
Apache Camel

USER GU IDE

Version 2.9.1

Copyright 2007-2011, Apache Software Foundation

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Table of Contents ..ii

Chapter 1
Introduction... 1

Chapter 1
Quickstart.. 1

Chapter 1
Getting Started .. 7

Chapter 1
Architecture..18

Chapter 1
Enterprise Integration Patterns35

Chapter 1
Cook Book...40

Chapter 1
Tutorials ... 111

Chapter 1
Language Appendix.. 0

Chapter 1
DataFormat Appendix... 0

Chapter 1
Pattern Appendix ... 0

Chapter 1
Component Appendix ... 0
Index... 0

ii APACHE CAMEL

CHAPTER 1

°°°°

Introduction

Apache Camel â„¢ is a versatile open-source integration framework (with
powerful Bean Integration) based on known Enterprise Integration Patterns.
Camel empowers you to define routing and mediation rules in a variety of
domain-specific languages, including a Java-based Fluent API, Spring or
Blueprint XML Configuration files, and a Scala DSL. This means you get smart
completion of routing rules in your IDE, whether in a Java, Scala or XML
editor.

Apache Camel uses URIs to work directly with any kind of Transport or
messaging model such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF, as
well as pluggable Components and Data Format options. Apache Camel is a
small library with minimal dependencies for easy embedding in any Java
application. Apache Camel lets you work with the same API regardless which
kind of Transport is used - so learn the API once and you can interact with all
the Components provided out-of-box.

Apache Camel has powerful Bean Binding and seamless integration with
popular frameworks such as Spring, Blueprint and Guice. Camel also has
extensive support for unit testing your routes.

The following projects can leverage Apache Camel as a routing and
mediation engine:

• Apache ServiceMix - the most popular and powerful distributed open
source ESB and JBI container

• Apache ActiveMQ - the most popular and powerful open source
message broker

• Apache CXF - a smart web services suite (JAX-WS and JAX-RS)
• Apache Karaf - a small OSGi based runtime in which applications can

be deployed
• Apache MINA - a high-performance NIO-driven networking framework

So don't get the hump - try Camel today!

CHAPTER 1 - INTRODUCTION 1

http://camel.apache.org/bean-integration.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/scala-dsl.html
http://camel.apache.org/uris.html
http://camel.apache.org/transport.html
http://camel.apache.org/http.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jbi.html
http://camel.apache.org/mina.html
http://camel.apache.org/cxf.html
http://camel.apache.org/components.html
http://camel.apache.org/data-format.html
http://camel.apache.org/what-are-the-dependencies.html
http://camel.apache.org/exchange.html
http://camel.apache.org/transport.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://karaf.apache.org/
http://mina.apache.org/
http://en.wikipedia.org/wiki/New_I/O

Too many buzzwords - what exactly is Camel?
Okay, so the description above is technology focused.
There's a great discussion about Camel at Stack Overflow. We
suggest you view the post, read the comments, and browse the
suggested links for more details.

2 CHAPTER 1 - INTRODUCTION

http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel

CHAPTER 2

°°°°

Quickstart

To start using Apache Camel quickly, you can read through some simple
examples in this chapter. For readers who would like a more thorough
introduction, please skip ahead to Chapter 3.

WALK THROUGH AN EXAMPLE CODE
This mini-guide takes you through the source code of a simple example.

Camel can be configured either by using Spring or directly in Java - which
this example does.

This example is available in the examples\camel-example-jms-file
directory of the Camel distribution.

We start with creating a CamelContext - which is a container for
Components, Routes etc:

CamelContext context = new DefaultCamelContext();

There is more than one way of adding a Component to the CamelContext.
You can add components implicitly - when we set up the routing - as we do
here for the FileComponent:

context.addRoutes(new RouteBuilder() {
public void configure() {

from("test-jms:queue:test.queue").to("file://test");
}

});

or explicitly - as we do here when we add the JMS Component:

ConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("vm://localhost?broker.persistent=false");
// Note we can explicit name the component
context.addComponent("test-jms",
JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

CHAPTER 2 - QUICKSTART 1

https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/spring.html
https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/download.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/components.html
http://camel.apache.org/routes.html
http://camel.apache.org/file.html

The above works with any JMS provider. If we know we are using ActiveMQ
we can use an even simpler form using the activeMQComponent() method
while specifying the brokerURL used to connect to ActiveMQ

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

In normal use, an external system would be firing messages or events
directly into Camel through one if its Components but we are going to use
the ProducerTemplate which is a really easy way for testing your
configuration:

ProducerTemplate template = context.createProducerTemplate();

Next you must start the camel context. If you are using Spring to configure
the camel context this is automatically done for you; though if you are using
a pure Java approach then you just need to call the start() method

camelContext.start();

This will start all of the configured routing rules.
So after starting the CamelContext, we can fire some objects into camel:

for (int i = 0; i < 10; i++) {
template.sendBody("test-jms:queue:test.queue", "Test Message: " + i);

}

WHAT HAPPENS?
From the ProducerTemplate - we send objects (in this case text) into the
CamelContext to the Component test-jms:queue:test.queue. These text
objects will be converted automatically into JMS Messages and posted to a
JMS Queue named test.queue. When we set up the Route, we configured the
FileComponent to listen of the test.queue.

The File FileComponent will take messages off the Queue, and save them
to a directory named test. Every message will be saved in a file that
corresponds to its destination and message id.

Finally, we configured our own listener in the Route - to take notifications
from the FileComponent and print them out as text.

That's it!

2 CHAPTER 2 - QUICKSTART

http://camel.apache.org/activemq.html
http://camel.apache.org/maven/current/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
http://camel.apache.org/components.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/spring.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/routes.html
http://camel.apache.org/file.html
http://camel.apache.org/file.html
http://camel.apache.org/routes.html
http://camel.apache.org/file.html

If you have the time then use 5 more minutes to Walk through another
example that demonstrates the Spring DSL (XML based) routing.

WALK THROUGH ANOTHER EXAMPLE

Introduction
We continue the walk from Walk through an Example. This time we take a
closer look at the routing and explains a few pointers so you wont walk into a
bear trap, but can enjoy a walk after hours to the local pub for a large beer

First we take a moment to look at the Enterprise Integration Patterns that
is the base pattern catalog for integrations. In particular we focus on the
Pipes and Filters EIP pattern, that is a central pattern. This is used for: route
through a sequence of processing steps, each performing a specific function -
much like the Java Servlet Filters.

Pipes and filters
In this sample we want to process a message in a sequence of steps where
each steps can perform their specific function. In our example we have a JMS
queue for receiving new orders. When an order is received we need to
process it in several steps:

▪ validate
▪ register
▪ send confirm email

This can be created in a route like this:

<route>
<from uri="jms:queue:order"/>
<pipeline>

<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</pipeline>
</route>

Where as the bean ref is a reference for a spring bean id, so we define our
beans using regular Spring XML as:

<bean id="validateOrder" class="com.mycompany.MyOrderValidator"/>

CHAPTER 2 - QUICKSTART 3

http://camel.apache.org/walk-through-another-example.html
http://camel.apache.org/walk-through-another-example.html
http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html

Camel 1.4.0 change
In Camel 1.4.0, CamelTemplate has been marked as @deprecated.
ProducerTemplate should be used instead and its created from the
CamelContext itself.

ProducerTemplate template = context.createProducerTemplate();

Our validator bean is a plain POJO that has no dependencies to Camel what
so ever. So you can implement this POJO as you like. Camel uses rather
intelligent Bean Binding to invoke your POJO with the payload of the received
message. In this example we will not dig into this how this happens. You
should return to this topic later when you got some hands on experience with
Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from
the JMS queue the message is routed like Pipes and Filters:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as input to the registerOrder
bean
3. the output from registerOrder bean is sent as input to the
sendConfirmEmail bean

Using Camel Components
In the route lets imagine that the registration of the order has to be done by
sending data to a TCP socket that could be a big mainframe. As Camel has
many Components we will use the camel-mina component that supports TCP
connectivity. So we change the route to:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<bean ref="sendConfirmEmail"/>

</route>

What we now have in the route is a to type that can be used as a direct
replacement for the bean type. The steps is now:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as text to the mainframe using
TCP

4 CHAPTER 2 - QUICKSTART

http://camel.apache.org/bean-binding.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html
http://camel.apache.org/components.html
http://camel.apache.org/mina.html
http://camel.apache.org/jms.html

Pipeline is default
In the route above we specify pipeline but it can be omitted as its
default, so you can write the route as:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a
multicast and "one" of the endpoints to send to (as a logical group) is a
pipeline of other endpoints. For example.

<route>
<from uri="jms:queue:order"/>
<multicast>

<to uri="log:org.company.log.Category"/>
<pipeline>

<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</pipeline>
</multicast>

</route>

The above sends the order (from jms:queue:order) to two locations at the
same time, our log component, and to the "pipeline" of beans which goes
one to the other. If you consider the opposite, sans the <pipeline>

<route>
<from uri="jms:queue:order"/>
<multicast>

<to uri="log:org.company.log.Category"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</multicast>
</route>

you would see that multicast would not "flow" the message from one bean
to the next, but rather send the order to all 4 endpoints (1x log, 3x bean) in

CHAPTER 2 - QUICKSTART 5

parallel, which is not (for this example) what we want. We need the
message to flow to the validateOrder, then to the registerOrder, then the
sendConfirmEmail so adding the pipeline, provides this facility.

3. the output from mainframe is sent back as input to the sendConfirmEmai
bean

What to notice here is that the to is not the end of the route (the world
) in this example it's used in the middle of the Pipes and Filters. In fact we
can change the bean types to to as well:

<route>
<from uri="jms:queue:order"/>
<to uri="bean:validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<to uri="bean:sendConfirmEmail"/>

</route>

As the to is a generic type we must state in the uri scheme which component
it is. So we must write bean: for the Bean component that we are using.

Conclusion
This example was provided to demonstrate the Spring DSL (XML based) as
opposed to the pure Java DSL from the first example. And as well to point
about that the to doesn't have to be the last node in a route graph.

This example is also based on the in-only message exchange pattern.
What you must understand as well is the in-out message exchange pattern,
where the caller expects a response. We will look into this in another
example.

See also
▪ Examples
▪ Tutorials
▪ User Guide

6 CHAPTER 2 - QUICKSTART

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/bean.html
http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/examples.html
http://camel.apache.org/tutorials.html
http://camel.apache.org/user-guide.html

CHAPTER 3

°°°°

Getting Started with Apache
Camel

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK
The purpose of a "patterns" book is not to advocate new techniques that the
authors have invented, but rather to document existing best practices within
a particular field. By doing this, the authors of a patterns book hope to
spread knowledge of best practices and promote a vocabulary for discussing
architectural designs.
One of the most famous patterns books is Design Patterns: Elements of
Reusable Object-oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, commonly known as the "Gang of Four" (GoF)
book. Since the publication of Design Patterns, many other pattern books, of
varying quality, have been written. One famous patterns book is called
Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions by Gregor Hohpe and Bobby Woolf. It is common for
people to refer to this book by its initials EIP. As the subtitle of EIP suggests,
the book focuses on design patterns for asynchronous messaging systems.
The book discusses 65 patterns. Each pattern is given a textual name and
most are also given a graphical symbol, intended to be used in architectural
diagrams.

THE CAMEL PROJECT
Camel (http://camel.apache.org) is an open-source, Java-based project that
helps the user implement many of the design patterns in the EIP book.
Because Camel implements many of the design patterns in the EIP book, it
would be a good idea for people who work with Camel to have the EIP book
as a reference.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 7

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://camel.apache.org/

ONLINE DOCUMENTATION FOR CAMEL
The documentation is all under the Documentation category on the right-side
menu of the Camel website (also available in PDF form. Camel-related books
are also available, in particular the Camel in Action book, presently serving
as the Camel bible--it has a free Chapter One (pdf), which is highly
recommended to read to get more familiar with Camel.

A useful tip for navigating the online documentation
The breadcrumbs at the top of the online Camel documentation can help you
navigate between parent and child subsections.
For example, If you are on the "Languages" documentation page then the
left-hand side of the reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home
page of the Apache Camel project, and clicking on "Documentation" takes
you to the main documentation page. You can interpret the "Architecture"
and "Languages" buttons as indicating you are in the "Languages" section of
the "Architecture" chapter. Adding browser bookmarks to pages that you
frequently reference can also save time.

ONLINE JAVADOC DOCUMENTATION
The Apache Camel website provides Javadoc documentation. It is important
to note that the Javadoc documentation is spread over several independent
Javadoc hierarchies rather than being all contained in a single Javadoc
hierarchy. In particular, there is one Javadoc hierarchy for the core APIs of
Camel, and a separate Javadoc hierarchy for each component technology
supported by Camel. For example, if you will be using Camel with ActiveMQ
and FTP then you need to look at the Javadoc hierarchies for the core API and
Spring API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL
In this section some of the concepts and terminology that are fundamental to
Camel are explained. This section is not meant as a complete Camel tutorial,
but as a first step in that direction.

8 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/manual.html
http://camel.apache.org/books.html
http://manning.com/ibsen
http://www.manning.com/ibsen/chapter1sample.pdf
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-spring/apidocs/index.html

Endpoint
The term endpoint is often used when talking about inter-process
communication. For example, in client-server communication, the client is
one endpoint and the server is the other endpoint. Depending on the
context, an endpoint might refer to an address, such as a host:port pair for
TCP-based communication, or it might refer to a software entity that is
contactable at that address. For example, if somebody uses
"www.example.com:80" as an example of an endpoint, they might be
referring to the actual port at that host name (that is, an address), or they
might be referring to the web server (that is, software contactable at that
address). Often, the distinction between the address and software
contactable at that address is not an important one.
Some middleware technologies make it possible for several software entities
to be contactable at the same physical address. For example, CORBA is an
object-oriented, remote-procedure-call (RPC) middleware standard. If a
CORBA server process contains several objects then a client can
communicate with any of these objects at the same physical address
(host:port), but a client communicates with a particular object via that
object's logical address (called an IOR in CORBA terminology), which consists
of the physical address (host:port) plus an id that uniquely identifies the
object within its server process. (An IOR contains some additional information
that is not relevant to this present discussion.) When talking about CORBA,
some people may use the term "endpoint" to refer to a CORBA server's
physical address, while other people may use the term to refer to the logical
address of a single CORBA object, and other people still might use the term
to refer to any of the following:

• The physical address (host:port) of the CORBA server process
• The logical address (host:port plus id) of a CORBA object.
• The CORBA server process (a relatively heavyweight software entity)
• A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least
two ways. First, it is ambiguous because it might refer to an address or to a
software entity contactable at that address. Second, it is ambiguous in the
granularity of what it refers to: a heavyweight versus lightweight software
entity, or physical address versus logical address. It is useful to understand
that different people use the term endpoint in slightly different (and hence
ambiguous) ways because Camel's usage of this term might be different to
whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many
different communication technologies. Here are some examples of the
Camel-supported endpoint technologies.

• A JMS queue.
• A web service.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 9

• A file. A file may sound like an unlikely type of endpoint, until you
realize that in some systems one application might write information
to a file and, later, another application might read that file.

• An FTP server.
• An email address. A client can send a message to an email address,

and a server can read an incoming message from a mail server.
• A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some
endpoints and connect these endpoints with routes, which I will discuss later
in Section 4.8 ("Routes, RouteBuilders and Java DSL"). Camel defines a Java
interface called Endpoint. Each Camel-supported endpoint has a class that
implements this Endpoint interface. As I discussed in Section 3.3 ("Online
Javadoc documentation"), Camel provides a separate Javadoc hierarchy for
each communications technology supported by Camel. Because of this, you
will find documentation on, say, the JmsEndpoint class in the JMS Javadoc
hierarchy, while documentation for, say, the FtpEndpoint class is in the FTP
Javadoc hierarchy.

CamelContext
A CamelContext object represents the Camel runtime system. You typically
have one CamelContext object in an application. A typical application
executes the following steps.

1. Create a CamelContext object.
2. Add endpoints â€“ and possibly Components, which are discussed in

Section 4.5 ("Components") â€“ to the CamelContext object.
3. Add routes to the CamelContext object to connect the endpoints.
4. Invoke the start() operation on the CamelContext object. This

starts Camel-internal threads that are used to process the sending,
receiving and processing of messages in the endpoints.

5. Eventually invoke the stop() operation on the CamelContext object.
Doing this gracefully stops all the endpoints and Camel-internal
threads.

Note that the CamelContext.start() operation does not block indefinitely.
Rather, it starts threads internal to each Component and Endpoint and then
start() returns. Conversely, CamelContext.stop() waits for all the threads
internal to each Endpoint and Component to terminate and then stop()
returns.
If you neglect to call CamelContext.start() in your application then
messages will not be processed because internal threads will not have been
created.
If you neglect to call CamelContext.stop() before terminating your
application then the application may terminate in an inconsistent state. If

10 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/

you neglect to call CamelContext.stop() in a JUnit test then the test may
fail due to messages not having had a chance to be fully processed.

CamelTemplate
Camel used to have a class called CamelClient, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other
open-source projects, such as the TransactionTemplate and JmsTemplate
classes in Spring.
The CamelTemplate class is a thin wrapper around the CamelContext class. It
has methods that send a Message or Exchange â€“ both discussed in Section
4.6 ("Message and Exchange")) â€“ to an Endpoint â€“ discussed in Section
4.1 ("Endpoint"). This provides a way to enter messages into source
endpoints, so that the messages will move along routes â€“ discussed in
Section 4.8 ("Routes, RouteBuilders and Java DSL") â€“ to destination
endpoints.

The Meaning of URL, URI, URN and IRI
Some Camel methods take a parameter that is a URI string. Many people
know that a URI is "something like a URL" but do not properly understand the
relationship between URI and URL, or indeed its relationship with other
acronyms such as IRI and URN.
Most people are familiar with URLs (uniform resource locators), such as
"http://...", "ftp://...", "mailto:...". Put simply, a URL specifies the location of a
resource.
A URI (uniform resource identifier) is a URL or a URN. So, to fully understand
what URI means, you need to first understand what is a URN.
URN is an acronym for uniform resource name. There are may "unique
identifier" schemes in the world, for example, ISBNs (globally unique for
books), social security numbers (unique within a country), customer numbers
(unique within a company's customers database) and telephone numbers.
Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-
name>:<unique-identifier>". A URN uniquely identifies a resource, such as a
book, person or piece of equipment. By itself, a URN does not specify the
location of the resource. Instead, it is assumed that a registry provides a
mapping from a resource's URN to its location. The URN specification does
not state what form a registry takes, but it might be a database, a server
application, a wall chart or anything else that is convenient. Some
hypothetical examples of URNs are "urn:employee:08765245",
"urn:customer:uk:3458:hul8" and "urn:foo:0000-0000-9E59-0000-5E-2". The
<scheme-name> ("employee", "customer" and "foo" in these examples) part

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 11

http://www.springframework.org/

of a URN implicitly defines how to parse and interpret the <unique-
identifier> that follows it. An arbitrary URN is meaningless unless: (1) you
know the semantics implied by the <scheme-name>, and (2) you have
access to the registry appropriate for the <scheme-name>. A registry does
not have to be public or globally accessible. For example,
"urn:employee:08765245" might be meaningful only within a specific
company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely
misused as a synonym for URL.
IRI is an acronym for internationalized resource identifier. An IRI is simply an
internationalized version of a URI. In particular, a URI can contain letters and
digits in the US-ASCII character set, while a IRI can contain those same
letters and digits, and also European accented characters, Greek letters,
Chinese ideograms and so on.

Components
Component is confusing terminology; EndpointFactory would have been
more appropriate because a Component is a factory for creating Endpoint
instances. For example, if a Camel-based application uses several JMS
queues then the application will create one instance of the JmsComponent
class (which implements the Component interface), and then the application
invokes the createEndpoint() operation on this JmsComponent object
several times. Each invocation of JmsComponent.createEndpoint() creates
an instance of the JmsEndpoint class (which implements the Endpoint
interface). Actually, application-level code does not invoke
Component.createEndpoint() directly. Instead, application-level code
normally invokes CamelContext.getEndpoint(); internally, the
CamelContext object finds the desired Component object (as I will discuss
shortly) and then invokes createEndpoint() on it.
Consider the following code.

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

The parameter to getEndpoint() is a URI. The URI prefix (that is, the part
before ":") specifies the name of a component. Internally, the CamelContext
object maintains a mapping from names of components to Component
objects. For the URI given in the above example, the CamelContext object
would probably map the pop3 prefix to an instance of the MailComponent
class. Then the CamelContext object invokes
createEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword")
on that MailComponent object. The createEndpoint() operation splits the
URI into its component parts and uses these parts to create and configure an

12 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Endpoint object.
In the previous paragraph, I mentioned that a CamelContext object
maintains a mapping from component names to Component objects. This
raises the question of how this map is populated with named Component
objects. There are two ways of populating the map. The first way is for
application-level code to invoke CamelContext.addComponent(String
componentName, Component component). The example below shows a
single MailComponent object being registered in the map under 3 different
names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3", mailComponent);
myCamelContext.addComponent("imap", mailComponent);
myCamelContext.addComponent("smtp", mailComponent);

The second (and preferred) way to populate the map of named Component
objects in the CamelContext object is to let the CamelContext object perform
lazy initialization. This approach relies on developers following a convention
when they write a class that implements the Component interface. I illustrate
the convention by an example. Let's assume you write a class called
com.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write
a properties file called "META-INF/services/org/apache/camel/component/foo"
(without a ".properties" file extension) that has a single entry in it called
class, the value of which is the fully-scoped name of your class. This is
shown below.

Listing 1. META-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you
write another properties file in the same directory called "bar" that has the
same contents. Once you have written the properties file(s), you create a jar
file that contains the com.example.myproject.FooComponent class and the
properties file(s), and you add this jar file to your CLASSPATH. Then, when
application-level code invokes createEndpoint("foo:...") on a
CamelContext object, Camel will find the "foo"" properties file on the
CLASSPATH, get the value of the class property from that properties file, and
use reflection APIs to create an instance of the specified class.
As I said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support
for numerous communication technologies. The out-of-the-box support
consists of classes that implement the Component interface plus properties
files that enable a CamelContext object to populate its map of named
Component objects.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 13

Earlier in this section I gave the following example of calling
CamelContext.getEndpoint().

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter to
getEndpoint() was a URI. I said that because the online Camel
documentation and the Camel source code both claim the parameter is a
URI. In reality, the parameter is restricted to being a URL. This is because
when Camel extracts the component name from the parameter, it looks for
the first ":", which is a simplistic algorithm. To understand why, recall from
Section 4.4 ("The Meaning of URL, URI, URN and IRI") that a URI can be a URL
or a URN. Now consider the following calls to getEndpoint.

