* Bean

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer
model is event based (i.e. asynchronous) as this means that the Camel container can then
manage pooling, threading and concurrency for you in a declarative manner.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

-t

Event-Driven
Sender Message Consumer

Receiver
The Event Driven Consumer is implemented by consumers implementing the Processor
interface which is invoked by the Message Endpoint when a Message is available for processing.
For more details see
* Message
* Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Polling Consumer

Camel supports implementing the Polling Consumer from the EIP patterns using the
PollingConsumer interface which can be created via the Endpoint.createPollingConsumer()

method.
¢ =01 %
Sender Message CE:?:Eer
Receiver

So in your Java code you can do

Endpoint endpoint = context.getEndpoint ("activemqg:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer () ;
Exchange exchange = consumer.receive();

Notice in Camel 2.0 we have introduced the ConsumerTemplate.

There are 3 main polling methods on PollingConsumer

Method N
Description
name
. Waits until a message is available and then returns it; potentially blocking
receive()

forever

CHAPTER 10 - PATTERN APPENDIX

406

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Processor.html
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()

Attempts to receive a message exchange, waiting up to the given
receive(long) timeout and returning null if no message exchange could be received
within the time available

Attempts to receive a message exchange immediately without waiting

receiveNoWait() . . . :
and returning null if a message exchange is not available yet

ConsumerTemplate

Available as of Camel 2.0

The ConsumerTemplate is a template much like Spring's JmsTemplate or JdbcTemplate
supporting the Polling Consumer EIP. With the template you can consume Exchanges from an
Endpoint.

The template supports the 3 operations above, but also including convenient methods for
returning the body, etc consumeBody.
The example from above using ConsumerTemplate is:

Exchange exchange = consumerTemplate.receive ("activemg:my.queue") ;

Or to extract and get the body you can do:

Object body = consumerTemplate.receiveBody ("activemg:my.queue");

And you can provide the body type as a parameter and have it returned as the type:

String body = consumerTemplate.receiveBody ("activemg:my.queue", String.class);

You get hold of a ConsumerTemplate from the CamelContext with the
createConsumerTemplate operation:

ConsumerTemplate consumer = context.createConsumerTemplate () ;

Using ConsumerTemplate with Spring DSL

With the Spring DSL we can declare the consumer in the CamelContext with the
consumerTemplate tag, just like the ProducerTemplate. The example below illustrates this:

<camelContext xmlns="http://camel.apache.org/schema/spring">

<!-- define a producer template -->

<template id="producer"/>

== i a consumer npla o=

407 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint

<consumerTemplate id="consumer"/>

<route>
<from uri="seda:foo"/>

<to id="result" uri="mock:result"/>
</route>

</camelContext>

Then we can get leverage Spring to inject the ConsumerTemplate in our java class. The

code below is part of an unit test but it shows how the consumer and producer can work
together.

@ContextConfiguration

public class SpringConsumerTemplateTest extends AbstractJUnit38SpringContextTests {

QAutowired

private ProducerTemplate producer;

QAutowired
private ConsumerTemplate consumer;

@EndpointInject (ref = "result")
private MockEndpoint mock;

public void testConsumeTemplate () throws Exception {

we expect Hello World received in our mock en

mock.expectedBodiesReceived ("Hello World");

// we use the produ

producer.sendBody ("seda:start", "Hello World");

7

er template to nd a messa

// We consume

dy from seda:start

String body = consumer.receiveBody ("seda:start", String.class);
assertEquals ("Hello World", body);

// and then we send the body again to seda:foo so it will be routec

// endpoint so our unit test can comp
producer.sendBody ("seda:foo", body);

// assert mock r ived the body
mock.assertIsSatisfied();

Timer based polling consumer

In this sample we use a Timer to schedule a route to be started every 5th second and invoke
our bean MyCoolBean where we implement the business logic for the Polling Consumer.

CHAPTER 10 - PATTERN APPENDIX

seda:foo so it will be routed to the mock

408

https://cwiki.apache.org/confluence/display/CAMEL/Timer
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer

Here we want to consume all messages from a JMS queue, process the message and send them
to the next queue.

First we setup our route as:

MyCoolBean cool = new MyCoolBean();
cool.setProducer (template) ;
cool.setConsumer (consumer) ;

from("timer://foo?period=5000") .bean (cool, "someBusinessLogic");

from("activemg:queue.foo") .to ("mock:result") ;

And then we have out logic in our bean:

public static class MyCoolBean {

private int count;
private ConsumerTemplate consumer;
private ProducerTemplate producer;

public void setConsumer (ConsumerTemplate consumer) {

this.consumer = consumer;

public void setProducer (ProducerTemplate producer) {
this.producer = producer;

public void someBusinessLogic() {
// loop to empty queue
while (true) {

// re

the queue, wait at most 3

String msg = consumer.receiveBody ("activemqg:queue.inbox", 3000,
String.class);
if (msg == null) {
/)

// NO more mes in queue

break;
}
// do something with body
msg = "Hello " + msg;
// send it to the next qu

producer.sendBodyAndHeader ("activemg:queue.foo", msg, "number", count++);

409 CHAPTER 10 - PATTERN APPENDIX

Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and
push them through the Camel processing routes. That is to say externally from the client the
endpoint appears to use an Event Driven Consumer but internally a scheduled poll is used to
monitor some kind of state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the
ScheduledPollConsumer base class which makes it simpler to implement this pattern.

There is also the Quartz Component which provides scheduled delivery of messages using
the Quartz enterprise scheduler.

For more details see:

* PollingConsumer

* Scheduled Polling Components
o ScheduledPollConsumer
o File
o FTP
° JPA
o Mail
o iBATIS]
o Quartz

ScheduledPoliConsumer Options

The ScheduledPollConsumer supports the following options:

Option Description

Camel 2.0: A pluggable
org.apache.camel.PollingConsumerPollStrategy allowing you
to provide your custom implementation to control error handling usually

IS occurred during the poll operation before an Exchange have been created
poli>trategy and being routed in Camel. In other words the error occurred while the
polling was gathering information, for instance access to a file network failed
so Camel cannot access it to scan for files. The default implementation will log

the caused exception at WARN level and ignore it.

About error handling and scheduled polling consumers

ScheduledPollConsumer is scheduled based and its run method is invoked periodically based
on schedule settings. But errors can also occur when a poll being executed. For instance if
Camel should poll a file network, and this network resource is not available then a
java.io.IOException could occur. As this error happens before any Exchange has been
created and prepared for routing, then the regular Error handling in Camel does not apply. So
what does the consumer do then? Well the exception is propagated back to the run method

CHAPTER 10 - PATTERN APPENDIX

410

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/Quartz
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Error+handling+in+Camel

411

where its handled. Camel will by default log the exception at WARN level and then ignore it. At

next schedule the error could have been resolved and thus being able to poll the endpoint
successfully.

Controlling the error handling using
PollingConsumerPollStrategy

Available as of Camel 2.0
org.apache.camel.PollingConsumerPollStrategy is a pluggable strategy that
you can configure on the ScheduledPollConsumer. The default implementation
org.apache.camel.impl.DefaultPollingConsumerPollStrategy will log the
caused exception at WARN level and then ignore this issue.

The strategy interface provides the following 3 methods
* begin
* void begin (Consumer consumer, Endpoint endpoint)
= begin (Camel 2.3)
* boolean begin (Consumer consumer, Endpoint endpoint)
= commit
* void commit (Consumer consumer, Endpoint endpoint)
= rollback
* boolean rollback(Consumer consumer, Endpoint
endpoint, int retryCounter, Exception e) throws
Exception
In Camel 2.3 onwards the begin method returns a boolean which indicates whether or not to
skipping polling. So you can implement your custom logic and return false if you do not want
to poll this time.

The most interesting is the rol1lback as it allows you do handle the caused exception and
decide what to do.

For instance if we want to provide a retry feature to a scheduled consumer we can
implement the PollingConsumerPollStrategy method and put the retry logic in the
rollback method. Lets just retry up till 3 times:

public boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter,
Exception e) throws Exception {
if (retryCounter < 3) {
return true to tell Camel that it should retry the poll immediately
return true;
}

give up do not retry anymore

oKay we

return false;

CHAPTER 10 - PATTERN APPENDIX

Notice that we are given the Consumer as a parameter. We could use this to restart the
consumer as we can invoke stop and start:

consumer.stop () ;
consumer.start () ;

Notice: If you implement the begin operation make sure to avoid throwing exceptions as in
such a case the pol1l operation is not invoked and Camel will invoke the rollback directly.

Configuring an Endpoint to use PollingConsumerPollStrategy

To configure an Endpoint to use a custom PollingConsumerPollStrategy you use the
option pollStrategy. For example in the file consumer below we want to use our custom
strategy defined in the Registry with the bean id myPol1:

from("file://inbox/?pollStrategy=#myPoll") .to ("activemg:queue:inbox")

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

See Also

*= POJO Consuming
= Batch Consumer

Competing Consumers

Camel supports the Competing Consumers from the EIP patterns using a few different
components.

CHAPTER 10 - PATTERN APPENDIX

412

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

o

*G&%—f/=&

Sender Messages Consumer

Receiver

15

Consumer

Receiver

You can use the following components to implement competing consumers:-
» SEDA for SEDA based concurrent processing using a thread pool
* JMS for distributed SEDA based concurrent processing with queues which support
reliable load balancing, failover and clustering.

Enabling Competing Consumers with JMS

To enable Competing Consumers you just need to set the concurrentConsumers
property on the JMS endpoint.

For example

from("jms:MyQueue?concurrentConsumers=5") .bean (SomeBean.class) ;

Or just run multiple JVMs of any ActiveMQ or JMS route @

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

413 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

s

Performer
*
I [PV rl
tlI\ e
Sender] ge] Performer

Dispatcﬂer

15

Performer

Receiver

You can use a component like JMS with selectors to implement a Selective Consumer as the
Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher
itself and then use a Content Based Router as the Message Dispatcher.

See Also

* JMS

* Selective Consumer

* Content Based Router
* Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Selective Consumer

The Selective Consumer from the EIP patterns can be implemented in two ways

= %% % £ 1%

o . Selective
Specifying Messages with Consumar
Praducer Selection Values

Receiver

The first solution is to provide a Message Selector to the underlying URIs when creating
your consumer. For example when using JMS you can specify a selector parameter so that the
message broker will only deliver messages matching your criteria.

CHAPTER 10 - PATTERN APPENDIX

414

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/JMS

The other approach is to use a Message Filter which is applied; then if the filter matches the
message your consumer is invoked as shown in the following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure () {
errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")
.filter (header ("foo") .isEqualTo ("bar"))
.process (myProcessor) ;

bi
Using the Spring XML Extensions

<bean id="myProcessor" class="org.apache.camel.builder.MyProcessor"/>

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="seda:a"/>

<filter>
<xpath>$foo = 'bar'</xpath>
<process ref="myProcessor"/>
</filter>
</route>
</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the JMS component which
supports publish & subscribe using Topics with support for non-durable and durable
subscribers.

415 CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/JMS

Durable
Subscriber

Receiver

Fublisher

Publish-Subscribe Mon-Durable
Channel Subscriber

Receiver

Another alternative is to combine the Message Dispatcher or Content Based Router with
File or JPA components for durable subscribers then something like Queue for non-durable.

See Also

* JMS

* File

* JPA

* Message Dispatcher

* Selective Consumer

* Content Based Router
* Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Idempotent Consumer

The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages.

This pattern is implemented using the [dempotentConsumer class. This uses an Expression
to calculate a unique message ID string for a given message exchange; this ID can then be
looked up in the ldempotentRepository to see if it has been seen before; if it has the message is
consumed; if its not then the message is processed and the ID is added to the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter out duplicates.

Camel will add the message id eagerly to the repository to detect duplication also for
Exchanges currently in progress.

On completion Camel will remove the message id from the repository if the Exchange failed,
otherwise it stays there.

CHAPTER 10 - PATTERN APPENDIX

416

https://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Queue
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

417

Options

The Idempotent Consumer has the following options:

Option Default Description

Camel 2.0: Eager controls whether Camel adds the message to the
repository before or after the exchange has been processed. If
enabled before then Camel will be able to detect duplicate messages
even when messages are currently in progress. By disabling Camel
will only detect duplicates when a message has successfully been
processed.

eager true

Using the Fluent Builders
The following example will use the header myMessageld to filter out duplicates

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")
.idempotentConsumer (header ("myMessageId"),
MemoryIdempotentRepository.memoryIdempotentRepository (200))
.to("seda:b");

}i

The above example will use an in-memory based MessageldRepository which can easily run out
of memory and doesn't work in a clustered environment. So you might prefer to use the JPA
based implementation which uses a database to store the message |Ds which have been
processed

from("direct:start") .idempotentConsumer (
header ("messageId"),
jpaMessagelIdRepository (lookup (JpaTemplate.class), PROCESSOR NAME)
) .to("mock:result") ;

In the above example we are using the header messageld to filter out duplicates and using
the collection myProcessorName to indicate the Message ID Repository to use. This name
is important as you could process the same message by many different processors; so each may
require its own logical Message ID Repository.

For further examples of this pattern in use you could look at the junit test case

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Transactional Client

Camel recommends supporting the Transactional Client from the EIP patterns using spring
transactions.

transaction transaction
(%2 e i~ %
N
Transactional Transactiona
Message
Producer Consumer
Sender Receiver

Transaction Oriented Endpoints (Camel Toes) like JMS support using a transaction for both
inbound and outbound message exchanges. Endpoints that support transactions will participate
in the current transaction context that they are called from.

You should use the SpringRouteBuilder to setup the routes since you will need to setup the
spring context with the TransactionTemplates that will define the transaction manager
configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the JMS component, this can be done by looking it
up in the spring context.

You first define needed object in the spring configuration.

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">
<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConnectionFactory"
class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Then you look them up and use them to create the JmsComponent.

PlatformTransactionManager transactionManager = (PlatformTransactionManager)
spring.getBean ("jmsTransactionManager") ;

ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean ("jmsConnectionFactory");

JnsComponent component = JmsComponent.jmsComponentTransacted (connectionFactory,
transactionManager) ;

CHAPTER 10 - PATTERN APPENDIX

418

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/What+is+a+Camel+TOE
https://cwiki.apache.org/confluence/display/CAMEL/JMS
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html

419

© Convention over configuration
In Camel 2.0 onwards we have improved the default configuration reducing the
number of Spring XML gobble you need to configure.
In this wiki page we provide the Camel |.x examples and the same 2.0 example that
requires less XML setup.

& Configuration of Redelivery
The redelivery in transacted mode is not handled by Camel but by the backing
system (the transaction manager). In such cases you should resort to the backing
system how to configure the redelivery.

component.getConfiguration () .setConcurrentConsumers (1) ;
ctx.addComponent ("activemg", component);

Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you
do not want your outbound endpoint to enlist in the same transaction as your inbound
endpoint? The solution is to add a Transaction Policy to the processing route. You first have to
define transaction policies that you will be using. The policies use a spring TransactionTemplate
under the covers for declaring the transaction demarcation to use. So you will need to add
something like the following to your spring xml:

<bean id:"PROPAGATTONiREQUTRED”
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

<bean id="PROPAGATION REQUIRES NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION REQUIRES NEW"/>
</bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects
for each of the templates.

CHAPTER 10 - PATTERN APPENDIX

http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html

public void configure() {

Policy requried = bean(SpringTransactionPolicy.class, "PROPAGATION REQUIRED"));
Policy requirenew = bean(SpringTransactionPolicy.class,
"PROPAGATION REQUIRES NEW")) ;

Once created, you can use the Policy objects in your processing routes:

in a new transaction

from("activemg:queue:foo") .policy(requirenew) .to ("activemqg:queue:bar");

Send to bar without a transaction

from("activemg:queue:foo") .policy(notsupported).to("activemg:queue:bar");

Camel I.x - Database Sample

In this sample we want to ensure that two endpoints is under transaction control. These two
endpoints inserts data into a database.
The sample is in its full as a unit test.

First of all we setup the usual spring stuff in its configuration file. Here we have defined a
DataSource to the HSQLDB and a most importantly
the Spring DataSoruce TransactionManager that is doing the heavy lifting of ensuring our
transactional policies. You are of course free to use any
of the Spring based TransactionMananger, eg. if you are in a full blown J2EE container you could
use JTA or the WebLogic or WebSphere specific managers.

We use the required transaction policy that we define as the PROPOGATION REQUIRED
spring bean. And as last we have our book service bean that does the business logic
and inserts data in the database as our core business logic.

<!-- data

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="org.hsgldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqgldb:mem:camel"/>
<property name="username" value="sa"/>
<property name="password" value=""/>
</bean>

<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

CHAPTER 10 - PATTERN APPENDIX

420

http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceTest.java?view=log

</bean>

<!-- policy for required transaction used in our Camel routes -->
<bean id="PROPAGATIONiREQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>

<property name="propagationBehaviorName" value="PROPAGATION REQUIRED"/>

</bean>

<!-- bean for book business logic -->

<bean id="bookService" class="org.apache.camel.spring.interceptor.BookService">

<property name="dataSource" ref="dataSource"/>

</bean>

In our Camel route that is Java DSL based we setup the transactional policy, wrapped as a
Policy.

w more features than

// Notice that we use the SpringRouteBuilder that has a
// the standard RouteBuilder
return new SpringRouteBuilder () {

public void configure() throws Exception ({

// lookup the transaction policy
SpringTransactionPolicy required = lookup ("PROPAGATION REQUIRED",
SpringTransactionPolicy.class);

// use this error handler instead of DeadLetterChannel that is the default

// Notice: transactionErrorHandler is in SpringRouteBuilder
if (isUseTransactionErrorHandler()) {

// useTransactionErrorHandler is only used for unit
for doing a 2nd test without this transaction error handler,
end users are encouraged to use the

testing to reuse code
// so ignore
// this. For spring based transaction,
error handler instead of the default DeadLetterChannel.

// transaction
errorHandler (transactionErrorHandler (required)) ;

Then we are ready to define our Camel routes. We have two routes: | for success conditions,

and | for a forced rollback condition.
This is after all based on a unit test.

// set the required policy for this route
from("direct:okay") .policy (required) .
setBody (constant ("Tiger in Action")) .beanRef ("bookService") .

setBody (constant ("Elephant in Action")) .beanRef ("bookService") ;

// set the required policy for this route
from("direct:fail") .policy (required) .
setBody (constant ("Tiger in Action")) .beanRef ("bookService").

setBody (constant ("Donkey in Action")) .beanRef ("bookService") ;

As its a unit test we need to setup the database and this is easily done with Spring JdbcTemplate

421 CHAPTER 10 - PATTERN APPENDIX

Error formatting macro: snippet: java.lang.IndexOutOfBoundsException: Index: 20, Size: 20
And our core business service, the book service, will accept any books except the Donkeys.

public class BookService ({
private SimpleJdbcTemplate jdbc;

public BookService () {
}

public void setDataSource (DataSource ds) {
jdbc = new SimpleJdbcTemplate (ds);

public void orderBook(String title) throws Exception ({
if (title.startsWith ("Donkey")) {

throw new IllegalArgumentException("We don't have Donkeys, only Camels");

te new local datasource to store in DB

jdbc.update ("insert into books (title) values (?)", title);

Then we are ready to fire the tests. First to commit condition:

public void testTransactionSuccess () throws Exception {
template.sendBody ("direct:okay", "Hello World");

int count = jdbc.queryForInt ("select count(*) from books");
assertEquals ("Number of books", 3, count);

And lastly the rollback condition since the 2nd book is a Donkey book:

public void testTransactionRollback() throws Exception {
try {
template.sendBody ("direct:fail", "Hello World");
} catch (RuntimeCamelException e) ({

// €Xf

d as we fail
assertIsInstanceOf (RuntimeCamelException.class, e.getCause());
assertTrue (e.getCause () .getCause () instanceof IllegalArgumentException);
assertEquals ("We don't have Donkeys, only Camels",
e.getCause () .getCause () .getMessage()) ;
}

int count = jdbc.queryForInt ("select count (*) from books");
assertEquals ("Number of books"™, 1, count);

CHAPTER 10 - PATTERN APPENDIX

422

423

Camel I.x - JMS Sample

In this sample we want to listen for messages on a queue and process the messages with our
business logic java code and send them along. Since its based on a unit test the destination is a
mock endpoint.

This time we want to setup the camel context and routes using the Spring XML syntax.

<!-- here define our camel context -->
<camel:camelContext id="myroutes">
<!-- and now our route using the XML syntax -->

<camel:route errorHandlerRef="errorHandler">
<!--1: from the jms queue -->

<camel:from uri="activemq:queue:okay"/>

<!-- 2: setup the transactional boundaries to require a transaction -->
<camel:transacted ref="PROPAGATION REQUIRED"/>
<!-- 3: call our business logic that is myProce ==

<camel:process ref="myProcessor"/>

<!--4: if su >ss then send it to the mock -->

<camel:to uri="mock:result"/>
</camel:route>
</camel:camelContext>

== ghilg I

ean is our business logic -->
<bean id="myProcessor"
class="org.apache.camel.component.jms.tx.JMSTransactionalClientTest$MyProcessor" />

Since the rest is standard XML stuff its nothing fancy now for the reader:

<!-- the transactional error handler -->

<bean id="errorHandler"

class="org.apache.camel.spring.spi.TransactionErrorHandlerBuilder">
<property name="springTransactionPolicy" ref="PROPAGATION REQUIRED"/>

</bean>

<bean id="jmsConnectionFactory" class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>

</bean>

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory"/>
</bean>

<bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration”>
<property name="connectionFactory" ref="jmsConnectionFactory"/>
<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="transacted" value="true"/>
<property name="concurrentConsumers" value="1"/>

</bean>

<bean id="activemq" class="org.apache.activemqg.camel.component.ActiveMQComponent">

CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/JMSTransactionalClientTestjava?view=log

<property name="configuration" ref="jmsConfig"/>
</bean>

<bean id=" PROPAGA‘l‘lONiREQUlRED”
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

Our business logic is set to handle the incomming messages and fail the first two times. When
its a success it responds with a Bye World message.

public static class MyProcessor implements Processor {
private int count;

public void process (Exchange exchange) throws Exception ({
if (++count <= 2) {
throw new IllegalArgumentException ("Forced Exception number " + count + ",
please retry");
}
exchange.getIn() .setBody ("Bye World");
exchange.getIn() .setHeader ("count", count);

And our unit test is tested with this java code. Notice that we expect the Bye World
message to be delivered at the 3rd attempt.

MockEndpoint mock = getMockEndpoint ("mock:result");
mock.expectedMessageCount (1) ;
mock.expectedBodiesReceived ("Bye World");

at 3rd attempt

mock.message (0) .header ("count") .isEqualTo(3) ;
template.sendBody ("activemg:queue:okay", "Hello World"):;

mock.assertIsSatisfied();

Camel |.x - Spring based configuration

In Camel 1.4 we have introduced the concept of configuration of the error handlers using
spring XML configuration. The sample below demonstrates that you can configure transaction
error handlers in Spring XML as spring beans. These can then be set as global, per route based
or per policy based error handler. The latter has been demonstrated in the samples above. This
sample is the database sample configured in Spring XML.

Notice that we have defined two error handler, one per route. The first route uses the
transaction error handler, and the 2nd uses no error handler at all.

CHAPTER 10 - PATTERN APPENDIX 424

425

<!-- here we define our camel context -->
<camel:camelContext id="myroutes">

<!-- first route with transaction error handler -->

<!-- here we refer to our transaction error handler we define in this Spring XML
file -->

<!-- in this route the transactionErrorHandler is used -->

<camel:route errorHandlerRef="transactionErrorHandler">
<!-- 1: from the jms queue -->
<camel:from uri="activemqg:queue:okay"/>
<!-- 2: setup the transactional boundaries to require a transaction -->
<camel:transacted ref="required"/>
<!-- 3: call our business logic that is myProcessor -->
<camel:process ref="myProcessor"/>
<!-- 4: if success then send it to the mock -->
<camel:to uri="mock:result"/>
</camel:route>

<!-- 2nd route with no error handling -->
<!-- this route doens't use error handler, in fact the spring bean with id
noErrorHandler -->

<camel:route errorHandlerRef="noErrorHandler">
<camel:from uri="activemqg:queue:bad"/>
<camel:to uri="log:bad"/>

</camel:route>

</camel:camelContext>

The following snippet is the Spring XML configuration to setup the error handlers in pure
spring XML:

<!-- camel policy we refer to in our route -->

<bean id="required" class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionTemplate" ref="PROPAGATION REQUIRED"/>

</bean>

<!-- the standard spring transaction template for required -->

<bean id="PROPAGATION_ REQUIRED"

class="org.springframework.transaction.support.TransactionTemplate">
<property name="transactionManager" ref="jmsTransactionManager"/>

</bean>

<!-- the transaction error handle we refer to from the route -->
<bean id="transactionErrorHandler"
class="org.apache.camel.spring.spi.TransactionErrorHandlerBuilder">

<property name="transactionTemplate" ref="PROPAGATION REQUIRED"/>
</bean>

<!-- the no error handler -->
<bean id="noErrorHandler" class="org.apache.camel.builder.NoErrorHandlerBuilder"/>

CHAPTER 10 - PATTERN APPENDIX

DelayPolicy (@deprecated)

DelayPolicy is a new policy introduced in Camel 1.5, to replaces the RedeliveryPolicy used in
Camel 1.4. Notice the transactionErrorHandler can be configured with a DelayPolicy
to set a fixed delay in millis between each redelivery attempt. Camel does this by sleeping the
delay until transaction is marked for rollback and the caused exception is rethrown.