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms",
"urn" and "urn". It would be more useful if the latter components were
identified as "urn:foo" and "urn:bar" or, alternatively, as "foo" and "bar" (that
is, by skipping over the "urn:" prefix). So, in practice you must identify an
endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for
URNs means the you should consider the parameter to getEndpoint() as
being a URL rather than (as claimed) a URI.

Message and Exchange
The Message interface provides an abstraction for a single message, such as
a request, reply or exception message.
There are concrete classes that implement the Message interface for each
Camel-supported communications technology. For example, the JmsMessage
class provides a JMS-specific implementation of the Message interface. The
public API of the Message interface provides get- and set-style methods to
access the message id, body and individual header fields of a messge.
The Exchange interface provides an abstraction for an exchange of
messages, that is, a request message and its corresponding reply or
exception message. In Camel terminology, the request, reply and exception
messages are called in, out and fault messages.
There are concrete classes that implement the Exchange interface for each
Camel-supported communications technology. For example, the JmsExchange
class provides a JMS-specific implementation of the Exchange interface. The

14 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

public API of the Exchange interface is quite limited. This is intentional, and it
is expected that each class that implements this interface will provide its
own technology-specific operations.
Application-level programmers rarely access the Exchange interface (or
classes that implement it) directly. However, many classes in Camel are
generic types that are instantiated on (a class that implements) Exchange.
Because of this, the Exchange interface appears a lot in the generic
signatures of classes and methods.

Processor
The Processor interface represents a class that processes a message. The
signature of this interface is shown below.

Listing 1. Processor

package org.apache.camel;
public interface Processor {

void process(Exchange exchange) throws Exception;
}

Notice that the parameter to the process() method is an Exchange rather
than a Message. This provides flexibility. For example, an implementation of
this method initially might call exchange.getIn() to get the input message
and process it. If an error occurs during processing then the method can call
exchange.setException().
An application-level developer might implement the Processor interface
with a class that executes some business logic. However, there are many
classes in the Camel library that implement the Processor interface in a way
that provides support for a design pattern in the EIP book. For example,
ChoiceProcessor implements the message router pattern, that is, it uses a
cascading if-then-else statement to route a message from an input queue to
one of several output queues. Another example is the FilterProcessor
class which discards messages that do not satisfy a stated predicate (that is,
condition).

Routes, RouteBuilders and Java DSL
A route is the step-by-step movement of a Message from an input queue,
through arbitrary types of decision making (such as filters and routers) to a
destination queue (if any). Camel provides two ways for an application
developer to specify routes. One way is to specify route information in an
XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a Java DSL (domain-specific
language).

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 15

Introduction to Java DSL
For many people, the term "domain-specific language" implies a compiler or
interpreter that can process an input file containing keywords and syntax
specific to a particular domain. This is not the approach taken by Camel.
Camel documentation consistently uses the term "Java DSL" instead of
"DSL", but this does not entirely avoid potential confusion. The Camel "Java
DSL" is a class library that can be used in a way that looks almost like a DSL,
except that it has a bit of Java syntactic baggage. You can see this in the
example below. Comments afterwards explain some of the constructs used in
the example.

Listing 1. Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
from("queue:c").choice()

.when(header("foo").isEqualTo("bar")).to("queue:d")

.when(header("foo").isEqualTo("cheese")).to("queue:e")

.otherwise().to("queue:f");
}

};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of
an anonymous subclass of RouteBuilder with the specified configure()
method.
The CamelContext.addRoutes(RouterBuilder builder) method invokes
builder.setContext(this) â€“ so the RouteBuilder object knows which
CamelContext object it is associated with â€“ and then invokes
builder.configure(). The body of configure() invokes methods such as
from(), filter(), choice(), when(), isEqualTo(), otherwise() and to().
The RouteBuilder.from(String uri) method invokes getEndpoint(uri)
on the CamelContext associated with the RouteBuilder object to get the
specified Endpoint and then puts a FromBuilder "wrapper" around this
Endpoint. The FromBuilder.filter(Predicate predicate) method
creates a FilterProcessor object for the Predicate (that is, condition)
object built from the header("foo").isEqualTo("bar") expression. In this
way, these operations incrementally build up a Route object (with a
RouteBuilder wrapper around it) and add it to the CamelContext object
associated with the RouteBuilder.

16 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Critique of Java DSL
The online Camel documentation compares Java DSL favourably against the
alternative of configuring routes and endpoints in a XML-based Spring
configuration file. In particular, Java DSL is less verbose than its XML
counterpart. In addition, many integrated development environments (IDEs)
provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write
Java DSL.
However, there is another option that the Camel documentation neglects to
consider: that of writing a parser that can process DSL stored in, say, an
external file. Currently, Camel does not provide such a DSL parser, and I do
not know if it is on the "to do" list of the Camel maintainers. I think that a
DSL parser would offer a significant benefit over the current Java DSL. In
particular, the DSL would have a syntactic definition that could be expressed
in a relatively short BNF form. The effort required by a Camel user to learn
how to use DSL by reading this BNF would almost certainly be significantly
less than the effort currently required to study the API of the RouterBuilder
classes.

Continue Learning about Camel
Return to the main Getting Started page for additional introductory reference
information.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 17

http://camel.apache.org/getting-started.html

CHAPTER 4

°°°°

Architecture

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml
Configuration to configure routing and mediation rules which are added to a
CamelContext to implement the various Enterprise Integration Patterns.

At a high level Camel consists of a CamelContext which contains a
collection of Component instances. A Component is essentially a factory of
Endpoint instances. You can explicitly configure Component instances in Java
code or an IoC container like Spring or Guice, or they can be auto-discovered
using URIs.

An Endpoint acts rather like a URI or URL in a web application or a
Destination in a JMS system; you can communicate with an endpoint; either
sending messages to it or consuming messages from it. You can then create
a Producer or Consumer on an Endpoint to exchange messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression
or Predicate to make a truly powerful DSL which is extensible to the most
suitable language depending on your needs. The following languages are
supported

• Bean Language for using Java for expressions
• Constant
• the unified EL from JSP and JSF
• Header
• JXPath
• Mvel
• OGNL
• Ref Language
• Property
• Scala DSL
• Scripting Languages such as

◦ BeanShell
◦ JavaScript
◦ Groovy
◦ Python
◦ PHP
◦ Ruby

• Simple

18 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/routes.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/component.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/uris.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/constant.html
http://camel.apache.org/el.html
http://camel.apache.org/header.html
http://camel.apache.org/jxpath.html
http://camel.apache.org/mvel.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ref-language.html
http://camel.apache.org/property.html
http://camel.apache.org/scala-dsl.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/javascript.html
http://camel.apache.org/groovy.html
http://camel.apache.org/python.html
http://camel.apache.org/php.html
http://camel.apache.org/ruby.html
http://camel.apache.org/simple.html

◦ File Language
• Spring Expression Language
• SQL
• Tokenizer
• XPath
• XQuery

Most of these languages is also supported used as Annotation Based
Expression Language.

For a full details of the individual languages see the Language Appendix

URIS
Camel makes extensive use of URIs to allow you to refer to endpoints which
are lazily created by a Component if you refer to them within Routes

Current Supported URIs

Component / ArtifactId / URI Description
AHC / camel-ahc

ahc:hostname:[port]

To call external HTTP
services using Async Http
Client

AMQP / camel-amqp

amqp:[topic:]destinationName
For Messaging with AMQP
protocol

APNS / camel-apns

apns:notify[?options]
For sending notifications to
Apple iOS devices

Atom / camel-atom

atom:uri

Working with Apache
Abdera for atom integration,
such as consuming an atom
feed.

AWS-SDB / camel-aws

aws-sdb://domainName[?options]
For working with Amazon's
SimpleDB (SDB).

CHAPTER 4 - ARCHITECTURE 19

http://camel.apache.org/file-language.html
http://camel.apache.org/spel.html
http://camel.apache.org/sql.html
http://camel.apache.org/tokenizer.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/book-languages-appendix.html
http://camel.apache.org/component.html
http://camel.apache.org/routes.html
http://camel.apache.org/ahc.html
http://github.com/sonatype/async-http-client
http://github.com/sonatype/async-http-client
http://camel.apache.org/amqp.html
http://www.amqp.org/
http://www.amqp.org/
http://camel.apache.org/apns.html
http://camel.apache.org/atom.html
http://incubator.apache.org/abdera/
http://incubator.apache.org/abdera/
http://camel.apache.org/aws-sdb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/

AWS-SES / camel-aws

aws-ses://from[?options]
For working with Amazon's
Simple Email Service (SES).

AWS-SNS / camel-aws

aws-sns://topicname[?options]

For Messaging with
Amazon's Simple
Notification Service (SNS).

AWS-SQS / camel-aws

aws-sqs://queuename[?options]

For Messaging with
Amazon's Simple Queue
Service (SQS).

AWS-S3 / camel-aws

aws-s3://bucketname[?options]
For working with Amazon's
Simple Storage Service (S3).

Bean / camel-core

bean:beanName[?method=someMethod]

Uses the Bean Binding to
bind message exchanges to
beans in the Registry. Is also
used for exposing and
invoking POJO (Plain Old
Java Objects).

Bean Validation / camel-bean-validator

bean-validator:something

Validates the payload of a
message using the Java
Validation API (JSR 303 and
JAXP Validation) and its
reference implementation
Hibernate Validator

Browse / camel-core

browse:someName

Provides a simple
BrowsableEndpoint which
can be useful for testing,
visualisation tools or
debugging. The exchanges
sent to the endpoint are all
available to be browsed.

20 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/aws-ses.html
http://camel.apache.org/aws.html
http://aws.amazon.com/ses/
http://aws.amazon.com/ses/
http://camel.apache.org/aws-sns.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sns/
http://aws.amazon.com/sns/
http://camel.apache.org/aws-sqs.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://camel.apache.org/aws-s3.html
http://camel.apache.org/aws.html
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-validation.html
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://camel.apache.org/browse.html
http://camel.apache.org/browsableendpoint.html

Cache / camel-cache

cache://cachename[?options]

The cache component
facilitates creation of
caching endpoints and
processors using EHCache
as the cache
implementation.

Class / camel-core

class:className[?method=someMethod]

Uses the Bean Binding to
bind message exchanges to
beans in the Registry. Is also
used for exposing and
invoking POJO (Plain Old
Java Objects).

Cometd / camel-cometd

cometd://host:port/channelname

Used to deliver messages
using the jetty cometd
implementation of the
bayeux protocol

Context / camel-context

context:camelContextId:localEndpointName

Used to refer to endpoints
within a separate
CamelContext to provide a
simple black box
composition approach so
that routes can be combined
into a CamelContext and
then used as a black box
component inside other
routes in other
CamelContexts

Crypto (Digital Signatures) / camel-crypto

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify
exchanges using the
Signature Service of the
Java Cryptographic
Extension.

CXF / camel-cxf

cxf:address[?serviceClass=...]
Working with Apache CXF
for web services integration

CHAPTER 4 - ARCHITECTURE 21

http://camel.apache.org/cache.html
http://ehcache.org/
http://camel.apache.org/class.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/cometd.html
http://docs.codehaus.org/display/JETTY/Cometd%20(aka%20Bayeux)
http://docs.codehaus.org/display/JETTY/Cometd%20(aka%20Bayeux)
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/crypto-digital-signatures.html
http://camel.apache.org/cxf.html
http://apache.org/cxf/

CXF Bean / camel-cxf

cxf:bean name

Proceess the exchange
using a JAX WS or JAX RS
annotated bean from the
registry. Requires less
configuration than the
above CXF Component

CXFRS / camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXF
for REST services
integration

DataSet / camel-core

dataset:name

For load & soak testing the
DataSet provides a way to
create huge numbers of
messages for sending to
Components or asserting
that they are consumed
correctly

Direct / camel-core

direct:name
Synchronous call to another
endpoint

DNS / camel-dns

dns:operation

To lookup domain
information and run DNS
queries using DNSJava

EJB / camel-ejb

ejb:ejbName[?method=someMethod]

Uses the Bean Binding to
bind message exchanges to
EJBs. It works like the Bean
component but just for
accessing EJBs. Supports EJB
3.0 onwards.

Event / camel-spring

event://default
spring-event://default

Working with Spring
ApplicationEvents

22 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/cxf-bean-component.html
http://camel.apache.org/cxfrs.html
http://apache.org/cxf/
http://camel.apache.org/dataset.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/components.html
http://camel.apache.org/direct.html
http://camel.apache.org/dns.html
http://www.xbill.org/dnsjava/
http://camel.apache.org/ejb.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html
http://camel.apache.org/event.html

EventAdmin / camel-eventadmin

eventadmin:topic
Receiving OSGi EventAdmin
events

Exec / camel-exec

exec://executable[?options]
For executing system
commands

File / camel-core

file://nameOfFileOrDirectory

Sending messages to a file
or polling a file or directory.
Camel 1.x use this link
File.

Flatpack / camel-flatpack

flatpack:[fixed|delim]:configFile

Processing fixed width or
delimited files or messages
using the FlatPack library

FreeMarker / camel-freemarker

freemarker:someTemplateResource
Generates a response using
a FreeMarker template

FTP / camel-ftp

ftp://host[:port]/fileName

Sending and receiving files
over FTP. Camel 1.x use
this link FTP.

FTPS / camel-ftp

ftps://host[:port]/fileName

Sending and receiving files
over FTP Secure (TLS and
SSL).

GAuth / camel-gae

gauth://name[?options]

Used by web applications to
implement an OAuth
consumer. See also Camel
Components for Google App
Engine.

CHAPTER 4 - ARCHITECTURE 23

http://camel.apache.org/eventadmin.html
http://camel.apache.org/exec.html
http://camel.apache.org/file2.html
http://camel.apache.org/file.html
http://camel.apache.org/flatpack.html
http://flatpack.sourceforge.net/
http://camel.apache.org/freemarker.html
http://freemarker.org/
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/gauth.html
http://camel.apache.org/gae.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html

GHttp / camel-gae

ghttp://hostname[:port][/path][?options]
ghttp:///path[?options]

Provides connectivity to the
URL fetch service of Google
App Engine but can also be
used to receive messages
from servlets. See also
Camel Components for
Google App Engine.

GLogin / camel-gae

glogin://hostname[:port][?options]

Used by Camel applications
outside Google App Engine
(GAE) for programmatic
login to GAE applications.
See also Camel Components
for Google App Engine.

GTask / camel-gae

gtask://queue-name

Supports asynchronous
message processing on
Google App Engine by using
the task queueing service as
message queue. See also
Camel Components for
Google App Engine.

GMail / camel-gae

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Supports sending of emails
via the mail service of
Google App Engine. See also
Camel Components for
Google App Engine.

Hazelcast / camel-hazelcast

hazelcast://[type]:cachename[?options]

Hazelcast is a data grid
entirely implemented in Java
(single jar). This component
supports map, multimap,
seda, queue, set, atomic
number and simple cluster
support.

HDFS / camel-hdfs

hdfs://path[?options]
For reading/writing from/to
an HDFS filesystem

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7
MLLP protocol and the HL7
model using the HAPI library

24 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/ghttp.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/urlfetch/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/glogin.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gtask.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/taskqueue/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gmail.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/mail/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/hazelcast-component.html
http://www.hazelcast.com/
http://camel.apache.org/hdfs.html
http://hadoop.apache.org/hdfs/
http://camel.apache.org/hl7.html
http://hl7api.sourceforge.net/

HTTP / camel-http

http://hostname[:port]

For calling out to external
HTTP servers using Apache
HTTP Client 3.x

HTTP4 / camel-http4

http4://hostname[:port]

For calling out to external
HTTP servers using Apache
HTTP Client 4.x

iBATIS / camel-ibatis

ibatis://statementName

Performs a query, poll,
insert, update or delete in a
relational database using
Apache iBATIS

IMap / camel-mail

imap://hostname[:port]
Receiving email using IMap

IRC / camel-irc

irc:host[:port]/#room
For IRC communication

JavaSpace / camel-javaspace

javaspace:jini://host?spaceName=mySpace?...

Sending and receiving
messages through
JavaSpace

JBI / servicemix-camel

jbi:serviceName

For JBI integration such as
working with Apache
ServiceMix

jclouds / jclouds

jclouds:[blobstore|computservice]:provider

For interacting with cloud
compute & blobstore service
via jclouds

JCR / camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
compliant repository like
Apache Jackrabbit

CHAPTER 4 - ARCHITECTURE 25

http://camel.apache.org/http.html
http://camel.apache.org/http4.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/mail.html
http://camel.apache.org/irc.html
http://camel.apache.org/javaspace.html
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://camel.apache.org/jbi.html
http://servicemix.apache.org/
http://servicemix.apache.org/
http://camel.apache.org/jclouds.html
http://www.jclouds.org/
http://camel.apache.org/jcr.html
http://jackrabbit.apache.org/

JDBC / camel-jdbc

jdbc:dataSourceName?options
For performing JDBC queries
and operations

Jetty / camel-jetty

jetty:url
For exposing services over
HTTP

JMS / camel-jms

jms:[topic:]destinationName
Working with JMS providers

JMX / camel-jmx

jmx://platform?options
For working with JMX
notification listeners

JPA / camel-jpa

jpa://entityName

For using a database as a
queue via the JPA
specification for working
with OpenJPA, Hibernate or
TopLink

JT/400 / camel-jt400

jt400://user:pwd@system/<path_to_dtaq>

For integrating with data
queues on an AS/400 (aka
System i, IBM i, i5, ...)
system

Kestrel / camel-kestrel

kestrel://[addresslist/]queuename[?options]

For producing to or
consuming from Kestrel
queues

Krati / camel-krati

krati://[path to datastore/][?options]

For producing to or
consuming to Krati
datastores

Language / camel-core

language://languageName[:script][?options]
Executes Languages scripts

26 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/jdbc.html
http://camel.apache.org/jetty.html
http://camel.apache.org/jms.html
http://camel.apache.org/jmx.html
http://camel.apache.org/jpa.html
http://openjpa.apache.org/
http://www.hibernate.org/
http://camel.apache.org/jt400.html
http://camel.apache.org/kestrel.html
https://github.com/robey/kestrel
http://camel.apache.org/krati.html
http://sna-projects.com/krati/
http://camel.apache.org/language.html
http://camel.apache.org/languages.html

LDAP / camel-ldap

ldap:host[:port]?base=...[&scope=<scope>]

Performing searches on
LDAP servers (<scope>
must be one of
object|onelevel|subtree)

Log / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons
Logging to log the message
exchange to some
underlying logging system
like log4j

Lucene / camel-lucene

lucene:searcherName:insert[?analyzer=<analyzer>]
lucene:searcherName:query[?analyzer=<analyzer>]

Uses Apache Lucene to
perform Java-based indexing
and full text based searches
using advanced analysis/
tokenization capabilities

Mail / camel-mail

mail://user-info@host:port
Sending and receiving email

MINA / camel-mina

[tcp|udp|vm]:host[:port]
Working with Apache MINA

Mock / camel-core

mock:name
For testing routes and
mediation rules using mocks

MSV / camel-msv

msv:someLocalOrRemoteResource

Validates the payload of a
message using the MSV
Library

MyBatis / camel-mybatis

mybatis://statementName

Performs a query, poll,
insert, update or delete in a
relational database using
MyBatis

Nagios / camel-nagios

nagios://host[:port]?options
Sending passive checks to
Nagios using JSendNSCA

CHAPTER 4 - ARCHITECTURE 27

http://camel.apache.org/ldap.html
http://camel.apache.org/log.html
http://camel.apache.org/lucene.html
http://camel.apache.org/mail.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/mock.html
http://camel.apache.org/msv.html
https://msv.dev.java.net/
https://msv.dev.java.net/
http://camel.apache.org/mybatis.html
http://mybatis.org/
http://camel.apache.org/nagios.html
http://www.nagios.org/
http://code.google.com/p/jsendnsca/

Netty / camel-netty

netty:tcp//host[:port]?options
netty:udp//host[:port]?options

Working with TCP and UDP
protocols using Java NIO
based capabilities offered by
the JBoss Netty community
project

Pax-Logging / camel-paxlogging

paxlogging:appender
Receiving Pax-Logging
events in OSGi

POP / camel-mail

pop3://user-info@host:port
Receiving email using POP3
and JavaMail

Printer / camel-printer

lpr://host:port/path/to/printer[?options]

The printer component
facilitates creation of printer
endpoints to local, remote
and wireless printers. The
endpoints provide the ability
to print camel directed
payloads when utilized on
camel routes.

Properties / camel-core

properties://key[?options]

The properties component
facilitates using property
placeholders directly in
endpoint uri definitions.

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled
delivery of messages using
the Quartz scheduler

Quickfix / camel-quickfix

quickfix-server:config file
quickfix-client:config-file

Implementation of the
QuickFix for Java engine
which allow to send/receive
FIX messages

Ref / camel-core

ref:name

Component for lookup of
existing endpoints bound in
the Registry.

28 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/netty.html
http://www.jboss.org/netty
http://camel.apache.org/pax-logging.html
http://camel.apache.org/mail.html
http://camel.apache.org/printer.html
http://camel.apache.org/properties.html
http://camel.apache.org/quartz.html
http://www.quartz-scheduler.org/
http://camel.apache.org/quickfix.html
http://www.fixprotocol.org/
http://camel.apache.org/ref.html
http://camel.apache.org/registry.html

Restlet / camel-restlet

restlet:restletUrl[?options]

Component for consuming
and producing Restful
resources using Restlet

RMI / camel-rmi

rmi://host[:port]
Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri

Validates the payload of a
message using RelaxNG
Compact Syntax

RNG / camel-jing

rng:/relativeOrAbsoluteUri
Validates the payload of a
message using RelaxNG

Routebox / camel-routebox

routebox:routeboxName[?options]

Facilitates the creation of
specialized endpoints that
offer encapsulation and a
strategy/map based
indirection service to a
collection of camel routes
hosted in an automatically
created or user injected
camel context

RSS / camel-rss

rss:uri

Working with ROME for RSS
integration, such as
consuming an RSS feed.

SEDA / camel-core

seda:name

Asynchronous call to
another endpoint in the
same Camel Context

SERVLET / camel-servlet

servlet:uri

For exposing services over
HTTP through the servlet
which is deployed into the
Web container.

CHAPTER 4 - ARCHITECTURE 29

http://camel.apache.org/restlet.html
http://www.restlet.org/
http://camel.apache.org/rmi.html
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://camel.apache.org/jing.html
http://relaxng.org/
http://camel.apache.org/routebox.html
http://camel.apache.org/rss.html
https://rome.dev.java.net/
http://camel.apache.org/seda.html
http://camel.apache.org/servlet.html

SFTP / camel-ftp

sftp://host[:port]/fileName

Sending and receiving files
over SFTP (FTP over SSH).
Camel 1.x use this link
FTP.

Sip / camel-sip

sip://user@host[:port]?[options]
sips://user@host[:port]?[options]

Publish/Subscribe
communication capability
using the Telecom SIP
protocol. RFC3903 - Session
Initiation Protocol (SIP)
Extension for Event

SMTP / camel-mail

smtp://user-info@host[:port]
Sending email using SMTP
and JavaMail

SMPP / camel-smpp

smpp://user-info@host[:port]?options

To send and receive SMS
using Short Messaging
Service Center using the
JSMPP library

SNMP / camel-snmp

snmp://host[:port]?options

Polling OID values and
receiving traps using SNMP
via SNMP4J library

Solr / camel-solr

solr://host[:port]/solr?[options]

Uses the Solrj client API to
interface with an Apache
Lucene Solr server

SpringIntegration / camel-spring-integration

spring-integration:defaultChannelName

The bridge component of
Camel and Spring
Integration

Spring Web Services / camel-spring-ws

spring-ws:[mapping-type:]address[?options]

Client-side support for
accessing web services, and
server-side support for
creating your own contract-
first web services using
Spring Web Services

30 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp.html
http://camel.apache.org/sip.html
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://camel.apache.org/mail.html
http://camel.apache.org/smpp.html
http://code.google.com/p/jsmpp/
http://camel.apache.org/snmp.html
http://snmp4j.com/
http://camel.apache.org/solr.html
http://wiki.apache.org/solr/Solrj
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://camel.apache.org/springintegration.html
http://www.springframework.org/spring-integration
http://www.springframework.org/spring-integration
http://camel.apache.org/spring-web-services.html
http://static.springsource.org/spring-ws/sites/1.5/

SQL / camel-sql

sql:select * from table where id=#
Performing SQL queries
using JDBC

SSH component / camel-ssh

ssh:[username[:password]@]host[:port][?options]
For sending commands to a
SSH server

StAX / camel-stax

stax:contentHandlerClassName
Process messages through a
SAX ContentHandler.

Stream / camel-stream

stream:[in|out|err|file]

Read or write to an input/
output/error/file stream
rather like unix pipes

StringTemplate / camel-stringtemplate

string-template:someTemplateResource
Generates a response using
a String Template

TCP / camel-mina

mina:tcp://host:port
Working with TCP protocols
using Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates a Mock endpoint
which expects to receive all
the message bodies that
could be polled from the
given underlying endpoint

Timer / camel-core

timer://name
A timer endpoint

Twitter / camel-twitter

twitter://[endpoint]?[options]
A twitter endpoint

CHAPTER 4 - ARCHITECTURE 31

http://camel.apache.org/sql-component.html
http://camel.apache.org/ssh.html
http://camel.apache.org/stax.html
http://download.oracle.com/javase/6/docs/api/org/xml/sax/ContentHandler.html
http://camel.apache.org/stream.html
http://camel.apache.org/stringtemplate.html
http://www.stringtemplate.org/
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/timer.html
http://camel.apache.org/twitter.html

UDP / camel-mina

mina:udp://host:port
Working with UDP protocols
using Apache MINA

Validation / camel-core (camel-spring for
Camel 2.8 or older)

validation:someLocalOrRemoteResource

Validates the payload of a
message using XML Schema
and JAXP Validation

Velocity / camel-velocity

velocity:someTemplateResource
Generates a response using
an Apache Velocity template

VM / camel-core

vm:name

Asynchronous call to
another endpoint in the
same JVM

XMPP / camel-xmpp

xmpp://host:port/room
Working with XMPP and
Jabber

XQuery / camel-saxon

xquery:someXQueryResource
Generates a response using
an XQuery template

XSLT / camel-core (camel-spring for Camel
2.8 or older)

xslt:someTemplateResource

Generates a response using
an XSLT template

Zookeeper / camel-zookeeper

zookeeper://host:port/path
Working with ZooKeeper
cluster(s)

32 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/validation.html
http://www.w3.org/XML/Schema
http://camel.apache.org/velocity.html
http://velocity.apache.org/
http://camel.apache.org/vm.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/xquery-endpoint.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://www.w3.org/TR/xslt
http://camel.apache.org/zookeeper.html
http://hadoop.apache.org/zookeeper/

URI's for external components
Other projects and companies have also created Camel components to
integrate additional functionality into Camel. These components may be
provided under licenses that are not compatible with the Apache License, use
libraries that are not compatible, etc... These components are not supported
by the Camel team, but we provide links here to help users find the
additional functionality.
Component / ArtifactId / URI License Description
ActiveMQ / activemq-camel

activemq:[topic:]destinationName
Apache For JMS Messaging with

Apache ActiveMQ

ActiveMQ Journal / activemq-core

activemq.journal:directory-on-filesystem
Apache

Uses ActiveMQ's fast
disk journaling
implementation to store
message bodies in a
rolling log file

Db4o / camel-db4o in camel-extra

db4o://className
GPL

For using a db4o
datastore as a queue via
the db4o library

Esper / camel-esper in camel-extra

esper:name
GPL

Working with the Esper
Library for Event Stream
Processing

Hibernate / camel-hibernate in
camel-extra

hibernate://entityName
GPL

For using a database as
a queue via the
Hibernate library

NMR / servicemix-nmr

nmr://serviceName
Apache

Integration with the
Normalized Message
Router BUS in
ServiceMix 4.x

CHAPTER 4 - ARCHITECTURE 33

http://camel.apache.org/activemq.html
http://activemq.apache.org/
http://camel.apache.org/activemq-journal.html
http://camel.apache.org/db4o.html
http://code.google.com/p/camel-extra/
http://www.db4o.com/
http://camel.apache.org/esper.html
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/
http://esper.codehaus.org/
http://camel.apache.org/hibernate.html
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
http://camel.apache.org/nmr.html
http://servicemix.apache.org/SMX4NMR/index.html

Scalate / scalate-camel

scalate:templateName
Apache

Uses the given Scalate
template to transform
the message

Smooks / camel-smooks in camel-
extra.

unmarshal(edi)
GPL

For working with EDI
parsing using the
Smooks library. This
component is
deprecated as Smooks
now provides Camel
integration out of the
box

For a full details of the individual components see the Component Appendix

34 CHAPTER 4 - ARCHITECTURE

http://scalate.fusesource.org/camel.html
http://scalate.fusesource.org/
http://camel.apache.org/smooks.html
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Smooks
http://www.smooks.org/mediawiki/index.php?itle=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?itle=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?itle=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://camel.apache.org/book-component-appendix.html

CHAPTER 5

°°°°

Enterprise Integration
Patterns

Camel supports most of the Enterprise Integration Patterns from the
excellent book of the same name by Gregor Hohpe and Bobby Woolf. Its a
highly recommended book, particularly for users of Camel.

PATTERN INDEX
There now follows a list of the Enterprise Integration Patterns from the book
along with examples of the various patterns using Apache Camel

Messaging Systems

Message
Channel

How does one application communicate with
another using messaging?

Message How can two applications connected by a message
channel exchange a piece of information?

Pipes and
Filters

How can we perform complex processing on a
message while maintaining independence and
flexibility?

Message
Router

How can you decouple individual processing steps
so that messages can be passed to different filters
depending on a set of conditions?

Message
Translator

How can systems using different data formats
communicate with each other using messaging?

Message
Endpoint

How does an application connect to a messaging
channel to send and receive messages?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 35

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG
http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html
http://camel.apache.org/message.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

Messaging Channels

Point to
Point
Channel

How can the caller be sure that exactly one
receiver will receive the document or perform the
call?

Publish
Subscribe
Channel

How can the sender broadcast an event to all
interested receivers?

Dead Letter
Channel

What will the messaging system do with a
message it cannot deliver?

Guaranteed
Delivery

How can the sender make sure that a message
will be delivered, even if the messaging system
fails?

Message
Bus

What is an architecture that enables separate
applications to work together, but in a de-coupled
fashion such that applications can be easily added
or removed without affecting the others?

Message Construction

Event
Message

How can messaging be used to transmit events
from one application to another?

Request
Reply

When an application sends a message, how can it
get a response from the receiver?

Correlation
Identifier

How does a requestor that has received a reply
know which request this is the reply for?

Return
Address How does a replier know where to send the reply?

Message Routing

Content
Based
Router

How do we handle a situation where the
implementation of a single logical function (e.g.,
inventory check) is spread across multiple
physical systems?

Message
Filter

How can a component avoid receiving
uninteresting messages?

36 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/event-message.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/return-address.html
http://camel.apache.org/return-address.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html

Dynamic
Router

How can you avoid the dependency of the
router on all possible destinations while
maintaining its efficiency?

Recipient
List

How do we route a message to a list of (static or
dynamically) specified recipients?

Splitter
How can we process a message if it contains
multiple elements, each of which may have to
be processed in a different way?

Aggregator
How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Resequencer How can we get a stream of related but out-of-
sequence messages back into the correct order?

Composed
Message
Processor

How can you maintain the overall message flow
when processing a message consisting of
multiple elements, each of which may require
different processing?

Scatter-
Gather

How do you maintain the overall message flow
when a message needs to be sent to multiple
recipients, each of which may send a reply?

Routing Slip
How do we route a message consecutively
through a series of processing steps when the
sequence of steps is not known at design-time
and may vary for each message?

Throttler
How can I throttle messages to ensure that a
specific endpoint does not get overloaded, or
we don't exceed an agreed SLA with some
external service?

Sampling
How can I sample one message out of many in a
given period to avoid downstream route does
not get overloaded?

Delayer How can I delay the sending of a message?
Load
Balancer

How can I balance load across a number of
endpoints?

Multicast How can I route a message to a number of
endpoints at the same time?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 37

http://camel.apache.org/dynamic-router.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/throttler.html
http://camel.apache.org/sampling.html
http://camel.apache.org/delayer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/multicast.html

Loop How can I repeat processing a message in a
loop?

Message Transformation

Content
Enricher

How do we communicate with another system if
the message originator does not have all the
required data items available?

Content
Filter

How do you simplify dealing with a large message,
when you are interested only in a few data items?

Claim
Check

How can we reduce the data volume of message
sent across the system without sacrificing
information content?

Normalizer
How do you process messages that are
semantically equivalent, but arrive in a different
format?

Sort How can I sort the body of a message?
Validate How can I validate a message?

Messaging Endpoints

Messaging
Mapper

How do you move data between domain objects
and the messaging infrastructure while keeping
the two independent of each other?

Event Driven
Consumer

How can an application automatically consume
messages as they become available?

Polling
Consumer

How can an application consume a message
when the application is ready?

Competing
Consumers

How can a messaging client process multiple
messages concurrently?

Message
Dispatcher

How can multiple consumers on a single channel
coordinate their message processing?

Selective
Consumer

How can a message consumer select which
messages it wishes to receive?

Durable
Subscriber

How can a subscriber avoid missing messages
while it's not listening for them?

38 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/loop.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/content-filter.html
http://camel.apache.org/content-filter.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/normalizer.html
http://camel.apache.org/sort.html
http://camel.apache.org/validate.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/durable-subscriber.html
http://camel.apache.org/durable-subscriber.html

Idempotent
Consumer

How can a message receiver deal with duplicate
messages?

Transactional
Client

How can a client control its transactions with the
messaging system?

Messaging
Gateway

How do you encapsulate access to the
messaging system from the rest of the
application?

Service
Activator

How can an application design a service to be
invoked both via various messaging technologies
and via non-messaging techniques?

System Management

Detour
How can you route a message through intermediate
steps to perform validation, testing or debugging
functions?

Wire
Tap

How do you inspect messages that travel on a point-to-
point channel?

Log How can I log processing a message?
For a full breakdown of each pattern see the Book Pattern Appendix

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 39

http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/service-activator.html
http://camel.apache.org/service-activator.html
http://camel.apache.org/detour.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/logeip.html
http://camel.apache.org/book-pattern-appendix.html

CookBook

This document describes various recipes for working with Camel
• Bean Integration describes how to work with beans and Camel in a

loosely coupled way so that your beans do not have to depend on
any Camel APIs

◦ Annotation Based Expression Language binds expressions to
method parameters

◦ Bean Binding defines which methods are invoked and how
the Message is converted into the parameters of the method
when it is invoked

◦ Bean Injection for injecting Camel related resources into your
POJOs

◦ Parameter Binding Annotations for extracting various
headers, properties or payloads from a Message

◦ POJO Consuming for consuming and possibly routing
messages from Camel

◦ POJO Producing for producing camel messages from your
POJOs

◦ RecipientList Annotation for creating a Recipient List from a
POJO method

◦ Using Exchange Pattern Annotations describes how pattern
annotations can be used to change the behaviour of method
invocations

• Hiding Middleware describes how to avoid your business logic being
coupled to any particular middleware APIs allowing you to easily
switch from in JVM SEDA to JMS, ActiveMQ, Hibernate, JPA, JDBC,
iBATIS or JavaSpace etc.

• Visualisation describes how to visualise your Enterprise Integration
Patterns to help you understand your routing rules

• Business Activity Monitoring (BAM) for monitoring business processes
across systems

• Extract Transform Load (ETL) to load data into systems or databases
• Testing for testing distributed and asynchronous systems using a

messaging approach
◦ Camel Test for creating test cases using a single Java class

for all your configuration and routing
◦ Spring Testing uses Spring Test together with either XML or

Java Config to dependency inject your test classes
◦ Guice uses Guice to dependency inject your test classes

40 COOKBOOK

http://camel.apache.org/bean-integration.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/visualisation.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bam.html
http://camel.apache.org/etl.html
http://camel.apache.org/testing.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html

• Templating is a great way to create service stubs to be able to test
your system without some back end system.

• Database for working with databases
• Parallel Processing and Ordering on how using parallel processing

and SEDA or JMS based load balancing can be achieved.
• Asynchronous Processing in Camel Routes.
• Implementing Virtual Topics on other JMS providers shows how to get

the effect of Virtual Topics and avoid issues with JMS durable topics
• Camel Transport for CXF describes how to put the Camel context into

the CXF transport layer.
• Fine Grained Control Over a Channel describes how to deliver a

sequence of messages over a single channel and then stopping any
more messages being sent over that channel. Typically used for
sending data over a socket and then closing the socket.

• EventNotifier to log details about all sent Exchanges shows how to let
Camels EventNotifier log all sent to endpoint events and how long
time it took.

• Loading routes from XML files into an existing CamelContext.
• Using MDC logging with Camel
• Running Camel standalone and have it keep running shows how to

keep Camel running when you run it standalone.
• Hazelcast Idempotent Repository Tutorial shows how to avoid to

consume duplicated messages in a clustered environment.
• How to use Camel as a HTTP proxy between a client and server

shows how to use Camel as a HTTP adapter/proxy between a client
and HTTP service.

BEAN INTEGRATION
Camel supports the integration of beans and POJOs in a number of ways

Annotations
If a bean is defined in Spring XML or scanned using the Spring component
scanning mechanism and a <camelContext> is used or a
CamelBeanPostProcessor then we process a number of Camel annotations
to do various things such as injecting resources or producing, consuming or
routing messages.

• POJO Consuming to consume and possibly route messages from
Camel

• POJO Producing to make it easy to produce camel messages from
your POJOs

COOKBOOK 41

http://camel.apache.org/templating.html
http://camel.apache.org/database.html
http://camel.apache.org/parallel-processing-and-ordering.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/asynchronous-processing.html
http://camel.apache.org/implementing-virtual-topics-on-other-jms-providers.html
http://camel.apache.org/camel-transport-for-cxf.html
http://camel.apache.org/fine-grained-control-over-a-channel.html
http://camel.apache.org/eventnotifier-to-log-details-about-all-sent-exchanges.html
http://camel.apache.org/loading-routes-from-xml-files.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/mdc-logging.html
http://camel.apache.org/running-camel-standalone-and-have-it-keep-running.html
http://camel.apache.org/hazelcast-idempotent-repository-tutorial.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/spring.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html

• DynamicRouter Annotation for creating a Dynamic Router from a
POJO method

• RecipientList Annotation for creating a Recipient List from a POJO
method

• RoutingSlip Annotation for creating a Routing Slip for a POJO method
• Bean Injection to inject Camel related resources into your POJOs
• Using Exchange Pattern Annotations describes how the pattern

annotations can be used to change the behaviour of method
invocations with Spring Remoting or POJO Producing

Bean Component
The Bean component allows one to invoke a particular method. Alternately
the Bean component supports the creation of a proxy via ProxyHelper to a
Java interface; which the implementation just sends a message containing a
BeanInvocation to some Camel endpoint.

Spring Remoting
We support a Spring Remoting provider which uses Camel as the underlying
transport mechanism. The nice thing about this approach is we can use any
of the Camel transport Components to communicate between beans. It also
means we can use Content Based Router and the other Enterprise Integration
Patterns in between the beans; in particular we can use Message Translator
to be able to convert what the on-the-wire messages look like in addition to
adding various headers and so forth.

Annotation Based Expression Language
You can also use any of the Languages supported in Camel to bind
expressions to method parameters when using Bean Integration. For
example you can use any of these annotations:
Annotation Description
@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression

42 COOKBOOK

http://camel.apache.org/dynamicrouter-annotation.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/routingslip-annotation.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html

Bean binding
Whenever Camel invokes a bean method via one of the above
methods (Bean component, Spring Remoting or POJO Consuming)
then the Bean Binding mechanism is used to figure out what
method to use (if it is not explicit) and how to bind the Message to
the parameters possibly using the Parameter Binding Annotations
or using a method name option.

@JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

Advanced example using @Bean
And an example of using the the @Bean binding annotation, where you can
use a Pojo where you can do whatever java code you like:

COOKBOOK 43

http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/bean-binding.html

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the id
myCorrelationIdGenerator where we can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

The Pojo MyIdGenerator has one public method that accepts two parameters.
However we have also annotated this one with the @Header and @Body
annotation to help Camel know what to bind here from the Message from the
Exchange being processed.

Of course this could be simplified a lot if you for instance just have a
simple id generator. But we wanted to demonstrate that you can use the
Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the
Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

44 COOKBOOK

http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html

Example using Groovy
In this example we have an Exchange that has a User object stored in the in
header. This User object has methods to get some user information. We want
to use Groovy to inject an expression that extracts and concats the fullname
of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $
placeholders that will be evaluated by Groovy.

BEAN BINDING
Bean Binding in Camel defines both which methods are invoked and also how
the Message is converted into the parameters of the method when it is
invoked.

Choosing the method to invoke
The binding of a Camel Message to a bean method call can occur in different
ways, in the following order of importance:

• if the message contains the header CamelBeanMethodName then
that method is invoked, converting the body to the type of the
method's argument.

◦ From Camel 2.8 onwards you can qualify parameter types to
select exactly which method to use among overloads with
the same name (see below for more details).

◦ From Camel 2.9 onwards you can specify parameter values
directly in the method option (see below for more details).

• you can explicitly specify the method name in the DSL or when using
POJO Consuming or POJO Producing

• if the bean has a method marked with the @Handler annotation, then
that method is selected

• if the bean can be converted to a Processor using the Type Converter
mechanism, then this is used to process the message. The ActiveMQ
component uses this mechanism to allow any JMS MessageListener
to be invoked directly by Camel without having to write any
integration glue code. You can use the same mechanism to integrate
Camel into any other messaging/remoting frameworks.

COOKBOOK 45

http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/message.html
http://camel.apache.org/message.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/processor.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/activemq.html

• if the body of the message can be converted to a BeanInvocation
(the default payload used by the ProxyHelper) component - then that
is used to invoke the method and pass its arguments

• otherwise the type of the body is used to find a matching method; an
error is thrown if a single method cannot be chosen unambiguously.

• you can also use Exchange as the parameter itself, but then the
return type must be void.

• if the bean class is private (or package-private), interface methods
will be preferred (from Camel 2.9 onwards) since Camel can't invoke
class methods on such beans

In cases where Camel cannot choose a method to invoke, an
AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body.

Parameter binding
When a method has been chosen for invokation, Camel will bind to the
parameters of the method.

The following Camel-specific types are automatically bound:
▪ org.apache.camel.Exchange
▪ org.apache.camel.Message
▪ org.apache.camel.CamelContext
▪ org.apache.camel.TypeConverter
▪ org.apache.camel.spi.Registry
▪ java.lang.Exception

So, if you declare any of these types, they will be provided by Camel. Note
that Exception will bind to the caught exception of the Exchange - so
it's often usable if you employ a Pojo to handle, e.g., an onException route.

What is most interesting is that Camel will also try to bind the body of the
Exchange to the first parameter of the method signature (albeit not of any of
the types above). So if, for instance, we declare a parameter as String
body, then Camel will bind the IN body to this type. Camel will also
automatically convert to the type declared in the method signature.

Let's review some examples:
Below is a simple method with a body binding. Camel will bind the IN body

to the body parameter and convert it to a String.

public String doSomething(String body)

In the following sample we got one of the automatically-bound types as well -
for instance, a Registry that we can use to lookup beans.

46 COOKBOOK

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/exchange.html

public String doSomething(String body, Registry registry)

We can use Exchange as well:

public String doSomething(String body, Exchange exchange)

You can also have multiple types:

public String doSomething(String body, Exchange exchange, TypeConverter converter)

And imagine you use a Pojo to handle a given custom exception
InvalidOrderException - we can then bind that as well:

public String badOrder(String body, InvalidOrderException invalid)

Notice that we can bind to it even if we use a sub type of
java.lang.Exception as Camel still knows it's an exception and can bind
the cause (if any exists).

So what about headers and other stuff? Well now it gets a bit tricky - so we
can use annotations to help us, or specify the binding in the method name
option.
See the following sections for more detail.

Binding Annotations
You can use the Parameter Binding Annotations to customize how parameter
values are created from the Message

Examples
For example, a Bean such as:

public class Bar {

public String doSomething(String body) {
// process the in body and return whatever you want
return "Bye World";

}

Or the Exchange example. Notice that the return type must be void when
there is only a single parameter:

COOKBOOK 47

http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html
http://camel.apache.org/bean.html

public class Bar {

public void doSomething(Exchange exchange) {
// process the exchange
exchange.getIn().setBody("Bye World");

}

@Handler
You can mark a method in your bean with the @Handler annotation to
indicate that this method should be used for Bean Binding.
This has an advantage as you need not specify a method name in the Camel
route, and therefore do not run into problems after renaming the method in
an IDE that can't find all its references.

public class Bar {

@Handler
public String doSomething(String body) {

// process the in body and return whatever you want
return "Bye World";

}

Parameter binding using method option
Available as of Camel 2.9

Camel uses the following rules to determine if it's a parameter value in the
method option

▪ The value is either true or false which denotes a boolean value
▪ The value is a numeric value such as 123 or 7
▪ The value is a String enclosed with either single or double quotes
▪ The value is null which denotes a null value
▪ It can be evaluated using the Simple language, which means you can

use, e.g., body, header.foo and other Simple tokens. Notice the
tokens must be enclosed with ${ }.