This allows a simple redelivery interval that can be configured for development mode or
light production to avoid a rapid redelivery strategy that can exhaust a system that constantly
fails.

The DelayPolicy is @deprecated and removed in Camel 2.0. All redelivery configuration
should be configured on the back system.

We strongly recommend that you configure the backing system for
correct redelivery policy in your environment.

Camel 2.0 - Database Sample

In this sample we want to ensure that two endpoints is under transaction control. These two
endpoints inserts data into a database.
The sample is in its full as a unit test.

First of all we setup the usual spring stuff in its configuration file. Here we have defined a
DataSource to the HSQLDB and a most importantly
the Spring DataSoruce TransactionManager that is doing the heavy lifting of ensuring our
transactional policies. You are of course free to use any
of the Spring based TransactionMananger, eg. if you are in a full blown J2EE container you could
use JTA or the WebLogic or WebSphere specific managers.

As we use the new convention over configuration we do not need to configure a
transaction policy bean, so we do not have any PROPAGATION REQUIRED beans.
All the beans needed to be configured is standard Spring beans only, eg. there are no Camel
specific configuration at all.

<!-- this example uses JDBC so we define a data source -->
<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="org.hsgldb.jdbcDriver"/>
<property name="url" value="jdbc:hsgldb:mem:camel"/>
<property name="username" value="sa"/>
<property name="password" value=""/>
</bean>

<!-- sprir E
<!-- this is the tr
<bean id="txManager"

r transac

nsaction manager Camel will use for transacted routes -->
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>
</bean>

CHAPTER 10 - PATTERN APPENDIX

426

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DelayPolicy.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceMinimalConfigurationTest.java?view=log

n for book business logic -->

. Dea

<bean id="bookService" class="org.apache.camel.spring.interceptor.BookService">
<property name="dataSource" ref="dataSource"/>

</bean>

Then we are ready to define our Camel routes. We have two routes: | for success conditions,
and | for a forced rollback condition.

This is after all based on a unit test. Notice that we mark each route as transacted using the
transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:okay"/>
<!-- we mark this route as transacted. Camel will lookup the spring
transaction manager
and use it by default. We can optimally pass in arguments to specify a
policy to use
that is configured with a spring transaction manager of choice. However
Camel supports
convention over configuration as we can just use the defaults out of the
box and Camel
that suites in most situations -->
<transacted/>
<setBody>
<constant>Tiger in Action</constant>
</setBody>
<pbean ref="bookService"/>
<setBody>
<constant>Elephant in Action</constant>
</setBody>
<bean ref="bookService"/>
</route>

<route>
<from uri="direct:fail"/>

<!-- we mark this route as transacted. See comments above. -->
<transacted/>
<setBody>
<constant>Tiger in Action</constant>
</setBody>
<bean ref="bookService"/>
<setBody>
<constant>Donkey in Action</constant>
</setBody>
<bean ref="bookService"/>
</route>
</camelContext>

That is all that is needed to configure a Camel route as being transacted. Just remember to use
the transacted DSL. The rest is standard Spring XML to setup the transaction manager.

427 CHAPTER 10 - PATTERN APPENDIX

Camel 2.0 - JMS Sample

In this sample we want to listen for messages on a queue and process the messages with our
business logic java code and send them along. Since its based on a unit test the destination is a
mock endpoint.

First we configure the standard Spring XML to declare a JMS connection factory, a JMS
transaction manager and our ActiveMQ component that we use in our routing.

<!-- setup JMs

onnection factory -->

<bean id="jmsConnectionFactory" class="org.apache.activemqg.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>

</bean>

setup spring jms TX mana

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory"/>
</bean>

fine our activemg co
<bean id="activemg" class="org.apache.activemg.camel.component.ActiveMQComponent">
<property name="connectionFactory" ref="jmsConnectionFactory"/>
<!-- define the jms consumer/producer as transacted -->

<property name="transacted" value="true"/>

<!-- setup the transaction manager to use -->
<!-- if not provided then Camel will automatic use a JmsTransactionManager,
however if you
for instance use a JTA transaction manager then you must configure it -->

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

And then we configure our routes. Notice that all we have to do is mark the route as
transacted using the transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<!--1: from the jms queue -->
<from uri="activemq:queue:okay"/>
<!-- 2: mark this route as transacted -->
<transacted/>
<!-- 3: call our business logic that is myPr ==

<process ref="myProcessor"/>

<!--4: if suc ss then send it to

<to uri="mock:result"/>
</route>
</camelContext>

<bean id="myProcessor"
class="org.apache.camel.component.jms.tx.JMSTransactionalClientTest$MyProcessor"/>

CHAPTER 10 - PATTERN APPENDIX

428

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.java?view=log

429

% Transaction error handler
When a route is marked as transacted using transacted Camel will automatic use
the TransactionErrorHandler as Error Handler. It supports basically the same
feature set as the DefaultErrorHandler, so you can for instance use Exception
Clause as well.

USING MULTIPLE ROUTES WITH DIFFERENT
PROPAGATION BEHAVIORS

Available as of Camel 2.2
Suppose you want to route a message through two routes and by which the 2nd route should
run in its own transaction. How do you do that? You use propagation behaviors for that where
you configure it as follows:

= The first route use PROPAGATION REQUIRED

= The second route use PROPAGATION REQUIRES NEW
This is configured in the Spring XML file:

<bean id="PROPAGATION REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>

<property name="propagationBehaviorName" value="PROPAGATION REQUIRED"/>
</bean>

<bean id=”PROPAGATTONiREQUTRﬁsiNEW”
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>

<property name="propagationBehaviorName" value="PROPAGATION REQUIRES NEW"/>
</bean>

Then in the routes you use transacted DSL to indicate which of these two propagations it uses.

from("direct:mixed")
1sing required
.transacted ("PROPAGATION REQUIRED")
all these steps will be okay

.setBody (constant ("Tiger in Action")) .beanRef ("bookService")

.setBody (constant ("Elephant in Action")) .beanRef ("bookService")
continue on route 2

.to("direct:mixed2") ;

from("direct :mixed2")
ell Camel that if this route fails then only rollback this last route

/ using (rollback only *last¥)

.onException (Exception.class) .markRollbackOnlyLast () .end ()
// us which i requires new
.transacted ("PROPAGATION_ REQUIRES_ NEW")

a differen propagati

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/TransactionErrorHandler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/DefaultErrorHandler
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause

this step will be okay

.setBody (constant ("Lion in Action")) .beanRef ("bookService")
this step will fail with donkey
.setBody (constant ("Donkey in Action")) .beanRef ("bookService");

Notice how we have configured the onException in the 2nd route to indicate in case of any

exceptions we should handle it and just rollback this transaction.
This is done using the markRollbackOnlyLast which tells Camel to only do it for the

current transaction and not globally.

See Also

* Error handling in Camel

¢ TransactionErrorHandler
* Error Handler

* JMS

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Messaging Gateway

Camel has several endpoint components that support the Messaging Gateway from the EIP
patterns.

CH%: =&y

Messaging | Messaging | Messaging
Gateway System Gateway
Application Application

Components like Bean and CXF provide a a way to bind a Java interface to the message
exchange.
However you may want to read the Using CamelProxy documentation as a true Messaging

Gateway EIP solution.
Another approach is to use @Produce which you can read about in POJO Producing which

also can be used as a Messaging Gateway EIP solution.

CHAPTER 10 - PATTERN APPENDIX

430

https://cwiki.apache.org/confluence/display/CAMEL/Error+handling+in+Camel
https://cwiki.apache.org/confluence/display/CAMEL/TransactionErrorHandler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Using+CamelProxy
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway

431

See Also

* Bean

+ CXF

* Using CamelProxy
* POJO Producing

» Spring Remoting

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Service Activator

Camel has several endpoint components that support the Service Activator from the EIP

patterns.
— %1 %
Request Service
Renl Service
o Activator
Reguestar Replier

Components like Bean, CXF and Pojo provide a a way to bind the message exchange to a
Java interface/service where the route defines the endpoints and wires it up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using annotation.

See Also

¢ Bean
* Pojo
e CXF

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Using+CamelProxy
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

SYSTEM MANAGEMENT

Detour

The Detour from the EIP patterns allows you to send messages through additional steps if a
control condition is met. It can be useful for turning on extra validation, testing, debugging code
when needed.

—a@m-_}
Source | @ »l—+| Destination
Detour

Available in Camel |.5.

Example

In this example we essentially have a route like
from("direct:start") .to("mock:result") with a conditional detour to the

mock:detour endpoint in the middle of the route..

from("direct:start") .choice ()
.when () .method ("controlBean", "isDetour").to("mock:detour") .end()

.to("mock:result");

whether the detour is turned on or off is decided by the ControlBean. So, when the detour
is on the message is routed to mock:detour and then mock: result. When the detour is
off, the message is routed to mock: result.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX

432

http://www.enterpriseintegrationpatterns.com/Detour.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples

433

Wire Tap

The Wire Tap from the EIP patterns allows you to route messages to a separate tap location
while it is forwarded to the ultimate destination.
YWire Tap

Source |l — —3— — (@[] Destination

¥

.

]

WireTap node

Available as of Camel 2.0

In Camel 2.0 we have introduced a new wireTap node for properly doing wire taps.
Camel will copy the original Exchange and set its Exchange Pattern to InOnly as we want the
tapped Exchange to be sent as a fire and forget style. The tapped Exchange is then send in a
separate thread so it can run in parallel with the original

We have extended the wireTap to support two flavors when tapping an Exchange
= send a copy of the original Exchange (the traditional wire tap)
* send a new Exchange, allowing you to populate the Exchange beforehand

Sending a copy (traditional wire tap)

Using the Fluent Builders

from("direct:start")
.to("log:foo")
.wireTap("direct:tap")
.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="log:foo"/>
<wireTap uri="direct:tap"/>
<to uri="mock:result"/>
</route>

CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/WireTap.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

Sending a new Exchange

Using the Fluent Builders

Camel supports either a processor or an Expression to populate the new Exchange. Using
processor gives you full power how the Exchange is populated as you can set properties,
headers etc. The Expression can only be used to set the IN body.

From Camel 2.3 onwards the Expression or Processor is pre populated with a copy of the
original Exchange which allows you to access the original message when you prepare the new
Exchange to be sent. You can use the copy option to indicate if you want this or not (default is
enabled). If your turn copy=false then it works as in Camel 2.2 or older, where the
Exchange always will be empty.

Below is the processor variation shown. This example is from Camel 2.3, where we disable
copy by passing in false. This will create a new empty Exchange.

from("direct:start")
.wireTap ("direct:foo", false, new Processor () {
public void process (Exchange exchange) throws Exception ({
exchange.getIn() .setBody ("Bye World");
exchange.getIn() .setHeader ("foo", "bar");

}

}) .to("mock:result");

from("direct:foo") .to("mock:foo");

And the Expression variation. This example is from Camel 2.3, where we disable copy by
passing in false. This will create a new empty Exchange.

from("direct:start")
.wireTap ("direct:foo", false, constant ("Bye World")

.to("mock:result");

from("direct:foo") .to("mock:foo");

Using the Spring XML Extensions
The processor variation, notice we use a processorRef attribute to refer to a spring bean
with this id:

<route>
<from uri="direct:start2"/>
<wireTap uri="direct:foo" processorRef="myProcessor"/>
<to uri="mock:result"/>

</route>

And the Expression variation, where the expression is defined in the body tag:

CHAPTER 10 - PATTERN APPENDIX

434

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Expression

435

<route>
<from uri="direct:start"/>
<wireTap uri="direct:foo">

<body><constant>Bye World</constant></body>
</wireTap>

<to uri="mock:result"/>
</route>

And this variation accesses the body of the original message and creates a new Exchange which
is based on the Expression.

It will create a new Exchange and have the body contain "Bye ORIGINAL BODY MESSAGE
HERE"

<route>
<from uri="direct:start"/>
<wireTap uri="direct:foo">

<body><simple>Bye ${body}</simple></body>

</wireTap>
<to uri="mock:result"/>
</route>
Camel |.x

The following example shows how to route a request from an input queue:a endpoint to the
wire tap location queue:tap it is received by queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {

errorHandler (deadLetterChannel ("mock:error")) ;

from("seda:a")

.multicast().to("seda:tap", "seda:b");

}i

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="seda:a"/>
<multicast>
<to uri="seda:tap"/>
<to uri="seda:b"/>
</multicast>

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

</route>
</camelContext>

Further Example

For another example of this pattern in use you could look at the wire tap test case.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

LOG

How can | log processing a Message?
Camel provides many ways to log processing a message. Here is just some examples:
* You can use the Log component which logs the Message content.
* You can use the Tracer which trace logs message flow.
* You can also use a Processor or Bean and log from Java code.
* You can use the 1og DSL.

Using log DSL

And in Camel 2.2 you can use the Log DSL which allows you to use Simple language to
construct a dynamic message which gets logged.
For example you can do

from("direct:start").log("Processing ${id}").to("bean:foo");

Which will construct a String message at runtime using the Simple language. The log message
will by logged at INFO level using the route id as the log name. By default a route is named
route-1, route-2 etc. But you can use the routeId ("myCoolRoute") to seta route
name of choice.

The log DSL have overloaded methods to set the logging level and/or name as well.

from("direct:start").log(LoggingLevel .DEBUG, "Processing ${id}").to("bean:foo");

For example you can use this to log the file name being processed if you consume files.

CHAPTER 10 - PATTERN APPENDIX

436

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/Tracer
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple

437

 Difference between log in the DSL and Log component
The 1og DSL is much lighter and meant for logging human logs such as Starting
to do ... etc. It can only log a message based on the Simple language. On the
other hand Log component is a full fledged component which involves using
endpoints and etc. The Log component is meant for logging the Message itself and
you have many URI options to control what you would like to be logged.

from("file://target/files") .log(LoggingLevel .DEBUG, "Processing file

S{file:name}") .to("bean:foo") ;

Using log DSL from Spring

In Spring DSL its also easy to use log DSL as shown below:

<route id="foo">
<from uri="direct:foo"/>
<log message="Got ${body}"/>
<to uri="mock:foo"/>
</route>

The log tag has attributes to set the message, loggingLevel and logName. For example:

<route id="baz">
<from uri="direct:baz"/>
<log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"/>
<to uri="mock:baz"/>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/Log

There now follows the documentation on each Camel component.

ACTIVEMQ COMPONENT

The ActiveMQ component allows messages to be sent to a JMS Queue or Topic or messages to
be consumed from a JMS Queue or Topic using Apache ActiveMQ.

This component is based on JMS Component and uses Spring's JMS support for declarative
transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming. All the options from the JMS component
also applies for this component.

To use this component make sure you have the activemqg. jar or activemg-
core.jar on your classpath along with any Camel dependencies such as camel-core.jar,
camel-spring.jar and camel-jms.jar.

URI format

activemq: [queue: |topic:]destinationName
Where destinationName is an ActiveMQ queue or topic name. By default, the
destinationName is interpreted as a queue name. For example, to connect to the queue,
FOO.BAR, use:

activemg:FOO.BAR
You can include the optional queue : prefix, if you prefer:

activemqg:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the
topic, Stocks.Prices, use:

CHAPTER Il - COMPONENT APPENDIX

438

http://java.sun.com/products/jms/
http://activemq.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMS

activemqg:topic:Stocks.Prices

Options

See Options on the JMS component as all these options also apply for this component.

Configuring the Connection Factory

The following test case shows how to add an ActiveMQComponent to the CamelContext using
the activeMQComponent () method while specifying the brokerURL used to connect to

ActiveMQ.

camelContext.addComponent ("activemg",
activeMQComponent ("vm://localhost?broker.persistent=false"));

Configuring the Connection Factory using Spring XML

You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.0.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">

</camelContext>

<bean id="activemq" class="org.apache.activemqg.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>
</bean>

</beans>

Using connection pooling

When sending to an ActiveMQ broker using Camel it's recommended to use a pooled
connection factory to efficiently handle pooling of JMS connections, sessions and producers.
This is documented on the ActiveMQ Spring Support page.

You can grab ActiveMQ's
org.apache.activemq.pool.PooledConnectionFactory with Maven:

439 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/JMS
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/camel/component/ActiveMQRouteTest.java
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/current/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://camel.apache.org/maven/current/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
http://activemq.apache.org/spring-support.html

<dependency>
<groupld>org.apache.activemg</groupId>
<artifactId>activemg-pool</artifactId>
<version>5.3.2</version>

</dependency>

And then setup the activemq Camel component as follows:

<bean id="jmsConnectionFactory"
class="org.apache.activemqg.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>

<bean id="pooledConnectionFactory"
class="org.apache.activemg.pool.PooledConnectionFactory">
<property name="maxConnections" value="8" />
<property name="maximumActive" wvalue="500" />
<property name="connectionFactory" ref="jmsConnectionFactory"

/>

</bean>

<bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
<property name="connectionFactory" ref="pooledConnectionFactory"/>
<property name="transacted" value="false"/>
<property name="concurrentConsumers" value="10"/>

</bean>
<bean id="activemqg"

class="org.apache.activemqg.camel.component.ActiveMQComponent">
<property name="configuration" ref="jmsConfig"/>

</bean>

Invoking MessageListener POJOs in a Camel route
The ActiveMQ component also provides a helper Type Converter from a JMS MessageListener
to a Processor. This means that the Bean component is capable of invoking any JMS
Messagelistener bean directly inside any route.

So for example you can create a MessageListener in JMS like this:

public class MylListener implements MessagelListener ({
public void onMessage (Message JjmsMessage) {

}

Then use it in your Camel route as follows

CHAPTER Il - COMPONENT APPENDIX

440

https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Bean

441

from("file: foo/bar") .

bean (MyListener.class) ;

That is, you can reuse any of the Camel Components and easily integrate them into your JMS
MessageListener POJO!

Consuming Advisory Messages

ActiveMQ can generate Advisory messages which are put in topics that you can consume. Such
messages can help you send alerts in case you detect slow consumers or to build statistics
(number of messages/produced per day, etc.) The following Spring DSL example shows you
how to read messages from a topic.

The below route starts by reading the topic ActiveMQ.Advisory.Connection. To watch another
topic, simply change the name according to the name provided in ActiveMQ Advisory Messages
documentation. The parameter map)msMessage=false allows for converting the
org.apache.activemg.command.ActiveMqMessage object from the jms queue. Next, the body
received is converted into a String for the purposes of this example and a carriage return is
added. Finally, the string is added to a file

<route>

<from uri="activemq:topic:ActiveMQ.Advisory.Connection?mapJdmsMessage=false" />

<convertBodyTo type="java.lang.String"/>

<transform>

<simple>${in.body}</simple>

</transform>

<to uri="file: Mg
?fileExist=A] >=advisoryConnection-${date:now:yyyyMMdd}.txt" />
</route>

If you consume a message on a queue, you should see the following files under the data/
activemq folder :

advisoryConnection-201003 | 2.txt
advisoryProducer-20100312.txt

and containing string:

ActiveMQMessage {commandId = 0, responseRequired = false, messageld =
ID:dell-charles-3258-1268399815140

-1:0:0:0:221, originalDestination = null, originalTransactionId = null, producerId =
ID:dell-charles-

3258-1268399815140-1:0:0:0, destination = topic: ctiveMQ.Advisory.Connection,
transactionId null,

expiration = 0, timestamp = 0, arrival = 0, brokerInTime = 1268403383468,
brokerOutTime = 1268403383468,

correlationId = null, replyTo = null, persistent = false, type = Advisory, priority =

0, groupID = null,

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Components
http://activemq.apache.org/advisory-message.html

groupSequence = 0, targetConsumerId = null, compressed = false, userID = null, content

= null,

marshalledProperties = org.apache.activemg.util.ByteSequence@l1l7e2705, dataStructure =

ConnectionInfo
{commandId = 1, responseRequired = true, connectionId =
ID:dell-charles-3258-1268399815140-2:50,

clientId = ID:dell-charles-3258-1268399815140-14:0, userName = , password = *****
brokerPath = null, brokerMasterConnector = false, manageable = true, clientMaster =

true},

redeliveryCounter = 0, size = 0, properties = {originBrokerName=master,
originBrokerId=ID:dell-charles-

3258-1268399815140-0:0, originBrokerURL=vm://master}, readOnlyProperties = true,
readOnlyBody = true,

droppable = false}

Getting Component JAR

You will need these dependencies
* camel-jms
* activemg-camel

camel-jms

You must have the camel-jms as dependency as ActiveMQ is an extension to the JMS

component.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>
<version>1.6.0</version>
</dependency>

The ActiveMQ Camel component is released with the ActiveMQ project itself.
For Maven 2 users you simply just need to add the following dependency to your project.

ActiveMQ 5.2 or later

<dependency>
<groupId>org.apache.activemg</groupId>
<artifactId>activemg-camel</artifactId>
<version>5.2.0</version>

</dependency>

CHAPTER 11

- COMPONENT APPENDIX

442

https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS

ActiveMQ 5.1.0

For 5.1.0 its in the activemg-core library

<dependency>
<groupld>org.apache.activemg</groupId>
<artifactId>activemg-core</artifactId>
<version>5.1.0</version>

</dependency>

Alternatively you can download the component jar directly from the Maven repository:
* activemqg-camel-5.2.0.jar
* activemg-core-5.1.0.jar

ActiveMQ 4.x

For this version you must use the JMS component instead. Please be careful to use a pooling
connection factory as described in the JmsTemplate Gotchas

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

ACTIVEMQ JOURNAL COMPONENT

The ActiveMQ Journal Component allows messages to be stored in a rolling log file and then
consumed from that log file. The journal aggregates and batches up concurrent writes so that
the overhead of writing and waiting for the disk sync is relatively constant regardless of how
many concurrent writes are being done. Therefore, this component supports and encourages
you to use multiple concurrent producers to the same journal endpoint.

Each journal endpoint uses a different log file and therefore write batching (and the
associated performance boost) does not occur between multiple endpoints.

This component only supports one active consumer on the endpoint. After the message is
processed by the consumer's processor, the log file is marked and only subsequent messages in
the log file will get delivered to consumers.

443 CHAPTER Il - COMPONENT APPENDIX

http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
https://cwiki.apache.org/confluence/display/CAMEL/JMS
http://activemq.apache.org/jmstemplate-gotchas.html
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

URI format

activemq.journal:directoryName [?options]

So for example, to send to the journal located in the /tmp/data directory you would use the
following URI:

activemqg.journal:/tmp/data

Options

Default "
Name Value Description

If set to true, when the journal is marked after a message is consumed, wait till the Operating System has verified the mark update

syncConsume false
Y is safely stored on disk.

syncProduce true If set to true, wait till the Operating System has verified the message is safely stored on disk.

You can append query options to the URI in the following format,
?option=valueg&option=values&. ..

Expected Exchange Data Types

The consumer of a Journal endpoint generates DefaultExchange objects with the in message :
* header "journal" : set to the endpoint uri of the journal the message came from
* header "location" : set to a Location which identifies where the recored was stored
on disk
* body : set to ByteSequence which contains the byte array data of the stored message
The producer to a Journal endpoint expects an Exchange with an In message where the body
can be converted to a ByteSequence or a byte[].

See Also

» Configuring Camel
* Component

* Endpoint

* Getting Started

AMQP

The AMQP component supports the AMQP protocol via the Qpid project.
Maven users will need to add the following dependency to their pom. xm1 for this
component:

CHAPTER Il - COMPONENT APPENDIX

444

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://camel.apache.org/maven/current//camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.amqp.org/
http://cwiki.apache.org/qpid/

445

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-ampg</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

amgp: [queue: | topic:]destinationName [?options]

You can specify all of the various configuration options of the JMS component after the
destination name.

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

ATOM COMPONENT

The atom: component is used for polling Atom feeds.

Camel will poll the feed every 60 seconds by default.
Note: The component currently only supports polling (consuming) feeds.

Maven users will need to add the following dependency to their pom. xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-atom</artifactId>
<version>x.x.x</version>
<l-= se he same ersion as your Camel core ersion -->

</dependency>

URI format
atom: atomUri [?options

Where atomuUFri is the URI to the Atom feed to poll.

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

Options

Property Default Description

If t rue Camel will poll the feed and for the subsequent polls return each entry poll by poll. If the feed contains 7 entries
splitEntries true then Camel will return the first entry on the first poll, the 2nd entry on the next poll, until no more entries where as
Camel will do a new update on the feed. If false then Camel will poll a fresh feed on every invocation.

Is only used by the split entries to filter the entries to return. Camel will default use the UpdateDateFilter that only
filter true return new entries from the feed. So the client consuming from the feed never receives the same entry more than once.
The filter will return the entries ordered by the newest last.

Is only used by the filter, as the starting timestamp for selection never entries (uses the entry.updated timestamp).

tastUpdate pull Syntax format is: yyyy-MM-ddTHH: MM: ss. Example: 2007-12-24T17:45: 59

throttleEntries frue Camt.al 2.5: Sets whether all entries identified in a single feed poll should be deli.vere.d immediately. If t rue, only one
entry is processed per consumer.delay. Only applicable when splitEntries is set to true.

feedHeader true Sets whether to add the Abdera Feed object as a header.

sortEntries false If splitEntries is true, this sets whether to sort those entries by updated date.

consumer.delay 60000 Delay in millis between each poll.

consumer.initialDelay 1000 Millis before polling starts.

consumer.userFixedDelay false If true, use fixed delay between pools, otherwise fixed rate is used. See ScheduledExecutorService in JDK for details.

You can append query options to the URI in the following format,
?option=value&option=value&...

Exchange data format

Camel will set the In body on the returned Exchange with the entries. Depending on the
splitEntries flag Camel will either return one Entry ora List<Entry>.

Option Value Behavior

splitEntries true Only a single entry from the currently being processed feed is set: exchange.in.body (Entry)

splitEntries false The entire list of entries from the feed is set: exchange.in.body (List<Entry>)

Camel can set the Feed object on the In header (see feedHeader option to disable this):

Message Headers

Camel atom uses these headers.

Header Description

org.apache.camel.component.atom.feed Camel |l.x: When consuming the org.apache.abdera.model.Feed object is set to this header.
CamelAtomFeed Camel 2.0: When consuming the org.apache.abdera.model.Feed object is set to this header.
Samples

In this sample we poll James Strachan's blog.

from("atom://http://macs sts/default") .to("seda:feeds");

In this sample we want to filter only good blogs we like to a SEDA queue. The sample also
shows how to setup Camel standalone, not running in any Container or using Spring.

CHAPTER Il - COMPONENT APPENDIX

446

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

// This is the CamelContext that is the heart of Camel
private CamelContext context;

@Override
protected CamelContext createCamelContext () throws Exception {
// We initialize Camel

SimpleRegistry registry = new SimpleRegistry();
// First we register a blog service in our bean registry
registry.put ("blogService", new BlogService());

// Then we create the camel context with our bean registry
context = new DefaultCamelContext (registry);

// Then we add all the routes we need using the route builder DSL syntax
context.addRoutes (createRouteBuilder());

// And finally we must start Camel to let the magic routing begins
context.start () ;

return context;

/**
* This is the route builder where we create our routes in the advanced Camel DSL
syntax
Sy
protected RouteBuilder createRouteBuilder () throws Exception ({
return new RouteBuilder () {
public void configure() throws Exception {

// We pool the atom feeds from the source for further processing in the
seda queue

// we set the delay to 1 second for each pool as this is a unit test also
and we can

// not wait the default poll interval of 60 seconds.

// Using splitEntries=true will during polling only fetch one Atom Entry
at any given time.

// As the feed.atom file contains 7 entries, using this will require 7
polls to fetch the entire

// content. When Camel have reach the end of entries it will refresh the
atom feed from URI source

// and restart - but as Camel by default uses the UpdatedDateFilter it
will only deliver new

// blog entries to "seda:feeds". So only when James Straham updates his
blog with a new entry

// Camel will create an exchange for the seda:feeds.

from("atom:file:src/test/data/
feed.atom?splitEntries=true&consumer.delay=1000") .to("seda:feeds");

// From the feeds we filter each blot entry by using our blog service class
from("seda:feeds") .filter () .method ("blogService",

"isGoodBlog") .to ("seda:goodBlogs") ;

// And the good blogs is moved to a mock queue as this sample is also used

447 CHAPTER Il - COMPONENT APPENDIX

for unit testing

// this is one of the strengths in Camel that you can also use the mock
endpoint for your

// unit tests

from("seda:goodBlogs") .to ("mock:result") ;

/**
* This is the actual junit test method that does the assertion that our routes is
working
* as expected
27
@Test
public void testFiltering() throws Exception {
// Get the mock endpoint
MockEndpoint mock = context.getEndpoint ("mock:result", MockEndpoint.class);

// There should be two good blog entries from the feed

7/

mock.expectedMinimumMessageCount (2) ;

// Asserts that the above expectations is true, will throw assertions exception if
it failed

// Camel will default wait max 20 seconds for the assertions to be true, if the
conditions

// is true sooner Camel will continue

mock.assertIsSatisfied();

/**
* Services for blogs
7

public class BlogService {

/**
* Tests the blogs if its a good blog entry or not
Sy
public boolean isGoodBlog (Exchange exchange) ({
Entry entry = exchange.getIn().getBody(Entry.class);
String title = entry.getTitle();

// We like blogs about Camel

boolean good = title.toLowerCase().contains ("camel");

return good;

See Also

» Configuring Camel

CHAPTER Il - COMPONENT APPENDIX

448

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel

449

* Component

* Endpoint
* Getting Started
= RSS

BEAN COMPONENT

The bean: component binds beans to Camel message exchanges.

URI format

bean:beanID[?options]

Where beanlD can be any string which is used to look up the bean in the Registry

Options
Name Type Default Description

The method name that bean will be invoked. If not provided, Camel will try to pick the method itself. In case of
method String null L L - .

ambiguity an exception is thrown. See Bean Binding for more details.

If enabled, Camel will cache the result of the first Registry look-up. Cache can be enabled if the bean in the
cache boolean false

Registry is defined as a singleton scope.

Camel 1.5: How to treat the parameters which are passed from the message body; if it is t rue, the In message

multiParameterArra boolean false
v body should be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=values...

Using

The object instance that is used to consume messages must be explicitly registered with the
Registry. For example, if you are using Spring you must define the bean in the Spring
configuration, spring.xml; or if you don't use Spring, put the bean in [NDI.

uld

a spring

ote that we cc just use a s
JndiContext context = new JndiContext();

context.bind ("bye", new SayService ("Good Bye!"));
CamelContext camelContext = new DefaultCamelContext (context);

Once an endpoint has been registered, you can build Camel routes that use it to process
exchanges.

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/RSS
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

// lets add simple route
camelContext.addRoutes (new RouteBuilder () {
public void configure() {
from("direct:hello") .to("bean:bye");

i

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume from it,
you can only route from some inbound message Endpoint to the bean endpoint as output. So
consider using a direct: or queue: endpoint as the input.

You can use the createProxy () methods on ProxyHelper to create a proxy that will
generate BeanExchanges and send them to any endpoint:

Endpoint endpoint = camelContext.getEndpoint ("direct:hello");
ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();

assertEquals ("Good Bye!", rc);

And the same route using Spring DSL:

<route>
<from uri="direct:hello">
<to uri="bean:bye"/>
</route>

Bean as endpoint

Camel also supports invoking Bean as an Endpoint. In the route below:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<to uri="myBean"/>
<to uri="mock:results"/>
</route>
</camelContext>

<bean id="myBean" class="org.apache.camel.spring.bind.ExampleBean"/>

What happens is that when the exchange is routed to the myBean Camel will use the Bean
Binding to invoke the bean.
The source for the bean is just a plain POJO:

public class ExampleBean {

CHAPTER Il - COMPONENT APPENDIX

450

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding

451

public String sayHello(String name) {
return "Hello " + name + "!";

}

Camel will use Bean Binding to invoke the sayHello method, by converting the Exchange's In
body to the String type and storing the output of the method on the Exchange Out body.

Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the
method parameter) and how parameter values are constructed from the Message are all
defined by the Bean Binding mechanism which is used throughout all of the various Bean
Integration mechanisms in Camel.

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

* Class component
* Bean Binding

* Bean Integration

BEAN VALIDATION COMPONENT

Available as of Camel 2.3

The Validation component performs bean validation of the message body using the Java Bean
Validation API (JSR 303). Camel uses the reference implementation, which is Hibernate
Validator.

Maven users will need to add the following dependency to their pom. xm1 for this
component:

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-bean-validator</artifactId>
<version>x.x.x</version>
!-- use the same version as your Camel core version -->

</dependency>

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Class
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

URI format

bean-validator:something[?options]

or

bean-validator://sor

Where something must be present to provide a valid url
You can append query options to the URI in the following format,
loption=value&option=value&...

URI Options

Option

Default

Description

group

javax.validation.groups.Default

The custom validation group to use.

messagelInterpolator

org.hibernate.validator.engine.
ResourceBundleMessageInterpolator

Reference to a custom
javax.validation.MessageInterpolator in the Registry.

traversableResolver

org.hibernate.validator.engine.resolver.

DefaultTraversableResolver

Reference to a custom
javax.validation.TraversableResolver in the Registry.

constraintValidatorFactory

org.hibernate.validator.engine.
ConstraintValidatorFactoryImpl

Reference to a custom
javax.validation.ConstraintValidatorFactory in the
Registry.

ServiceMix4/0SGi Deployment.

The bean-validator when deployed in an OSGi environment requires a little help to
accommodate the resource loading specified in JSR303, this was fixed in Servicemix-Specs

[.6-SNAPSHOT.

Example

Assumed we have a java bean with the following annotations

Listing 47. Car.java

public class Car {

@NotNull

private String manufacturer;

@NotNull
@Size (min = 5,

private String licensePlate;

max = 14, groups = OptionalChecks.class)

CHAPTER Il - COMPONENT APPENDIX

452

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

453

and an interface definition for our custom validation group
Listing 48. OptionalChecks.java

public interface OptionalChecks ({
}

with the following Camel route, only the @NotNull constraints on the attributes
manufacturer and licensePlate will be validated (Camel uses the default group
javax.validation.groups.Default).

from("direct:start")
.to("bean-validator://x")
.to("mock:end")

If you want to check the constraints from the group OptionalChecks, you have to define
the route like this

from("direct:start")

.to("bean-validator://
.to ("mock:end")

If you want to check the constraints from both groups, you have to define a new interface first
Listing 49. AllChecks.java

@GroupSequence ({Default.class, OptionalChecks.class})
public interface AllChecks ({
}

and then your route definition should looks like this

from("direct:start")

.to("bean-validator://x?

.to("mock:end")

And if you have to provide your own message interpolator, traversable resolver and constraint
validator factory, you have to write a route like this

<bean id="myMessageInterpolator" class="my.ConstraintValidatorFactory" />
<bean id="myTraversableResolver" class="my.TraversableResolver" />
<bean id="myConstraintValidatorFactory" class="my.ConstraintValidatorFactory" />

from("direct:start")

roup=Al1Ch

&traversableResolver=#myTraversableResolver&constraintValidatorFactory=#myConstraintValidatorFactory")

.to("bean-validator://x?g ks&messa nterpolator=#myMess: Interpolator

.to("mock:end")

CHAPTER Il - COMPONENT APPENDIX

It's also possible to describe your constraints as XML and not as Java annotations. In this case,
you have to provide the file META-INF/validation.xml which could looks like this

Listing 50. validation.xml

<?xml version="1.0" encoding="UTF-8"?2>
<validation-config

xmlns="http://jbo figuration"

xmlns:xsi="http://1 "hema-instance"

xsi:schemalocation="http://jboss.org/xml/ns/javax/validation/configuration">

<default-provider>org.hibernate.validator.HibernatevValidator</default-provider>
<message-interpolator>org.hibernate.validator.engine.ResourceBundleMessagelnterpolator</message-interp
<traversable-resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolver</traversable-
<constraint-validator-factory>org.hibernate.validator.engine.ConstraintValidatorFactoryImpl</constrain

<constraint-mapping>/constraints-car.xml</constraint-mapping>
</validation-config>

and the constraints-car.xml file

Listing 51. constraints-car.xml

<?xml version="1.0" encoding="UTF-8"?>
w3.0rg/2001/XMLSchema-instance"

<constraint-mappings xmlns:xsi="http://

xsi:schemalocation="http://jboss.org/xml/ns/javax/validation/mapping
validation-mapping-1.0.xsd"
xmlns="http://jboss.org/xml/ns/javax/validation/mapping">

<default-package>org.apache.camel.component.bean.validator</default-package>

<bean class="CarWithoutAnnotations" ignore-annotations="true">
<field name="manufacturer">
<constraint annotation="javax.validation.constraints.NotNull"
/>
</field>

<field name="licensePlate">
<constraint annotation="javax.validation.constraints.NotNull"

/>

<constraint annotation="javax.validation.constraints.Size">
<groups>

<value>org.apache.camel.component.bean.validator.OptionalChecks</value>
</groups>
<element name="min">5</element>
<element name="max">14</element>

</constraint>
</field>
</bean>
</constraint-mappings>

CHAPTER Il - COMPONENT APPENDIX 454

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

BROWSE COMPONENT

Available as of Camel 2.0

The Browse component provides a simple BrowsableEndpoint which can be useful for
testing, visualisation tools or debugging. The exchanges sent to the endpoint are all available to
be browsed.

URI format

browse:someName

Where someName can be any string to uniquely identify the endpoint.

Sample

In the route below, we insert a browse : component to be able to browse the Exchanges that
are passing through:

from("activemg:order.in") .to ("browse:orderReceived") .to ("bean:processOrder") ;

We can now inspect the received exchanges from within the Java code:

private CamelContext context;

public void inspectRecievedOrders() {
BrowsableEndpoint browse = context.getEndpoint ("browse:orderReceived",
BrowsableEndpoint.class);
List<Exchange> exchanges = browse.getExchanges();

then we can inspect the list of received exchanges
for (Exchange exchange : exchanges) {
String payload = exchange.getIn() .getBody();

455 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

CACHE COMPONENT

Available as of Camel 2.1

The cache component enables you to perform caching operations using EHCache as the
Cache Implementation. The cache itself is created on demand or if a cache of that name already
exists then it is simply utilized with its original settings.

This component supports producer and event based consumer endpoints.

The Cache consumer is an event based consumer and can be used to listen and respond to
specific cache activities. If you need to perform selections from a pre-existing cache, used the
processors defined for the cache component.

Maven users will need to add the following dependency to their pom. xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cache</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

You can append query options to the URI in the following format,
?option=valueg&option=values&. ..

Options
Name Default Value Description
maxElementsInMemory 1000 The numer of elements that may be stored in the defined cache

The number of elements that may be stored in the defined cache. Options include
MemoryStoreEvictionPolicy.LFU - Least frequently used
memoryStoreEvictionPolicy MemoryStoreEvictionPolicy.LFU = MemoryStoreEvictionPolicy.LRU - Least recently used
MemoryStoreEvictionPolicy.FIFO - first in first out, the oldest
element by creation time

overflowToDisk true Specifies whether cache may overflow to disk

CHAPTER Il - COMPONENT APPENDIX

456

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

Sets whether elements are eternal. If eternal, timeouts are ignored and the

eternal false R N
element is never expired.
. The maximum time between creation time and when an element expires.
timeToLiveSeconds 300) . P
Is only used if the element is not eternal
timeToIdleSeconds 300 The maximum amount of time between accesses before an element expires
. . Whether the disk store persists between restarts of the Virtual Machine.
diskPersistent true

The default value is false.

The number of seconds between runs of the disk expiry thread. The default value

diskExpiryThreadIntervalSeconds 120 .
is 120 seconds

Camel 2.3: If you want to use a custom factory which instantiates and creates the

cacheManagerFactor null
g v EHCache net . sf.ehcache.CacheManager.

Sending/Receiving Messages to/from the cache

Message Headers

Header Description

The operation to be performed on the cache. The valid options are
= GET
CHECK
ADD
UPDATE
DELETE
» DELETEALL
The GET and CHECK requires Camel 2.3 onwards.

CACHE_OPERATION

CACHE_KEY The cache key used to store the Message in the cache. The cache key is optional if the CACHE_OPERATION is DELETEALL

Cache Producer

Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a
pre-existing or created-on-demand cache. The mechanics of doing this involve

= setting the Message Exchange Headers shown above.

= ensuring that the Message Exchange Body contains the message directed to the cache

Cache Consumer

Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-
existing or created-on-demand Cache using an event Listener and receive automatic
notifications when any cache activity take place (.e ADD/UPDATE/DELETE/DELETEALL). Upon
such an activity taking place
= an exchange containing Message Exchange Headers and a Message Exchange Body
containing the just added/updated payload is placed and sent.
= in case of a DELETEALL operation, the Message Exchange Header CACHE_KEY and
the Message Exchange Body are not populated.

457 CHAPTER Il - COMPONENT APPENDIX

Cache Processors

There are a set of nice processors with the ability to perform cache lookups and selectively
replace payload content at the

* body

= token

= xpath level

Cache Usage Samples

Example I: Configuring the cache

from("cache://1 icationCache" +

"?maxElementsInMemory=1000" +
"gmemoryStoreEvictionPolicy=" +
"MemoryStoreEvictionPolicy.LFU" +
"goverflowToDisk=true" +
"&eternal=true" +
"&timeToLiveSeconds=300" +
"¢timeToIdleSeconds=true" +
"&diskPersistent=true" +
"&diskExpiryThreadIntervalSeconds=300")

Example 2: Adding keys to the cache

RouteBuilder builder = new RouteBuilder () {
public void configure() {
from("direct:start")
.setHeader ("CACHE OPERATION", constant ("ADD"))
.setHeader ("CACHE KEY", constant("Ralph Waldo Emerson"))

~hel")

.to("cache://

Example 2: Updating existing keys in a cache

RouteBuilder builder = new RouteBuilder () {
public void configure() {
from("direct:start")
.setHeader ("CACHE_OPERATION", constant ("UPDATE"))
.setHeader ("CACHE KEY", constant ("Ralph Waldo Emerson"))
.to("cache://Tes chel"™)

CHAPTER Il - COMPONENT APPENDIX

458

459

Example 3: Deleting existing keys in a cache

RouteBuilder builder = new RouteBuilder () {
public void configure () {
from("direct:start")
.setHeader ("CACHE OPERATION", constant ("DELETE"))
.setHeader ("CACHE
.to("cache://Tes

KEY", constant("Ralph Waldo Emerson"))
hel™)

Example 4: Deleting all existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader ("CACHE OPERATION", constant ("DELETEALL")
.to("cache://TestC el™);

}

acrl

}i

Example 5: Notifying any changes registering in a Cache to
Processors and other Producers

RouteBuilder builder = new RouteBuilder () {
public void configure() {
from("cache: TestCachel")
.process (new Processor() {

public void process (Exchange exchange)
throws Exception {
String operation = (String) exchange.getIn().getHeader ("CACHE OPERATION");
String key = (String) exchange.getIn().getHeader ("CACHE KEY");
Object body = exchange.getIn () .getBody();

o something

CHAPTER Il - COMPONENT APPENDIX

Example 6: Using Processors to selectively replace payload with
cache values

RouteBuilder builder = new RouteBuilder () {
public void configure() {

ace

// sage Body R
from("cache://TestCachel")
.filter (header ("CACHE KEY") .isEqualTo("greeting"))

.process (new CacheBasedMessageBodyReplacer ("cache://Tes 21", "farewell"))

.to("direct:next");

/ /M e
from("cache://Te el"™)

.filter (header ("CACHE KEY") .isEqualTo ("quote"))
.process (new CacheBasedTokenReplacer ("cache://Tes
.process (new CacheBasedTokenReplacer ("cache://T
.process (new CacheBasedTokenReplacer ("cache://TestCachel

T'oken

hel", "novel", "#novel#"))
hel", "author", "#author#"))
", "number", "#number#"))

.to("direct:next");

er

/ /M sage XPath =
from("cache://TestCachel") .

.filter (header ("CACHE KEY") .isEqualTo ("XML FRAGMENT"))
.process (new CacheBasedXPathReplacer ("cache://Tes hel", "bookl", "/books/bookl"))

.process (new CacheBasedXPathReplacer ("cache://Te hel", "book2", "/books/book2")

.to("direct:next");

Example 7: Getting an entry from the Cache

from("direct:start")
// Prepare headers
.setHeader (CacheConstants.CACHE_OPERATION,
constant (CacheConstants.CACHE_OPERATION GET))
.setHeader (CacheConstants.CACHE_KEY, constant ("Ralph Waldo_Emerson")) .
.to("cache://TestCachel") .
// Check if entry was not found
.choice () .when (header (CacheConstants.CACHE ELEMENT WAS FOUND) .isNull()).

// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation") .
.setHeader (CacheConstants.CACHE_OPERATION,

constant (CacheConstants.CACHE_OPERATION_ADD))
.setHeader (CacheConstants.CACHE_KEY,

1el™)

constant ("Ralph Waldo Emerson"))

.to("cache://TestCac
.end ()
.to("direct:nextPhase");

CHAPTER Il - COMPONENT APPENDIX

460

Example 8: Checking for an entry in the Cache

Note: CHECK command tests existence of the entry in the cache but doesn't place message to
the body.

from("direct:start")
/P re headers

.setHeader (CacheConstants.CACHE_OPERATION,
constant (CacheConstants.CACHE_OPERATION_CHECK))

.setHeader (CacheConstants.CACHE_KEY, constant("Ralph Waldo Emerson")) .

.to("cache://TestCachel") .

// C >k if entry was not found

.choice () .when (header (CacheConstants.CACHE ELEMENT WAS FOUND) .isNull()).
If not found, get the payload and put it to cache

.to("cxf:bean:someHeavyweightOperation") .
.setHeader (CacheConstants.CACHE_OPERATION,
constant (CacheConstants.CACHE_OPERATION_ADD))
.setHeader (CacheConstants.CACHE_KEY, constant("Ralph Waldo Emerson"))
.to("cache://TestCachel"
.end () ;

Management of EHCache

EHCache has its own statistics and management from JMX.

Here's a snippet on how to expose them via JMX in a Spring application context:

<bean id="ehCacheManagementService"
class="net.sf.ehcache.management.ManagementService" init-method="init"
lazy-init="false">
<constructor-arg>
<bean class="net.sf.ehcache.CacheManager" factory-method="getInstance"/>
</constructor-arg>
<constructor-arg>
<bean class="org.springframework.jmx.support.JmxUtils"
factory-method="locateMBeanServer"/>
</constructor-arg>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
</bean>

Of course you can do the same thing in straight Java:

ManagementService.registerMBeans (CacheManager.getInstance (), mbeanServer, true, true,
true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can also
change CacheConfiguration parameters on the fly.

461 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Camel+JMX

CLASS COMPONENT

Available as of Camel 2.4

The class: component binds beans to Camel message exchanges. It works in the same way
as the Bean component but instead of looking up beans from a Registry it creates the bean
based on the class name.

URI format

class:className[?options]

Where className is the fully qualified class name to create and use as bean.

Options
Name Type Default Description
method String null The method name that bean will be invoked. If not provided, Camel will try to pick the method itself. In case of

ambiguity an exception is thrown. See Bean Binding for more details.

How to treat the parameters which are passed from the message body; if it is true, the In message body should

multiParameterArray boolean false
be an array of parameters.

You can append query options to the URI in the following format,
?option=valueg&option=values&. ..

Using

You simply use the class component just as the Bean component but by specifying the fully
qualified classname instead.
For example to use the MyFooBean you have to do as follows:

from("direct:start") .to("class:org.apache.camel.component.bean.MyFooBean") .to ("mock:result");

You can also specify which method to invoke on the MyFooBean, for example hello:

from("direct:start") .to("class:org.apache.camel.component.bean.MyFooBean?method=hello") .'to("mock:resul

SETTING PROPERTIES ON THE CREATED INSTANCE

In the endpoint uri you can specify properties to set on the created instance, for example if it
has a setPrefix method:

CHAPTER Il - COMPONENT APPENDIX 462

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean

463

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?prefix=Bye")
.to("mock:result");

And you can also use the # syntax to refer to properties to be looked up in the Registry.

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?cool=#foo")
.to("mock:result");

Which will lookup a bean from the Registry with the id foo and invoke the setCool method
on the created instance of the MyPrefixBean class.

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

* Bean

* Bean Binding

* Bean Integration

COMETD COMPONENT

The cometd: component is a transport for working with the jetty implementation of the
cometd/bayeux protocol.

Using this component in combination with the dojo toolkit library it's possible to push Camel
messages directly into the browser using an AJAX based mechanism.

Maven users will need to add the following dependency to their pom. xm1 for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cometd</artifactId>
<version>x.x.x</version>
<!—-— use the same versior as your Camel core versior -

</dependency>

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://www.mortbay.org/jetty
http://docs.codehaus.org/display/JETTY/Cometd+%28aka+Bayeux%29

i See more
See more details at the Bean component as the class component works in much
the same way.

URI format

cometd://host:¢

The channelName represents a topic that can be subscribed to by the Camel endpoints.

Examples

cometd://localhost:8080/service/mychannel
cometds://localhost:8443/service/mychannel

where cometds: represents an SSL configured endpoint.

See this blog entry by David Greco who contributed this component to Apache Camel, for a
full sample.