Any other value is consider to be a type declaration instead - see the next
section about specifying types for overloaded methods.

When invoking a Bean you can instruct Camel to invoke a specific method
by providing the method name:

.bean(OrderService.class, "doSomething")

48 COOKBOOK

http://camel.apache.org/bean-binding.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

Here we tell Camel to invoke the doSomething method - Camel handles the
parameters' binding. Now suppose the method has 2 parameters, and the
2nd parameter is a boolean where we want to pass in a true value:

public void doSomething(String payload, boolean highPriority) {
...

}

This is now possible in Camel 2.9 onwards:

.bean(OrderService.class, "doSomething(*, true)")

In the example above, we defined the first parameter using the wild card
symbol *, which tells Camel to bind this parameter to any type, and let
Camel figure this out. The 2nd parameter has a fixed value of true. Instead
of the wildcard symbol we can instruct Camel to use the message body as
shown:

.bean(OrderService.class, "doSomething(${body}, true)")

The syntax of the parameters is using the Simple expression language so we
have to use ${ } placeholders in the body to refer to the message body.

If you want to pass in a null value, then you can explicit define this in the
method option as shown below:

.to("bean:orderService?method=doSomething(null, true)")

Specifying null as a parameter value instructs Camel to force passing a null
value.

Besides the message body, you can pass in the message headers as a
java.util.Map:

.bean(OrderService.class, "doSomethingWithHeaders(${body}, ${headers})")

You can also pass in other fixed values besides booleans. For example, you
can pass in a String and an integer:

.bean(MyBean.class, "echo('World', 5)")

In the example above, we invoke the echo method with two parameters. The
first has the content 'World' (without quotes), and the 2nd has the value of 5.
Camel will automatically convert these values to the parameters' types.

COOKBOOK 49

http://camel.apache.org/simple.html

Having the power of the Simple language allows us to bind to message
headers and other values such as:

.bean(OrderService.class, "doSomething(${body}, ${header.high})")

You can also use the OGNL support of the Simple expression language. Now
suppose the message body is an object which has a method named asXml. To
invoke the asXml method we can do as follows:

.bean(OrderService.class, "doSomething(${body.asXml}, ${header.high})")

Instead of using .bean as shown in the examples above, you may want to
use .to instead as shown:

.to("bean:orderService?method=doSomething(${body.asXml}, ${header.high})")

Using type qualifiers to select among overloaded methods
Available as of Camel 2.8

If you have a Bean with overloaded methods, you can now specify
parameter types in the method name so Camel can match the method you
intend to use.
Given the following bean:

Listing 1. MyBean

public static final class MyBean {

public String hello(String name) {
return "Hello " + name;

}

public String hello(String name, @Header("country") String country) {
return "Hello " + name + " you are from " + country;

}

public String times(String name, @Header("times") int times) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(name);
}
return sb.toString();

}

public String times(byte[] data, @Header("times") int times) {
String s = new String(data);
StringBuilder sb = new StringBuilder();

50 COOKBOOK

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

for (int i = 0; i < times; i++) {
sb.append(s);
if (i < times - 1) {

sb.append(",");
}

}
return sb.toString();

}

public String times(String name, int times, char separator) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(name);
if (i < times - 1) {

sb.append(separator);
}

}
return sb.toString();

}

}

Then the MyBean has 2 overloaded methods with the names hello and
times. So if we want to use the method which has 2 parameters we can do
as follows in the Camel route:

Listing 1. Invoke 2 parameter method

from("direct:start")
.bean(MyBean.class, "hello(String,String)")
.to("mock:result");

We can also use a * as wildcard so we can just say we want to execute the
method with 2 parameters we do

Listing 1. Invoke 2 parameter method using wildcard

from("direct:start")
.bean(MyBean.class, "hello(*,*)")
.to("mock:result");

By default Camel will match the type name using the simple name, e.g. any
leading package name will be disregarded. However if you want to match
using the FQN, then specify the FQN type and Camel will leverage that. So if
you have a com.foo.MyOrder and you want to match against the FQN, and
not the simple name "MyOrder", then follow this example:

.bean(OrderService.class, "doSomething(com.foo.MyOrder)")

COOKBOOK 51

Camel currently only supports either specifying parameter binding
or type per parameter in the method name option. You cannot
specify both at the same time, such as

doSomething(com.foo.MyOrder ${body}, boolean ${header.high})

This may change in the future.

Bean Injection
We support the injection of various resources using @EndpointInject. This can
be used to inject

• Endpoint instances which can be used for testing when used with
Mock endpoints; see the Spring Testing for an example.

• ProducerTemplate instances for POJO Producing
• client side proxies for POJO Producing which is a simple approach to

Spring Remoting

Parameter Binding Annotations
Annotations can be used to define an Expression or to extract various
headers, properties or payloads from a Message when invoking a bean
method (see Bean Integration for more detail of how to invoke bean
methods) together with being useful to help disambiguate which method to
invoke.

If no annotations are used then Camel assumes that a single parameter is
the body of the message. Camel will then use the Type Converter mechanism
to convert from the expression value to the actual type of the parameter.

The core annotations are as follows
Annotation Meaning Parameter
@Body To bind to an inbound message body Â

@ExchangeException To bind to an Exception set on the
exchange (Camel 2.0) Â

@Header To bind to an inbound message
header

String
name of
the header

@Headers To bind to the Map of the inbound
message headers Â

52 COOKBOOK

http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/expression.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ExchangeException.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Headers.html

camel-core
The annotations below are all part of camel-core and thus does
not require camel-spring or Spring. These annotations can be
used with the Bean component or when invoking beans in the DSL

@OutHeaders To bind to the Map of the outbound
message headers Â

@Property To bind to a named property on the
exchange

String
name of
the
property

@Properties To bind to the property map on the
exchange Â

@Handler

Camel 2.0: Not part as a type
parameter but stated in this table
anyway to spread the good word
that we have this annotation in
Camel now. See more at Bean
Binding.

Â

The follow annotations @Headers, @OutHeaders and @Properties binds to
the backing java.util.Map so you can alter the content of these maps
directly, for instance using the put method to add a new entry. See the
OrderService class at Exception Clause for such an example.

Since Camel 2.0, you can use @Header("myHeader") and
@Property("myProperty") instead of @Header(name="myHeader") and
@Property(name="myProperty") as Camel 1.x does.

Example
In this example below we have a @Consume consumer (like message driven)
that consumes JMS messages from the activemq queue. We use the @Header
and @Body parameter binding annotations to bind from the JMSMessage to
the method parameters.

public class Foo {

@Consume(uri = "activemq:my.queue")
public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body

String body) {

COOKBOOK 53

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Property.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Properties.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean.html
http://camel.apache.org/dsl.html

// process the inbound message here
}

}

In the above Camel will extract the value of Message.getJMSCorrelationID(),
then using the Type Converter to adapt the value to the type of the
parameter if required - it will inject the parameter value for the
correlationID parameter. Then the payload of the message will be
converted to a String and injected into the body parameter.

You don't need to use the @Consume annotation; as you could use the
Camel DSL to route to the beans method

Using the DSL to invoke the bean method
Here is another example which does not use POJO Consuming annotations
but instead uses the DSL to route messages to the bean method

public class Foo {
public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body

String body) {
// process the inbound message here

}

}

The routing DSL then looks like this

from("activemq:someQueue").
to("bean:myBean");

Here myBean would be looked up in the Registry (such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try
figure out what method to call.

If you want to be explicit you can use

from("activemq:someQueue").
to("bean:myBean?methodName=doSomething");

And here we have a nifty example for you to show some great power in
Camel. You can mix and match the annotations with the normal parameters,
so we can have this example with annotations and the Exchange also:

54 COOKBOOK

http://camel.apache.org/type-converter.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/dsl.html
http://camel.apache.org/registry.html

public void doSomething(@Header("user") String user, @Body String body, Exchange
exchange) {

exchange.getIn().setBody(body + "MyBean");
}

Annotation Based Expression Language
You can also use any of the Languages supported in Camel to bind
expressions to method parameters when using Bean Integration. For
example you can use any of these annotations:
Annotation Description
@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression
@JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

COOKBOOK 55

http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html

String body) {
// process the inbound message here

}
}

Advanced example using @Bean
And an example of using the the @Bean binding annotation, where you can
use a Pojo where you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the id
myCorrelationIdGenerator where we can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

The Pojo MyIdGenerator has one public method that accepts two parameters.
However we have also annotated this one with the @Header and @Body
annotation to help Camel know what to bind here from the Message from the
Exchange being processed.

Of course this could be simplified a lot if you for instance just have a
simple id generator. But we wanted to demonstrate that you can use the
Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

56 COOKBOOK

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the
Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy
In this example we have an Exchange that has a User object stored in the in
header. This User object has methods to get some user information. We want
to use Groovy to inject an expression that extracts and concats the fullname
of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $
placeholders that will be evaluated by Groovy.

@MessageDriven or @Consume
To consume a message you use either the @MessageDriven annotation or
from 1.5.0 the @Consume annotation to mark a particular method of a bean
as being a consumer method. The uri of the annotation defines the Camel
Endpoint to consume from.

e.g. lets invoke the onCheese() method with the String body of the
inbound JMS message from ActiveMQ on the cheese queue; this will use the
Type Converter to convert the JMS ObjectMessage or BytesMessage to a
String - or just use a TextMessage from JMS

public class Foo {

@Consume(uri="activemq:cheese")
public void onCheese(String name) {

...

COOKBOOK 57

http://camel.apache.org/registry.html
http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/MessageDriven.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consume.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/activemq.html
http://camel.apache.org/type-converter.html

@MessageDriven is @deprecated
@MessageDriven is deprecated in Camel 1.x. You should use
@Consume instead. Its removed in Camel 2.0.

}
}

The Bean Binding is then used to convert the inbound Message to the
parameter list used to invoke the method .

What this does is basically create a route that looks kinda like this

from(uri).bean(theBean, "methodName");

Using context option to apply only a certain CamelContext
Available as of Camel 2.0
See the warning above.

You can use the context option to specify which CamelContext the
consumer should only apply for. For example:

@Consume(uri="activemq:cheese", context="camel-1")
public void onCheese(String name) {

The consumer above will only be created for the CamelContext that have the
context id = camel-1. You set this id in the XML tag:

<camelContext id="camel-1" ...>

Using an explicit route
If you want to invoke a bean method from many different endpoints or within
different complex routes in different circumstances you can just use the
normal routing DSL or the Spring XML configuration file.

For example

from(uri).beanRef("myBean", "methodName");

58 COOKBOOK

http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html

When using more than one CamelContext
When you use more than 1 CamelContext you might end up with
each of them creating a POJO Consuming.
In Camel 2.0 there is a new option on @Consume that allows you
to specify which CamelContext id/name you want it to apply for.

which will then look up in the Registry and find the bean and invoke the
given bean name. (You can omit the method name and have Camel figure
out the right method based on the method annotations and body type).

Use the Bean endpoint
You can always use the bean endpoint

from(uri).to("bean:myBean?method=methodName");

Which approach to use?
Using the @MessageDriven/@Consume annotations are simpler when you
are creating a simple route with a single well defined input URI.

However if you require more complex routes or the same bean method
needs to be invoked from many places then please use the routing DSL as
shown above.

There are two different ways to send messages to any Camel Endpoint
from a POJO

@EndpointInject
To allow sending of messages from POJOs you can use @EndpointInject()
annotation. This will inject either a ProducerTemplate or CamelTemplate so
that the bean can send message exchanges.

e.g. lets send a message to the foo.bar queue in ActiveMQ at some point

public class Foo {
@EndpointInject(uri="activemq:foo.bar")
ProducerTemplate producer;

COOKBOOK 59

http://camel.apache.org/registry.html
http://camel.apache.org/dsl.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelTemplate.html
http://camel.apache.org/activemq.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/camelcontext.html

public void doSomething() {
if (whatever) {

producer.sendBody("<hello>world!</hello>");
}

}
}

The downside of this is that your code is now dependent on a Camel API, the
ProducerTemplate. The next section describes how to remove this

Hiding the Camel APIs from your code using @Produce
We recommend Hiding Middleware APIs from your application code so the
next option might be more suitable.
You can add the @Produce annotation to an injection point (a field or
property setter) using a ProducerTemplate or using some interface you use in
your business logic. e.g.

public interface MyListener {
String sayHello(String name);

}

public class MyBean {
@Produce(uri = "activemq:foo")
protected MyListener producer;

public void doSomething() {
// lets send a message
String response = producer.sayHello("James");

}
}

Here Camel will automatically inject a smart client side proxy at the
@Produce annotation - an instance of the MyListener instance. When we
invoke methods on this interface the method call is turned into an object and
using the Camel Spring Remoting mechanism it is sent to the endpoint - in
this case the ActiveMQ endpoint to queue foo; then the caller blocks for a
response.

If you want to make asynchronous message sends then use an @InOnly
annotation on the injection point.

@RECIPIENTLIST ANNOTATION
As of 1.5.0 we now support the use of @RecipientList on a bean method to
easily create a dynamic Recipient List using a Java method.

60 COOKBOOK

http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/activemq.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/recipient-list.html

Simple Example using @Consume and @RecipientList

package com.acme.foo;

public class RouterBean {

@Consume(uri = "activemq:foo")
@RecipientList
public String[] route(String body) {

return new String[]{"activemq:bar", "activemq:whatnot"};
}

}

For example if the above bean is configured in Spring when using a
<camelContext> element as follows

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.5.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/

camel/schema/spring/camel-spring.xsd
">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"/>

<bean id="myRecipientList" class="com.acme.foo.RouterBean"/>

</beans>

then a route will be created consuming from the foo queue on the ActiveMQ
component which when a message is received the message will be
forwarded to the endpoints defined by the result of this method call - namely
the bar and whatnot queues.

How it works
The return value of the @RecipientList method is converted to either a
java.util.Collection / java.util.Iterator or array of objects where each element
is converted to an Endpoint or a String, or if you are only going to route to a
single endpoint then just return either an Endpoint object or an object that
can be converted to a String. So the following methods are all valid

@RecipientList
public String[] route(String body) { ... }

COOKBOOK 61

http://camel.apache.org/spring.html
http://camel.apache.org/activemq.html
http://camel.apache.org/endpoint.html

@RecipientList
public List<String> route(String body) { ... }

@RecipientList
public Endpoint route(String body) { ... }

@RecipientList
public Endpoint[] route(String body) { ... }

@RecipientList
public Collection<Endpoint> route(String body) { ... }

@RecipientList
public URI route(String body) { ... }

@RecipientList
public URI[] route(String body) { ... }

Then for each endpoint or URI the message is forwarded a separate copy to
that endpoint.

You can then use whatever Java code you wish to figure out what
endpoints to route to; for example you can use the Bean Binding annotations
to inject parts of the message body or headers or use Expression values on
the message.

More Complex Example Using DSL
In this example we will use more complex Bean Binding, plus we will use a
separate route to invoke the Recipient List

public class RouterBean2 {

@RecipientList
public String route(@Header("customerID") String custID String body) {

if (custID == null) return null;
return "activemq:Customers.Orders." + custID;

}
}

public class MyRouteBuilder extends RouteBuilder {
protected void configure() {

from("activemq:Orders.Incoming").recipientList(bean("myRouterBean", "route"));
}

}

Notice how we are injecting some headers or expressions and using them to
determine the recipients using Recipient List EIP.
See the Bean Integration for more details.

62 COOKBOOK

http://camel.apache.org/bean-binding.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean-integration.html

USING EXCHANGE PATTERN ANNOTATIONS
When working with POJO Producing or Spring Remoting you invoke methods
which typically by default are InOut for Request Reply. That is there is an In
message and an Out for the result. Typically invoking this operation will be
synchronous, the caller will block until the server returns a result.

Camel has flexible Exchange Pattern support - so you can also support the
Event Message pattern to use InOnly for asynchronous or one way
operations. These are often called 'fire and forget' like sending a JMS
message but not waiting for any response.

From 1.5 onwards Camel supports annotations for specifying the message
exchange pattern on regular Java methods, classes or interfaces.

Specifying InOnly methods
Typically the default InOut is what most folks want but you can customize to
use InOnly using an annotation.

public interface Foo {
Object someInOutMethod(String input);
String anotherInOutMethod(Cheese input);

@InOnly
void someInOnlyMethod(Document input);

}

The above code shows three methods on an interface; the first two use the
default InOut mechanism but the someInOnlyMethod uses the InOnly
annotation to specify it as being a oneway method call.

Class level annotations
You can also use class level annotations to default all methods in an interface
to some pattern such as

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

}

Annotations will also be detected on base classes or interfaces. So for
example if you created a client side proxy for

COOKBOOK 63

http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html

public class MyFoo implements Foo {
...

}

Then the methods inherited from Foo would be InOnly.

Overloading a class level annotation
You can overload a class level annotation on specific methods. A common
use case for this is if you have a class or interface with many InOnly methods
but you want to just annote one or two methods as InOut

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@InOut
String someInOutMethod(String input);

}

In the above Foo interface the someInOutMethod will be InOut

Using your own annotations
You might want to create your own annotations to represent a group of
different bits of metadata; such as combining synchrony, concurrency and
transaction behaviour.

So you could annotate your annotation with the @Pattern annotation to
default the exchange pattern you wish to use.

For example lets say we want to create our own annotation called
@MyAsyncService

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})

// lets add the message exchange pattern to it
@Pattern(ExchangePattern.InOnly)

// lets add some other annotations - maybe transaction behaviour?

public @interface MyAsyncService {
}

Now we can use this annotation and Camel will figure out the correct
exchange pattern...

64 COOKBOOK

public interface Foo {
void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@MyAsyncService
String someInOutMethod(String input);

}

When writing software these days, its important to try and decouple as much
middleware code from your business logic as possible.

This provides a number of benefits...
• you can choose the right middleware solution for your deployment

and switch at any time
• you don't have to spend a large amount of time learning the specifics

of any particular technology, whether its JMS or JavaSpace or
Hibernate or JPA or iBATIS whatever

For example if you want to implement some kind of message passing,
remoting, reliable load balancing or asynchronous processing in your
application we recommend you use Camel annotations to bind your services
and business logic to Camel Components which means you can then easily
switch between things like

• in JVM messaging with SEDA
• using JMS via ActiveMQ or other JMS providers for reliable load

balancing, grid or publish and subscribe
• for low volume, but easier administration since you're probably

already using a database you could use
◦ Hibernate or JPA to use an entity bean / table as a queue
◦ iBATIS to work with SQL
◦ JDBC for raw SQL access

• use JavaSpace

How to decouple from middleware APIs
The best approach when using remoting is to use Spring Remoting which can
then use any messaging or remoting technology under the covers. When
using Camel's implementation you can then use any of the Camel
Components along with any of the Enterprise Integration Patterns.

Another approach is to bind Java beans to Camel endpoints via the Bean
Integration. For example using POJO Consuming and POJO Producing you can
avoid using any Camel APIs to decouple your code both from middleware
APIs and Camel APIs!

COOKBOOK 65

http://camel.apache.org/jms.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html

VISUALISATION
Camel supports the visualisation of your Enterprise Integration Patterns using
the GraphViz DOT files which can either be rendered directly via a suitable
GraphViz tool or turned into HTML, PNG or SVG files via the Camel Maven
Plugin.

Here is a typical example of the kind of thing we can generate

If you click on the actual generated htmlyou will see that you can navigate
from an EIP node to its pattern page, along with getting hover-over tool tips
ec.

How to generate
See Camel Dot Maven Goal or the other maven goals Camel Maven Plugin

For OS X users
If you are using OS X then you can open the DOT file using graphviz which
will then automatically re-render if it changes, so you end up with a real time
graphical representation of the topic and queue hierarchies!

Also if you want to edit the layout a little before adding it to a wiki to
distribute to your team, open the DOT file with OmniGraffle then just edit
away

66 COOKBOOK

http://camel.apache.org/enterprise-integration-patterns.html
http://graphviz.org/
http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/camel-maven-plugin.html
http://activemq.apache.org/camel/maven/camel-spring/cameldoc/index.html
http://activemq.apache.org/camel/maven/examples/camel-example-docs/cameldoc/main/routes.html
http://camel.apache.org/camel-dot-maven-goal.html
http://camel.apache.org/camel-maven-plugin.html
http://www.pixelglow.com/graphviz/
http://www.omnigroup.com/applications/omnigraffle/

BUSINESS ACTIVITY MONITORING
The Camel BAM module provides a Business Activity Monitoring (BAM)
framework for testing business processes across multiple message
exchanges on different Endpoint instances.

Consider, for example, a simple system in which you submit Purchase
Orders into system A and then receive Invoices from system B. You might
want to test that, for a given Purchase Order, you receive a matching Invoice
from system B within a specific time period.

How Camel BAM Works
Camel BAM uses a Correlation Identifier on an input message to determine
the Process Instance to which it belongs. The process instance is an entity
bean which can maintain state for each Activity (where an activity typically
maps to a single endpoint - such as the submission of Purchase Orders or the
receipt of Invoices).

You can then add rules to be triggered when a message is received on any
activity - such as to set time expectations or perform real time reconciliation
of values across activities.

Simple Example
The following example shows how to perform some time based rules on a
simple business process of 2 activities - A and B - which correspond with
Purchase Orders and Invoices in the example above. If you would like to
experiment with this scenario, you may edit this Test Case, which defines the
activities and rules, and then tests that they work.

return new ProcessBuilder(jpaTemplate, transactionTemplate) {
public void configure() throws Exception {

// let's define some activities, correlating on an XPath on the message bodies
ActivityBuilder a = activity("seda:a").name("a")

.correlate(xpath("/hello/@id"));

ActivityBuilder b = activity("seda:b").name("b")
.correlate(xpath("/hello/@id"));

// now let's add some rules
b.starts().after(a.completes())

.expectWithin(seconds(1))

.errorIfOver(seconds(errorTimeout)).to("mock:overdue");
}

};

COOKBOOK 67

http://camel.apache.org/endpoint.html
http://camel.apache.org/correlation-identifier.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-bam/src/test/java/org/apache/camel/bam/BamRouteTest.java

As you can see in the above example, we first define two activities, and then
rules to specify when we expect them to complete for a process instance and
when an error condition should be raised.p. The ProcessBuilder is a
RouteBuilder and can be added to any CamelContext.

Complete Example
For a complete example please see the BAM Example, which is part of the
standard Camel Examples

Use Cases
In the world of finance, a common requirement is tracking trades. Often a
trader will submit a Front Office Trade which then flows through the Middle
Office and Back Office through various systems to settle the trade so that
money is exchanged. You may wish to test that the front and back office
trades match up within a certain time period; if they don't match or a back
office trade does not arrive within a required amount of time, you might
signal an alarm.