Options

Default
Name etau Description
Value

The root directory for the web resources or classpath. Use the protocol file: or classpath: depending if you want that the
resourceBase component loads the resource from file system or classpath. Classpath is required for OSGI deployment where the resources are
packaged in the jar

timeout 240000 The server side poll timeout in milliseconds. This is how long the server will hold a reconnect request before responding.
interval 0 The client side poll timeout in milliseconds. How long a client will wait between reconnects

maxInterval 30000 The max client side poll timeout in milliseconds. A client will be removed if a connection is not received in this time.
multiFrameInterval 1500 The client side poll timeout, if multiple connections are detected from the same browser.

jsonCommented true If t rue, the server will accept JSON wrapped in a comment and will generate JSON wrapped in a comment. This is a defence

against Ajax Hijacking.

logLevel 1 0=none, 1=info, 2=debug.

You can append query options to the URI in the following format,
?option=value&option=values&...

Here is some examples on How to pass the parameters

For file (for webapp resources located in the Web Application directory -->
cometd://localhost:8080?resourceBase=file./webapp
For classpath (when by example the web resources are packaged inside the webapp folder -->
cometd://localhost:8080?resourceBase=classpath:webapp

CHAPTER Il - COMPONENT APPENDIX

464

http://www.davidgreco.it/MySite/Blog/Entries/2008/12/4_Camel,_Cometd_and_Bayeux_what_a_nice_combination.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean

465

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

CRYPTO COMPONENT FOR DIGITAL SIGNATURES

Available as of Camel 2.3

Using Camel cryptographic endpoints and Java's Cryptographic extension it is easy to create
Digital Signatures for Exchanges. Camel provides a pair of flexible endpoints which get used in
concert to create a signature for an exchange in one part of the exchange's workflow and then
verify the signature in a later part of the workflow.

Maven users will need to add the following dependency to their pom. xml for this
component:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>x.x.x</version>
! use the same version as your Camel core version

</dependency>

Introduction

Digital signatures make use Asymmetric Cryptographic techniques to sign messages. From a
(very) high level, the algorithms use pairs of complimentary keys with the special property that
data encrypted with one key can only be decrypted with the other. One, the private key, is
closely guarded and used to 'sign' the message while the other, public key, is shared around to
anyone interested in verifying your messages. Messages are signed by encrypting a digest of the
message with the private key. This encrypted digest is transmitted along with the message. On
the other side the verifier recalculates the message digest and uses the public key to decrypt
the the digest in the signature. If both digest match the verifier knows only the holder of the
private key could have created the signature.

Camel uses the Signature service from the Java Cryptographic Extension to do all the heavy
cryptographic lifting required to create exchange signatures. The following are some excellent
sources for explaining the mechanics of Cryptography, Message digests and Digital Signatures
and how to leverage them with the JCE.

= Bruce Schneier's Applied Cryptography
= Beginning Cryptography with Java by David Hook
= The ever insightful, Wikipedia Digital_signatures

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
http://en.wikipedia.org/wiki/Digital_signature

URI format

As mentioned Camel provides a pair of crypto endpoints to create and verify signatures

crypto:sign:name[?options]

crypto:verify:name[?options]

* crypto:sign creates the signature and stores it in the Header keyed by the
constant Exchange.SIGNATURE, i.e. "CamelDigitalSignature".

* crypto:verify will read in the contents of this header and do the verification

calculation.

In order to correctly function, sign and verify need to share a pair of keys, sign requiring a
PrivateKey and verify a PublicKey (or a Certificate containing one). Using the JCE
is is very simple to generate these key pairs but it is usually most secure to use a KeyStore to
house and share your keys. The DSL is very flexible about how keys are supplied and provides a
number of mechanisms.

Note a crypto: sign endpoint is typically defined in one route and the complimentary

crypto:verify in another, though for simplicity in the examples they appear one after the
other. It goes without saying that both sign and verify should be configured identically.

Options

Name Type Default Description

algorithm String DSA The name of the JCE Signature algorithm that will be used.

alias String null An alias name that will be used to select a key from the keystore.

bufferSize Integer 2048 the size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the exchange's payload. Either this or a Public Key is required.
keystore KeyStore null A reference to a JCE Keystore that stores keys and certificates used to sign and verify.
provider String null The name of the JCE Security Provider that should be used.

privateKey PrivatKey null The private key used to sign the exchange's payload.

publicKey PublicKey null The public key used to verify the signature of the exchange's payload.

secureRandom secureRandom null A reference to a SecureRandom object that wil Ibe used to initialize the Signature service.
password char(] null The password for the keystore.

Using

1) Raw keys

The most basic way to way to sign an verify an exchange is with a KeyPair as follows.

from("direct:keypair") .to("crypto:sign://basi Y
"crypto:verify://basic?publicKey=#myPublicKey", "mock:result");

CHAPTER Il - COMPONENT APPENDIX

466

467

The same can be achieved with the Spring XML Extensions using references to keys

<route>
<from uri="direct:keypair"/>
<to uri="crypto:sign://basic?privateKey=#myPrivateKey" />

<to uri="crypto:verify://basic?publicKey=#myPublicKey" />
<to uri="mock:result"/>
</route>

2) KeyStores and Aliases.

The JCE provides a very versatile KeyStore for housing pairs of PrivateKeys and Certificates
keeping them encrypted and password protected. They can be retrieved from it by applying an
alias to the retrieval apis. There are a number of ways to get keys and Certificates into a
keystore most often this is done with the external 'keytool' application. This is a good example
of using keytool to create a KeyStore with a self signed Cert and Private key.

The examples use a Keystore with a key and cert aliased by 'bob'. The password for the
keystore and the key is 'letmein’

The following shows how to use a Keystore via the Fluent builders, it also shows how to
load and initialize the keystore.

from("direct:keystore") .to("crypto:sign: keystore?keystore=#keysto

"crypto:verify://keystore?keystore=#keystoresalias=bob", "mock:result");

Again in Spring a ref is used to lookup an actual keystore instance.

<route>
<from uri="direct:keystore"/>
<to
uri="crypto:sign://keystore?keystore=#keystoresamp;alias=bob&password=letmein" />
<to uri="crypto:verify://keystore?keystore=f#keystoresamp;alias=bob" />
<to uri="mock:result"/>
</route>

3) Changing JCE Provider and Algorithm

Changing the Signature algorithm or the Security provider is a simple matter of specifying their
names. You will need to also use Keys that are compatible with the algorithm you choose.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance ("RSA");
keyGen.initialize (512, new SecureRandom());

keyPair = keyGen.generateKeyPair();

PrivateKey privateKey = keyPair.getPrivate();

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.exampledepot.com/egs/java.security.cert/CreateCert.html

PublicKey publicKey = keyPair.getPublic();

e can set the keys explicitly on the endpoint instances.
context.getEndpoint ("crypto:sign://rsa?algorithm=MD5withRSA",
DigitalSignatureEndpoint.class) .setPrivateKey (privateKey) ;
context.getEndpoint ("crypto:verify://rsa?algorithm=MD5withRSA",
DigitalSignatureEndpoint.class) .setPublicKey (publicKey) ;
from("direct:algorithm") .to("crypto:sign://rsa?algorithm=MD5withRSA",
"crypto:verify://rsa?algorithm=MD5withRSA", "mock:result");

from("direct:provider") .to("crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN",
"crypto:verify://provider?publicKey=#myPublicKey&provider=SUN", "mock:result");

or

<route>
<from uri="direct:algorithm"/>
<to uri="crypto:sign://rsa?algorithm=MD5withRSA&privateKey=#rsaPrivateKey" />
<to uri="crypto:verify://rsa?algorithm=MD5withRSA&publicKey=#rsaPublicKey" />
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:provider"/>
<to uri="crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN" />
<to uri="crypto:verify://provider?publicKey=#myPublicKey&provider=SUN" />
<to uri="mock:result"/>

</route>

4) Changing the Signature Mesasge Header

It may be desirable to change the message header used to store the signature. A different
header name can be specified in the route definition as follows

from("direct:signature-header") .to("crypto:sign://another?privateKey=#myPrivateKey&signgtureHeader=Ano

"crypto:verify://another?publicKey=#myPublicKey&signatureHeader=AnotherDigitalSignature'},
"mock:result");

or

<route>
<from uri="direct:signature-header"/>
<to

CHAPTER Il - COMPONENT APPENDIX 468

469

uri="crypto:sign://another?privateKey=#myPrivateKey& signatureHeader=AnotherDigitalSignature"
/>

<to
uri="crypto:verify://another?publicKey=#myPublicKey&signatureHeader=AnotherDigitalSilgnature"
/>

<to uri="mock:result"/>
</route>

5) Changing the buffersize

In case you need to update the size of the buffer...

from("direct:buffersize”).to("crypto:sign://buffer?privateKey=#myPrivateKeys&buffersize=1024",
"crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024", "mock:result");

or
<route>

<from uri="direct:buffersize" />
<to uri="crypto:sign://buffer?privateKey=#myPrivateKeysamp;buffersize=1024" />
<to uri="crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024" />
<to uri="mock:result"/>

</route>

6) Supplying Keys dynamically.

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically.
Using the same key across all recipients may neither be feasible or desirable. It would be useful
to be able to specify the signature keys dynamically on a per exchange basis. The exchange
could then be dynamically enriched with the key of its target recipient prior to signing. To
facilitate this the signature mechanisms allow for keys to be supplied dynamically via the
message headers below

* Exchange.SIGNATURE PRIVATE KEY, "CamelSignaturePrivateKey"

* Exchange.SIGNATURE PUBLIC KEY OR CERT,

"CamelSignaturePublicKeyOrCert"

from("direct:headerkey-sign") .to("crypto:sign://alias");
from("direct:headerkey-verify") .to("crypto:verify://alias", "mock:result");
or

CHAPTER Il - COMPONENT APPENDIX

<route>
<from uri="direct:headerkey-sign"/>
<to uri="crypto:sign://headerkey" />

</route>

<route>
<from uri="direct:headerkey-verify"/>
<to uri="crypto:verify://headerkey" />
<to uri="mock:result"/>

</route>

Better again would be to dynamically supply a keystore alias. Again the alias can be supplied in a
message header

* Exchange.KEYSTORE ALIAS, "CamelSignatureKeyStoreAlias"

from("direct:alias-sign").to("crypto:sign://alias?keystore
from("direct:alias-verify") .to("crypto:verify://alias?
"mock:result") ;

or
<route>
<from uri="direct:alias-sign"/>
<to uri="crypto:sign://alias?keystore=#keystore" />
</route>
<route>
<from uri="direct:alias-verify"/>
<to uri="crypto:verify://alias?keystore=#keystore" />
<to uri="mock:result"/>
</route>

The header would be set as follows

Exchange unsigned = getMandatoryEndpoint ("direct:alias-sign") .createExchange();
unsigned.getIn() .setBody (payload) ;

unsigned.getIn() .setHeader (DigitalSignatureConstants.KEYSTORE ALIAS, "bob");
unsigned.getIn() .setHeader (DigitalSignatureConstants.KEYSTORE PASSWORD,
"letmein".toCharArray());

template.send("direct:alias-sign", unsigned);

Exchange signed = getMandatoryEndpoint ("direct:alias-sign") .createExchange();
signed.getIn() .copyFrom(unsigned.getOut()) ;
signed.getIn() .setHeader (KEYSTORE ALIAS, "bob");
template.send("direct:alias-verify", signed);

See Also

» Configuring Camel
* Component
* Endpoint

CHAPTER Il - COMPONENT APPENDIX

470

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint

471

* Getting Started
* Crypto Crypto is also available as a Data Format

CXF COMPONENT

The exf: component provides integration with Apache CXF for connecting to JAX-WS services
hosted in CXF.

CXF Component

URI format

Options

The descriptions of the dataformats

How to enable CXF's LoggingOutInterceptor in MESSAGE mode
Description of relayHeaders option

Available in Release 1.6.1 and after (only in POJO mode)

Changes since Release 2.0

Configure the CXF endpoints with Spring

How to make the camel-cxf component use log4j instead of java.util.logging
How to let camel-cxf response message with xml start document

How to consume a message from a camel-cxf endpoint in POJO data format
How to prepare the message for the camel-cxf endpoint in POJO data format
How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
How to get and set SOAP headers in POJO mode

How to get and set SOAP headers in PAYLOAD mode

SOAP headers are not available in MESSAGE mode

How to throw a SOAP Fault from Camel

How to propagate a camel-cxf endpoint's request and response context
Attachment Support

See Also

Maven users will need to add the following dependency to their pom. xm1 for this component:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-cxf</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->
</dependency>

URI format

cxf:bean:cxfEndpoint [?options]

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Crypto
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://cxf.apache.org

Y. When using CXF as a consumer, the CXF Bean Component allows you to factor
out how message payloads are received from their processing as a RESTful or SOAP
web service. This has the potential of using a multitude of transports to consume
web services. The bean component's configuration is also simpler and provides the
fastest method to implement web services using Camel and CXF.

& CXF dependencies
If you want to learn about CXF dependencies you can checkout the WHICH-JARS
text file.

Where exfEndpoint represents a bean ID that references a bean in the Spring bean registry.
With this URI format, most of the endpoint details are specified in the bean definition.

cxf://someAddress[?options

Where someAddress specifies the CXF endpoint's address. With this URI format, most of
the endpoint details are specified using options.

For either style above, you can append options to the URI as follows:

cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello world.wsdl&dataFormat=PAYLOAD

Options
Name Description Example Required?
wsd1URL The location of the WSDL. file://local/wsdl/hello.wsdl or wsdl/hello.wsdl No

The name of the SEI (Service Endpoint Interface) class. This
class can have, but does not require, [SR181 annotations.
Since 2.0, this option is only required by POJO mode. If
the wsdIURL option is provided, serviceClass is not required
for PAYLOAD and MESSAGE mode. When wsdIURL option
is used without serviceClass, the serviceName and
portName (endpointName for Spring configuration) options
MUST be provided.

serviceClass org.apache.camel.Hello Yes
Since 2.0, it is possible to use # notation to reference a
serviceClass object instance from the registry. E.g.
serviceClass=#beanName.

Please be advised that the referenced object
cannot be a Proxy (Spring AOP Proxy is OK) as it
relies on Object.getClass () .getName () method
for non Spring AOP Proxy.

In 1.6 or later (will be deprecated in 2.0), .
" No (use either
. serviceClassInstance works like . X
serviceClassInstance . serviceClassInstance=beanName serviceClass or
serviceClass=#beanName, which looks up a

serviceObject instance from the registry.

serviceClassInstance)

CHAPTER Il - COMPONENT APPENDIX 472

D

/local/wsdl/hello.wsdl
https://cwiki.apache.org/confluence/display/CAMEL/CXF+Bean+Component
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

473

Only if more than one

: . o I serviceName in WSDL
The service name this service is implementing, it maps to the

iceN - 2 Y i it i
serviceName wsdl : service@name. {http:~#//org.apache.camel}ServiceName present, and it is requ}red for
camel-cxf consumer since
camel 2.2
Only if more than one
. L P portName under the
The port name this service is implementing, it maps to the .
portName {http:~#//org.apache.camel}PortName serviceName is present,
wsdl:port@name. o)
and it is required for camel-
oxf consumer since camel 2.2
dataFormat Which data type messages the CXF endpoint supports POJO, PAYLOAD, MESSAGE No
Available since 1.6.1. Please see the Description of
relayHeaders option section for this option in 2.0.
relayHeaders _ true, false No
Should a CXF endpoint relay headers along the route.
Currently only available when dataFormat=P0JO
wrapped Which kind of operation that CXF endpoint producer will true, false No

invoke

New in 2.5.0 The WSDL style that describes how
parameters are represented in the SOAP body. If the value is
wrappedStyle false, CXF will chose the document-literal unwrapped style, true, false No
If the value is true, CXF will chose the document-literal
wrapped style

Will set the default bus when CXF endpoint create a bus by

setDefaultBus .
itself

true, false No

New in 2.0, use # notation to reference a bus object from
bus the registry. The referenced object must be an instance of bus=#busName No
org.apache.cxf.Bus.

New in 2.0, use # notation to reference a CXF binding
object from the registry. The referenced object must be an
instance of
org.apache.camel.component.cxf.CxfBinding.

cxfBinding cxfBinding=#bindingName No

New in 2.0, use # notation to reference a header filter
strategy object from the registry. The referenced object
must be an instance of
org.apache.camel.spi.HeaderFilterStrategy.

headerFilterStrategy headerFilterStrategy=#strategyName No

New in 2.3, this option enables CXF Logging Feature which

1 Feat Enabled
cggingheaturebnabie writes inbound and outbound SOAP messages to log.

loggingFeatureEnabled=true No

New in 2.4, this option will set the default operationName
defaultOperationName that will be used by the CxfProducer which invokes the defaultOperationName=greetMe No
remote service.

New in 2.4, this option will set the default .
! defaultOperationNamespace=http://apache.org/
defaultOperationNameSpace operationNamespace that will be used by the CxfProducer p © P o g No

which invokes the remote service. hello_world soap http

New in 2.5, this option will let cxf endpoint decide to use
sync or async API to do the underlying work. The default
value is false which means camel-cxf endpoint will try to use
async API by default.

synchronous synchronous=true No

New in 2.5, this option can override the endpointUrl that
publishedEndpointUrl published from the WSDL which can be d with publshedEndpointUrl=http://s I service No
service address url plus wsdl.

The serviceName and portName are QNames, so if you provide them be sure to prefix
them with their {namespace} as shown in the examples above.

NOTE From CAMEL 1.5.1, the serviceClass for a CXF producer (that is, the to
endpoint) should be a Java interface.

The descriptions of the dataformats

DataFormat Description

POJOs (Plain old Java objects) are the Java parameters to the method being invoked on the target server. Both Protocol and Logical JAX-WS handlers

POJO
are supported.

PAYLOAD is the message payload (the contents of the soap: body) after message configuration in the CXF endpoint is applied. Only Protocol JAX-

PAYLOAD
WS handler is supported. Logical JAX-WS handler is not supported.

CHAPTER Il - COMPONENT APPENDIX

tr

Nu

http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http
http://example.com/service
http://en.wikipedia.org/wiki/QName

MESSAGE MESSAGE is the raw message that is received from the transport layer. JAX-WS handler is not supported.

You can determine the data format mode of an exchange by retrieving the exchange property,
CamelCXFDataFormat. The exchange key constant is defined in
org.apache.camel.component.cxf.CxfConstants.DATA FORMAT PROPERTY.

How to enable CXF's LoggingOutinterceptor in MESSAGE mode

CXF's LoggingOutInterceptor outputs outbound message that goes on the wire to
logging system (Java Util Logging). Since the LoggingOutInterceptor isin PRE _STREAM
phase (but PRE_STREAM phase is removed in MESSAGE mode), you have to configure
LoggingOutInterceptor to be run during the WRITE phase. The following is an example.

<bean id="loggingOutInterceptor"
class="org.apache.cxf.interceptor.LoggingOutInterceptor">

K== it really should have been user-prestream but CXF does have such phase!

<constructor-arg value="write"/>
</bean>

<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9002/helloworld"
serviceClass="org.apache.camel.component.cxf.HelloService">
<cxf:outInterceptors>
<ref bean="loggingOutInterceptor"/>
</cxf:outInterceptors>
<cxf:properties>
<entry key="dataFormat" value="MESSAGE"/>
</cxf:properties>
</cxf:cxfEndpoint>

Description of relayHeaders option

There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS
WSDL-first developer.

The in-band headers are headers that are explicitly defined as part of the WSDL binding
contract for an endpoint such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly
part of the WSDL binding contract.

Headers relaying/filtering is bi-directional.

When a route has a CXF endpoint and the developer needs to have on-the-wire headers,
such as SOAP headers, be relayed along the route to be consumed say by another JAXWS
endpoint, then relayHeaders should be set to t rue, which is the default value.

CHAPTER Il - COMPONENT APPENDIX

474

475

Available in Release 1.6.1 and after (only in POJO mode)

The relayHeaders=true express an intent to relay the headers. The actual decision on
whether a given header is relayed is delegated to a pluggable instance that implements the
MessageHeadersRelay interface. A concrete implementation of
MessageHeadersRelay will be consulted to decide if a header needs to be relayed or not.
There is already an implementation of SoapMessageHeadersRelay which binds itself to
well-known SOAP name spaces. Currently only out-of-band headers are filtered, and in-band
headers will always be relayed when relayHeaders=true. If there is a header on the wire,
whose name space is unknown to the runtime, then a fall back
DefaultMessageHeadersRelay will be used, which simply allows all headers to be
relayed.

The relayHeaders=false setting asserts that all headers in-band and out-of-band will
be dropped.

You can plugin your own MessageHeadersRelay implementations overriding or adding
additional ones to the list of relays. In order to override a preloaded relay instance just make
sure that your MessageHeadersRelay implementation services the same name spaces as
the one you looking to override. Also note, that the overriding relay has to service all of the
name spaces as the one you looking to override, or else a runtime exception on route start up
will be thrown as this would introduce an ambiguity in name spaces to relay instance mappings.

<cxf:cxfEndpoint ...>
<cxf:properties>
<entry key="org.apache.camel.cxf.message.headers.relays">
<list>
<ref bean="customHeadersRelay"/>
</list>
</entry>
</cxf:properties>
</cxf:cxfEndpoint>
<bean id="customHeadersRelay"

class="org.apache.camel.component.cxf.soap.headers.CustomHeadersRelay"/>

Take a look at the tests that show how you'd be able to relay/drop headers here:

https://svn.apache.org/repos/asf/camel/branches/camel- | .x/components/camel-cxf/src/test/
java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

Changes since Release 2.0

* POJO and PAYLOAD modes are supported. In POJO mode, only out-of-band message
headers are available for filtering as the in-band headers have been processed and
removed from header list by CXF. The in-band headers are incorporated into the
MessageContentList in POJO mode. The camel-cxf component does make
any attempt to remove the in-band headers from the MessageContentList as it
does in 1.6.1. [f filtering of in-band headers is required, please use PAYLOAD mode or

CHAPTER Il - COMPONENT APPENDIX

https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java
https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

plug in a (pretty straightforward) CXF interceptor/JAXWS Handler to the CXF
endpoint.

The Message Header Relay mechanism has been merged into
CxfHeaderFilterStrategy. The relayHeaders option, its semantics, and
default value remain the same, but it is a property of
CxfHeaderFilterStrategy.

Here is an example of configuring it.

<bean id="dropAllMessageHeadersStrategy"
class="org.apache.camel.component.cxf.CxfHeaderFilterStrategy">

<!-- Set relayHe

> false to drop all SOAP he

<property name="relayHeaders" value="false"/>

</bean>

Then, your endpoint can reference the CxfHeaderFilterStrategy.

<route>
<from
uri="cxf:bean:routerNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
<to
uri="cxf:bean:serviceNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
</route>

The MessageHeadersRelay interface has changed slightly and has been renamed
to MessageHeaderFilter. Itis a property of CxfHeaderFilterStrategy.
Here is an example of configuring user defined Message Header Filters:

<bean id="customMessageFilterStrategy"
class="org.apache.camel.component.cxf.CxfHeaderFilterStrategy">
<property name="messageHeaderFilters">
<list>

ageHeaderFilter is the built in filter. t can be

emo

ed by omitting it. -->
<bean
class="org.apache.camel.component.cxf.SoapMessageHeaderFilter" />

<bean
class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/>
</list>
</property>

</bean>

Other than relayHeaders, there are new properties that can be configured in
CxfHeaderFilterStrategy.

CHAPTER Il - COMPONENT APPENDIX 476

Name Description type Required? Default

value
relayieaders A.II message headers will be processed by Message Header boolean No true.(l,é.l

Filters behavior)

i i i fal 1.6.1
relayAllMessageHeaders All message heade!‘s will be propagated (without processing by boolean No a s.e (
Message Header Filters) behavior)

If two filters overlap in activation namespace, the property false (16.l

allowFilterNamespaceClash control how it should be handled. If the value is true, last one boolean No bah s_e) e
ehavior,

wins. If the value is false, it will throw an exception

Configure the CXF endpoints with Spring

You can configure the CXF endpoint with the Spring configuration file shown below, and you
can also embed the endpoint into the camelContext tags. When you are invoking the
service endpoint, you can set the operationName and operationNameSpace headers to
explicitly state which operation you are calling.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://activemqg.apache.org/camel/schema/cxfEndpoint"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemqg.apache.org/camel/schema/cxfEndpoint
http://activemq.apache.org/camel/schema/cxf/camel-cxf-1.6.0.xsd
http://activemqg.apache.org/camel/schema/spring

http://activemq.apache.org/camel/schema/spring/camel-spring.xsd TS
<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/CamelContext/
RouterPort"

serviceClass="org.apache.hello world soap http.GreeterImpl"/>
<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/SoapContext/
SoapPort"
wsdlURL="testutils/hello world.wsdl"
serviceClass="org.apache.hello world soap http.Greeter"
endpointName="s:SoapPort"
serviceName="s:SOAPService"
xmlns:s="http://apache.org/hello world soap http" />
<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="cxf:bean:routerEndpoint" />
<to uri="cxf:bean:serviceEndpoint" />
</route>
</camelContext>
</beans>

NOTE In Camel 2.x we change to use {{http:~#//camel.apache.org/schema/cxf}} as the CXF
endpoint's target namespace.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"

477 CHAPTER Il - COMPONENT APPENDIX

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.0.xsd

http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/
camel-cxf.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd ">

Be sure to include the JAX-WS schemalocation attribute specified on the root beans
element. This allows CXF to validate the file and is required. Also note the namespace
declarations at the end of the <cxf:cxfEndpoint/> tag--these are required because the
combined {namespace}localName syntax is presently not supported for this tag's attribute
values.

The cxf:cxfEndpoint element supports many additional attributes:

Name Value

The endpoint name this service is implementing, it maps to the wsdl : port@name. In the format of ns : PORT_NAME where ns is a namespace prefix valid

PortName N
at this scope.

serviceName The service name this service is implementing, it maps to the wsdl : service@name. In the format of ns: SERVICE_NAME where ns is a namespace
prefix valid at this scope.

wsd1lURL The location of the WSDL. Can be on the classpath, file system, or be hosted remotely.

bindingId The bindingId for the service model to use.

address The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

serviceClass The class name of the SEI (Service Endpoint Interface) class which could have JSR181 annotation or not.

It also supports many child elements:

Name Value

cxf:inInterceptors The incoming interceptors for this endpoint. A list of <bean> or <ref>.

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See below.

cxf:handlers A JAX-WS handler list which should be supplied to the JAX-WS endpoint. See below.

You can specify the which DataBinding will be use in the endpoint. This can be supplied using the Spring <bean

cxf:dataBindin
& class="MyDataBinding"/> syntax.

You can specify the BindingFactory for this endpoint to use. This can be supplied using the Spring <bean

cxf:bindin
g class="MyBindingFactory"/> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of {{<bean>}}s or {{<ref>}}s
cxf:schemalocations The schema locations for endpoint to use. A list of {{<schemaLocation>}}s
cxf:serviceFactory The service factory for this endpoint to use. This can be supplied using the Spring <bean class="MyServiceFactory"/> syntax

You can find more advanced examples which show how to provide interceptors , properties
and handlers here:
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

NOTE
You can use cxf:properties to set the camel-cxf endpoint's dataFormat and setDefaultBus
properties from spring configuration file.

CHAPTER Il - COMPONENT APPENDIX

478

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
serviceClass="org.apache.camel.component.cxf.HelloService"
endpointName="s:PortName"
serviceName="s:ServiceName"
xmlns:s="http://www.example.com/test">
<cxf:properties>
<entry key="dataFormat" value="MESSAGE"/>
<entry key="setDefaultBus" value="true"/>
</cxf:properties>
</cxf:cxfEndpoint>

How to make the camel-cxf component use logdj instead of java.util.logging

CXF's default logger is java.util.logging. If you want to change it to log4j, proceed as
follows. Create a file, in the classpath, named META-INF/cxf/
org.apache.cxf.logger. This file should contain the fully-qualified name of the class,
org.apache.cxf.common.logging.Log4jLogger, with no comments, on a single
line.

How to let camel-cxf response message with xml start document

If you are using some soap client such as PHP, you will get this kind of error, because CXF
doesn't add the XML start document "<?xml version="1.0" encoding="utf-8"?>"

Error:sendSms: SoapFault exception: [Client] looks like we got no XML document in [...]

To resolved this issue, you just need to tell StaxOutlnterceptor to write the XML start
document for you.

public class WriteXmlDeclarationInterceptor extends
AbstractPhaselInterceptor<SoapMessage> {
public WriteXmlDeclarationInterceptor () {
super (Phase.PRE_STREAM) ;
addBefore (StaxOutInterceptor.class.getName()) ;

public void handleMessage (SoapMessage message) throws Fault {
message.put ("org.apache.cxf.stax.force-start-document", Boolean.TRUE) ;

You can add a customer interceptor like this and configure it into you camel-cxf endpont

CHAPTER Il - COMPONENT APPENDIX

<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/CamelContext/

RouterPort"
serviceClass="org.apache.hello world soap http.GreeterImpl">

<cxf:outInterceptors>

1e XML start ument

or will

<!-- This inte
to client -->
<bean class="org.apache.camel.component.cxf.WriteXmlDeclarationInterceptor"/>
</cxf:outInterceptors>
<cxf:properties>

t the publis which could override the service address

D you want
try key="publishedEndpointUrl" value="http://www.simple.com/services/

test" />

</cxf:properties>
</cxf:cxfEndpoint>

Or adding a message header for it like this if you are using Camel 2.4.

start document

context which fo

// set up the r 1Se
Map<String, Object> map = new HashMap<String, Object>();

map.put ("org.apache.cxf.stax.force-start-document", Boolean.TRUE) ;
exchange.getOut () .setHeader (Client .RESPONSE CONTEXT, map) ;

How to consume a message from a camel-cxf endpoint in POJO data format

The camel-cxf endpoint consumer POJO data format is based on the cxf invoker, so the
message header has a property with the name of CxfConstants.OPERATION NAME and
the message body is a list of the SEI method parameters.

public class PersonProcessor implements Processor {
private static final transient Log LOG = LogFactory.getLog (PersonProcessor.class);

@SuppressWarnings ("unchecked")
public void process (Exchange exchange) throws Exception {

LOG.info ("processing exchange in camel");

BindingOperationInfo boi =
(BindingOperationInfo)exchange.getProperty (BindingOperationInfo.class.toString());
if (boi != null) {
LOG.info ("boi.isUnwrapped" + boi.isUnwrapped());
}

// Get the parameters list which element is the holder.

MessageContentsList msgList = (MessageContentsList)exchange.getIn().getBody() ;
Holder<String> personld = (Holder<String>)msgList.get(0);

Holder<String> ssn = (Holder<String>)msgList.get(1);

Holder<String> name = (Holder<String>)msgList.get(2);

if (personId.value == null || personId.value.length() == 0) {

CHAPTER Il - COMPONENT APPENDIX

480

http://cwiki.apache.org/CXF20DOC/invokers.html

481

LOG.info ("person id 123, so throwing exception");

soap fault mess

Try to throw out the K g
org.apache.camel.wsdl first.types.UnknownPersonFault personFault =

new org.apache.camel.wsdl first.types.UnknownPersonFault();
personFault.setPersonId("");
org.apache.camel.wsdl first.UnknownPersonFault fault =

new org.apache.camel.wsdl first.UnknownPersonFault ("Get the null value

of person name", personFault);

// Since camel has its own exception handler framework, we can't throw the
exceptior it
// just set the fault message in the exchange for
handling and return
exchange.getOut () .setFault (true) ;
exchange.getOut () .setBody (fault) ;
return;
}
name.value = "Bonjour";
ssn.value = "123";
LOG.info ("setting Bonjour as the response");
// Se onse 3E is the return value of the
operation,
the others are the holders of method parameters
exchange.getOut () .setBody (new Object[] {null, personId, ssn, name});

How to prepare the message for the camel-cxf endpoint in POJO data
format

The camel-cxf endpoint producer is based on the cxf client API. First you need to specify
the operation name in the message header, then add the method parameters to a list, and
initialize the message with this parameter list. The response message's body is a
messageContentsList, you can get the result from that list.

NOTE After Camel 1.5, we change the message body from object array to message
content list. If you still want to get the object array from the message body, you can get the
body using message.getbody (Object[].class), as follows:

Exchange senderExchange = new DefaultExchange (context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();

// Pre re the request message for the amel-cxf pr
params.add (TEST _MESSAGE) ;
senderExchange.getIn() .setBody (params) ;

senderExchange.getIn() .setHeader (CxfConstants.OPERATION NAME, ECHO OPERATION) ;

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();

CHAPTER Il - COMPONENT APPENDIX

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

poday

ation,

// some holder parameters, the holder parameter will be filled in the
re

// e re will be extract from the c n tsList with > String class
MessageContentsList result = (MessageContentsList)out.getBody () ;

LOG.info ("Received output text: " + result.get(0));

Map<String, Object> responseContext =

CastUtils.cast ((Map)out.getHeader (Client .RESPONSE_CONTEXT)) ;

assertNotNull (responseContext) ;

assertEquals ("We should get the response context here", "UTF-8",

responseContext.get (org.apache.cxf.message.Message.ENCODING)) ;

assertEquals ("Reply body on Camel is wrong", "echo " + TEST MESSAGE, result.get(0));

How to deal with the message for a camel-cxf endpoint in PAYLOAD data
format

PAYLOAD means that you process the payload message from the SOAP envelope. You can use
the Header .HEADER LIST as the key to set or get the SOAP headers and use the
List<Element> to set or get SOAP body elements.

Camel |.x branch, you can get the List<Element> and header from the CXF Message, but if
you want to set the response message, you need to create the CXF message using the CXF
API.

protected RouteBuilder createRouteBuilder () {
return new RouteBuilder () {
public void configure() {
from (SIMPLE_ENDPOINT_ URI +
"&dataFormat=PAYLOAD") .to("log:info") .process (new Processor() {
public void process(final Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
if (inMessage instanceof CxfMessage) {
CxfMessage cxfInMessage = (CxfMessage) inMessage;
CxfMessage cxfOutMessage = (CxfMessage) exchange.getOut();
List<Element> inElements =
cxfInMessage.getMessage () .get (List.class);
List<Element> outElements = new ArrayList<Element>();

XmlConverter converter = new XmlConverter();
String documentString = ECHO RESPONSE;
if (inElements.get (0) .getLocalName () .equals ("echoBoolean")) {

documentString = ECHO BOOLEAN_ RESPONSE;

}

org.apache.cxf.message.Exchange ex =
((CxfExchange) exchange) .getExchange () ;

Endpoint ep = ex.get (Endpoint.class);

org.apache.cxf.message.Message response =
ep.getBinding () .createMessage () ;

Document outDocument = converter.toDOMDocument (documentString) ;

outElements.add (outDocument.getDocumentElement ()) ;

CHAPTER Il - COMPONENT APPENDIX

482

483

response.put (List.class, outElements);
cxfOutMessage.setMessage (response) ;

Change in 2.0, There is no more CxfMessage, we just use the common Camel
DefaultMessageImpl under layer. Message.getBody () will return an
org.apache.camel.component.cxf.CxfPayload object, which has getters for
SOAP message headers and Body elements. This change enables decoupling the native CXF
message from the Camel message.

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder () {
public void configure() {
from (SIMPLE ENDPOINT URI +
"&dataFormat=PAYLOAD") .to("log:info") .process (new Processor() {
@SuppressWarnings ("unchecked")
public void process(final Exchange exchange) throws Exception {
CxfPayload<SoapHeader> requestPayload =
exchange.getIn() .getBody (CxfPayload.class);
List<Element> inElements = requestPayload.getBody();
List<Element> outElements = new ArrayList<Element>();

// You can use a customer toString

nverter to turn a CxfPayLoad
message into String as you want
String request = exchange.getIn().getBody(String.class);

XmlConverter converter = new XmlConverter();
String documentString = ECHO RESPONSE;
if (inElements.get (0) .getLocalName () .equals ("echoBoolean")) {

documentString = ECHO BOOLEAN RESPONSE;
assertEquals ("Get a wrong request", ECHO_BOOLEAN REQUEST,
request) ;
} else {
assertEquals ("Get a wrong request", ECHO_REQUEST, request);
}
Document outDocument = converter.toDOMDocument (documentString) ;
outElements.add (outDocument.getDocumentElement ()) ;
// set the payload header with null
CxfPayload<SoapHeader> responsePayload = new
CxfPayload<SoapHeader>(null, outElements);
exchange.getOut () . setBody (responsePayload) ;

CHAPTER Il - COMPONENT APPENDIX

How to get and set SOAP headers in POJO mode

POJO means that the data format is a "list of Java objects" when the Camel-cxf endpoint
produces or consumes Camel exchanges. Even though Camel expose message body as POJOs
in this mode, Camel-cxf still provides access to read and write SOAP headers. However, since
CXF interceptors remove in-band SOAP headers from Header list after they have been
processed, only out-of-band SOAP headers are available to Camel-cxf in POJO mode.

The following example illustrate how to get/set SOAP headers. Suppose we have a route
that forwards from one Camel-cxf endpoint to another. That is, SOAP Client -> Camel -> CXF
service. We can attach two processors to obtain/insert SOAP headers at (1) before request
goes out to the CXF service and (2) before response comes back to the SOAP Client.
Processor (1) and (2) in this example are InsertRequestOutHeaderProcessor and
InsertResponseOutHeaderProcessor. Our route looks like this:

<route>
<from uri="cxf:bean:routerRelayEndpointWithInsertion"/>
<process ref="InsertRequestOutHeaderProcessor" />
<to uri="cxf:bean:serviceRelayEndpointWithInsertion"/>
<process ref="InsertResponseOutHeaderProcessor" />

</route>

In 2.x SOAP headers are propagated to and from Camel Message headers. The Camel
message header name is "org.apache.cxf.headers.Header.list" which is a constant defined in CXF
(org.apache.cxf.headers.Header.HEADER_LIST). The header value is a List of CXF SoapHeader
objects (org.apache.cxf.binding.soap.SoapHeader). The following snippet is the
InsertResponseOutHeaderProcessor (that insert a new SOAP header in the response message).
The way to access SOAP headers in both InsertResponseOutHeaderProcessor and
InsertRequestOutHeaderProcessor are actually the same. The only difference between the two
processors is setting the direction of the inserted SOAP header.

public static class InsertResponseOutHeaderProcessor implements Processor {

@SuppressWarnings ("unchecked")
public void process (Exchange exchange) throws Exception {
List<SoapHeader> soapHeaders =
(List)exchange.getIn() .getHeader (Header .HEADER LIST);

Insert a new header
String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
+ "xmlns=\"http: <f .apache.org/outofband/Header\"
hdrAttribute=\"tes Attribu "o
+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/enve "

soap:mustUnderstand=\"1\">"
+
”<name>New7testOobHeader</name><va1ue>New7testOobHeaderVa1ue</va1ue></outofbandHeader>”;
SoapHeader newHeader = new SoapHeader (soapHeaders.get (0) .getName (),
DOMUtils.readXml (new StringReader (xml)) .getDocumentElement ());

make sure direction is OUT since it is a respons message.

CHAPTER Il - COMPONENT APPENDIX

484

485

newHeader.setDirection (Direction.DIRECTION_OUT) ;
/ /newH

eader.setMustUnderstand (false) ;
soapHeaders.add (newHeader) ;

In 1.x SOAP headers are not propagated to and from Camel Message headers. Users have to
go deeper into CXF APIs to access SOAP headers. Also, accessing the SOAP headers in a
request message is slight different than in a response message. The
InsertRequestOutHeaderProcessor and InsertResponseOutHeaderProcessor are as follow.

public static class InsertRequestOutHeaderProcessor implements Processor {
public void process (Exchange exchange) throws Exception {
CxfMessage message = exchange.getIn() .getBody(CxfMessage.class);
Message cxf = message.getMessage();
List<SoapHeader> soapHeaders = (List)cxf.get (Header.HEADER LIST) ;

// Insert a new header

String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
+ "xmlns=\"http://cxf.apache.org/outofband/Header\"
hdrAttribute=\"testHdrAttribute\" "
+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"
soap:mustUnderstand=\"1\">"
+

"<name>New testOobHeader</name><value>New testOobHeaderValue</value></outofbandHeader>";

SoapHeader newHeader = new SoapHeader (soapHeaders.get (0) .getName (),
DOMUtils.readXml (new
StringReader (xml)) .getDocumentElement ()) ;

// make sure direction is IN since it is a request message.

newHeader.setDirection (Direction.DIRECTION IN) ;
//newHeader.setMustUnderstand (false) ;
soapHeaders.add (newHeader) ;

public static class InsertResponseOutHeaderProcessor implements Processor ({
public void process (Exchange exchange) throws Exception {
CxfMessage message = exchange.getIn () .getBody(CxfMessage.class);
Map responseContext = (Map)message.getMessage().get (Client.RESPONSE CONTEXT) ;
List<SoapHeader> soapHeaders = (List)responseContext.get (Header.HEADER LIST);

// Insert a new header

String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
+ "xmlns=\"http://cxf.apache.org/outofband/Header\"
hdrAttribute=\"testHdrAttribute\" "
+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"

soap:mustUnderstand=\"1\">"

CHAPTER Il - COMPONENT APPENDIX

¥
"<name>New testOobHeader</name><value>New testOobHeaderValue</value></outofbandHeader>";

SoapHeader newHeader = new SoapHeader (soapHeaders.get (0) .getName (),
DOMUtils.readXml (new StringReader (xml)) .getDocumentElement ());

// make sure dir ion is OUT si > it is a re messa

newHeader.setDirection(Direction.DIRECTION OUT) ;

/ /newHeader.setMustUnderstand (false) ;

soapHeaders.add (newHeader) ;

How to get and set SOAP headers in PAYLOAD mode

We've already shown how to access SOAP message (CxfPayload object) in PAYLOAD mode
(See "How to deal with the message for a camel-cxf endpoint in PAYLOAD data format").

In 2.x Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders()
method that returns a List of DOM Elements (SOAP headers).

from(routerEndpointURI) .process (new Processor () {

@SuppressWarnings ("unchecked")

public void process (Exchange exchange) throws Exception {
CxfPayload<SoapHeader> payload = exchange.getIn() .getBody(CxfPayload.class);
List<Element> elements = payload.getBody() ;
assertNotNull ("We should get the elements here", elements);
assertEquals ("Get the wrong elements size", 1, elements.size());
assertEquals ("Get the wrong namespace URI", "http://camel.apache.org/pizza/

elements.get (0) .getNamespaceURI()) ;

List<SoapHeader> headers = payload.getHeaders();
assertNotNull ("We should get the headers here", headers);
assertEquals ("Get the wrong headers size", headers.size(), 1);
assertEquals ("Get the wrong namespace URI",
((Element) (headers.get (0) .getObject())) .getNamespaceURI (),
"http://camel.apache > < 9

1)
.to(serviceEndpointURI) ;

*In |.x" You can get/set to the CXF Message by the key "org.apache.cxf.headers.Header list"
which is a constant defined in CXF (org.apache.cxf.headers.Header.HEADER_LIST).

from(routerEndpointURI) .process (new Processor() {
Q@SuppressWarnings ("unchecked")
public void process (Exchange exchange) throws Exception ({
Message inMessage = exchange.getIn();

CHAPTER Il - COMPONENT APPENDIX

486

CxfMessage message = (CxfMessage) inMessage;
List<Element> elements = message.getMessage () .get (List.class);
assertNotNull ("We should get the payload elements here" , elements);
assertEquals ("Get the wrong elements size" , elements.size(), 1);
assertEquals ("Get the wrong namespace URI"
elements.get (0) .getNamespaceURI (), "http://camel.apache.or

List<SoapHeader> headers =
CastUtils.cast ((List<?>)message.getMessage () .get (Header .HEADER LIST)) ;
assertNotNull ("We should get the headers here", headers);
assertEquals ("Get the wrong headers size", headers.size(), 1);
assertEquals ("Get the wrong namespace URI" ,
(Element) (headers.get (0) .getObject ())) .getNamespaceURI (), "http://camel.apa
1

.to(serviceEndpointURI) ;

SOAP headers are not available in MESSAGE mode
SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.

How to throw a SOAP Fault from Camel

If you are using a camel-cxf endpoint to consume the SOAP request, you may need to
throw the SOAP Fault from the camel context.

Basically, you can use the throwFault DSL to do that; it works for POJO, PAYLOAD and
MESSAGE data format.

You can define the soap fault like this

SOAP_FAULT = new SoapFault (EXCEPTION_MESSAGE, SocapFault.FAULT_CODE_CLIENT) ;
Element detail = SOAP FAULT.getOrCreateDetail();

Document doc = detail.getOwnerDocument () ;

Text tn = doc.createTextNode (DETAIL_TEXT) ;

detail.appendChild(tn) ;

Then throw it as you like

from(routerEndpointURT) .setFaultBody (constant (SOAP_FAULT)) ;

If your CXF endpoint is working in the MESSAGE data format, you could set the the SOAP
Fault message in the message body and set the response code in the message header.

487 CHAPTER Il - COMPONENT APPENDIX

from(routerEndpointURI) .process (new Processor () {

public void process (Exchange exchange) throws Exception {
Message out = exchange.getOut () ;

// Set the mess: ody with the

out.setBody (this.getClass () .getResourceAsStream("SoapFaultMessage.xml")) ;
// Set the r
out.setHeader (org.apache.cxf.message.Message.RESPONSE CODE, new Integer (500));

Je here

3

NOTE the response code setting only works in Camel's version >= 1.5.1

How to propagate a camel-cxf endpoint's request and response context

cxf client API provides a way to invoke the operation with request and response context. If you
are using a camel-cxf endpoint producer to invoke the outside web service, you can set the
request context and get response context with the following code:

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new
Processor () {
public void process(final Exchange exchange) ({
final List<String> params = new ArrayList<String>();
params.add (TEST_MESSAGE) ;

1text to the inMessage

// Set the request
Map<String, Object> requestContext = new HashMap<String, Object>();
requestContext.put (BindingProvider.ENDPOINT ADDRESS PROPERTY,
JAXWS SERVER ADDRESS) ;
exchange.getIn() .setBody (params) ;
exchange.getIn () .setHeader (Client .REQUEST CONTEXT , requestContext);
exchange.getIn () .setHeader (CxfConstants.OPERATION NAME,
GREET_ME_OPERATION) ;
}
3
org.apache.camel.Message out = exchange.getOut();

// The output is an object array, the first element of the array is the

return value
Object\[\] output = out.getBody(Object\[\].class);
LOG.info ("Received output text: " + output\[0\]);

// Get the r = context form outM je

Map<String, Object> responseContext =
CastUtils.cast ((Map)out.getHeader (Client .RESPONSE_CONTEXT)) ;

assertNotNull (responseContext) ;

assertEquals ("Get the wrong wsdl opertion name", "{http://apache.org/
hello world sc

> _http}greetMe",

responseContext.get ("javax.xml.ws.wsdl.operation") .toString());

CHAPTER Il - COMPONENT APPENDIX

488

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

489

Attachment Support

POJO Mode: Both SOAP with Attachment and MTOM are supported (see example in
Payload Mode for enabling MTOM). However, SOAP with Attachment is not tested. Since
attachments are marshalled and unmarshalled into POJOs, users typically do not need to deal
with the attachment themself. Attachments are propagated to Camel message's attachments
since 2.1. So, it is possible to retreive attachments by Camel Message API

DataHandler Message.getAttachment (String id)

Payload Mode: MTOM is supported since 2.1. Attachments can be retrieved by Camel
Message APIs mentioned above. SOAP with Attachment (SwA) is supported and attachments
can be retrieved since 2.5. SWA is the default (same as setting the CXF endpoint property
"mtom_enabled" to false).

To enable MTOM, set the CXF endpoint property "mtom_enabled" to true. (I believe you
can only do it with Spring.)

<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9091/jaxws-mtom/hello"
wsdlURL="mtom.wsdl"
serviceName="ns:HelloService"
endpointName="ns:HelloPort"
xmlns:ns="http://apache.org/camel/cxf/mtom feature">

<cxf:properties>
<!-- enable mtom by se ing this property to true -->
<entry key="mtom-enabled" value="true"/>
<!-- set the camel-cxf er int data fromat to PAYLOAD mode -->
<entry key="dataFormat" value="PAYLOAD"/>
</cxf:properties>

You can produce a Camel message with attachment to send to a CXF endpoint in Payload
mode.