EXTRACT TRANSFORM LOAD (ETL)
The ETL (Extract, Transform, Load) is a mechanism for loading data into
systems or databases using some kind of Data Format from a variety of
sources; often files then using Pipes and Filters, Message Translator and
possible other Enterprise Integration Patterns.

So you could query data from various Camel Components such as File,
HTTP or JPA, perform multiple patterns such as Splitter or Message Translator
then send the messages to some other Component.

To show how this all fits together, try the ETL Example

MOCK COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult.
The Mock, Test and DataSet endpoints work great with the Camel Testing
Framework to simplify your unit and integration testing using Enterprise
Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism,
which is similar to jMock in that it allows declarative expectations to be
created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the

68 COOKBOOK

http://camel.apache.org/routebuilder.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/bam-example.html
http://camel.apache.org/examples.html
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/file.html
http://camel.apache.org/http.html
http://camel.apache.org/jpa.html
http://camel.apache.org/splitter.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/component.html
http://camel.apache.org/etl-example.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://jmock.org/

expectations can be asserted in a test case to ensure the system worked as
expected.

This allows you to test various things like:
• The correct number of messages are received on each endpoint,
• The correct payloads are received, in the right order,
• Messages arrive on an endpoint in order, using some Expression to

create an order testing function,
• Messages arrive match some kind of Predicate such as that specific

headers have certain values, or that parts of the messages match
some predicate, such as by evaluating an XPath or XQuery
Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which
uses a second endpoint to provide the list of expected message bodies and
automatically sets up the Mock endpoint assertions. In other words, it's a
Mock endpoint that automatically sets up its assertions from some sample
messages in a File or database, for example.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.
You can append query options to the URI in the following format,

?option=value&option=value&...

Options
Option Default Description
reportGroup null A size to use a throughput logger for reporting

Simple Example
Here's a simple example of Mock endpoint in use. First, the endpoint is
resolved on the context. Then we set an expectation, and then, after the test
has run, we assert that our expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

COOKBOOK 69

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/test.html
http://camel.apache.org/file.html
http://camel.apache.org/jpa.html
http://camel.apache.org/log.html

Mock endpoints keep received Exchanges in memory
indefinitely
Remember that Mock is designed for testing. When you add Mock
endpoints to a route, each Exchange sent to the endpoint will be
stored (to allow for later validation) in memory until explicitly reset
or the JVM is restarted. If you are sending high volume and/or large
messages, this may cause excessive memory use. If your goal is to
test deployable routes inline, consider using NotifyBuilder or
AdviceWith in your tests instead of adding Mock endpoints to routes
directly.

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the
expectations were met after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is
invoked. This can be configured by setting the setResultWaitTime(millis)
method.

When the assertion is satisfied then Camel will stop waiting and continue
from the assertIsSatisfied method. That means if a new message arrives
on the mock endpoint, just a bit later, that arrival will not affect the outcome
of the assertion. Suppose you do want to test that no new messages arrives
after a period thereafter, then you can do that by setting the
setAssertPeriod method.

Using assertPeriod
Available as of Camel 2.7
When the assertion is satisfied then Camel will stop waiting and continue
from the assertIsSatisfied method. That means if a new message arrives
on the mock endpoint, just a bit later, that arrival will not affect the outcome
of the assertion. Suppose you do want to test that no new messages arrives
after a period thereafter, then you can do that by setting the
setAssertPeriod method, for example:

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

70 COOKBOOK

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/exchange.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

Setting expectations
You can see from the javadoc of MockEndpoint the various helper methods
you can use to set expectations. The main methods are as follows:
Method Description
expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare
messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare
messages.

expectsNoDuplicates(Expression)
To add an expectation that no duplicate messages are received; using an Expression to calculate a
unique identifier for each message. This could be something like the JMSMessageID if using JMS, or some
unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages
In addition, you can use the message(int messageIndex) method to add
assertions about a specific message that is received.

For example, to add expectations of the headers or body of the first
message (using zero-based indexing like java.util.List), you can use the
following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core
processor tests.

Mocking existing endpoints
Available as of Camel 2.7

COOKBOOK 71

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%2520java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

Camel now allows you to automatic mock existing endpoints in your Camel
routes.
Suppose you have the given route below:

Listing 1. Route

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

You can then use the adviceWith feature in Camel to mock all the endpoints
in a given route from your unit test, as shown below:

Listing 1. adviceWith mocking all endpoints

public void testAdvisedMockEndpoints() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock all endpoints
mockEndpoints();

}
});

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

72 COOKBOOK

How it works
Important: The endpoints are still in action, what happens is that a
Mock endpoint is injected and receives the message first, it then
delegate the message to the target endpoint. You can view this as a
kind of intercept and delegate or endpoint listener.

Notice that the mock endpoints is given the uri mock:<endpoint>, for
example mock:direct:foo. Camel logs at INFO level the endpoints being
mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Its also possible to only mock certain endpoints using a pattern. For example
to mock all log endpoints you do as shown:

Listing 1. adviceWith mocking only log endpoints using a pattern

public void testAdvisedMockEndpointsWithPattern() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock only log endpoints
mockEndpoints("log*");

}
});

// now we can refer to log:foo as a mock and set our expectations
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// only the log:foo endpoint was mocked
assertNotNull(context.hasEndpoint("mock:log:foo"));
assertNull(context.hasEndpoint("mock:direct:start"));
assertNull(context.hasEndpoint("mock:direct:foo"));

}

COOKBOOK 73

http://camel.apache.org/mock.html

Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off.
For example the endpoint "log:foo?showAll=true" will be mocked to
the following endpoint "mock:log:foo". Notice the parameters has
been removed.

The pattern supported can be a wildcard or a regular expression. See more
details about this at Intercept as its the same matching function used by
Camel.

Mocking existing endpoints using the camel-test
component
Instead of using the adviceWith to instruct Camel to mock endpoints, you
can easily enable this behavior when using the camel-test Test Kit.
The same route can be tested as follows. Notice that we return "*" from the
isMockEndpoints method, which tells Camel to mock all endpoints.
If you only want to mock all log endpoints you can return "log*" instead.

Listing 1. isMockEndpoints using camel-test kit

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpoints() {

// override this method and return the pattern for which endpoints to mock.
// use * to indicate all
return "*";

}

@Test
public void testMockAllEndpoints() throws Exception {

// notice we have automatic mocked all endpoints and the name of the
endpoints is "mock:uri"

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));

74 COOKBOOK

http://camel.apache.org/intercept.html

Mind that mocking endpoints causes the messages to be copied
when they arrive on the mock.
That means Camel will use more memory. This may not be suitable
when you send in a lot of messages.

assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

}

Mocking existing endpoints with XML DSL
If you do not use the camel-test component for unit testing (as shown
above) you can use a different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then
include the intended XML file which has the route you want to test.

Suppose we have the route in the camel-route.xml file:
Listing 1. camel-route.xml

<!-- this camel route is in the camel-route.xml file -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<to uri="direct:foo"/>
<to uri="log:foo"/>
<to uri="mock:result"/>

</route>

COOKBOOK 75

<route>
<from uri="direct:foo"/>
<transform>

<constant>Bye World</constant>
</transform>

</route>

</camelContext>

Then we create a new XML file as follows, where we include the camel-
route.xml file and define a spring bean with the class
org.apache.camel.impl.InterceptSendToMockEndpointStrategy which
tells Camel to mock all endpoints:

Listing 1. test-camel-route.xml

<!-- the Camel route is defined in another XML file -->
<import resource="camel-route.xml"/>

<!-- bean which enables mocking all endpoints -->
<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"/>

Then in your unit test you load the new XML file (test-camel-route.xml)
instead of camel-route.xml.

To only mock all Log endpoints you can define the pattern in the
constructor for the bean:

<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">

<constructor-arg index="0" value="log*"/>
</bean>

Testing with arrival times
Available as of Camel 2.7

The Mock endpoint stores the arrival time of the message as a property on
the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock.
But it also provides foundation to know the time interval between the
previous and next message arrived on the mock. You can use this to set
expectations using the arrives DSL on the Mock endpoint.

76 COOKBOOK

http://camel.apache.org/log.html
http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html

For example to say that the first message should arrive between 0-2
seconds before the next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that 2nd message (0 index based) should arrive
no later than 0-2 seconds after the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it
should be between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

You can also set the expectation on all messages, for example to say that the
gap between them should be at most 1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing
• Testing

TESTING
Testing is a crucial activity in any piece of software development or
integration. Typically Camel Riders use various different technologies wired
together in a variety of patterns with different expression languages together
with different forms of Bean Integration and Dependency Injection so its very
easy for things to go wrong! . Testing is the crucial weapon to ensure that
things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit
testing framework you use (JUnit 3.x, 4.x or TestNG). However the Camel
project has tried to make the testing of Camel as easy and powerful as
possible so we have introduced the following features.

COOKBOOK 77

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/dependency-injection.html

time units
In the example above we use seconds as the time unit, but Camel
offers milliseconds, and minutes as well.

Testing mechanisms
The following mechanisms are supported
Name Component Description

Camel
Test camel-test

Is a standalone Java library letting you easily
create Camel test cases using a single Java
class for all your configuration and routing
without using Spring or Guice for Dependency
Injection which does not require an in depth
knowledge of Spring+SpringTest or Guice

Spring
Testing

camel-
test-
spring

Uses Spring Test together with either XML or
Java Config to dependency inject your test
classes. Notice camel-test-spring is a new
component in Camel 2.10 onwards. For older
Camel release use camel-test which has built-
in Spring Testing.

Blueprint
Testing

camel-
test-
blueprint

Camel 2.10: Provides the ability to do unit
testing on blueprint configurations

Guice camel-
guice

Uses Guice to dependency inject your test
classes

In all approaches the test classes look pretty much the same in that they all
reuse the Camel binding and injection annotations.

Camel Test Example
Here is the Camel Test example.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

78 COOKBOOK

http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/guice.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/camel-test.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

Notice how it derives from the Camel helper class CamelTestSupport but
has no Spring or Guice dependency injection configuration but instead
overrides the createRouteBuilder() method.

Spring Test with XML Config Example
Here is the Spring Testing example using XML Config.

@ContextConfiguration
public class FilterTest extends AbstractJUnit38SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

COOKBOOK 79

http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java

public void testSendMatchingMessage() throws Exception {
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

}

Notice that we use @DirtiesContext on the test methods to force Spring
Testing to automatically reload the CamelContext after each test method -
this ensures that the tests don't clash with each other (e.g. one test method
sending to an endpoint that is then reused in another test method).

Also notice the use of @ContextConfiguration to indicate that by default
we should look for the FilterTest-context.xml on the classpath to configure
the test case which looks like this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>

</filter>
</route>

</camelContext>

</beans>

80 COOKBOOK

http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Spring Test with Java Config Example
Here is the Spring Testing example using Java Config. For more information
see Spring Java Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

COOKBOOK 81

http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
http://camel.apache.org/spring-java-config.html

This is similar to the XML Config example above except that there is no XML
file and instead the nested ContextConfig class does all of the
configuration; so your entire test case is contained in a single Java class. We
currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to
address this and make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive
from SingleRouteCamelConfiguration which is a helper Spring Java Config
class which will configure the CamelContext for us and then register the
RouteBuilder we create.

Blueprint Test
Here is the Blueprint Testing example using XML Config.

// to use camel-test-blueprint, then extend the CamelBlueprintTestSupport class,
// and add your unit tests methods as shown below.
public class DebugBlueprintTest extends CamelBlueprintTestSupport {

// override this method, and return the location of our Blueprint XML file to be
used for testing

@Override
protected String getBlueprintDescriptor() {

return "org/apache/camel/test/blueprint/camelContext.xml";
}

// here we have regular Junit @Test method
@Test
public void testRoute() throws Exception {

// set mock expectations
getMockEndpoint("mock:a").expectedMessageCount(1);

// send a message
template.sendBody("direct:start", "World");

// assert mocks
assertMockEndpointsSatisfied();

}

}

Also notice the use of getBlueprintDescriptors to indicate that by default
we should look for the camelContext.xml in the package to configure the test
case which looks like this

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

82 COOKBOOK

http://jira.springframework.org/browse/SJC-238
http://camel.apache.org/blueprint-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/java/org/apache/camel/test/blueprint/DebugBlueprintTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<transform>

<simple>Hello ${body}</simple>
</transform>
<to uri="mock:a"/>

</route>

</camelContext>

</blueprint>

Testing endpoints
Camel provides a number of endpoints which can make testing easier.
Name Description

DataSet
For load & soak testing this endpoint provides a way to create
huge numbers of messages for sending to Components and
asserting that they are consumed correctly

Mock For testing routes and mediation rules using mocks and allowing
assertions to be added to an endpoint

Test
Creates a Mock endpoint which expects to receive all the
message bodies that could be polled from the given underlying
endpoint

The main endpoint is the Mock endpoint which allows expectations to be
added to different endpoints; you can then run your tests and assert that
your expectations are met at the end.

Stubbing out physical transport technologies
If you wish to test out a route but want to avoid actually using a real physical
transport (for example to unit test a transformation route rather than
performing a full integration test) then the following endpoints can be useful.
Name Description

Direct
Direct invocation of the consumer from the producer so that
single threaded (non-SEDA) in VM invocation is performed which
can be useful to mock out physical transports

COOKBOOK 83

http://camel.apache.org/dataset.html
http://camel.apache.org/components.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/direct.html

SEDA
Delivers messages asynchonously to consumers via a
java.util.concurrent.BlockingQueue which is good for testing
asynchronous transports

Testing existing routes
Camel provides some features to aid during testing of existing routes where
you cannot or will not use Mock etc. For example you may have a production
ready route which you want to test with some 3rd party API which sends
messages into this route.
Name Description

NotifyBuilder
Allows you to be notified when a certain condition has
occurred. For example when the route has completed 5
messages. You can build complex expressions to match
your criteria when to be notified.

AdviceWith
Allows you to advice or enhance an existing route using a
RouteBuilder style. For example you can add interceptors
to intercept sending outgoing messages to assert those
messages are as expected.

CAMEL TEST
As a simple alternative to using Spring Testing or Guice the camel-test
module was introduced into the Camel 2.0 trunk so you can perform powerful
Testing of your Enterprise Integration Patterns easily.

Adding to your pom.xml
To get started using Camel Test you will need to add an entry to your
pom.xml

JUnit

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-test</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

84 COOKBOOK

http://camel.apache.org/seda.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/mock.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html
http://camel.apache.org/routebuilder.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html

The camel-test JAR is using JUnit. There is an alternative camel-
testng JAR (Camel 2.8 onwards) using the TestNG test framework.

TestNG
Available as of Camel 2.8

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-testng</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

You might also want to add slf4j and log4j to ensure nice logging messages
(and maybe adding a log4j.properties file into your src/test/resources
directory).

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<scope>test</scope>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<scope>test</scope>

</dependency>

Writing your test
You firstly need to derive from the class CamelTestSupport and typically
you will need to override the createRouteBuilder() method to create routes
to be tested.

Here is an example.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@Test

COOKBOOK 85

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/log4j.properties
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java
http://testng.org/doc/index.html

public void testSendMatchingMessage() throws Exception {
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

Notice how you can use the various Camel binding and injection annotations
to inject individual Endpoint objects - particularly the Mock endpoints which
are very useful for Testing. Also you can inject producer objects such as
ProducerTemplate or some application code interface for sending messages
or invoking services.

JNDI
Camel uses a Registry to allow you to configure Component or Endpoint
instances or Beans used in your routes. If you are not using Spring or OSGi
then JNDI is used as the default registry implementation.

So you will also need to create a jndi.properties file in your src/test/
resources directory so that there is a default registry available to initialise
the CamelContext.

Here is an example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

86 COOKBOOK

http://camel.apache.org/bean-integration.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/testing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/registry.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/spring.html
https://cwiki.apache.org/confluence/pages/createpage.action?spaceKey=CAMEL&title=OSGi&linkCreation=true&fromPageId=104074
http://camel.apache.org/jndi.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/jndi.properties

Dynamically assigning ports
Available as of Camel 2.7

Tests that use port numbers will fail if that port is already on use.
AvailablePortFinder provides methods for finding unused port numbers at
runtime.

// Get the next available port number starting from the default starting port of 1024
int port1 = AvailablePortFinder.getNextAvailable();
/*
* Get another port. Note that just getting a port number does not reserve it so
* we look starting one past the last port number we got.
*/

int port2 = AvailablePortFinder.getNextAvailable(port1 + 1);

Setup CamelContext once per class, or per every test method
Available as of Camel 2.8

The Camel Test kit will by default setup and shutdown CamelContext per
every test method in your test class. So for example if you have 3 test
methods, then CamelContext is started and shutdown after each test, that is
3 times.
You may want to do this once, to share the CamelContext between test
methods, to speedup unit testing. This requires to use JUnit 4! In your unit
test method you have to extend the
org.apache.camel.test.junit4.CamelTestSupport or the
org.apache.camel.test.junit4.CamelSpringTestSupport test class and
override the isCreateCamelContextPerClass method and return true as
shown in the following example:

Listing 1. Setup CamelContext once per class

public class FilterCreateCamelContextPerClassTest extends CamelTestSupport {

@Override
public boolean isCreateCamelContextPerClass() {

// we override this method and return true, to tell Camel test-kit that
// it should only create CamelContext once (per class), so we will
// re-use the CamelContext between each test method in this class
return true;

}

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

getMockEndpoint("mock:result").expectedBodiesReceived(expectedBody);

COOKBOOK 87

http://camel.apache.org/camel-test.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html

TestNG
This feature is also supported in camel-testng

Beware
When using this the CamelContext will keep state between tests, so
have that in mind. So if your unit tests start to fail for no apparent
reason, it could be due this fact. So use this feature with a bit of
care.

template.sendBodyAndHeader("direct:start", expectedBody, "foo", "bar");

assertMockEndpointsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

getMockEndpoint("mock:result").expectedMessageCount(0);

template.sendBodyAndHeader("direct:start", "<notMatched/>", "foo",
"notMatchedHeaderValue");

assertMockEndpointsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

See Also
• Testing
• Mock
• Test

88 COOKBOOK

http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/camelcontext.html

SPRING TESTING
Testing is a crucial part of any development or integration work. The Spring
Framework offers a number of features that makes it easy to test while using
Spring for Inversion of Control which works with JUnit 3.x, JUnit 4.x or TestNG.

We can reuse Spring for IoC and the Camel Mock and Test endpoints to
create sophisticated integration tests that are easy to run and debug inside
your IDE.

For example here is a simple unit test

import org.apache.camel.CamelContext;
import org.apache.camel.component.mock.MockEndpoint;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests;

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

public void testMocksAreValid() throws Exception {
MockEndpoint.assertIsSatisfied(camelContext);

}
}

This test will load a Spring XML configuration file called MyCamelTest-
context.xml from the classpath in the same package structure as the
MyCamelTest class and initialize it along with any Camel routes we define
inside it, then inject the CamelContext instance into our test case.

For instance, like this maven folder layout:

src/main/java/com/mycompany/MyCamelTest.class
src/main/resources/com/mycompany/MyCamelTest-context.xml

Spring Test with Java Config Example
You can completely avoid using an XML configuration file by using Spring
Java Config.

Here is an example using Java Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)

COOKBOOK 89

http://camel.apache.org/testing.html
http://testng.org/
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/spring-java-config.html
http://camel.apache.org/spring-java-config.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML
file and instead the nested ContextConfig class does all of the
configuration; so your entire test case is contained in a single Java class. We
currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to
address this and make Spring Test work more cleanly with Spring JavaConfig.

90 COOKBOOK

http://jira.springframework.org/browse/SJC-238

Adding more Mock expectations
If you wish to programmatically add any new assertions to your test you can
easily do so with the following. Notice how we use @EndpointInject to inject a
Camel endpoint into our code then the Mock API to add an expectation on a
specific message.

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations
foo.message(0).header("bar").isEqualTo("ABC");

MockEndpoint.assertIsSatisfied(camelContext);
}

}

Further processing the received messages
Sometimes once a Mock endpoint has received some messages you want to
then process them further to add further assertions that your test case
worked as you expect.

So you can then process the received message exchanges if you like...

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations...

MockEndpoint.assertIsSatisfied(camelContext);

// now lets do some further assertions
List<Exchange> list = foo.getReceivedExchanges();
for (Exchange exchange : list) {

Message in = exchange.getIn();
...

COOKBOOK 91

http://camel.apache.org/mock.html
http://camel.apache.org/mock.html

}
}

}

Sending and receiving messages
It might be that the Enterprise Integration Patterns you have defined in either
Spring XML or using the Java DSL do all of the sending and receiving and you
might just work with the Mock endpoints as described above. However
sometimes in a test case its useful to explicitly send or receive messages
directly.

To send or receive messages you should use the Bean Integration
mechanism. For example to send messages inject a ProducerTemplate using
the @EndpointInject annotation then call the various send methods on this
object to send a message to an endpoint. To consume messages use the
@MessageDriven annotation on a method to have the method invoked when
a message is received.

public class Foo {
@EndpointInject(uri="activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
// lets send a message!
producer.sendBody("<hello>world!</hello>");

}

// lets consume messages from the 'cheese' queue
@MessageDriven(uri="activemq:cheese")
public void onCheese(String name) {

...
}

}

See Also
• a real example test case using Mock and Spring along with its Spring

XML
• Bean Integration
• Mock endpoint
• Test endpoint

92 COOKBOOK

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html
http://camel.apache.org/dsl.html
http://camel.apache.org/mock.html
http://camel.apache.org/bean-integration.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
http://camel.apache.org/bean-integration.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html

CAMEL GUICE
As of 1.5 we now have support for Google Guice as a dependency injection
framework. To use it just be dependent on camel-guice.jar which also
depends on the following jars.

Dependency Injecting Camel with Guice
The GuiceCamelContext is designed to work nicely inside Guice. You then
need to bind it using some Guice Module.

The camel-guice library comes with a number of reusable Guice Modules
you can use if you wish - or you can bind the GuiceCamelContext yourself in
your own module.

• CamelModule is the base module which binds the
GuiceCamelContext but leaves it up you to bind the RouteBuilder
instances

• CamelModuleWithRouteTypes extends CamelModule so that in the
constructor of the module you specify the RouteBuilder classes or
instances to use

• CamelModuleWithMatchingRoutes extends CamelModule so that all
bound RouteBuilder instances will be injected into the CamelContext
or you can supply an optional Matcher to find RouteBuilder instances
matching some kind of predicate.