Exchange exchange = context.createProducerTemplate () .send("direct:testEndpoint", new
Processor () {

public void process (Exchange exchange) throws Exception {

exchange.setPattern (ExchangePattern.InOut) ;
List<Element> elements = new ArrayList<Element>();
elements.add (DOMUtils.readXml (new

StringReader (MtomTestHelper.REQ MESSAGE)) .getDocumentElement ());
CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader> (new

ArraylList<SoapHeader>(),

elements) ;

exchange.getIn () .setBody (body) ;

CHAPTER Il - COMPONENT APPENDIX

exchange.getIn () .addAttachment (MtomTestHelper.REQ PHOTO CID,
new DataHandler (new ByteArrayDataSource (MtomTestHelper.REQ PHOTO_DATA,

"application/octet-stream")));

exchange.getIn () .addAttachment (MtomTestHelper.REQ IMAGE_CID,
new DataHandler (new ByteArrayDataSource (MtomTestHelper.requestdpeg, "image/
jpeg")))

CxfPayload<SoapHeader> out = exchange.getOut () .getBody (CxfPayload.class);
Assert.assertEquals (1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put ("ns", MtomTestHelper.SERVICE TYPES NS);
ns.put ("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils (ns);
Element ele = (Element)xu.getValue("//ns:DetailResponse/ns:photo/xop:Include",
out.getBody () .get (0),
XPathConstants.NODE) ;
String photoId = ele.getAttribute ("href").substring(4); // skip "cid:"

DetailRes

ele = (Element)xu.getValue ("//ns onse/ns:image/xop:Include",

out.getBody () .get (0)

XPathConstants.NODE) ;
String imageld = ele.getAttribute("href") .substring(4); // skip "cid:"

DataHandler dr = exchange.getOut () .getAttachment (photoId);
Assert.assertEquals ("application/octet-stream", dr.getContentType()):;
MtomTestHelper.assertEquals (MtomTestHelper.RESP_PHOTO DATA,
IOUtils.readBytesFromStream(dr.getInputStream())) ;

dr = exchange.getOut () .getAttachment (imageId) ;
Assert.assertEquals ("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());

Assert.assertEquals (560, image.getWidth());
Assert.assertEquals (300, image.getHeight());

You can also consume a Camel message received from a CXF endpoint in Payload mode.

public static class MyProcessor implements Processor ({
Q@SuppressWarnings ("unchecked")

public void process(Exchange exchange) throws Exception {
CxfPayload<SoapHeader> in = exchange.getIn() .getBody (CxfPayload.class);

CHAPTER Il - COMPONENT APPENDIX 490

// verify request

Assert.assertEquals(l, in.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put ("ns", MtomTestHelper.SERVICE TYPES NS);
ns.put ("xop", MtomTestHelper.XOP NS);

XPathUtils xu = new XPathUtils (ns);
Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include",
in.getBody () .get (0),
XPathConstants.NODE) ;
String photolId = ele.getAttribute("href") .substring(4); // skip "cid:"
Assert.assertEquals (MtomTestHelper.REQ PHOTO CID, photoId);

ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include",
in.getBody () .get (0),
XPathConstants.NODE) ;
String imageId = ele.getAttribute ("href").substring(4); // skip "cid:"
Assert.assertEquals (MtomTestHelper.REQ IMAGE CID, imageId);

DataHandler dr = exchange.getIn() .getAttachment (photolId);

Assert.assertEquals ("application/octet-stream", dr.getContentType());

MtomTestHelper.assertEquals (MtomTestHelper.REQ PHOTO_DATA,
IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getIn () .getAttachment (imageld);

Assert.assertEquals ("image/jpeg", dr.getContentType());

MtomTestHelper.assertEquals (MtomTestHelper.requestdpeg,
IOUtils.readBytesFromStream(dr.getInputStream()));

// create re

onse
List<Element> elements = new ArrayList<Element>();
elements.add (DOMUtils.readXml (new
StringReader (MtomTestHelper.RESP_MESSAGE)) .getDocumentElement ()) ;
CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader> (new
ArrayList<SoapHeader>(),
elements) ;
exchange.getOut () . setBody (body) ;
exchange.getOut () .addAttachment (MtomTestHelper .RESP_PHOTO_CID,
new DataHandler (new ByteArrayDataSource (MtomTestHelper.RESP PHOTO_DATA,
"application/octet-stream")));

exchange.getOut () .addAttachment (MtomTestHelper .RESP IMAGE CID,
new DataHandler (new ByteArrayDataSource (MtomTestHelper.responsedpeg,
"image/jpeg")));

Message Mode: Attachments are not supported as it does not process the message at all.

491 CHAPTER Il - COMPONENT APPENDIX

See Also

» Configuring Camel
* Component

* Endpoint

* Getting Started

CXF BEAN COMPONENT (2.0 OR LATER)

The exfbean: component allows other Camel endpoints to send exchange and invoke Web
service bean objects. (Currently, it only supports JAXRS, JAXWS(nhew to
camel2.1) annotated service bean.)

Note: CxfBeanEndpoint isa ProcessorEndpoint so it has no consumers. It works
similarly to a Bean component.

URI format

cxfbean:serviceBeanRef

Where serviceBeanRef is a registry key to look up the service bean object. If
serviceBeanRef references a List object, elements of the List are the service bean
objects accepted by the endpoint.

Options

Name Description Example Required? Defaul
CXEF bean binding specified by the # notation. The referenced object must be

cxfBeanBinding an instance of cxfBinding=#bindingName No DefaultC:
org.apache.camel.component.cxf.cxfbean.CxfBeanBinding.
CXF bus reference specified by the # notation. The referenced object must be Default bus

bus . bus=#busName No
an instance of org.apache.cxf.Bus. Factory

. Header filter strategy specified by the # notation. The referenced object must .

headerFilterStrategy . . headerFilterStrategy=#strategyName No CxfHeade:
be an instance of org.apache.camel.spi.HeaderFilterStrategy.

setDefaultBus Will set the default bus when CXF endpoint create a bus by itself. true, false No false
Since 2.3, the wsdlLocation annotated in the POJO is ignored (by default)

populateFromClass unless this option is set to false. Prior to 2.3, the wsdlLocation annotated true, false No true
in the POJO is always honored and it is not possible to ignore.

providers Since 2.5, setting the providers for the CXFRS endpoint. providers=#providerRefl, #providerRef2 No null

Headers

Default In/

. . i ?
Name Description Type Required? | = out

Examples

CamelHttpCharacterEncoding
(before 2.0-m2: Character encoding String No None In 1SO-8859-1
CamelCxfBeanCharacterEncoding)

CHAPTER Il - COMPONENT APPENDIX 492

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

493

CamelContentType (before 2.0-m2:

St WAl text 1
CamelCxfBeanContentType) Content type Fing Ne / In ext/xm
The value of this header will be set in The Endpoint
pe O T
(2.0-m3 and before: ; ge . BASE_ property. String Yes - In http:/localhost:9000
is needed by CXF JAX-RS processing. endpoint in the
CamelCxfBeanRequestBasePath)) !
Basically, it is the scheme, host and Camel
port portion of the request URI. exchange
C 1HttpPath (before 2.0-m2:
ame pPath (befo Request URI's path String Yes None In consumer/123
CamelCxfBeanRequestPath)
C 1HttpMethod (before 2.0-m2: GET, PUT, POST,
amelHttpMethod (RESTful request verb String Yes None In >
CamelCxfBeanVerb) DELETE
CamelHttpResponseCode HTTP response code Integer No None Out 200

Note: Currently, CXF Bean component has (only) been tested with Jetty
HTTP component it can understand headers from Jetty HTTP component
without requiring conversion.

A Working Sample

This sample shows how to create a route that starts a Jetty HTTP server. The route sends
requests to a CXF Bean and invokes a JAXRS annotated service.

First, create a route as follows. The from endpoint is a Jetty HTTP endpoint that is listening
on port 9000. Notice that the matchOnUriPrefix option must be set to true because
RESTful request URI will not match the endpoint's URI http:=#//localhost:9000 exactly.

<route>
<from uri="jetty:http://localhost:9000?matchOnUriPrefix=true" />
<to uri="cxfbean:customerServiceBean" />

</route>

The to endpoint is a CXF Bean with bean name customerServiceBean. The name will be
looked up from the registry. Next, we make sure our service bean is available in Spring registry.
We create a bean definition in the Spring configuration. In this example, we create a List of
service beans (of one element). We could have created just a single bean without a List.

<util:list id="customerServiceBean">
<bean class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />
</util:list>

<bean class="org.apache.camel.wsdl first.PersonImpl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A HTTP client can
make a request and receive response.

url = new URL("http: localhost:9000/customerservice/orders/223/products/323") ;
in = url.openStream() ;

assertEquals ("{\"Product\": {\"description\":\"product 323\",\"id\":323}}",
CxfUtils.getStringFromInputStream(in));

CHAPTER Il - COMPONENT APPENDIX

http://localhost:9000

CXFRS COMPONENT

The exfrs: component provides integration with Apache CXF for connecting to JAX-RS

services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this

component:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-cxf</artifactId>

<version>x.x.x</version> <! use the same version

</dependency>

URI format

Where address represents the CXF endpoint's address

cxfrs:bean:rsEndpoint

Where rsEndpoint represents the spring bean's name which presents the CXFRS client or

server

For either style above, you can append options to the URI as follows:

cxfrs:bean:cxfEndpoint?resourceClass=org.apache.camel.rs.Example

Options

Name Description Example

default

Required?
value

The resource classes which

resourceClasses
resourceClasses you want to export as REST

service

=org.apache.camel.rs.Examplel, org.apache.camel.rs.Exchange2

No None

new to Camel 2.1 Ifitis
true, the CxfRsProducer will
use the HttpClientAPI to
httpClientAPT :;“i’(°i:eh‘|:vsi'2"°e hetpClientAPI=true
CxfRsProducer will use the
ProxyClientAPI to invoke the
service

No true

New in 2.5, this option will let
CxfRsConsumer decide to
use sync or async APl to do
synchronous the underlying work. The synchronous=true
default value is false which
means it will try to use async
API by default.

No false

CHAPTER 11

- COMPONENT APPENDIX

494

http://incubator.apache.org/cxf/

495

Y. When using CXF as a consumer, the CXF Bean Component allows you to factor
out how message payloads are received from their processing as a RESTful or SOAP
web service. This has the potential of using a multitude of transports to consume
web services. The bean component's configuration is also simpler and provides the
fastest method to implement web services using Camel and CXF.

throwExceptionOnFailure

New in 2.6, this option tells
the CxfRsProducer to inspect
return codes and will
generate an Exception if the
return code is larger than
207.

throwExceptionOnFailure=true

No

true

maxClientCacheSize

New in 2.6, you can seta IN
message header
CamelDestinationOverrideUr|
to dynamically override the
target destination Web
Service or REST Service
defined in your routes. The
implementation caches CXF
clients or ClientFactoryBean
in CxfProvider and
CxfRsProvider. This option
allows you to configure the
maximum size of the cache.

maxClientCacheSize=5

No

You can also configure the CXF REST endpoint through the spring configuration. Since there
are lots of difference between the CXF REST client and CXF REST Server, we provides

different configuration for them.
Please check out the schema file and CXF REST user guide for more information.

How to configure the REST endpoint in Camel

In camel-cxf schema file, there are two elements for the REST endpoint definition.

cxfirsServer for REST consumer, exfirsClient for REST producer.
You can find an camel REST service route configuration example here.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xmlns:jaxrs="http://cxf.apache.org/jaxrs"

xsi:sc

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

camel-cxf.xsd

http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.
ns

<jaxrs:server id="restService
address="http://localhost:9002/rest"

CHAPTER 11

hemaLocation="

xsd

- COMPONENT APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
https://cwiki.apache.org/confluence/display/CAMEL/CXF+Bean+Component

staticSubresourceResolution="true">
<jaxrs:serviceBeans>
<ref bean="customerService"/>
</jaxrs:serviceBeans>
</jaxrs:server>

<bean id="jsonProvider" class="org.apache.cxf.jaxrs.provider.JSONProvider"/>

<bean id="customerService"
class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />
<!-- Defined the server endpoint to create the cxf-rs consumer -->
<cxf:rsServer id="rsServer" address="http://localhost:9000/route”
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />

fined the client endpoint to create the cxf-rs consumer -->
<cxf:rsClient id="rsClient" address="http://localhost:9002/rest"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService"/>

<!-- The camel route context -->

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="cxfrs://bean://rsServer"/>

using

can remove this configure

<setHeader headerName="CamelCxfRsUsingHttpAPI">
<constant>True</constant>
</setHeader>
<to uri="cxfrs://bean://rsClient"/>
</route>
</camelContext>

</beans>

How to consumer the REST request in Camel

CXF JAXRS front end implements the JAXRS(JSR31 1) API, so we can export the resources
classes as a REST service. And we leverage the CXF Invoker API to turn a REST request into a
normal Java object method invocation.

Unlike the camel-restlet, you don't need to specify the URI template within your restlet
endpoint, CXF take care of the REST request URI to resource class method mapping according
to the JSR3 1| specification. All you need to do in Camel is delegate this method request to a
right processor or endpoint.

Here is an example

protected RouteBuilder createRouteBuilder () throws Exception {
return new RouteBuilder () {
public void configure() {
errorHandler (new NoErrorHandlerBuilder());

CHAPTER Il - COMPONENT APPENDIX

496

http://cwiki.apache.org/CXF20DOC/jax-rs.html
https://jsr311.dev.java.net/
http://cwiki.apache.org/confluence/display/CXF20DOC/Invokers

497

from (CXF_RS_ENDPOINT URI).process(new Processor () {

public void process (Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
// Get the operation name from in message
String operationName =
inMessage.getHeader (CxfConstants.OPERATION NAME, String.class);
if ("getCustomer".equals (operationName)) {
String httpMethod = inMessage.getHeader (Exchange.HTTP METHOD,
String.class);
assertEquals ("Get a wrong http method", "GET", httpMethod);
String path = inMessage.getHeader (Exchange.HTTP PATH,
String.class);
// The parameter of the invocation is stored in the body of in
message

String id = (String) inMessage.getBody(String.class);
if ("/customerservice/customers/126".equals (path))
{
Customer customer = new Customer () ;

customer.setId(Long.parselong(id));
customer.setName ("Willem") ;
// We just put the response Object into the out message

body
exchange.getOut () . setBody (customer) ;
} else {
Response r = Response.status(404) .entity("Can't found the
customer with uri " + path).build();

throw new WebApplicationException(r);

}
if ("updateCustomer".equals (operationName)) {
assertEquals ("Get a wrong customer message header",
"headerl;header2", inMessage.getHeader ("test"));
String httpMethod = inMessage.getHeader (Exchange.HTTP METHOD,
String.class);
assertEquals ("Get a wrong http method", "PUT", httpMethod);
Customer customer = inMessage.getBody (Customer.class);
assertNotNull ("The customer should not be null.", customer);
// Now you can do what you want on the customer object
assertEquals ("Get a wrong customer name.", "Mary",
customer.getName ()) ;
// set the response back
exchange.getOut () . setBody (Response.ok () .build());

CHAPTER Il - COMPONENT APPENDIX

How to invoke the REST service through camel-cxfrs producer

CXF JAXRS front end implements a proxy based client API, with this APl you can invoke the
remote REST service through a proxy.

camel-cxfrs producer is based on this proxy API.

So, you just need to specify the operation name in the message header and prepare the
parameter in the message body, camel-cxfrs producer will generate right REST request for you.

Here is an example

Exchange exchange = template.send("direct://proxy", new Processor() {
public void process (Exchange exchange) throws Exception {
exchange.setPattern (ExchangePattern.InOut) ;
Message inMessage = exchange.getIn();
/ set the operation name
inMessage.setHeader (CxfConstants.OPERATION NAME, "getCustomer");
’/ using the proxy client API
inMessage.setHeader (CxfConstants.CAMEL CXF RS USING HTTP API, Boolean.FALSE);
set the € h > >
/ camel will put this

parar ers , if you just

inMessage.setBody ("123");

message

ge he re

Customer response = (Customer) exchange.getOut () .getBody/();

assertNotNull ("The response should not be null ", response);
assertEquals ("Get a wrong customer id ", String.valueOf (response.getId()), "123");
assertEquals ("Get a wrong customer name", response.getName(), "John");

CXF JAXRS front end also provides a http centric client API, You can also invoke this APl from
camel-cxfrs producer. You need to specify the HTTP_PATH and Http method and let the
the producer know to use the http centric client by using the URI option httpClientAPI or
set the message header with CxfConstants. CAMEL_CXF_RS_USING_HTTP_API. You can
turn the response object to the type class that you specify with

CxfConstants. CAMEL_CXF_RS_RESPONSE_CLASS.

Exchange exchange = template.send("direct://http", new Processor () {
public void process (Exchange exchange) throws Exception {

exchange.setPattern (ExchangePattern.InOut) ;

Message inMessage = exchange.getIn();

’/ using the http central client API

inMessage.setHeader (CxfConstants.CAMEL CXF RS USING HTTP API, Boolean.TRUE);
set the Http method

inMessage.setHeader (Exchange.HTTP_METHOD, "GET");
set the relative path

inMessage.setHeader (Exchange.HTTP PATH, "/customerservice/customers/

> class , cxfrs will use InputStream as the re

CHAPTER Il - COMPONENT APPENDIX

498

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-HTTPcentricclients

499

inMessage.setHeader (CxfConstants.CAMEL CXF RS RESPONSE CLASS, Customer.class);

since we use the Get method, so we don't need to set the mes

inMessage.setBody (null) ;

}) i

the response message

Customer response = (Customer) exchange.getOut () .getBody()

assertNotNull ("The response should not be null ", response);
assertEquals ("Get a wrong customer id ", String.valueOf (response.getId()), "123");
assertEquals ("Get a wrong customer name", response.getName(), "John");

From Camel 2.1, we also support to specify the query parameters from cxfrs URI for the
CXFRS http centric client.

Exchange exchange = template.send("cxfrs://http: localhost:9003
testQuery?httpClientAPI=true&ql=12&g2=13"

To support the Dynamical routing, you can override the URI's query parameters by using the
CxfConstants. CAMEL_CXF_RS_QUERY_MAP header to set the parameter map for it.To
support the Dynamical routing, you can override the URI's query parameters by using the
CxfConstants. CAMEL_CXF_RS_QUERY_MAP header to set the parameter map for it.

Map<String, String> queryMap = new LinkedHashMap<String, String>();
queryMap.put ("gl", "new");

queryMap.put ("g2", "world");

inMessage.setHeader (CxfConstants.CAMEL CXF RS QUERY MAP, queryMap);

DATASET COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.

The DataSet component (available since 1.3.0) provides a mechanism to easily perform load &
soak testing of your system. It works by allowing you to create DataSet instances both as a
source of messages and as a way to assert that the data set is received.

Camel will use the throughput logger when sending dataset's.

URI format

dataset:name[?options]

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/DataSet
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
https://cwiki.apache.org/confluence/display/CAMEL/Log

Where name is used to find the DataSet instance in the Registry

Camel ships with a support implementation of
org.apache.camel.component.dataset.DataSet, the
org.apache.camel.component.dataset.DataSetSupport class, that can be used
as a base for implementing your own DataSet. Camel also ships with a default implementation,
the org.apache.camel.component.dataset.SimpleDataSet that can be used for
testing.

Options

Option Default Description

Allows a delay in ms to be specified, which causes producers to pause in order to simulate slow producers. Uses a minimum of 3 ms delay

roduceDela 3 . .
P Y unless you set this option to -1 to force no delay at all.

consumeDelay 0 Allows a delay in ms to be specified, which causes consumers to pause in order to simulate slow consumers.
preloadSize 0 Sets how many messages should be preloaded (sent) before the route completes its initialization.
initialDelay 1000 Camel 2.1: Time period in millis to wait before starting sending messages.

minRate 0 Wait until the DataSet contains at least this number of messages

You can append query options to the URI in the following format,
?option=value&option=values&. ..

Configuring DataSet
Camel will lookup in the Registry for a bean implementing the DataSet interface. So you can
register your own DataSet as:

<bean id="myDataSet" class="com.mycompany.MyDataSet">
<property name="size" value="100"/>
</bean>

Example

For example, to test that a set of messages are sent to a queue and then consumed from the
queue without losing any messages:

/ send the data to a queue

from("dataset:foo") .to("activemg:SomeQueue") ;

now lets test that the messages

are >(C sumed CorrecCctly

from("activemqg: SomeQueue") .to ("dataset:foo") ;

The above would look in the Registry to find the foo DataSet instance which is used to create
the messages.

CHAPTER Il - COMPONENT APPENDIX

500

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

501

Then you create a DataSet implementation, such as using the SimpleDataSet as

described below, configuring things like how big the data set is and what the messages look like
etc.

Properties on SimpleDataSet

Property Type Description

Specifies the default message body. For SimpleDataSet it is a constant payload; though if you want to create custom payloads per message,

faultB j
defaultBody Object create your own derivation of DataSetSupport.
reportGroup long Specifies the number of messages to be received before reporting progress. Useful for showing progress of a large load test.
size long Specifies how many messages to send/consume.
See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

» Spring Testing

DB40 COMPONENT

Available as of Camel 2.5

The db4o: component allows you to work with db4o NoSQL database. The camel-db4o
library is provided by the Camel Extra project which hosts all *GPL related components for
Camel.

Sending to the endpoint

Sending POJO object to the db4o endpoint adds and saves object into the database. The body
of the message is assumed to be a POJO that has to be saved into the db40 database store.

Consuming from the endpoint

Consuming messages removes (or updates) POJO objects in the database. This allows you to
use a Db4o datastore as a logical queue; consumers take messages from the queue and then
delete them to logically remove them from the queue.

If you do not wish to delete the object when it has been processed, you can specify
consumeDelete=false on the URIL This will result in the POJO being processed each poll.

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://www.db4o.com
http://code.google.com/p/camel-extra/

URI format

db4o:className [?options]

You can append query options to the URI in the following format,
?option=value&option=values&...

Options
Name Default Description

Value
consumeDelete true Option for Db4oConsumer only. Specifies whether or not the entity is deleted after it is consumed.
consumer.delay 500 Option for HibernateConsumer only. Delay in millis between each poll.
consumer.initialDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

Option for HibernateConsumer only. Set to true to use fixed delay between polls, otherwise fixed rate is used. See

consumer.userFixedDela; false
v ScheduledExecutorService in JDK for details.

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

DIRECT COMPONENT

The direct: component provides direct, synchronous invocation of any consumers when a
producer sends a message exchange.
This endpoint can be used to connect existing routes in the same camel context.

URI format

direct:someName [?options]

Where someName can be any string to uniquely identify the endpoint

Options
Default
Name Description
Value
@deprecated If set to false, then when a second consumer is started on the endpoint, an
allowMultipleConsumers true IllegalStateException is thrown. Will be removed in Camel 2.1: Direct endpoint does not support multiple

consumers.

CHAPTER Il - COMPONENT APPENDIX

502

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

503

& Asynchronous
The SEDA component provides asynchronous invocation of any consumers when a
producer sends a message exchange.

@ Connection to other camel contexts

The VM component provides connections between Camel contexts as long they run
in the same JVM.

You can append query options to the URI in the following format,
?option=value&option=values&. ..

Samples

In the route below we use the direct component to link the two routes together:

from("activemqg:queue:order.in")
.to("bean:orderServer?method=validate")

.to("direct:processOrder") ;

from("direct:processOrder")
.to("bean:orderService?method=process")
.to("activemqg:queue:order.out") ;

And the sample using spring DSL:

<route>
<from uri="activemq:queue:order.in"/>
<to uri="bean:orderService?method=validate"/>
<to uri="direct:processOrder"/>
</route>

<route>
<from uri="direct:processOrder"/>
<to uri="bean:orderService?method=process"/>

<to uri="activemqg:queue:order.out"/>
</route>

See also samples from the SEDA component, how they can be used together.

See Also

* Configuring Camel

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/VM

* Component

* Endpoint

* Getting Started
= SEDA

= VM

E)JB COMPONENT

Available as of Camel 2.4
The ejb: component binds E|Bs to Camel message exchanges.

Maven users will need to add the following dependency to their pom. xm1 for this
component:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-ejb</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format
ejb:ejbName [?options]

Where ejbName can be any string which is used to look up the EJB in the Application Server
JNDI Registry

Options
Name Type Default Description

The method name that bean will be invoked. If not provided, Camel will try to pick the method itself. In case of
method String null

ambiguity an exception is thrown. See Bean Binding for more details.

How to treat the parameters which are passed from the message body; if it is true, the In message body should

multiParameterArray boolean false
be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=values&...

The EJB component extends the Bean component in which most of the details from the
Bean component applies to this component as well.

CHAPTER Il - COMPONENT APPENDIX

504

https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/VM
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/EJB
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean

505

Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the
method parameter) and how parameter values are constructed from the Message are all
defined by the Bean Binding mechanism which is used throughout all of the various Bean
Integration mechanisms in Camel.

Examples

In the following examples we use the Greater EJB which is defined as follows:
Listing 52. GreaterLocal.java
public interface GreaterLocal {

String hello(String name) ;

String bye (String name);

And the implementation

Listing 53. GreaterImpl.java

@Stateless
public class GreaterImpl implements GreaterLocal ({

public String hello(String name) {

return "Hello " + name;

public String bye (String name) {
return "Bye " + name;

Using Java DSL

In this example we want to invoke the hel1lo method on the EJB. Since this example is based
on an unit test using Apache OpenEJB we have to set a JndiContext on the EJB component
with the OpenEJB settings.

@Override
protected CamelContext createCamelContext () throws Exception {
CamelContext answer = new DefaultCamelContext ();
enlist EJB component using the JndiContext
CHAPTER || - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/EJB

EjbComponent ejb = answer.getComponent ("ejb", EjbComponent.class);
ejb.setContext (createEjbContext ()) ;

return answer;

private static Context createEjbContext () throws NamingException ({
nEJB for our testing

d to define our context factory to use

// here

n
Properties properties = new Properties();
properties.setProperty(Context.INITIAL CONTEXT_ FACTORY,

"org.apache.openejb.client.LocalInitialContextFactory") ;

return new InitialContext (properties);

Then we are ready to use the EJB in the Camel route:

from("direct:start")
// invoke the gre
.to("ejb:GreaterImplLocal?method=hello")

cr EJB using the local interface and invoke the hello method

.to("mock:result");

Using Spring XML

And this is the same example using Spring XML instead:
Again since this is based on an unit test we need to setup the EJB component:

<!-- setup Camel EJB component -->
<bean id="ejb" class="org.apache.camel.component.ejb.EjbComponent">
<property name="properties" ref="jndiProperties"/>

</bean>

1se benEJB context factory -->

<p:properties id="jndiProperties">

<prop
key="java.naming.factory.initial">org.apache.openejb.client.LocalInitialContextFactory</prop>

</p:properties>

Before we are ready to use EJB in the Camel routes:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<to uri="ejb:GreaterImplLocal?method=hello"/>
<to uri="mock:result"/>
</route>
</camelContext>

CHAPTER Il - COMPONENT APPENDIX 506

https://cwiki.apache.org/confluence/display/CAMEL/EJB
https://cwiki.apache.org/confluence/display/CAMEL/EJB

507

& In areal application server
In a real application server you most likely do not have to setup a JndiContext
on the EJB component as it will create a default JndiContext on the same JVM
as the application server, which usually allows it to access the JNDI registry and
lookup the EJBs.
However if you need to access a application server on a remote JVM or the likes,
you have to prepare the properties beforehand.

See Also

» Configuring Camel
* Component

* Endpoint

* Getting Started

* Bean

* Bean Binding

* Bean Integration

ESPER

The Esper component supports the Esper Library for Event Stream Processing. The camel-
esper library is provided by the Camel Extra project which hosts all *GPL related components
for Camel.

URI format

esper:name [?options]

When consuming from an Esper endpoint you must specify a pattern or eql statement to
query the event stream.

For example

from("esper: cheese?pattern=every event=MyEvent (bar=5)").
to("activemg:Foo") ;

Options

Name Default Value Description

pattern The Esper Pattern expression as a String to filter events

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
https://cwiki.apache.org/confluence/display/CAMEL/EJB
https://cwiki.apache.org/confluence/display/CAMEL/EJB

eqgl The Esper EQL expression as a String to filter events

You can append query options to the URI in the following format,
?option=value&option=values...

Demo

There is a demo which shows how to work with ActiveMQ, Camel and Esper in the Camel
Extra project

See Also

» Configuring Camel
* Component

* Endpoint

* Getting Started

* Esper Camel Demo

EVENT COMPONENT

The event: component provides access to the Spring ApplicationEvent objects. This allows
you to publish ApplicationEvent objects to a Spring ApplicationContext or to consume them.
You can then use Enterprise Integration Patterns to process them such as Message Filter.

URI format

spring-event://default

If you use Camel |.x then you may need to remove the // to get it working with the Spring
event notification

spring-event:default

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

FILE COMPONENT - CAMEL 2.0 ONWARDS

CHAPTER Il - COMPONENT APPENDIX

508

http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://code.google.com/p/camel-extra/wiki/EsperDemo
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

 Using Camel 1.x
This documentation is only for Camel 2.0 or newer. If you are using Camel |.x then
see this link instead.

The File component provides access to file systems, allowing files to be processed by any other
Camel Components or messages from other components to be saved to disk.

URI format

file:directoryName [?options]

or

file://directo

Where directoryName represents the underlying file directory.

You can append query options to the URI in the following format,
?option=value&option=values...

URI Options

Common

Default s
Name Value Description

Automatically create missing directories in the file's pathname. For the file consumer, that means creating the starting directory. For the file

autoCreate true) y N 5
producer, it means the directory to where the files should be written.

bufferSize 128kb Write buffer sized in bytes.

Use Expression such as File Language to dynamically set the filename. For consumers, it's used as a filename filter. For producers, it's used to

evaluate the filename to write. If an expression is set, it take precedence over the Came1FileName header. (Note: The header itself can
£ileName null also be an Expression). The expression options support both String and Expression types. If the expression is a String type, it is
always evaluated using the File Language. If the expression is an Expression type, the specified Expression type is used - this allows
you, for instance, to use OGNL expressions. For the consumer, you can use it to filter filenames, so you can for instance consume today's file
using the File Language syntax: mydata-${date:now:yyyyMMdd} . txt.

Flatten is used to flatten the file name path to strip any leading paths, so it's just the file name. This allows you to consume recursively into
flatten false sub-directories, but when you eg write the files to another directory they will be written in a single directory. Setting this to true on the
producer enforces that any file name recived in Came1FileName header will be stripped for any leading paths.

Camel 2.5: this option is used to specify the encoding of the file, and camel will set the Exchange property with Exchange. CHARSET_NAME

charset null
with the value of this option.

509 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File

(/]

Only directories

Camel 2.0 only support endpoints configured with a starting directory. So the
directoryName must be a directory.

If you want to consume a single file only, you can use the fileName option, e.g. by
setting fileName=thefilename.

Also, the starting directory must not contain dynamic expressions with ${ }
placeholders. Again use the £i1leName option to specify the dynamic part of the
filename.

In Camel |.x you could also configure a file and this caused more harm than good as it could
lead to confusing situations.

Avoid reading files currently being written by another application
Beware the JDK File IO API is a bit limited in detecting whether another application
is currently writing/copying a file. And the implementation can be different
depending on OS platform as well. This could lead to that Camel thinks the file is
not locked by another process and start consuming it. Therefore you have to do
you own investigation what suites your environment. To help with this Camel
provides different readLock options that you can use. See also the section
Consuming files from folders where others drop files directly.

Consumer only

Default s
Name Description
Value
initialDelay 1000 Milliseconds before polling the file/directory starts.
delay 500 Milliseconds before the next poll of the file/directory.
Set to true to use fixed delay between pools, otherwise fixed rate is used. See ScheduledExecutorService in JDK
useFixedDelay false N
for details.
recursive false If a directory, will look for files in all the sub-directories as well.
delete false If true, the file will be deleted after it is processed
If true, the file is not moved or deleted in any way. This option is good for readonly data, or for ETL type
noop false requirements. If noop=t rue, Camel will set idempotent=true as well, to avoid consuming the same files over
and over again.
reMove null Use Expression such as File Language to dynamically set the filename when moving it before processing. For
P example to move in-progress files into the order directory set this value to order.
nove camel Use Expression such as File Language to dynamically set the filename when moving it after processing. To move
. files into a . done subdirectory just enter .done.
Use Expression such as File Language to dynamically set the filename when moving failed files after processing.
moveFailed null To move files into a error subdirectory just enter error. Note: When moving the files to another location it
can/will handle the error when you move it to another location so Camel cannot pick up the file again.
include null Is used to include files, if filename matches the regex pattern.
exclude null Is used to exclude files, if filename matches the regex pattern.

CHAPTER Il - COMPONENT APPENDIX

510

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://cwiki.apache.org/confluence/display/CAMEL/ETL
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

511

idempotent

false

Option to use the Idempotent Consumer EIP pattern to let Camel skip already processed files. Will by default use a
memory based LRUCache that holds 1000 entries. If noop=true then idempotent will be enabled as well to avoid
consuming the same files over and over again.

idempotentRepository

null

Pluggable repository as a org.apache.camel.processor.idempotent.MessageldRepository class. Will by default use
MemoryMessageIdRepository if none is specified and idempotent is true.

inProgressRepository

memory

Pluggable in-progress repository as a org.apache.camel.processor.idempotent.MessageldRepository class. The in-
progress repository is used to account the current in progress files being consumed. By default a memory based
repository is used.

filter

null

Pluggable filter as a org.apache.camel.component.file.GenericFileFilter class. Will skip files if
filter returns false inits accept () method. Camel also ships with an ANT path matcher filter in the
camel-spring component. More details in section below.

sorter

null

Pluggable sorter as a java.util. Comparator<org.apache.camel.component file.GenericFile> class.

sortBy

null

Built-in sort using the File Language. Supports nested sorts, so you can have a sort by file name and as a 2nd group
sort by modified date. See sorting section below for details.

readLock

markerFile

Used by consumer, to only poll the files if it has exclusive read-lock on the file (i.e. the file is not in-progress or
being written). Camel will wait until the file lock is granted.
This option provides the build in strategies:
= markerFile is the behaviour from Camel |.x, where Camel will create a marker file and hold
a lock on the marker file. This option is not avail for the FTP component.
= changed is using file length/modification timestamp to detect whether the file is currently being
copied or not. Will at least use | sec. to determine this, so this option cannot consume files as
fast as the others, but can be more reliable as the JDK IO API cannot always determine whether
afile is currently being used by another process. This option is not avail for the FTP
component.
= fileLockisfor using java.nio.channels.FileLock. This option is not avail for the
FTP component.
= rename is for using a try to rename the file as a test if we can get exclusive read-lock.
= none is for no read locks at all.

readLockTimeout

Optional timeout in milliseconds for the read-lock, if supported by the read-lock. If the read-lock could not be
granted and the timeout triggered, then Camel will skip the file. At next poll Camel, will try the file again, and this
time maybe the read-lock could be granted. Use a value of 0 or lower to indicate forever. In Camel 2.0 the
default value is 0. In Camel 2.1 the default value is 10000. Currently fileLock, changed and rename
support the timeout.

exclusiveReadLockStrategy

null

Pluggable read-lock as a
org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy
implementation.

processStrategy

null

A pluggable org.apache.camel.component.file.GenericFileProcessStrategy allowing you to
implement your own readLock option or similar. Can also be used when special conditions must be met before a
file can be consumed, such as a special ready file exists. If this option is set then the readLock option does not
apply.

maxMessagesPerPoll

An integer that defines the maximum number of messages to gather per poll. By default, no maximum is set. Can
be used to set a limit of e.g. 1000 to avoid having the server read thousands of files as it starts up. Set a value of 0
or negative to disabled it.

startingDirectoryMustExist

false

Camel 2.5: Whether the starting directory must exist. Mind that the autoCreate option is default enabled,
which means the starting directory is normally auto created if it doesn't exist. You can disable autoCreate and
enable this to ensure the starting directory must exist. Will thrown an exception if the directory doesn't exist.

directoryMustExist

false

Camel 2.5: Similar to startingDirectoryMustExist but this applies during polling recursive sub
directories.

Default behavior for file consumer

* By default the file is locked for the duration of the processing.

* After the route has completed, files are moved into the . camel subdirectory, so
that they appear to be deleted.

* The File Consumer will always skip any file whose name starts with a dot, such as .,

.camel, .m2 or .groovy.

* Only files (not directories) are matched for valid filename, if options such as:
include or exclude are used.

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2

Producer only

Default "
Name Description
Value
What to do if a file already exists with the same name. The following values can be specified: Override, Append, Fail and
. Ignore. Override, which is the default, replaces the existing file. Append adds content to the existing file. Fail throws a
fileExist Override

GenericFileOperationException, indicating that there is already an existing file. Ignore silently ignores the
problem and does not override the existing file, but assumes everything is okay.

This option is used to write the file using a temporary name and then, after the write is complete, rename it to the real name.
tempPrefix null Can be used to identify files being written and also avoid consumers (not using exclusive read locks) reading in progress files.
Is often used by FTP when uploading big files.

Camel 2.1: The same as tempPrefix option but offering a more fine grained control on the naming of the temporary

tempFileName null
® filename as it uses the File Language.

Camel 2.2: Will keep the last modified timestamp from the source file (if any). Will use the

Exchange.FILE_LAST MODIFIED header to located the timestamp. This header can contain either a
keepLastModified false java.util.Date or long with the timestamp. If the timestamp exists and the option is enabled it will set this timestamp

on the written file. Note: This option only applies to the file producer. You cannot use this option with any of the ftp

producers.

Camel 2.3: Whether or not to eagerly delete any existing target file. This option only applies when you use
fileExists=Override and the tempFileName option as well. You can use this to disable (set it to false) deleting the

eagerDeleteTargetFile true target file before the temp file is written. For example you may write big files and want the target file to exists during the
temp file is being written. This ensure the target file is only deleted until the very last moment, just before the temp file is
being renamed to the target filename.

Default behavior for file producer

* By default it will override any existing file, if one exist with the same name.

Move and Delete operations
Any move or delete operations is executed after (post command) the routing has completed;
so during processing of the Exchange the file is still located in the inbox folder.

Lets illustrate this with an example:

from("file://inbox?move=.done") .to ("bean:handleOrder") ;

When a file is dropped in the inbox folder, the file consumer notices this and creates a new
FileExchange thatis routed to the handleOrder bean. The bean then processes the
File object. At this point in time the file is still located in the inbox folder. After the bean
completes, and thus the route is completed, the file consumer will perform the move operation
and move the file to the . done sub-folder.

The move and preMove options should be a directory name, which can be either relative
or absolute. If relative, the directory is created as a sub-folder from within the folder where the
file was consumed.

By default, Camel will move consumed files to the . camel sub-folder relative to the
directory where the file was consumed.

If you want to delete the file after processing, the route should be:

CHAPTER Il - COMPONENT APPENDIX

512

https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

513

& Override is now default
In Camel |.x the Append is the default for the file producer. We have changed this
to Override in Camel 2.0 as this is also the default file operation using
java.io.File.
And also the default for the FTP library we use in the camel-ftp component.

from("file: inobox?delete=true") .to("bean:handleOrder") ;

We have introduced a pre move operation to move files before they are processed. This
allows you to mark which files have been scanned as they are moved to this sub folder before
being processed.

from("file: inbox?preMove=inprogress") .to("bean:handleOrder") ;

You can combine the pre move and the regular move:

from("file: inbox?preMove=inprogress&move=.done") .to ("bean:handleOrder") ;

So in this situation, the file is in the inprogress folder when being processed and after it's
processed, it's moved to the . done folder.

Fine grained control over Move and PreMove option

The move and preMove option is Expression-based, so we have the full power of the File
Language to do advanced configuration of the directory and name pattern.

Camel will, in fact, internally convert the directory name you enter into a File Language
expression. So when we enter move=.done Camel will convert this into:
${file:parent}/.done/${file:onlyname}. This is only done if Camel detects that
you have not provided a ${ } in the option value yourself. So when you enter a ${ } Camel will
not convert it and thus you have the full power.

So if we want to move the file into a backup folder with today's date as the pattern, we can
do:

move=backup/${date:now:yyyyMMdd}/${file:name}

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
parent
onlyname
https://cwiki.apache.org/confluence/display/CAMEL/FTP2

About moveFailed

The moveFailed option allows you to move files that could not be processed succesfully
to another location such as a error folder of your choice. For example to move the files in an
error folder with a timestamp you can use moveFailed=/error/
${file:name.noext}-${date:now:yyyyMMddHHmmssSSS}.S${file:ext}.

See more examples at File Language

Message Headers

The following headers are supported by this component:

File producer only

Header Description

Specifies the name of the file to write (relative to the endpoint directory). The name can be a String; a String with a File Language or

CamelFileName y . . N o . .
Simple expression; or an Expression object. If it's nul1 then Camel will auto-generate a filename based on the message unique ID.

The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-users

CamelFileNameProduced N N
with the name of the file that was written.

File consumer only

Header Description
CamelFileName Name of the consumed file as a relative file path with offset from the starting directory configured on the endpoint.
CamelFileNameOnly Only the file name (the name with no leading paths).

A boolean option specifying whether the consumed file denotes an absolute path or not. Should normally be false for relative paths.
CamelFileAbsolute Absolute paths should normally not be used but we added to the move option to allow moving files to absolute paths. But can be used
elsewhere as well.

CamelFileAbsolutePath The absolute path to the file. For relative files this path holds the relative path instead.

CamelFilePath The file path. For relative files this is the starting directory + the relative filename. For absolute files this is the absolute path.

CamelFileRelativePath The relative path.

CamelFileParent The parent path.
CamelFileLength A long value containing the file size.
CamelFileLastModified A Date value ining the last modified ti amp of the file.

Batch Consumer

This component implements the Batch Consumer.

Exchange Properties, file consumer only

As the file consumer is BatchConsumer it supports batching the files it polls. By batching it
means that Camel will add some properties to the Exchange so you know the number of files
polled the current index in that order.

CHAPTER Il - COMPONENT APPENDIX

514

name.noext
ext
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

515

Property Description

CamelBatchSize The total number of files that was polled in this batch.

CamelBatchIndex The current index of the batch. Starts from 0.

CamelBatchComplete A boolean value indicating the last Exchange in the batch. Is only true for the last entry.

This allows you for instance to know how many files exists in this batch and for instance let the
Aggregator aggregate this number of files.

Common gotchas with folder and filenames

When Camel is producing files (writing files) there are a few gotchas affecting how to set a
filename of your choice. By default, Camel will use the message ID as the filename, and since the
message ID is normally a unique generated ID, you will end up with filenames such as: ID-
MACHINENAME-2443-1211718892437-1-0. If such a filename is not desired, then you
must provide a filename in the Came1FileName message header. The constant,
Exchange.FILE NAME, can also be used.

The sample code below produces files using the message ID as the filename:
from("direct:report") .to("file:target/reports");
To use report. txt as the filename you have to do:

from("direct:report") .setHeader (Exchange.FILE NAME, constant ("report.txt")).to(

"file:target/reports");

.. the same as above, but with Came1FileName:

from("direct:report") .setHeader ("CamelFileName", constant ("report.txt")) .to(

"file:target/reports");

And a syntax where we set the filename on the endpoint with the fileName URI option.

from("direct:report").to("file:target/reports/?fileName=report.txt");

Filename Expression

Filename can be set either using the expression option or as a string-based File Language
expression in the Came1FileName header. See the File Language for syntax and samples.

Consuming files from folders where others drop files directly

Beware if you consume files from a folder where other applications write files directly. Take a
look at the different readLock options to see what suits your use cases. The best approach is

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

however to write to another folder and after the write move the file in the drop folder.
However if you write files directly to the drop folder then the option changed could better
detect whether a file is currently being written/copied as it uses a file changed algorithm to see
whether the file size / modification changes over a period of time. The other read lock options
rely on Java File API that sadly is not always very good at detecting this.

Samples

Read from a directory and write to another directory
from("file://inputdir/?delete=true") .to("file://outputdir")
Listen on a directory and create a message for each file dropped there. Copy the contents to

the outputdir and delete the file in the inputdir.

Reading recursive from a directory and write the another
from("file: inputdir/?recursive=true&delete=true") .to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to
the outputdir and delete the file in the inputdir. Will scan recursively into sub-
directories. Will lay out the files in the same directory structure in the outputdir as the
inputdir, including any sub-directories.

inputdir/foo.txt
inputdir/sub/bar.txt

Will result in the following output layout:

outputdir/foo.txt
outputdir/sub/bar.txt

Using flatten

If you want to store the files in the outputdir directory in the same directory, disregarding the
source directory layout (e.g. to flatten out the path), you just add the flatten=true option
on the file producer side:

CHAPTER Il - COMPONENT APPENDIX

516

from("file: inputdir/?recursive=true&delete=true") .to("file://outputdir?flatten=true")

Will result in the following output layout:

outputdir/foo.txt
outputdir/bar.txt

Reading from a directory and the default move operation

Camel will by default move any processed file into a . camel subdirectory in the directory the
file was consumed from.

from("file://inputdir/?recursive=trues&delete=true").to("file://outputdir"

Affects the layout as follows:
before

inputdir/foo.txt
inputdir/sub/bar.txt

after

inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt
outputdir/foo.txt
outputdir/sub/bar.txt

Read from a directory and process the message in java

from("file: inputdir/") .process (new Processor() {
public void process (Exchange exchange) throws Exception {
Object body = exchange.getIn() .getBody();
do some business logic with the input bo
}
3

The body will be a Fi 1e object that points to the file that was just dropped into the
inputdir directory.

517 CHAPTER Il - COMPONENT APPENDIX

Read files from a directory and send the content to a jms queue

from("file://inp /") .convertBodyTo (String.class) .to("Jjms:test.queue")

CAlr/

By default the file endpoint sends a FileMessage which contains a File object as the body.
If you send this directly to the JMS component the JMS message will only contain the File
object but not the content. By converting the File to a String, the message will contain the
file contents what is probably what you want.

The route above using Spring DSL:

<route>
<from uri="file://inputdir/"/>
<convertBodyTo type="java.lang.String"/>
<to uri="jms:test.queue"/>

</route>

Writing to files

Camel is of course also able to write files, i.e. produce files. In the sample below we receive
some reports on the SEDA queue that we processes before they are written to a directory.

public void testToFile() throws Exception {
MockEndpoint mock = getMockEndpoint ("mock:result");
mock.expectedMessageCount (1) ;
mock.expectedFileExists ("target/test-reports/report.txt");

template.sendBody ("direct:reports"”, "This is a great report");

assertMockEndpointsSatisfied();

protected JndiRegistry createRegistry() throws Exception {

bind our processor in the registry with the given id
JndiRegistry reg = super.createRegistry();
reg.bind ("processReport", new ProcessReport());

return reg;

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
public void configure() throws Exception ({

from the queue 1s pr

files in

y are wr

from("direct:reports") .processRef ("processReport") .to("file://target/

s", "mock:result");

CHAPTER Il - COMPONENT APPENDIX

518

519

private class ProcessReport implements Processor {

public void process (Exchange exchange) throws Exception ({
String body = exchange.getIn().getBody(String.class);
// do some business lo

ut to the file
() .setBody (body) ;

set the output filename using java code logic, notice that this is done by

a special header property of the out exchange

exchange.getOut () .setHeader (Exchange.FILE_NAME, "report.txt");

Write to subdirectory using Exchange.FILE NAME

Using a single route, it is possible to write a file to any number of subdirectories. If you have a
route setup as such:

<route>

<from uri="bean:myBean"/>

<to uri="file:/rootDirectory"/>
</route>

You can have myBean set the header Exchange.FILE NAME to values such as:

Exchange.FILE_ NAME hello.txt => /rootDirectory/hello.txt
Exchange.FILE NAME = foo/bye.txt => /rootDirectory/foo/bye.txt

This allows you to have a single route to write files to multiple destinations.

Using expression for filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-
folder name:

from("file: inbox?move=backup/${date:now:yyyyMMdd}/S${file:name}") .to("...");

See File Language for more samples.

CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/File+Language

Avoiding reading the same file more than once (idempotent consumer)

Camel supports Idempotent Consumer directly within the component so it will skip already
processed files. This feature can be enabled by setting the idempotent=true option.

from("file: inbox?idempotent=true") .to("...");

By default Camel uses a in memory based store for keeping track of consumed files, it uses a
least recently used cache storing holding up to 1000 entries. You can plugin your own
implementation of this store by using the idempotentRepository option using the # sign
in the value to indicate it's a referring to a bean in the Registry with the specified id.

<!-- define our store as a plain spring bean -->

<bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

<route>
<from uri="file://inbox?idempotent=true& idempotentRepository=#myStore"/>
<to uri="bean:processInbox"/>

</route>

Camel will log at DEBUG level if it skips a file because it has been consumed before:

DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip this
file: target\idempotent\report.txt

Using a file based idempotent repository

In this section we will use the file based idempotent repository
org.apache.camel.processor.idempotent.FileIdempotentRepository
instead of the in-memory based that is used as default.
This repository uses a Ist level cache to avoid reading the file repository. It will only use the file
repository to store the content of the Ist level cache. Thereby the repository can survive
server restarts. It will load the content of the file into the Ist level cache upon startup. The file
structure is very simple as it store the key in separate lines in the file. By default, the file store
has a size limit of Imb when the file grew larger Camel will truncate the file store be rebuilding
the content by flushing the |st level cache in a fresh empty file.

We configure our repository using Spring XML creating our file idempotent repository and
define our file consumer to use our repository with the idempotentRepository using #
sign to indicate Registry lookup:

<!-- this is our file ba

file —->

<bean id="fileStore"

CHAPTER Il - COMPONENT APPENDIX

520

https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

class="org.apache.camel.processor.idempotent.FileIdempotentRepository">

<!-- the filename for the store -->
<property name="fileStore" value="target/fileidempotent/.filestore.dat"/>
<!-- the max filesize in bytes for the file. Camel will trunk and flush the cache

if the file gets bigger -->
<property name="maxFileStoreSize" value="512000"/>

nts in our store -->

<!-- the num
<property name="cacheSize" value="250"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file://target/fileidempotent/
?idempotent=true&idempotentRepository=#fileStoresamp;move=done/${file:name}" />
<to uri="mock:result"/>
</route>
</camelContext>

Using a JPA based idempotent repository

In this section we will use the JPA based idempotent repository instead of the in-memory based
that is used as default.
First we need a persistence-unit in META-INF/persistence.xml where we need to

use the class
org.apache.camel .processor.idempotent. jpa.MessageProcessed as model.

<persistence-unit name="idempotentDb" transaction-type="RESOURCE LOCAL">
<class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

<properties>
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/
idempotentTest;create=true"/>
<property name="openjpa.ConnectionDriverName"
value="org.apache.derby.jdbc.EmbeddedDriver" />
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>
</properties>
</persistence-unit>

Then we need to setup a Spring jpaTemplate in the spring XML file:

<!-- this is standard spring JPA configuration -->
<bean id="jpaTemplate" class="org.springframework.orm.jpa.JpaTemplate">
<property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<bean id="entityManagerFactory"

521 CHAPTER Il - COMPONENT APPENDIX

class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
1ed in the

DB as the persite

use idem

xml file -->

persiste

<property name="persistenceUnitName" value="idempotentDb"/>
</bean>

And finally we can create our JPA idempotent repository in the spring XML file as well:

pa based idempotent repository we want to use in the file consumer

<bean id="jpaStore"
class="org.apache.camel.processor.idempotent. jpa.JpaMessageIdRepository">

<!-- Here we refer to the spring jpaTemplat =
<constructor-arg index="0" ref="jpaTemplate"/>
<!-- This 2nd parameter is the name (= a cateogry name) .