So you can specify the exact RouteBuilder instances you want

Injector injector = Guice.createInjector(new
CamelModuleWithRouteTypes(MyRouteBuilder.class, AnotherRouteBuilder.class));
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

Or inject them all

Injector injector = Guice.createInjector(new CamelModuleWithRouteTypes());
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any
other dependent objects.

Bootstrapping with JNDI
A common pattern used in J2EE is to bootstrap your application or root
objects by looking them up in JNDI. This has long been the approach when

COOKBOOK 93

http://code.google.com/p/google-guice/
http://activemq.apache.org/camel/maven/camel-guice/dependencies.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/GuiceCamelContext.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModule.html
hhttp://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithRouteTypes.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithMatchingRoutes.html
http://camel.apache.org/routebuilder.html

working with JMS for example - looking up the JMS ConnectionFactory in JNDI
for example.

You can follow a similar pattern with Guice using the GuiceyFruit JNDI
Provider which lets you bootstrap Guice from a jndi.properties file which
can include the Guice Modules to create along with environment specific
properties you can inject into your modules and objects.

If the jndi.properties is conflict with other component, you can specify
the jndi properties file name in the Guice Main with option -j or -jndiProperties
with the properties file location to let Guice Main to load right jndi properties
file.

Configuring Component, Endpoint or RouteBuilder instances
You can use Guice to dependency inject whatever objects you need to create,
be it an Endpoint, Component, RouteBuilder or arbitrary bean used within a
route.

The easiest way to do this is to create your own Guice Module class which
extends one of the above module classes and add a provider method for
each object you wish to create. A provider method is annotated with
@Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JndiBind("jms")
JmsComponent jms(@Named("activemq.brokerURL") String brokerUrl) {

return JmsComponent.jmsComponent(new ActiveMQConnectionFactory(brokerUrl));
}

}

You can optionally annotate the method with @JndiBind to bind the object to
JNDI at some name if the object is a component, endpoint or bean you wish
to refer to by name in your routes.

You can inject any environment specific properties (such as URLs, machine
names, usernames/passwords and so forth) from the jndi.properties file
easily using the @Named annotation as shown above. This allows most of
your configuration to be in Java code which is typesafe and easily
refactorable - then leaving some properties to be environment specific (the
jndi.properties file) which you can then change based on development,
testing, production etc.

94 COOKBOOK

http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi
http://camel.apache.org/guice.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/routebuilder.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html

Creating multiple RouteBuilder instances per type
It is sometimes useful to create multiple instances of a particular
RouteBuilder with different configurations.

To do this just create multiple provider methods for each configuration; or
create a single provider method that returns a collection of RouteBuilder
instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JndiBind("foo")
Collection<RouteBuilder> foo(@Named("fooUrl") String fooUrl) {

return Lists.newArrayList(new MyRouteBuilder(fooUrl), new
MyRouteBuilder("activemq:CheeseQueue"));

}
}

See Also
• there are a number of Examples you can look at to see Guice and

Camel being used such as Guice JMS Example
• Guice Maven Plugin for running your Guice based routes via Maven

TEMPLATING
When you are testing distributed systems its a very common requirement to
have to stub out certain external systems with some stub so that you can
test other parts of the system until a specific system is available or written
etc.

A great way to do this is using some kind of Template system to generate
responses to requests generating a dynamic message using a mostly-static
body.

There are a number of templating components included in the Camel
distribution you could use

• FreeMarker
• StringTemplate
• Velocity
• XQuery
• XSLT

COOKBOOK 95

http://camel.apache.org/routebuilder.html
http://camel.apache.org/examples.html
http://camel.apache.org/guice-jms-example.html
http://camel.apache.org/guice-maven-plugin.html
http://camel.apache.org/freemarker.html
http://camel.apache.org/stringtemplate.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html

or the following external Camel components
• Scalate

Example
Here's a simple example showing how we can respond to InOut requests on
the My.Queue queue on ActiveMQ with a template generated response. The
reply would be sent back to the JMSReplyTo Destination.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

If you want to use InOnly and consume the message and send it to another
destination you could use

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

See Also
• Mock for details of mock endpoint testing (as opposed to template

based stubs).

DATABASE
Camel can work with databases in a number of different ways. This
document tries to outline the most common approaches.

Database endpoints
Camel provides a number of different endpoints for working with databases

• JPA for working with hibernate, openjpa or toplink. When consuming
from the endpoints entity beans are read (and deleted/updated to
mark as processed) then when producing to the endpoints they are
written to the database (via insert/update).

• iBATIS similar to the above but using Apache iBATIS
• JDBC similar though using explicit SQL

Database pattern implementations
Various patterns can work with databases as follows

• Idempotent Consumer

96 COOKBOOK

http://scalate.fusesource.org/camel.html
http://camel.apache.org/activemq.html
http://camel.apache.org/mock.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/jdbc.html
http://camel.apache.org/idempotent-consumer.html

• Aggregator
• BAM for business activity monitoring

PARALLEL PROCESSING AND ORDERING
It is a common requirement to want to use parallel processing of messages
for throughput and load balancing, while at the same time process certain
kinds of messages in order.

How to achieve parallel processing
You can send messages to a number of Camel Components to achieve
parallel processing and load balancing such as

• SEDA for in-JVM load balancing across a thread pool
• ActiveMQ or JMS for distributed load balancing and parallel

processing
• JPA for using the database as a poor mans message broker

When processing messages concurrently, you should consider ordering and
concurrency issues. These are described below

Concurrency issues
Note that there is no concurrency or locking issue when using ActiveMQ, JMS
or SEDA by design; they are designed for highly concurrent use. However
there are possible concurrency issues in the Processor of the messages i.e.
what the processor does with the message?

For example if a processor of a message transfers money from one
account to another account; you probably want to use a database with
pessimistic locking to ensure that operation takes place atomically.

Ordering issues
As soon as you send multiple messages to different threads or processes you
will end up with an unknown ordering across the entire message stream as
each thread is going to process messages concurrently.

For many use cases the order of messages is not too important. However
for some applications this can be crucial. e.g. if a customer submits a
purchase order version 1, then amends it and sends version 2; you don't
want to process the first version last (so that you loose the update). Your
Processor might be clever enough to ignore old messages. If not you need to
preserve order.

COOKBOOK 97

http://camel.apache.org/aggregator.html
http://camel.apache.org/bam.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/seda.html
http://camel.apache.org/processor.html
http://camel.apache.org/processor.html

Recommendations
This topic is large and diverse with lots of different requirements; but from a
high level here are our recommendations on parallel processing, ordering
and concurrency

• for distributed locking, use a database by default, they are very good
at it

• to preserve ordering across a JMS queue consider using Exclusive
Consumers in the ActiveMQ component

• even better are Message Groups which allows you to preserve
ordering across messages while still offering parallelisation via the
JMSXGrouopID header to determine what can be parallelized

• if you receive messages out of order you could use the Resequencer
to put them back together again

A good rule of thumb to help reduce ordering problems is to make sure each
single can be processed as an atomic unit in parallel (either without
concurrency issues or using say, database locking); or if it can't, use a
Message Group to relate the messages together which need to be processed
in order by a single thread.

Using Message Groups with Camel
To use a Message Group with Camel you just need to add a header to the
output JMS message based on some kind of Correlation Identifier to correlate
messages which should be processed in order by a single thread - so that
things which don't correlate together can be processed concurrently.

For example the following code shows how to create a message group
using an XPath expression taking an invoice's product code as the Correlation
Identifier

from("activemq:a").setHeader("JMSXGroupID", xpath("/invoice/
productCode")).to("activemq:b");

You can of course use the Xml Configuration if you prefer

ASYNCHRONOUS PROCESSING

Overview
Camel supports a more complex asynchronous processing model. The
asynchronous processors implement the AsyncProcessor interface which is
derived from the more synchronous Processor interface. There are

98 COOKBOOK

http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/exclusive-consumer.html
http://camel.apache.org/activemq.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/resequencer.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/xml-configuration.html

Supported versions
The information on this page applies for the Camel 1.x and Camel
2.4 onwards. In Camel 1.x the asynchronous processing is only
implemented for JBI where as in Camel 2.4 onwards we have
implemented it in many other areas. See more at Asynchronous
Routing Engine.

advantages and disadvantages when using asynchronous processing when
compared to using the standard synchronous processing model.

Advantages:
• Processing routes that are composed fully of asynchronous

processors do not use up threads waiting for processors to complete
on blocking calls. This can increase the scalability of your system by
reducing the number of threads needed to process the same
workload.

• Processing routes can be broken up into SEDA processing stages
where different thread pools can process the different stages. This
means that your routes can be processed concurrently.

Disadvantages:
• Implementing asynchronous processors is more complex than

implementing the synchronous versions.

When to Use
We recommend that processors and components be implemented the more
simple synchronous APIs unless you identify a performance of scalability
requirement that dictates otherwise. A Processor whose process() method
blocks for a long time would be good candidates for being converted into an
asynchronous processor.

Interface Details

public interface AsyncProcessor extends Processor {
boolean process(Exchange exchange, AsyncCallback callback);

}

The AsyncProcessor defines a single process() method which is very similar
to it's synchronous Processor.process() brethren. Here are the differences:

• A non-null AsyncCallback MUST be supplied which will be notified
when the exchange processing is completed.

COOKBOOK 99

http://camel.apache.org/seda.html
http://camel.apache.org/jbi.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html

• It MUST not throw any exceptions that occurred while processing the
exchange. Any such exceptions must be stored on the exchange's
Exception property.

• It MUST know if it will complete the processing synchronously or
asynchronously. The method will return true if it does complete
synchronously, otherwise it returns false.

• When the processor has completed processing the exchange, it must
call the callback.done(boolean sync) method. The sync
parameter MUST match the value returned by the process()
method.

Implementing Processors that Use the AsyncProcessor API
All processors, even synchronous processors that do not implement the
AsyncProcessor interface, can be coerced to implement the AsyncProcessor
interface. This is usually done when you are implementing a Camel
component consumer that supports asynchronous completion of the
exchanges that it is pushing through the Camel routes. Consumers are
provided a Processor object when created. All Processor object can be
coerced to a AsyncProcessor using the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert(processor);

For a route to be fully asynchronous and reap the benefits to lower Thread
usage, it must start with the consumer implementation making use of the
asynchronous processing API. If it called the synchronous process() method
instead, the consumer's thread would be forced to be blocked and in use for
the duration that it takes to process the exchange.

It is important to take note that just because you call the asynchronous
API, it does not mean that the processing will take place asynchronously. It
only allows the possibility that it can be done without tying up the caller's
thread. If the processing happens asynchronously is dependent on the
configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback
class instance which can reference the exchange object that was declared
final. This allows it to finish up any post processing that is needed when the
called processor is done processing the exchange. See below for an example.

final Exchange exchange = ...
AsyncProcessor asyncProcessor = ...
asyncProcessor.process(exchange, new AsyncCallback() {

public void done(boolean sync) {

100 COOKBOOK

if (exchange.isFailed()) {
... // do failure processing.. perhaps rollback etc.

} else {
... // processing completed successfully, finish up

// perhaps commit etc.
}

}
});

Asynchronous Route Sequence Scenarios
Now that we have understood the interface contract of the AsyncProcessor,
and have seen how to make use of it when calling processors, lets looks a
what the thread model/sequence scenarios will look like for some sample
routes.

The Jetty component's consumers support async processing by using
continuations. Suffice to say it can take a http request and pass it to a camel
route for async processing. If the processing is indeed async, it uses Jetty
continuation so that the http request is 'parked' and the thread is released.
Once the camel route finishes processing the request, the jetty component
uses the AsyncCallback to tell Jetty to 'un-park' the request. Jetty un-parks
the request, the http response returned using the result of the exchange
processing.

Notice that the jetty continuations feature is only used "If the processing is
indeed async". This is why AsyncProcessor.process() implementations MUST
accurately report if request is completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and
implement the AsyncProcessor interface. A route that uses both the jetty
asynchronous consumer and the jhc asynchronous producer will be a fully
asynchronous route and has some nice attributes that can be seen if we take
a look at a sequence diagram of the processing route. For the route:

from("jetty:http://localhost:8080/service").to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

COOKBOOK 101

The diagram simplifies things by making it looks like processors implement
the AsyncCallback interface when in reality the AsyncCallback interfaces are
inline inner classes, but it illustrates the processing flow and shows how 2
separate threads are used to complete the processing of the original http
request. The first thread is synchronous up until processing hits the jhc
producer which issues the http request. It then reports that the exchange
processing will complete async since it will use a NIO to complete getting the
response back. Once the jhc component has received a full response it uses
AsyncCallback.done() method to notify the caller. These callback
notifications continue up until it reaches the original jetty consumer which
then un-parks the http request and completes it by providing the response.

Mixing Synchronous and Asynchronous Processors
It is totally possible and reasonable to mix the use of synchronous and
asynchronous processors/components. The pipeline processor is the
backbone of a Camel processing route. It glues all the processing steps
together. It is implemented as an AsyncProcessor and supports interleaving
synchronous and asynchronous processors as the processing steps in the
pipeline.

Lets say we have 2 custom processors, MyValidator and MyTransformation,
both of which are synchronous processors. Lets say we want to load file from
the data/in directory validate them with the MyValidator() processor,
Transform them into JPA java objects using MyTransformation and then insert
them into the database using the JPA component. Lets say that the
transformation process takes quite a bit of time and we want to allocate 20
threads to do parallel transformations of the input files. The solution is to

102 COOKBOOK

http://camel.apache.org/jpa.html

make use of the thread processor. The thread is AsyncProcessor that forces
subsequent processing in asynchronous thread from a thread pool.

The route might look like:

from("file:data/in").process(new MyValidator()).threads(20).process(new
MyTransformation()).to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

You would actually have multiple threads executing the 2nd part of the
thread sequence.

Staying synchronous in an AsyncProcessor
Generally speaking you get better throughput processing when you process
things synchronously. This is due to the fact that starting up an asynchronous
thread and doing a context switch to it adds a little bit of of overhead. So it is
generally encouraged that AsyncProcessors do as much work as they can
synchronously. When they get to a step that would block for a long time, at
that point they should return from the process call and let the caller know
that it will be completing the call asynchronously.

COOKBOOK 103

IMPLEMENTING VIRTUAL TOPICS ON OTHER JMS
PROVIDERS
ActiveMQ supports Virtual Topics since durable topic subscriptions kinda suck
(see this page for more detail) mostly since they don't support Competing
Consumers.

Most folks want Queue semantics when consuming messages; so that you
can support Competing Consumers for load balancing along with things like
Message Groups and Exclusive Consumers to preserve ordering or partition
the queue across consumers.

However if you are using another JMS provider you can implement Virtual
Topics by switching to ActiveMQ or you can use the following Camel
pattern.

First here's the ActiveMQ approach.
• send to activemq:topic:VirtualTopic.Orders
• for consumer A consume from

activemq:Consumer.A.VirtualTopic.Orders
When using another message broker use the following pattern

• send to jms:Orders
• add this route with a to() for each logical durable topic subscriber

from("jms:Orders").to("jms:Consumer.A", "jms:Consumer.B", ...);

• for consumer A consume from jms:Consumer.A

WHAT'S THE CAMEL TRANSPORT FOR CXF
In CXF you offer or consume a webservice by defining itÂ´s address. The first
part of the address specifies the protocol to use. For example
address="http://localhost:90000" in an endpoint configuration means your
service will be offered using the http protocol on port 9000 of localhost.
When you integrate Camel Tranport into CXF you get a new transport
"camel". So you can specify address="camel://direct:MyEndpointName" to
bind the CXF service address to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which
implements the CXF transport API with the Camel core library. This allows you
to use camelÂ´s routing engine and integration patterns support smoothly
together with your CXF services.

104 COOKBOOK

http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/exclusive-consumer.html
http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports

INTEGRATE CAMEL INTO CXF TRANSPORT LAYER
To include the Camel Tranport into your CXF bus you use the
CamelTransportFactory. You can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring
You can use the following snippet in your applicationcontext if you want to
configure anything special. If you only want to activate the camel transport
you do not have to do anything in your application context. As soon as you
include the camel-cxf jar in your app cxf will scan the jar and load a
CamelTransportFactory for you.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<!-- checkException new added in Camel 2.1 and Camel 1.6.2 -->
<!-- If checkException is true , CamelDestination will check the outMessage's

exception and set it into camel exchange. You can also override this value
in CamelDestination's configuration. The default value is false.
This option should be set true when you want to leverage the camel's error
handler to deal with fault message -->

<property name="checkException" value="true" />
<property name="transportIds">

<list>
<value>http://cxf.apache.org/transports/camel</value>

</list>
</property>

</bean>

Integrating the Camel Transport in a programmatic way
Camel transport provides a setContext method that you could use to set the
Camel context into the transport factory. If you want this factory take effect,
you need to register the factory into the CXF bus. Here is a full example for
you.

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;
import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;
...

BusFactory bf = BusFactory.newInstance();
Bus bus = bf.createBus();
CamelTransportFactory camelTransportFactory = new CamelTransportFactory();
camelTransportFactory.setCamelContext(context)
// register the conduit initiator

COOKBOOK 105

ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class);
cim.registerConduitInitiator(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// register the destination factory
DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class);
dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// set or bus as the default bus for cxf
BusFactory.setDefaultBus(bus);

CONFIGURE THE DESTINATION AND CONDUIT

Namespace
The elements used to configure an Camel transport endpoint are defined in
the namespace http://cxf.apache.org/transports/camel. It is commonly
referred to using the prefix camel. In order to use the Camel transport
configuration elements you will need to add the lines shown below to the
beans element of your endpoint's configuration file. In addition, you will need
to add the configuration elements' namespace to the xsi:schemaLocation
attribute.

Listing 1. Adding the Configuration Namespace

<beans ...
xmlns:camel="http://cxf.apache.org/transports/camel
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/camel
http://cxf.apache.org/transports/camel.xsd

...>

The destination element
You configure an Camel transport server endpoint using the
camel:destination element and its children. The camel:destination
element takes a single attribute, name, the specifies the WSDL port element
that corresponds to the endpoint. The value for the name attribute takes the
form portQName.camel-destination. The example below shows the
camel:destination element that would be used to add configuration for an
endpoint that was specified by the WSDL fragment <port
binding="widgetSOAPBinding" name="widgetSOAPPort> if the endpoint's
target namespace was http://widgets.widgetvendor.net.

Listing 1. camel:destination Element

106 COOKBOOK

http://cxf.apache.org/transports/camel
http://widgets.widgetvendor.net/

...
<camel:destination name="{http://widgets/

widgetvendor.net}widgetSOAPPort.http-destination>
<camelContext id="context" xmlns="http://activemq.apache.org/camel/schema/spring">

<route>
<from uri="direct:EndpointC" />
<to uri="direct:EndpointD" />

</route>
</camelContext>

</camel:destination>
...

The camel:destination element has a number of child elements that
specify configuration information. They are described below.
Element Description
camel-
spring:camelContext

You can specify the camel context in the camel
destination

camel:camelContextRef The camel context id which you want inject
into the camel destination

The conduit element
You configure an Camel transport client using the camel:conduit element
and its children. The camel:conduit element takes a single attribute, name,
that specifies the WSDL port element that corresponds to the endpoint. The
value for the name attribute takes the form portQName.camel-conduit. For
example, the code below shows the camel:conduit element that would be
used to add configuration for an endpoint that was specified by the WSDL
fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> if
the endpoint's target namespace was http://widgets.widgetvendor.net.

Listing 1. http-conf:conduit Element

...
<camelContext id="conduit_context" xmlns="http://activemq.apache.org/camel/schema/

spring">
<route>

<from uri="direct:EndpointA" />
<to uri="direct:EndpointB" />

</route>
</camelContext>

<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit">
<camel:camelContextRef>conduit_context</camel:camelContextRef>

</camel:conduit>

COOKBOOK 107

http://widgets.widgetvendor.net/

<camel:conduit name="*.camel-conduit">
<!-- you can also using the wild card to specify the camel-conduit that you want to

configure -->
...

</camel:conduit>
...

The camel:conduit element has a number of child elements that specify
configuration information. They are described below.
Element Description
camel-
spring:camelContext

You can specify the camel context in the camel
conduit

camel:camelContextRef The camel context id which you want inject
into the camel conduit

EXAMPLE USING CAMEL AS A LOAD BALANCER FOR CXF
This example show how to use the camel load balance feature in CXF, and
you need load the configuration file in CXF and publish the endpoints on the
address "camel://direct:EndpointA" and "camel://direct:EndpointB"

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://cxf.apache.org/transports/camel"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/

camel.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

cxfEndpoint.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<bean id = "roundRobinRef"
class="org.apache.camel.processor.loadbalancer.RoundRobinLoadBalancer" />

<camelContext id="dest_context" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="jetty:http://localhost:9091/GreeterContext/GreeterPort"/>
<loadBalance ref="roundRobinRef">

<to uri="direct:EndpointA"/>
<to uri="direct:EndpointB"/>

</loadBalance>
</route>

108 COOKBOOK

</camelContext>

<!-- Inject the camel context to the Camel transport's destination -->
<camel:destination name="{http://apache.org/

hello_world_soap_http}CamelPort.camel-destination">
<camel:camelContextRef>dest_context</camel:camelContextRef>

</camel:destination>

</beans>

COMPLETE HOWTO AND EXAMPLE FOR ATTACHING
CAMEL TO CXF
Better JMS Transport for CXF Webservice using Apache CamelÂ

INTRODUCTION
When sending an Exchange to an Endpoint you can either use a Route or a
ProducerTemplate. This works fine in many scenarios. However you may
need to guarantee that an exchange is delivered to the same endpoint that
you delivered a previous exchange on. For example in the case of delivering
a batch of exchanges to a MINA socket you may need to ensure that they are
all delivered through the same socket connection. Furthermore once the
batch of exchanges have been delivered the protocol requirements may be
such that you are responsible for closing the socket.

USING A PRODUCER
To achieve fine grained control over sending exchanges you will need to
program directly to a Producer. Your code will look similar to:

CamelContext camelContext = ...

// Obtain an endpoint and create the producer we will be using.
Endpoint endpoint = camelContext.getEndpoint("someuri:etc");
Producer producer = endpoint.createProducer();
producer.start();

try {
// For each message to send...
Object requestMessage = ...
Exchange exchangeToSend = producer.createExchange();
exchangeToSend().setBody(requestMessage);
producer.process(exchangeToSend);

COOKBOOK 109

http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/routes.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/mina.html

...

} finally {
// Tidy the producer up.
producer.stop();

}

In the case of using Apache MINA the producer.stop() invocation will cause
the socket to be closed.

110 COOKBOOK

Tutorials

There now follows the documentation on camel tutorials
We have a number of tutorials as listed below. The tutorials often comes

with source code which is either available in the Camel Download or attached
to the wiki page.