You can have different repositories with different names -->
<constructor-arg index="1" value="FileConsumer"/>
</bean>

And yes then we just need to refer to the jpaStore bean in the file consumer endpoint using
the [[idempotentRepository}} using the # syntax option:

<route>
<from uri="file://inbox?idempotent=true& idempotentRepository=#jpaStore"/>
<to uri="bean:processInbox"/>

</route>

Filter using org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. You can then configure the endpoint with such a
filter to skip certain files being processed.

In the sample we have build our own filter that skips files starting with skip in the filename:

public class MyFileFilter implements GenericFileFilter ({
public boolean accept (GenericFile pathname) {
we dont a pt any files starting with skip in the name

return !pathname.getFileName () .startsWith ("skip");

And then we can configure our route using the filter attribute to reference our filter (using #
notation) that we have defines in the spring XML file:

<!-- define our sorter as a plain spring bean -->

<bean id="myFilter" class="com.mycompany.MyFileSorter"/>

CHAPTER Il - COMPONENT APPENDIX

522

<route>
<from uri="file://inbox?filter=#myFilter"/>
<to uri="bean:processInbox"/>

</route>

Filtering using ANT path matcher

The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to
depend on camel-spring if you are using Maven.
The reasons is that we leverage Spring's AntPathMatcher to do the actual matching.

The file paths is matched with the following rules:
= ? matches one character
= * matches zero or more characters
= ** matches zero or more directories in a path
The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<template id="camelTemplate"/>
<!-- use myFilter as filter to allow setting ANT paths for which files to scan for
<endpoint id="myFileEndpoint" uri="file://target/
antpathmatcher?recursive=true& filter=#myAntFilter" />

<route>
<from ref="myFileEndpoint"/>
<to uri="mock:result"/>
</route>
</camelContext>

<!-- we use the antpath file filter to use ant paths for includes and exlucde -->
<bean id="myAntFilter"
class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">

<!-- include and file in the bfolder that has day in the name -->

<property name="includes" value="**/subfolder/**/*day*"/>

<!-- exclude all files with bad in name or .xml files. Use comma to sepera

multiple exclude
<property name="excludes" value="**/*bad*, **/* xml"/>
</bean>

Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the build in
java.util.Comparator in Java. You can then configure the endpoint with such a
comparator and have Camel sort the files before being processed.

523 CHAPTER Il - COMPONENT APPENDIX

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

In the sample we have built our own comparator that just sorts by file name:

public class MyFileSorter implements Comparator<GenericFile> {
public int compare (GenericFile ol, GenericFile o02) ({
return ol.getFileName () .compareToIgnoreCase (02.getFileName ()) ;

And then we can configure our route using the sorter option to reference to our sorter
(mySorter) we have defined in the spring XML file:

{!-- define our sorter as a plain spring bean -->

<bean id="mySorter" class="com.mycompany.MyFileSorter"/>

<route>
<from uri="file://inbox?sorter=#mySorter"/>
<to uri="bean:processInbox"/>

</route>

Sorting using sortBy

Camel supports pluggable sorting strategies. This strategy it to use the File Language to
configure the sorting. The sortBy option is configured as follows:

sortBy=group l;group 2;group 3;...

Where each group is separated with semi colon. In the simple situations you just use one
group, so a simple example could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing reverse: to the group, so
the sorting is now Z..A:

sortBy=reverse:file:name

As we have the full power of File Language we can use some of the other parameters, so if we
want to sort by file size we do:

sortBy=file:length

You can configure to ignore the case, using ignoreCase: for string comparison, so if you
want to use file name sorting but to ignore the case then we do:

CHAPTER Il - COMPONENT APPENDIX

524

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

& URI options can reference beans using the # syntax
In the Spring DSL route about notice that we can refer to beans in the Registry by
prefixing the id with #. So writing sorter=#mySorter, will instruct Camel to go
look in the Registry for a bean with the ID, mySorter.

sortBy=ignoreCase:file:name

You can combine ignore case and reverse, however reverse must be specified first:

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modifed

And then we want to group by name as a 2nd option so files with same modifcation is sorted by
name:

sortBy=file:modifed;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine
as it will be in milliseconds, but what if we want to sort by date only and then subgroup by
name?

Well as we have the true power of File Language we can use the its date command that
supports patterns. So this can be solved as:

sortBy=date:file:yyyyMMdd; file:name

Yeah, that is pretty powerful, oh by the way you can also use reverse per group, so we could
reverse the file names:

sortBy=date:file:yyyyMMdd; reverse:file:name

Using GenericFileProcessStrategy

The option processStrategy can be used to use a custom
GenericFileProcessStrategy that allows you to implement your own begin, commit
and rollback logic.

525 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

For instance lets assume a system writes a file in a folder you should consume. But you should
not start consuming the file before another ready file have been written as well.
So by implementing our own GenericFileProcessStrategy we can implement this
as:
* Inthe begin () method we can test whether the special ready file exists. The begin
method returns a boolean to indicate if we can consume the file or not.
* in the commit () method we can move the actual file and also delete the ready file.

Debug logging
This component has log level TRACE that can be helpful if you have problems.

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

= File Language

= FTP2

FLATPACK COMPONENT

The Flatpack component supports fixed width and delimited file parsing via the FlatPack library.
Notice: This component only supports consuming from flatpack files to Object model. You
can not (yet) write from Object model to flatpack format.

Maven users will need to add the following dependency to their pom. xm1 for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>
<I=—="1us the same version as your Camel core version —-->

</dependency>

URI format

flatpack: [delim|fixed]:flatPackConfig.pzmap.xml[?options]

Or for a delimited file handler with no configuration file just use

CHAPTER Il - COMPONENT APPENDIX

526

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
http://flatpack.sourceforge.net

527

flatpack:someName [?options]

You can append query options to the URI in the following format,
?option=value&option=values&. ..

URI Options

Name Default Value Description

delimiter ’ The default character delimiter for delimited files.

textQualifier " The text qualifier for delimited files.

ignoreFirstRecord true Whether the first line is ignored for delimited files (for the column headers).

splitRows true As of Camel 1.5, the component can either process each row one by one or the entire content at once.
Examples

 flatpack:fixed:foo.pzmap.xml creates a fixed-width endpoint using the
foo.pzmap.xml file configuration.

*+ flatpack:delim:bar.pzmap.xml creates a delimited endpoint using the
bar.pzmap.xml file configuration.

* flatpack:foo creates a delimited endpoint called foo with no file configuration.

Message Headers

Camel will store the following headers on the IN message:

Header Description

camelFlatpackCounter The current row index. For splitRows=false the counter is the total number of rows.

Message Body

The component delivers the data in the IN message as a
org.apache.camel.component.flatpack.DataSetList object that has
converters for java.util.Map or java.util.List.

Usually you want the Map if you process one row at a time (splitRows=true). Use List
for the entire content (splitRows=false), where each element in the list is a Map.

Each Map contains the key for the column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange.getIn() .getBody(Map.class);
String firstName = row.get ("FIRSTNAME") ;

However, you can also always getitas a List (even for splitRows=true). The same
example:

CHAPTER Il - COMPONENT APPENDIX

List data = exchange.getIn() .getBody(List.class);
Map row = (Map)data.get(0);
String firstName = row.get ("FIRSTNAME") ;

Header and Trailer records

In Camel |.5 onwards the header and trailer notions in Flatpack are supported. However, you
must use fixed record IDs:

* header for the header record (must be lowercase)

* trailer for the trailer record (must be lowercase)
The example below illustrates this fact that we have a header and a trailer. You can omit one or
both of them if not needed.

<RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="DATE" length="8"/>

</RECORD>

<COLUMN name="FIRSTNAME" length="35" />
<COLUMN name="LASTNAME" length="35" />
<COLUMN name="ADDRESS" length="100" />
<COLUMN name="CITY" length="100" />
<COLUMN name="STATE" length="2" />
<COLUMN name="ZIP" length="5" />

<RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="STATUS" length="7"/>

</RECORD>

Using the endpoint

A common use case is sending a file to this endpoint for further processing in a separate route.
For example:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="file://someDirectory"/>
<to uri="flatpack:foo"/>
</route>

<route>
<from uri="flatpack:foo"/>

</route>
</camelContext>

CHAPTER Il - COMPONENT APPENDIX

528

You can also convert the payload of each message created to a Map for easy Bean Integration

FLATPACK DATAFORMAT

The Flatpack component ships with the Flatpack data format that can be used to format
between fixed width or delimited text messages to a List of rows as Map.
* marshal = from List<Map<String, Object>>to OutputStream (can be
converted to String)
= unmarshal = from java.io.InputStream (suchasa File or String)toa
java.util.List asan
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to process each row
one by one you can split the exchange, using Splitter.
Notice: The Flatpack library does currently not support header and trailers for the marshal
operation.

Options

The data format has the following options:

Option Default Description

The flatpack pzmap configuration file. Can be
definition null omitted in simpler situations, but its preferred to
use the pzmap.

fixed false Delimited or fixed.

Whether the first line is ignored for delimited files

ignoreFirstRecord true
g (for the column headers).

textQualifier " If the text is qualified with a char such as ".
delimiter ’ The delimiter char (could be ; , or similar)
parserFactory null Uses the default Flatpack parser factory.
Usage

To use the data format, simply instantiate an instance and invoke the marhsal or unmarshal
operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat () ;
fp.setDefinition (new ClassPathResource ("INVENTORY-Delimited.pzmap.xml")) ;

529 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Flatpack
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

from("file:order/in") .unmarshal (df) .to ("seda:queue:neworder") ;

The sample above will read files from the order/in folder and unmarshal the input using the
Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the
structure of the files. The result is a DataSetList object we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat () ;

df.setDefinition(new ClassPathResource ("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);

df.setIgnoreFirstRecord(false);

from("seda:people") .marshal (df) .convertBodyTo (String.class) .to ("Jjms:queue:people");

In the code above we marshal the data from a Object representation as a List of rows as
Maps. The rows as Map contains the column name as the key, and the the corresponding
value. This structure can be created in Java code from e.g. a processor. We marshal the data
according to the Flatpack format and convert the result as a String object and store it on a
JMS queue.

Dependencies

To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupIld>
<artifactId>camel-flatpack</artifactId>
<version>1.5.0</version>

</dependency>

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

FREEMARKER

Available as of Camel 1.6

CHAPTER Il - COMPONENT APPENDIX

530

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

531

The freemarker: component allows you to process a message using a Freemarker
template. This can be ideal when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom. xm1 for this
component:

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-freemarker</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version —-->

</dependency>

URI format

freemarker:templateName [?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template (eg: file://folder/myfile.ftl).

You can append query options to the URI in the following format,
?option=valueg&option=values&. ..

Options

Option Default Description

contentCache true Cache for the resource content when its loaded.

encoding null Character encoding of the resource content.

Headers
Camel will store a reference to the resource in the message header in the key
org.apache.camel.freemarker.resource. The Resource is an
org.springframework.core.io.Resource object. And the key
org.apache.camel.freemarker.resourceUri holds the templateName as a
String object.

Note From Camel 2.1 and Camel |.6.2, freemarker endpoint will not store these headers
into to message, as these header will cause some side effect on the dynamic templates feature.

Headers set during the Freemarker evaluation are returned to the message and added as
headers. Then its kinda possible to return values from Freemarker to the Message.

An example: Set the header value of fruit in the Freemarker template:

${request.setHeader ('fruit', 'Apple')}

CHAPTER Il - COMPONENT APPENDIX

http://freemarker.org/
https://cwiki.apache.org/confluence/display/CAMEL/Templating
/folder/myfile.ftl

The header, fruit, is now accessible from the message.out.headers.

Freemarker Context

Camel will provide exchange information in the Freemarker context (just a Map). The
Exchange is transfered as:

key value

exchange The Exchange itself.

headers The headers of the In message.

camelContext The Camel Context.

request The In message.

body The In message body.

response The Out message (only for InOut message exchange pattern).

Hot reloading

The Freemarker template resource is by default not hot reloadable for both file and classpath
resources (expanded jar). If you set contentCache=false, then Camel will not cache the
resource and hot reloading is thus enabled. This scenario can be used in development.

Dynamic templates

Available as of Camel 2.1

Camel provides two headers by which you can define a different resource location for a
template or the template content itself. If any of these headers is set then Camel uses this over
the endpoint configured resource. This allows you to provide a dynamic template at runtime.

Header Type Description

CamelFreemarkerResourceUri String Camel 2.1: A URI for the template resource to use instead of the endpoint configured.
CamelFreemarkerTemplate String Camel 2.1: The template to use instead of the endpoint configured.
Samples

For example you could use something like:

from("activemg:My.Queue") .
to ("freemarker:com/acme/MyResponse.ftl") ;

To use a Freemarker template to formulate a response for a message for InOut message
exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you
could use:

CHAPTER Il - COMPONENT APPENDIX

532

533

from("activemg:My.Queue") .
to("freemarker:com/acme/MyResponse.ftl") .
to("activemg:Another.Queue") ;

And to disable the content cache, e.g. for development usage where the . £t1 template should
be hot reloaded:

from("activemg:My.Queue") .
to ("freemarker:com/acme/MyResponse.ftl?contentCache=false").
to("activemg:Another.Queue") ;

And a file-based resource:

from("activemqg:My.Queue") .
to ("freemarker:file://myfolder/My

to("activemg:Another.Queue") ;

In Camel 2.1 it's possible to specify what template the component should use dynamically via
a header, so for example:

from("direct:in").
setHeader ("CamelFreemarkerResourceUri") .constant ("path/to/my/template.ftl") .

to ("freemarker:dummy") ;

The Email Sample

In this sample we want to use Freemarker templating for an order confirmation email. The
email template is laid out in Freemarker as:

Dear ${headers.lastName}, ${headers.firstName}
Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
$ {body}

And the java code:

private Exchange createletter() {
Exchange exchange = context.getEndpoint ("direct:a") .createExchange();
Message msg = exchange.getIn();
msg.setHeader ("firstName", "Claus");
msg.setHeader ("lastName", "Ibsen");
msg.setHeader ("item", "Camel in Action");
msg.setBody ("PS: Next beer is on me, James");

CHAPTER Il - COMPONENT APPENDIX

return exchange;

@QTest

public void testFreemarkerLetter ()
MockEndpoint mock =
mock.expectedMessageCount (1) ;
mock.expectedBodiesReceived ("Dear Ibsen,

Action.\n\nRegards Camel

template.send("direct:a", createletter ()

mock.assertIsSatisfied();

protected RouteBuilder createRouteBuilder ()

return new RouteBuilder () {
public void configure()

Riders Bookstore\nPS:

throws Exception ({
getMockEndpoint ("mock:result") ;

Claus\n\nThanks

Next beer is

)i

for the order of Camel in

on me, James");

throws Exception {

throws Exception ({

from("direct:a") .to("freemarker:org/apache/camel/component/freemarker/

letter.ftl") .to("mock:result");
}
bi

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

FTP/SFTP/FTPS COMPONENT - CAMEL 2.0 ONWARDS

This component provides access to remote file systems over the FTP and SFTP protocols.

Maven users will need to add the following dependency to their pom. xm1 for this

component:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-ftp</artifactId>
<version>x.x.x</version>

version as your

<!-- use the

same

</dependency>

Camel cc

version -->

DIER

CHAPTER 11

- COMPONENT APPENDIX

534

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

 Using Camel 1.x
If you are using Camel |.x then see this link for documentation.
This page is only for Camel 2.0 or newer-.

© Using FTPS
The FTPS component is only available in Camel 2.2 or newer.
FTPS (also known as FTP Secure) is an extension to FTP that adds support for the
Transport Layer Security (TLS) and the Secure Sockets Layer (SSL) cryptographic
protocols.

) Libraries used
This component uses two different libraries for the actual FTP work. FTP and FTPS
uses Apache Commons Net while SFTP uses |Craft JSCH.

URI format

ftp: [usern
sftp: [u
ftps: [

Where directoryname represents the underlying directory. Can contain nested folders.
The username is currently only possible to provide in the hostname parameter-.

If no username is provided, then anonymous login is attempted using no password.
If no port number is provided, Camel will provide default values according to the protocol (ftp
=21, sftp = 22, ftps = 2222).

You can append query options to the URI in the following format,
?option=valueg&option=values&. ..

URI Options

The options below are exclusive for the FTP2 component.

Default ..
Name Description
Value
password null Specifies the password to use to log in to the remote file system.
binary false Specifies the file transfer mode, BINARY or ASCII. Default is ASCII (false).

Camel 2.2: Whether or not to disconnect from remote FTP server right after use. Can be used for both
disconnect false consumer and producer. Disconnect will only disconnect the current connection to the FTP server. If you
have a consumer which you want to stop, then you need to stop the consumer/route instead.

535 CHAPTER Il - COMPONENT APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP
http://commons.apache.org/net/
http://www.jcraft.com/jsch/

When consuming, a local work directory can be used to store the remote file content directly in local files,

localWorkDirectory null to avoid loading the content into memory. This is beneficial, if you consume a very big remote file and thus
can conserve memory. See below for more details.
FTP and FTPS only: Specifies whether to use passive mode connections. Default is active mode
passiveMode false
(false).
FTPS only: Sets the underlying security protocol. The following values are defined:
securityProtocol TLS TLS: Transport Layer Security
SSL: Secure Sockets Layer
Camel 2.4: FTPS only: Whether or not to disable using default values for execPbsz and execProt
disableSecureDataChannelDefaults false when using secure data transfer. You can set this option to true if you want to be in absolute full control
what the options execPbsz and execProt should be used.
Camel 2.4: FTPS only: Will by default use option P if secure data channel defaults hasn't been disabled.
Possible values are:
prot 11 C: Clear
execkro na S: Safe (SSL protocol only)
E: Confidential (SSL protocol only)
P: Private
Camel 2.4: FTPS only: This option specifies the buffer size of the secure data channel. If option
execPbsz null . . i :
useSecureDataChannel has been enabled and this option has not been explicit set, then value 0 is used.
isImplicit false FTPS only: Sets the security mode(implicit/explicit). Default is explicit (false).
knownHostsFile null SFTP only: Sets the known_hosts file, so that the SFTP endpoint can do host key verification.
privateKeyFile null SFTP only: Set the private key file to that the SFTP endpoint can do private key verification.
privateKeyFilePassphrase null SFTP only: Set the private key file passphrase to that the SFTP endpoint can do private key verification.
SFTP only: Camel 2.2: Sets whether to use strict host key checking. Possible values are: no, yes and
strictHostKeyChecking no ask. ask does not make sense to use as Camel cannot answer the question for you as its meant for human
intervention. Note: The default in Camel 2.1 and below was ask.
. Specifies the maximum reconnect attempts Camel performs when it tries to connect to the remote FTP
maximumReconnectAttempts 3 N R N
server. Use 0 to disable this behavior.
reconnectDelay 1000 Delay in millis Camel will wait before performing a reconnect attempt.
. Camel 2.4: s the connect timeout in millis. This corresponds to using ftpClient.connectTimeout
connectTimeout 10000 N o)
for the FTP/FTPS. For SFTP this option is also used when attempting to connect.
. FTP and FTPS Only: Camel 2.4: Is the SocketOptions.SO_TIMEOUT value in millis. Note SFTP
soTimeout null) N . | -
will automatic use the connectTimeout as the soTimeout.
timeout 30000 FTP and FTPS Only: Camel 2.4: Is the data timeout in millis. This corresponds to using
ftpClient.dataTimeout for the FTP/FTPS. For SFTP there is no data timeout.
Camel 2.5: Whether or not to thrown an exception if a successful connection and login could not be
throwExceptionOnConnectFailed false establish. This allows a custom pollStrategy to deal with the exception, for example to stop the
consumer or the likes.
FTP and FTPS Only: Camel 2.5: To execute site commands after successful login. Multiple site
siteCommand null commands can be separated using a new line character (\n). Use help site to see which site commands
your FTP server supports.
Camel 2.6: Whether or not stepwise traversing directories should be used or not. Stepwise means that it
stepwise true will CD one directory at a time. See more details below. You can disable this in case you can't use this
approach.
Camel 2.6: Dictates what path separator char to use when uploading files. Auto = Use the path provided
separator Auto N L N "
without altering it. UNIX = Use unix style path separators. Windows = Use Windows style path separators.
. FTP and FTPS Only: Camel 2.1: Allows you to use a custom
ftpClient null . h
org.apache.commons.net.ftp.FTPClient instance.
FTP and FTPS Only: Camel 2.1: Allows you to use a custom
ftpClientConfig null . N
org.apache.commons.net.ftp.FTPClientConfig instance.
ftpClient.trustStore.file null FTPS Only: Sets the trust store file, so that the FTPS client can look up for trusted certificates.
ftpClient.trustStore.type JKS FTPS Only: Sets the trust store type.
ftpClient.trustStore.algorithm Sunx509 FTPS Only: Sets the trust store algorithm.
ftpClient.trustStore.password null FTPS Only: Sets the trust store password.
ftpClient.keyStore.file null FTPS Only: Sets the key store file, so that the FTPS client can look up for the private certificate.
ftpClient.keyStore.type JKS FTPS Only: Sets the key store type.
ftpClient.keyStore.algorithm Sunx509 FTPS Only: Sets the key store algorithm.
ftpClient.keyStore.password null FTPS Only: Sets the key store password.
ftpClient.keyStore.keyPassword null FTPS Only: Sets the private key password.

CHAPTER Il - COMPONENT APPENDIX

536

537

© FTPS component default trust store
By default, the FTPS component trust store accept all certificates. If you only want
trust selective certificates, you have to configure the trust store with the
ftpClient.trustStore.xxx options or by configuring a custom
ftpClient.

You can configure additional options on the ftpClient and ftpClientConfig from the
URI directly by using the ftpClient. or ftpClientConfig. prefix.

For example to set the setDataTimeout on the FTPClient to 30 seconds you can do:

from("ftp: oo@myserver?password=secret&ftpClient.dataTimeout=30000") .to ("bean:foo") ;

You can mix and match and have use both prefixes, for example to configure date format or
timezones.

from("ftp: f
You can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPClientConfig for possible options
and more details.
And as well for Apache Commons FTP FTPClient.

If you do not like having many and long configuration in the url you can refer to the
ftpClient or ftpClientConfig to use by letting Camel lookup in the Registry for it.

For example:

<bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
<property name="lenientFutureDates" value="true"/>
<property name="serverLanguageCode" value="fr"/>

</bean>

And then let Camel lookup this bean when you use the # notation in the url.

from("ftp: oo@myserver?password=secret&ftpClientConfig=#myConfig") .to ("bean:foo");

More URI options

CHAPTER Il - COMPONENT APPENDIX

“oo@myserver?password=secret&ftpClient.dataTimeout=30000&ftpClientConfig.serverLanguageCod

http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry

© SeeFile2 as all the options there also applies for this component.

Stepwise changing directories

Camel FTP can operate in two modes in terms of traversing directories when consuming files
(eg downloading) or producing files (eg uploading)

= stepwise

* not stepwise
You may want to pick either one depending on your situation and security issues. Some Camel
end users can only download files if they use stepwise, while others can only download if they
do not. At least you have the choice to pick (from Camel 2.6 onwards).

In Came 2.0 - 2.5 there is only one mode and it is:
= 2.0 to 2.4 not stepwise
= 2.5 stepwise
From Camel 2.6 onwards there is now an option stepwise you can use to control the
behavior.

Note that stepwise changing of directory will in most cases only work when the user is
confined to it's home directory and when the home directory is reported as " /".

The difference between the two of them is best illustrated with an example. Suppose we
have the following directory structure on the remote FTP server we need to traverse and
download files:

/

/one

/one/two
/one/two/sub-a
/one/two/sub-b

And that we have a file in each of sub-a (a.txt) and sub-b (b.txt) folder.

Using stepwise=true (default mode)

TYPE A

200 Type set to A

PWD

257 "/" is current directory.

CWD one

250 CWD successful. "/one" is current directory.

CWD two

250 CWD successful. "/one/two" is current directory.
SYST

215 UNIX emulated by FileZzilla

CHAPTER Il - COMPONENT APPENDIX

538

https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/File2

PORT 127,0,0,1,17,94

200 Port command successful

LIST

150 Opening data channel for directory list.

226 Transfer OK

CWD sub-a

250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,95

200 Port command successful

LIST

150 Opening data channel for directory list.

226 Transfer OK

CDUP

200 CDUP successful. "/one/two" is current directory.
CWD sub-b

250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,96

200 Port command successful

LIST

150 Opening data channel for directory list.

226 Transfer OK

CDUP

200 CDUP successful. "/one/two" is current directory.
CWD /

250 CWD successful. "/" is current directory.
PWD

257 "/" is current directory.

CWD one

250 CWD successful. "/one" is current directory.

CWD two

250 CWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97

200 Port command successful

RETR foo.txt

150 Opening data channel for file transfer.

226 Transfer OK

CWD /

250 CWD successful. "/" is current directory.

PWD

257 "/" is current directory.

CWD one

250 CWD successful. "/one" is current directory.

CWD two

250 CWD successful. "/one/two" is current directory.
CWD sub-a

250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98

200 Port command successful

RETR a.txt

150 Opening data channel for file transfer.