• OAuth Tutorial
This tutorial demonstrates how to implement OAuth for a web
application with Camel's gauth component. The sample application of
this tutorial is also online at http://gauthcloud.appspot.com/

• Tutorial for Camel on Google App Engine
This tutorial demonstrates the usage of the Camel Components for
Google App Engine. The sample application of this tutorial is also
online at http://camelcloud.appspot.com/

• Tutorial on Spring Remoting with JMS
This tutorial is focused on different techniques with Camel for Client-
Server communication.

• Report Incident - This tutorial introduces Camel steadily and is based
on a real life integration problem
This is a very long tutorial beginning from the start; its for entry level
to Camel. Its based on a real life integration, showing how Camel can
be introduced in an existing solution. We do this in baby steps. The
tutorial is currently work in progress, so check it out from time to
time. The tutorial explains some of the inner building blocks Camel
uses under the covers. This is good knowledge to have when you
start using Camel on a higher abstract level where it can do wonders
in a few lines of routing DSL.

• Using Camel with ServiceMix a tutorial on using Camel inside Apache
ServiceMix.

• Better JMS Transport for CXF Webservice using Apache Camel
Describes how to use the Camel Transport for CXF to attach a CXF
Webservice to a JMS Queue

• Tutorial how to use good old Axis 1.4 with Camel
This tutorial shows that Camel does work with the good old
frameworks such as AXIS that is/was widely used for WebService.

• Tutorial on using Camel in a Web Application
This tutorial gives an overview of how to use Camel inside Tomcat,
Jetty or any other servlet engine

• Tutorial on Camel 1.4 for Integration
Another real-life scenario. The company sells widgets, with a

TUTORIALS 111

http://camel.apache.org/download.html
http://camel.apache.org/tutorial-oauth.html
http://camel.apache.org/gauth.html
http://gauthcloud.appspot.com/
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camelcloud.appspot.com/
http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html
http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html
http://camel.apache.org/tutorial-axis-camel.html
http://camel.apache.org/tutorial-on-using-camel-in-a-web-application.html
http://camel.apache.org/tutorial-business-partners.html

Notice
These tutorials listed below, is hosted at Apache. We offer the
Articles page where we have a link collection for 3rd party Camel
material, such as tutorials, blog posts, published articles, videos,
pod casts, presentations, and so forth.

If you have written a Camel related article, then we are happy to provide a
link to it. You can contact the Camel Team, for example using the Mailing
Lists, (or post a tweet with the word Apache Camel).

somewhat unique business process (their customers periodically
report what they've purchased in order to get billed). However every
customer uses a different data format and protocol. This tutorial goes
through the process of integrating (and testing!) several customers
and their electronic reporting of the widgets they've bought, along
with the company's response.

• Tutorial how to build a Service Oriented Architecture using Camel
with OSGI - Updated 20/11/2009
The tutorial has been designed in two parts. The first part introduces
basic concept to create a simple SOA solution using Camel and OSGI
and deploy it in a OSGI Server like Apache Felix Karaf and Spring DM
Server while the second extends the ReportIncident tutorial part 4 to
show How we can separate the different layers (domain, service, ...)
of an application and deploy them in separate bundles. The Web
Application has also be modified in order to communicate to the OSGI
bundles.

• Several of the vendors on the Commercial Camel Offerings page also
offer various tutorials, webinars, examples, etc.... that may be useful.

• Examples
While not actual tutorials you might find working through the source
of the various Examples useful.

TUTORIAL ON SPRING REMOTING WITH JMS
Â

PREFACE
This tutorial aims to guide the reader through the stages of creating a project
which uses Camel to facilitate the routing of messages from a JMS queue to a

112 TUTORIALS

http://camel.apache.org/tutorial-osgi-camel-part1.html
http://camel.apache.org/tutorial-osgi-camel-part2.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/commercial-camel-offerings.html
http://camel.apache.org/examples.html
http://camel.apache.org/examples.html
http://camel.apache.org/articles.html
http://camel.apache.org/team.html
http://camel.apache.org/mailing-lists.html
http://camel.apache.org/mailing-lists.html

Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

Spring service. The route works in a synchronous fashion returning a
response to the client.

• Tutorial on Spring Remoting with JMS
• Preface
• Prerequisites
• Distribution
• About
• Create the Camel Project
• Update the POM with Dependencies
• Writing the Server
• Create the Spring Service
• Define the Camel Routes
• Configure Spring
• Run the Server
• Writing The Clients
• Client Using The ProducerTemplate
• Client Using Spring Remoting
• Client Using Message Endpoint EIP Pattern
• Run the Clients
• Using the Camel Maven Plugin
• Using Camel JMX
• See Also

PREREQUISITES
This tutorial uses Maven to setup the Camel project and for dependencies for
artifacts.

DISTRIBUTION
This sample is distributed with the Camel distribution as examples/camel-
example-spring-jms.

TUTORIALS 113

http://www.springramework.org/

ABOUT
This tutorial is a simple example that demonstrates more the fact how well
Camel is seamless integrated with Spring to leverage the best of both worlds.
This sample is client server solution using JMS messaging as the transport.
The sample has two flavors of servers and also for clients demonstrating
different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a
business service that does computations on the received message and
returns a response.
The EIP patterns used in this sample are:
Pattern Description
Message
Channel

We need a channel so the Clients can communicate with the
server.

Message The information is exchanged using the Camel Message
interface.

Message
Translator

This is where Camel shines as the message exchange
between the Server and the Clients are text based strings with
numbers. However our business service uses int for numbers.
So Camel can do the message translation automatically.

Message
Endpoint

It should be easy to send messages to the Server from the the
clients. This is archived with Camels powerful Endpoint
pattern that even can be more powerful combined with Spring
remoting. The tutorial have clients using each kind of
technique for this.

Point to
Point
Channel

We using JMS queues so there are only one receive of the
message exchange

Event
Driven
Consumer

Yes the JMS broker is of course event driven and only reacts
when the client sends a message to the server.

We use the following Camel components:
Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server
side

Bean
We use the bean binding to easily route the messages to
our business service. This is a very powerful component in
Camel.

114 TUTORIALS

http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html
http://camel.apache.org/message.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/activemq.html
http://camel.apache.org/bean.html

File In the AOP enabled Server we store audit trails as files.
JMS Used for the JMS messaging

CREATE THE CAMEL PROJECT

mvn archetype:create -DgroupId=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies
First we need to have dependencies for the core Camel jars, its spring, jms
components and finally ActiveMQ as the message broker.

<!-- required by both client and server -->
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>

</dependency>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>

</dependency>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>

</dependency>
<dependency>

<groupId>org.apache.activemq</groupId>
<artifactId>activemq-camel</artifactId>

</dependency>

As we use spring xml configuration for the ActiveMQ JMS broker we need this
dependency:

<!-- xbean is required for ActiveMQ broker configuration in the spring xml file -->
<dependency>

<groupId>org.apache.xbean</groupId>
<artifactId>xbean-spring</artifactId>

</dependency>

TUTORIALS 115

http://camel.apache.org/file.html
http://camel.apache.org/jms.html

For the purposes of the tutorial a single Maven project will be used
for both the client and server. Ideally you would break your
application down into the appropriate components.

WRITING THE SERVER

Create the Spring Service
For this example the Spring service (= our business service) on the server
will be a simple multiplier which trebles in the received value.

public interface Multiplier {

/**
* Multiplies the given number by a pre-defined constant.
*
* @param originalNumber The number to be multiplied
* @return The result of the multiplication
*/

int multiply(int originalNumber);

}

And the implementation of this service is:

@Service(value = "multiplier")
public class Treble implements Multiplier {

public int multiply(final int originalNumber) {
return originalNumber * 3;

}

}

Notice that this class has been annotated with the @Service spring
annotation. This ensures that this class is registered as a bean in the registry
with the given name multiplier.

Define the Camel Routes

public class ServerRoutes extends RouteBuilder {

@Override
public void configure() throws Exception {

116 TUTORIALS

// route from the numbers queue to our business that is a spring bean
registered with the id=multiplier

// Camel will introspect the multiplier bean and find the best candidate of
the method to invoke.

// You can add annotations etc to help Camel find the method to invoke.
// As our multiplier bean only have one method its easy for Camel to find the

method to use.
from("jms:queue:numbers").to("multiplier");

// Camel has several ways to configure the same routing, we have defined some
of them here below

// as above but with the bean: prefix
//from("jms:queue:numbers").to("bean:multiplier");

// beanRef is using explicit bean bindings to lookup the multiplier bean and
invoke the multiply method

//from("jms:queue:numbers").beanRef("multiplier", "multiply");

// the same as above but expressed as a URI configuration
//from("jms:queue:numbers").to("bean:multiplier?methodName=multiply");

}

}

This defines a Camel route from the JMS queue named numbers to the
Spring bean named multiplier. Camel will create a consumer to the JMS
queue which forwards all received messages onto the the Spring bean, using
the method named multiply.

Configure Spring
The Spring config file is placed under META-INF/spring as this is the default
location used by the Camel Maven Plugin, which we will later use to run our
server.
First we need to do the standard scheme declarations in the top. In the
camel-server.xml we are using spring beans as the default bean: namespace
and springs context:. For configuring ActiveMQ we use broker: and for
Camel we of course have camel:. Notice that we don't use version numbers
for the camel-spring schema. At runtime the schema is resolved in the Camel
bundle. If we use a specific version number such as 1.4 then its IDE friendly
as it would be able to import it and provide smart completion etc. See Xml
Reference for further details.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:camel="http://camel.apache.org/schema/spring"

TUTORIALS 117

http://camel.apache.org/bean.html
http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/xml-reference.html
http://camel.apache.org/xml-reference.html

xmlns:broker="http://activemq.apache.org/schema/core"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd

http://activemq.apache.org/schema/core http://activemq.apache.org/schema/
core/activemq-core-5.5.0.xsd">

We use Spring annotations for doing IoC dependencies and its component-
scan features comes to the rescue as it scans for spring annotations in the
given package name:

<!-- let Spring do its IoC stuff in this package -->
<context:component-scan base-package="org.apache.camel.example.server"/>

Camel will of course not be less than Spring in this regard so it supports a
similar feature for scanning of Routes. This is configured as shown below.
Notice that we also have enabled the JMXAgent so we will be able to
introspect the Camel Server with a JMX Console.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->

<camel:camelContext id="camel-server">
<camel:package>org.apache.camel.example.server</camel:package>
<!-- enable JMX connector so we can connect to the server and browse mbeans -->
<!-- Camel will log at INFO level the service URI to use for connecting with

jconsole -->
<camel:jmxAgent id="agent" createConnector="true"/>

</camel:camelContext>

The ActiveMQ JMS broker is also configured in this xml file. We set it up to
listen on TCP port 61610.

<!-- lets configure the ActiveMQ JMS broker server to listen on TCP 61610 -->
<broker:broker useJmx="true" persistent="false" brokerName="myBroker">

<broker:transportConnectors>
<!-- expose a VM transport for in-JVM transport between AMQ and Camel on the

server side -->
<broker:transportConnector name="vm" uri="vm://myBroker"/>
<!-- expose a TCP transport for clients to use -->
<broker:transportConnector name="tcp" uri="tcp://localhost:${tcp.port}"/>

</broker:transportConnectors>
</broker:broker>

118 TUTORIALS

http://camel.apache.org/camel-jmx.html

As this examples uses JMS then Camel needs a JMS component that is
connected with the ActiveMQ broker. This is configured as shown below:

<!-- lets configure the Camel ActiveMQ to use the embedded ActiveMQ broker declared
above -->
<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="vm://myBroker"/>
</bean>

Notice: The JMS component is configured in standard Spring beans, but the
gem is that the bean id can be referenced from Camel routes - meaning we
can do routing using the JMS Component by just using jms: prefix in the
route URI. What happens is that Camel will find in the Spring Registry for a
bean with the id="jms". Since the bean id can have arbitrary name you could
have named it id="jmsbroker" and then referenced to it in the routing as
from="jmsbroker:queue:numbers).to("multiplier");
We use the vm protocol to connect to the ActiveMQ server as its embedded
in this application.
component-
scan

Defines the package to be scanned for Spring stereotype
annotations, in this case, to load the "multiplier" bean

camel-
context

Defines the package to be scanned for Camel routes. Will
find the ServerRoutes class and create the routes
contained within it

jms bean Creates the Camel JMS component

Run the Server
The Server is started using the org.apache.camel.spring.Main class that
can start camel-spring application out-of-the-box. The Server can be started
in several flavors:

▪ as a standard java main application - just start the
org.apache.camel.spring.Main class

▪ using maven jave:exec
▪ using camel:run

In this sample as there are two servers (with and without AOP) we have
prepared some profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java -PCamelServer

TUTORIALS 119

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/camel-run-maven-goal.html

WRITING THE CLIENTS
This sample has three clients demonstrating different Camel techniques for
communication

▪ CamelClient using the ProducerTemplate for Spring template style
coding

▪ CamelRemoting using Spring Remoting
▪ CamelEndpoint using the Message Endpoint EIP pattern using a

neutral Camel API

Client Using The ProducerTemplate
We will initially create a client by directly using ProducerTemplate. We will
later create a client which uses Spring remoting to hide the fact that
messaging is being used.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camel:camelContext id="camel-client">
<camel:template id="camelTemplate"/>

</camel:camelContext>

<!-- Camel JMSProducer to be able to send messages to a remote Active MQ server -->
<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="tcp://localhost:61610"/>
</bean>

The client will not use the Camel Maven Plugin so the Spring XML has been
placed in src/main/resources to not conflict with the server configs.

camelContext The Camel context is defined but does not contain any
routes

template The ProducerTemplate is used to place messages onto
the JMS queue

jms bean This initialises the Camel JMS component, allowing us to
place messages onto the queue

And the CamelClient source code:

120 TUTORIALS

http://camel.apache.org/producertemplate.html
http://camel.apache.org/camel-maven-plugin.html

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

// get the camel template for Spring template style sending of messages (=
producer)

ProducerTemplate camelTemplate = context.getBean("camelTemplate",
ProducerTemplate.class);

System.out.println("Invoking the multiply with 22");
// as opposed to the CamelClientRemoting example we need to define the service

URI in this java code
int response = (Integer)camelTemplate.sendBody("jms:queue:numbers",

ExchangePattern.InOut, 22);
System.out.println("... the result is: " + response);

System.exit(0);
}

The ProducerTemplate is retrieved from a Spring ApplicationContext and
used to manually place a message on the "numbers" JMS queue. The
requestBody method will use the exchange pattern InOut, which states that
the call should be synchronous, and that the caller expects a response.

Before running the client be sure that both the ActiveMQ broker and the
CamelServer are running.

Client Using Spring Remoting
Spring Remoting "eases the development of remote-enabled services". It
does this by allowing you to invoke remote services through your regular
Java interface, masking that a remote service is being called.

<!-- Camel proxy for a given service, in this case the JMS queue -->
<camel:proxy

id="multiplierProxy"
serviceInterface="org.apache.camel.example.server.Multiplier"
serviceUrl="jms:queue:numbers"/>

The snippet above only illustrates the different and how Camel easily can
setup and use Spring Remoting in one line configurations.

The proxy will create a proxy service bean for you to use to make the
remote invocations. The serviceInterface property details which Java
interface is to be implemented by the proxy. serviceUrl defines where
messages sent to this proxy bean will be directed. Here we define the JMS
endpoint with the "numbers" queue we used when working with Camel

TUTORIALS 121

http://camel.apache.org/spring-remoting.html

template directly. The value of the id property is the name that will be the
given to the bean when it is exposed through the Spring
ApplicationContext. We will use this name to retrieve the service in our
client. I have named the bean multiplierProxy simply to highlight that it is not
the same multiplier bean as is being used by CamelServer. They are in
completely independent contexts and have no knowledge of each other. As
you are trying to mask the fact that remoting is being used in a real
application you would generally not include proxy in the name.

And the Java client source code:

public static void main(final String[] args) {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client-remoting.xml");

// just get the proxy to the service and we as the client can use the "proxy" as
it was

// a local object we are invoking. Camel will under the covers do the remote
communication

// to the remote ActiveMQ server and fetch the response.
Multiplier multiplier = context.getBean("multiplierProxy", Multiplier.class);

System.out.println("Invoking the multiply with 33");
int response = multiplier.multiply(33);
System.out.println("... the result is: " + response);

System.exit(0);
}

Again, the client is similar to the original client, but with some important
differences.

1. The Spring context is created with the new camel-client-remoting.xml
2. We retrieve the proxy bean instead of a ProducerTemplate. In a non-

trivial example you would have the bean injected as in the standard
Spring manner.

3. The multiply method is then called directly. In the client we are now
working to an interface. There is no mention of Camel or JMS inside
our Java code.

Client Using Message Endpoint EIP Pattern
This client uses the Message Endpoint EIP pattern to hide the complexity to
communicate to the Server. The Client uses the same simple API to get hold
of the endpoint, create an exchange that holds the message, set the payload
and create a producer that does the send and receive. All done using the
same neutral Camel API for all the components in Camel. So if the

122 TUTORIALS

communication was socket TCP based you just get hold of a different
endpoint and all the java code stays the same. That is really powerful.

Okay enough talk, show me the code!

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

CamelContext camel = context.getBean("camel-client", CamelContext.class);

// get the endpoint from the camel context
Endpoint endpoint = camel.getEndpoint("jms:queue:numbers");

// create the exchange used for the communication
// we use the in out pattern for a synchronized exchange where we expect a

response
Exchange exchange = endpoint.createExchange(ExchangePattern.InOut);
// set the input on the in body
// must you correct type to match the expected type of an Integer object
exchange.getIn().setBody(11);

// to send the exchange we need an producer to do it for us
Producer producer = endpoint.createProducer();
// start the producer so it can operate
producer.start();

// let the producer process the exchange where it does all the work in this
oneline of code

System.out.println("Invoking the multiply with 11");
producer.process(exchange);

// get the response from the out body and cast it to an integer
int response = exchange.getOut().getBody(Integer.class);
System.out.println("... the result is: " + response);

// stop and exit the client
producer.stop();
System.exit(0);

}

Switching to a different component is just a matter of using the correct
endpoint. So if we had defined a TCP endpoint as:
"mina:tcp://localhost:61610" then its just a matter of getting hold of this
endpoint instead of the JMS and all the rest of the java code is exactly the
same.

Run the Clients
The Clients is started using their main class respectively.

TUTORIALS 123

▪ as a standard java main application - just start their main class
▪ using maven jave:exec

In this sample we start the clients using maven:
mvn compile exec:java -PCamelClient
mvn compile exec:java -PCamelClientRemoting
mvn compile exec:java -PCamelClientEndpoint

Also see the Maven pom.xml file how the profiles for the clients is defined.

USING THE CAMEL MAVEN PLUGIN
The Camel Maven Plugin allows you to run your Camel routes directly from
Maven. This negates the need to create a host application, as we did with
Camel server, simply to start up the container. This can be very useful during
development to get Camel routes running quickly.

Listing 1. pom.xml

<build>
<plugins>

<plugin>
<groupId>org.apache.camel</groupId>
<artifactId>camel-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

All that is required is a new plugin definition in your Maven POM. As we have
already placed our Camel config in the default location (camel-server.xml has
been placed in META-INF/spring/) we do not need to tell the plugin where the
route definitions are located. Simply run mvn camel:run.

USING CAMEL JMX
Camel has extensive support for JMX and allows us to inspect the Camel
Server at runtime. As we have enabled the JMXAgent in our tutorial we can
fire up the jconsole and connect to the following service URI:
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel. Notice
that Camel will log at INFO level the JMX Connector URI:

...
DefaultInstrumentationAgent INFO JMX connector thread started on
service:jmx:rmi:///jndi/rmi://claus-acer:1099/jmxrmi/camel
...

124 TUTORIALS

http://camel.apache.org/camel-maven-plugin.html

In the screenshot below we can see the route and its performance metrics:

SEE ALSO
• Spring Remoting with JMS Example on Amin Abbaspour's Weblog

TUTORIAL - CAMEL-EXAMPLE-REPORTINCIDENT

INTRODUCTION
Creating this tutorial was inspired by a real life use-case I discussed over the
phone with a colleague. He was working at a client whom uses a heavy-
weight integration platform from a very large vendor. He was in talks with
developer shops to implement a new integration on this platform. His trouble
was the shop tripled the price when they realized the platform of choice. So I
was wondering how we could do this integration with Camel. Can it be done,
without tripling the cost .

This tutorial is written during the development of the integration. I have
decided to start off with a sample that isn't Camel's but standard Java and
then plugin Camel as we goes. Just as when people needed to learn Spring
you could consume it piece by piece, the same goes with Camel.

TUTORIALS 125

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

The target reader is person whom hasn't experience or just started using
Camel.

MOTIVATION FOR THIS TUTORIAL
I wrote this tutorial motivated as Camel lacked an example application that
was based on the web application deployment model. The entire world hasn't
moved to pure OSGi deployments yet.

THE USE-CASE
The goal is to allow staff to report incidents into a central administration. For
that they use client software where they report the incident and submit it to
the central administration. As this is an integration in a transition phase the
administration should get these incidents by email whereas they are
manually added to the database. The client software should gather the
incident and submit the information to the integration platform that in term
will transform the report into an email and send it to the central
administrator for manual processing.

The figure below illustrates this process. The end users reports the
incidents using the client applications. The incident is sent to the central
integration platform as webservice. The integration platform will process the
incident and send an OK acknowledgment back to the client. Then the
integration will transform the message to an email and send it to the
administration mail server. The users in the administration will receive the
emails and take it from there.

126 TUTORIALS

In EIP patterns
We distill the use case as EIP patterns:

PARTS
This tutorial is divided into sections and parts:

Section A: Existing Solution, how to slowly use Camel
Part 1 - This first part explain how to setup the project and get a

webservice exposed using Apache CXF. In fact we don't touch Camel yet.
Part 2 - Now we are ready to introduce Camel piece by piece (without

using Spring or any XML configuration file) and create the full feature
integration. This part will introduce different Camel's concepts and How we
can build our solution using them like :

▪ CamelContext
▪ Endpoint, Exchange & Producer
▪ Components : Log, File

Part 3 - Continued from part 2 where we implement that last part of the
solution with the event driven consumer and how to send the email through
the Mail component.

Section B: The Camel Solution
Part 4 - We now turn into the path of Camel where it excels - the routing.

Part 5 - Is about how embed Camel with Spring and using CXF endpoints
directly in Camel

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5

TUTORIALS 127

http://www.enterpriseintegrationpatterns.com/
http://cxf.apache.org/
http://camel.apache.org/cxf.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html

Using Axis 2
See this blog entry by Sagara demonstrating how to use Apache
Axis 2 instead of Apache CXF as the web service framework.

PART 1

PREREQUISITES
This tutorial uses the following frameworks:

• Maven 2.0.9
• Apache Camel 1.4.0
• Apache CXF 2.1.1
• Spring 2.5.5

Note: The sample project can be downloaded, see the resources section.

INITIAL PROJECT SETUP
We want the integration to be a standard .war application that can be
deployed in any web container such as Tomcat, Jetty or even heavy weight
application servers such as WebLogic or WebSphere. There fore we start off
with the standard Maven webapp project that is created with the following
long archetype command:

mvn archetype:create -DgroupId=org.apache.camel
-DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupId etc. doens't have to be org.apache.camel it can be
com.mycompany.whatever. But I have used these package names as the
example is an official part of the Camel distribution.

Then we have the basic maven folder layout. We start out with the
webservice part where we want to use Apache CXF for the webservice stuff.
So we add this to the pom.xml

<properties>
<cxf-version>2.1.1</cxf-version>

</properties>

<dependency>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-core</artifactId>
<version>${cxf-version}</version>

128 TUTORIALS

http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://cxf.apache.org/

</dependency>
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-frontend-jaxws</artifactId>
<version>${cxf-version}</version>

</dependency>
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http</artifactId>
<version>${cxf-version}</version>

</dependency>

DEVELOPING THE WEBSERVICE
As we want to develop webservice with the contract first approach we create
our .wsdl file. As this is a example we have simplified the model of the
incident to only include 8 fields. In real life the model would be a bit more
complex, but not to much.

We put the wsdl file in the folder src/main/webapp/WEB-INF/wsdl and
name the file report_incident.wsdl.

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">

<xs:element name="inputReportIncident">
<xs:complexType>

<xs:sequence>
<xs:element type="xs:string"

name="incidentId"/>
<xs:element type="xs:string"

name="incidentDate"/>
<xs:element type="xs:string"

name="givenName"/>
<xs:element type="xs:string"

name="familyName"/>
<xs:element type="xs:string"

name="summary"/>
<xs:element type="xs:string"

name="details"/>
<xs:element type="xs:string"

name="email"/>

TUTORIALS 129

<xs:element type="xs:string"
name="phone"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="outputReportIncident">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string"
name="code"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">

<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>
<wsdl:output>

<soap:body parts="parameters" use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">

<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">

130 TUTORIALS

<soap:address
location="http://reportincident.example.camel.apache.org"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

CXF wsdl2java
Then we integration the CXF wsdl2java generator in the pom.xml so we have
CXF generate the needed POJO classes for our webservice contract.
However at first we must configure maven to live in the modern world of Java
1.5 so we must add this to the pom.xml

<!-- to compile with 1.5 -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

And then we can add the CXF wsdl2java code generator that will hook into
the compile goal so its automatic run all the time:

<!-- CXF wsdl2java generator, will plugin to the compile goal
-->

<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>${cxf-version}</version>
<executions>

<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>

<sourceRoot>${basedir}/target/
generated/src/main/java</sourceRoot>

<wsdlOptions>
<wsdlOption>

<wsdl>${basedir}/src/main/webapp/WEB-INF/wsdl/report_incident.wsdl</wsdl>
</wsdlOption>

</wsdlOptions>
</configuration>
<goals>

<goal>wsdl2java</goal>

TUTORIALS 131

</goals>
</execution>

</executions>
</plugin>

You are now setup and should be able to compile the project. So running the
mvn compile should run the CXF wsdl2java and generate the source code in
the folder &{basedir}/target/generated/src/main/java that we specified
in the pom.xml above. Since its in the target/generated/src/main/java
maven will pick it up and include it in the build process.

Configuration of the web.xml
Next up is to configure the web.xml to be ready to use CXF so we can expose
the webservice.
As Spring is the center of the universe, or at least is a very important
framework in today's Java land we start with the listener that kick-starts
Spring. This is the usual piece of code:

<!-- the listener that kick-starts Spring -->
<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

And then we have the CXF part where we define the CXF servlet and its URI
mappings to which we have chosen that all our webservices should be in the
path /webservices/

<!-- CXF servlet -->
<servlet>

<servlet-name>CXFServlet</servlet-name>

<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- all our webservices are mapped under this URI pattern -->
<servlet-mapping>

<servlet-name>CXFServlet</servlet-name>
<url-pattern>/webservices/*</url-pattern>

</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring
XML that we link to fron the web.xml by the standard Spring
contextConfigLocation property in the web.xml

132 TUTORIALS

<!-- location of spring xml files -->
<context-param>

<param-name>contextConfigLocation</param-name>
<param-value>classpath:cxf-config.xml</param-value>

</context-param>

We have named our CXF configuration file cxf-config.xml and its located in
the root of the classpath. In Maven land that is we can have the cxf-
config.xml file in the src/main/resources folder. We could also have the
file located in the WEB-INF folder for instance <param-value>/WEB-INF/cxf-
config.xml</param-value>.

Getting rid of the old jsp world
The maven archetype that created the basic folder structure also created a
sample .jsp file index.jsp. This file src/main/webapp/index.jsp should be
deleted.

Configuration of CXF
The cxf-config.xml is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<!-- implementation of the webservice -->
<bean id="reportIncidentEndpoint"

class="org.apache.camel.example.reportincident.ReportIncidentEndpointImpl"/>

<!-- export the webservice using jaxws -->
<jaxws:endpoint id="reportIncident"

implementor="#reportIncidentEndpoint"
address="/incident"
wsdlLocation="/WEB-INF/wsdl/report_incident.wsdl"
endpointName="s:ReportIncidentPort"
serviceName="s:ReportIncidentService"
xmlns:s="http://reportincident.example.camel.apache.org"/>

</beans>

TUTORIALS 133

The configuration is standard CXF and is documented at the Apache CXF
website.

The 3 import elements is needed by CXF and they must be in the file.
Noticed that we have a spring bean reportIncidentEndpoint that is the

implementation of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use
the # mark to identify its a reference to a spring bean. We could have stated
the classname directly as
implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint"
but then we lose the ability to let the ReportIncidentEndpoint be configured
by spring.
The address attribute defines the relative part of the URL of the exposed
webservice. wsdlLocation is an optional parameter but for persons like me
that likes contract-first we want to expose our own .wsdl contracts and not
the auto generated by the frameworks, so with this attribute we can link to
the real .wsdl file. The last stuff is needed by CXF as you could have several
services so it needs to know which this one is. Configuring these is quite easy
as all the information is in the wsdl already.

Implementing the ReportIncidentEndpoint
Phew after all these meta files its time for some java code so we should code
the implementor of the webservice. So we fire up mvn compile to let CXF
generate the POJO classes for our webservice and we are ready to fire up a
Java editor.

You can use mvn idea:idea or mvn eclipse:eclipse to create project
files for these editors so you can load the project. However IDEA has been
smarter lately and can load a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and
dirty as it can get. At first beware that since its jaxws and Java 1.5 we get
annotations for the money, but they reside on the interface so we can
remove them from our implementations so its a nice plain POJO again:

package org.apache.camel.example.reportincident;

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentEndpointImpl is called from " +

parameters.getGivenName());

134 TUTORIALS

http://camel.apache.org/cxf.html
http://cxf.apache.org/
http://cxf.apache.org/

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

We just output the person that invokes this webservice and returns a OK
response. This class should be in the maven source root folder src/main/
java under the package name
org.apache.camel.example.reportincident. Beware that the maven
archetype tool didn't create the src/main/java folder, so you should
create it manually.

To test if we are home free we run mvn clean compile.

Running our webservice
Now that the code compiles we would like to run it in a web container, so we
add jetty to our pom.xml so we can run mvn jetty:run:

<properties>
...
<jetty-version>6.1.1</jetty-version>

</properties>

<build>
<plugins>

...
<!-- so we can run mvn jetty:run -->
<plugin>

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>${jetty-version}</version>

</plugin>

Notice: We use Jetty v6.1.1 as never versions has troubles on my laptop.
Feel free to try a newer version on your system, but v6.1.1 works flawless.

So to see if everything is in order we fire up jetty with mvn jetty:run and
if everything is okay you should be able to access http://localhost:8080.
Jetty is smart that it will list the correct URI on the page to our web
application, so just click on the link. This is smart as you don't have to
remember the exact web context URI for your application - just fire up the
default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the
web.xml to instruct the CXF servlet to accept the pattern /webservices/*
we should hit this URL to get the attention of CXF: http://localhost:8080/

TUTORIALS 135

http://localhost:8080/
http://localhost:8080/camel-example-reportincident/webservices

camel-example-reportincident/webservices.

Â

Hitting the webservice
Now we have the webservice running in a standard .war application in a
standard web container such as Jetty we would like to invoke the webservice
and see if we get our code executed. Unfortunately this isn't the easiest task
in the world - its not so easy as a REST URL, so we need tools for this. So we
fire up our trusty webservice tool SoapUI and let it be the one to fire the
webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the
expected OK response and the console outputs the System.out so we are
ready to code.

Â

136 TUTORIALS

http://localhost:8080/camel-example-reportincident/webservices
http://www.soapui.org/

Remote Debugging
Okay a little sidestep but wouldn't it be cool to be able to debug your code
when its fired up under Jetty? As Jetty is started from maven, we need to
instruct maven to use debug mode.
Se we set the MAVEN_OPTS environment to start in debug mode and listen on
port 5005.

MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Then you need to restart Jetty so its stopped with ctrl + c. Remember to
start a new shell to pickup the new environment settings. And start jetty
again.

Then we can from our IDE attach a remote debugger and debug as we
want.
First we configure IDEA to attach to a remote debugger on port 5005:

Â
Then we set a breakpoint in our code ReportIncidentEndpoint and hit

the SoapUI once again and we are breaked at the breakpoint where we can
inspect the parameters:

TUTORIALS 137

Â

138 TUTORIALS

Adding a unit test
Oh so much hard work just to hit a webservice, why can't we just use an unit
test to invoke our webservice? Yes of course we can do this, and that's the
next step.
First we create the folder structure src/test/java and src/test/
resources. We then create the unit test in the src/test/java folder.

package org.apache.camel.example.reportincident;

import junit.framework.TestCase;

/**
* Plain JUnit test of our webservice.
*/

public class ReportIncidentEndpointTest extends TestCase {

}

Here we have a plain old JUnit class. As we want to test webservices we need
to start and expose our webservice in the unit test before we can test it. And
JAXWS has pretty decent methods to help us here, the code is simple as:

import javax.xml.ws.Endpoint;
...

private static String ADDRESS = "http://localhost:9090/unittest";

protected void startServer() throws Exception {
// We need to start a server that exposes or webservice during the unit

testing
// We use jaxws to do this pretty simple
ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl();
Endpoint.publish(ADDRESS, server);

}

The Endpoint class is the javax.xml.ws.Endpoint that under the covers
looks for a provider and in our case its CXF - so its CXF that does the heavy
lifting of exposing out webservice on the given URL address. Since our class
ReportIncidentEndpointImpl implements the interface
ReportIncidentEndpoint that is decorated with all the jaxws annotations it
got all the information it need to expose the webservice. Below is the CXF
wsdl2java generated interface:

/*
*
*/

TUTORIALS 139

package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.bind.annotation.XmlSeeAlso;

/**
* This class was generated by Apache CXF 2.1.1
* Wed Jul 16 12:40:31 CEST 2008
* Generated source version: 2.1.1
*
*/

/*
*
*/

@WebService(targetNamespace = "http://reportincident.example.camel.apache.org", name
= "ReportIncidentEndpoint")
@XmlSeeAlso({ObjectFactory.class})
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*
*
*/

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "outputReportIncident", targetNamespace =

"http://reportincident.example.camel.apache.org", partName = "parameters")
@WebMethod(operationName = "ReportIncident", action =

"http://reportincident.example.camel.apache.org/ReportIncident")
public OutputReportIncident reportIncident(

@WebParam(partName = "parameters", name = "inputReportIncident",
targetNamespace = "http://reportincident.example.camel.apache.org")

InputReportIncident parameters
);

}

Next up is to create a webservice client so we can invoke our webservice. For
this we actually use the CXF framework directly as its a bit more easier to
create a client using this framework than using the JAXWS style. We could
have done the same for the server part, and you should do this if you need
more power and access more advanced features.

140 TUTORIALS

import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
...

protected ReportIncidentEndpoint createCXFClient() {
// we use CXF to create a client for us as its easier than JAXWS and works
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
factory.setServiceClass(ReportIncidentEndpoint.class);
factory.setAddress(ADDRESS);
return (ReportIncidentEndpoint) factory.create();

}

So now we are ready for creating a unit test. We have the server and the
client. So we just create a plain simple unit test method as the usual junit
style:

public void testRendportIncident() throws Exception {
startServer();

ReportIncidentEndpoint client = createCXFClient();

InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong", "OK", out.getCode());

}

Now we are nearly there. But if you run the unit test with mvn test then it
will fail. Why!!! Well its because that CXF needs is missing some
dependencies during unit testing. In fact it needs the web container, so we
need to add this to our pom.xml.

<!-- cxf web container for unit testing -->
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http-jetty</artifactId>
<version>${cxf-version}</version>
<scope>test</scope>

</dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how
agile, embedable and popular Jetty is.

TUTORIALS 141

So lets run our junit test with, and it reports:

mvn test
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

END OF PART 1
Thanks for being patient and reading all this more or less standard Maven,
Spring, JAXWS and Apache CXF stuff. Its stuff that is well covered on the net,
but I wanted a full fledged tutorial on a maven project setup that is web
service ready with Apache CXF. We will use this as a base for the next part
where we demonstrate how Camel can be digested slowly and piece by piece
just as it was back in the times when was introduced and was learning the
Spring framework that we take for granted today.

RESOURCES
• Apache CXF user guide

•
Name Size Creator Creation

Date Comment Â

ZIP Archive
tutorial_reportincident_part-
one.zi...

14
kB

Claus
Ibsen

Jul 17,
2008
23:34

Â ◦ Properties
◦ Remove

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5

142 TUTORIALS

http://cwiki.apache.org/CXF20DOC/index.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part1.data/tutorial_reportincident_part-one.zip
http://camel.apache.org/tutorial-example-reportincident-part1.data/tutorial_reportincident_part-one.zip
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/pages/editattachment.action?pageId=$page.id&fileName=tutorial_reportincident_part-one.zip
https://cwiki.apache.org/confluence/pages/removeattachment.action?pageId=$page.id&fileName=tutorial_reportincident_part-one.zip&version=1
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html

PART 2

ADDING CAMEL
In this part we will introduce Camel so we start by adding Camel to our
pom.xml:

<properties>
...
<camel-version>1.4.0</camel-version>

</properties>

<!-- camel -->
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>${camel-version}</version>

</dependency>

That's it, only one dependency for now.
Now we turn towards our webservice endpoint implementation where we
want to let Camel have a go at the input we receive. As Camel is very non
invasive its basically a .jar file then we can just grap Camel but creating a
new instance of DefaultCamelContext that is the hearth of Camel its
context.

CamelContext camel = new DefaultCamelContext();

In fact we create a constructor in our webservice and add this code:

private CamelContext camel;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// add the log component
camel.addComponent("log", new LogComponent());

// start Camel
camel.start();

}

TUTORIALS 143

Synchronize IDE
If you continue from part 1, remember to update your editor project
settings since we have introduce new .jar files. For instance IDEA
has a feature to synchronize with Maven projects.

LOGGING THE "HELLO WORLD"
Here at first we want Camel to log the givenName and familyName
parameters we receive, so we add the LogComponent with the key log. And
we must start Camel before its ready to act.
Then we change the code in the method that is invoked by Apache CXF when
a webservice request arrives. We get the name and let Camel have a go at it
in the new method we create sendToCamel:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
String name = parameters.getGivenName() + " " + parameters.getFamilyName();

// let Camel do something with the name
sendToCamelLog(name);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Next is the Camel code. At first it looks like there are many code lines to do a
simple task of logging the name - yes it is. But later you will in fact realize
this is one of Camels true power. Its concise API. Hint: The same code can be
used for any component in Camel.

private void sendToCamelLog(String name) {
try {

// get the log component
Component component = camel.getComponent("log");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to

configure
// endpoints based on URI.
// com.mycompany.part2 = the log category used. Will log at INFO level as

default
Endpoint endpoint = component.createEndpoint("log:com.mycompany.part2");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter

144 TUTORIALS

Component Documentation
The Log and File components is documented as well, just click on
the links. Just return to this documentation later when you must use
these components for real.

exchange.getIn().setBody(name);

// now we want to send the exchange to this endpoint and we then need a
producer

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the log component, that

will process
// the exchange and yes log the payload
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

Okay there are code comments in the code block above that should explain
what is happening. We run the code by invoking our unit test with maven mvn
test, and we should get this log line:

INFO: Exchange[BodyType:String, Body:Claus Ibsen]

WRITE TO FILE - EASY WITH THE SAME CODE STYLE

Okay that isn't to impressive, Camel can log Well I promised that the
above code style can be used for any component, so let's store the payload
in a file. We do this by adding the file component to the Camel context

TUTORIALS 145

http://camel.apache.org/log.html
http://camel.apache.org/file.html

// add the file component
camel.addComponent("file", new FileComponent());

And then we let camel write the payload to the file after we have logged, by
creating a new method sendToCamelFile. We want to store the payload in
filename with the incident id so we need this parameter also:

// let Camel do something with the name
sendToCamelLog(name);
sendToCamelFile(parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI
configuration when we create the endpoint as we pass in configuration
parameters to the file component.
And then we need to set the output filename and this is done by adding a
special header to the exchange. That's the only difference:

private void sendToCamelFile(String incidentId, String name) {
try {

// get the file component
Component component = camel.getComponent("file");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to

configure
// endpoints based on URI.
// file://target instructs the base folder to output the files. We put in

the target folder
// then its actumatically cleaned by mvn clean
Endpoint endpoint = component.createEndpoint("file://target");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now a special header is set to instruct the file component what the
output filename

// should be
exchange.getIn().setHeader(FileComponent.HEADER_FILE_NAME, "incident-" +

incidentId + ".txt");

// now we want to send the exchange to this endpoint and we then need a
producer

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the file component,

that will process

146 TUTORIALS

// the exchange and yes write the payload to the given filename
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

After running our unit test again with mvn test we have a output file in the
target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

FULLY JAVA BASED CONFIGURATION OF ENDPOINTS
In the file example above the configuration was URI based. What if you want
100% java setter based style, well this is of course also possible. We just
need to cast to the component specific endpoint and then we have all the
setters available:

// create the file endpoint, we cast to FileEndpoint because then we can
do

// 100% java settter based configuration instead of the URI sting based
// must pass in an empty string, or part of the URI configuration if

wanted
FileEndpoint endpoint = (FileEndpoint)component.createEndpoint("");
endpoint.setFile(new File("target/subfolder"));
endpoint.setAutoCreate(true);

That's it. Now we have used the setters to configure the FileEndpoint that it
should store the file in the folder target/subfolder. Of course Camel now
stores the file in the subfolder.

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

LESSONS LEARNED
Okay I wanted to demonstrate how you can be in 100% control of the
configuration and usage of Camel based on plain Java code with no hidden

TUTORIALS 147

magic or special XML or other configuration files. Just add the camel-core.jar
and you are ready to go.

You must have noticed that the code for sending a message to a given
endpoint is the same for both the log and file, in fact any Camel endpoint.
You as the client shouldn't bother with component specific code such as file
stuff for file components, jms stuff for JMS messaging etc. This is what the
Message Endpoint EIP pattern is all about and Camel solves this very very
nice - a key pattern in Camel.

REDUCING CODE LINES
Now that you have been introduced to Camel and one of its masterpiece
patterns solved elegantly with the Message Endpoint its time to give
productive and show a solution in fewer code lines, in fact we can get it down
to 5, 4, 3, 2 .. yes only 1 line of code.

The key is the ProducerTemplate that is a Spring'ish xxxTemplate based
producer. Meaning that it has methods to send messages to any Camel
endpoints. First of all we need to get hold of such a template and this is done
from the CamelContext

private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
...

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

Now we can use template for sending payloads to any endpoint in Camel.
So all the logging gabble can be reduced to:

template.sendBody("log:com.mycompany.part2.easy", name);

And the same goes for the file, but we must also send the header to instruct
what the output filename should be:

String filename = "easy-incident-" + incidentId + ".txt";
template.sendBodyAndHeader("file://target/subfolder", name,

FileComponent.HEADER_FILE_NAME, filename);

148 TUTORIALS

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

REDUCING EVEN MORE CODE LINES
Well we got the Camel code down to 1-2 lines for sending the message to the
component that does all the heavy work of wring the message to a file etc.
But we still got 5 lines to initialize Camel.

camel = new DefaultCamelContext();
camel.addComponent("log", new LogComponent());
camel.addComponent("file", new FileComponent());
template = camel.createProducerTemplate();
camel.start();

This can also be reduced. All the standard components in Camel is auto
discovered on-the-fly so we can remove these code lines and we are down to
3 lines.
Okay back to the 3 code lines:

camel = new DefaultCamelContext();
template = camel.createProducerTemplate();
camel.start();

Later will we see how we can reduce this to ... in fact 0 java code lines. But
the 3 lines will do for now.

MESSAGE TRANSLATION
Okay lets head back to the over goal of the integration. Looking at the EIP
diagrams at the introduction page we need to be able to translate the
incoming webservice to an email. Doing so we need to create the email body.
When doing the message translation we could put up our sleeves and do it
manually in pure java with a StringBuilder such as:

private String createMailBody(InputReportIncident parameters) {
StringBuilder sb = new StringBuilder();
sb.append("Incident ").append(parameters.getIncidentId());
sb.append(" has been reported on the ").append(parameters.getIncidentDate());
sb.append(" by ").append(parameters.getGivenName());
sb.append(" ").append(parameters.getFamilyName());

// and the rest of the mail body with more appends to the string builder

return sb.toString();
}

TUTORIALS 149

Component auto discovery
When an endpoint is requested with a scheme that Camel hasn't
seen before it will try to look for it in the classpath. It will do so by
looking for special Camel component marker files that reside in the
folder META-INF/services/org/apache/camel/component. If there
are files in this folder it will read them as the filename is the
scheme part of the URL. For instance the log component is defined
in this file META-INF/services/org/apache/component/log and its
content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same
technique and have them been auto discovered on-the-fly.

But as always it is a hardcoded template for the mail body and the code gets
kinda ugly if the mail message has to be a bit more advanced. But of course
it just works out-of-the-box with just classes already in the JDK.

Lets use a template language instead such as Apache Velocity. As Camel
have a component for Velocity integration we will use this component.
Looking at the Component List overview we can see that camel-velocity
component uses the artifactId camel-velocity so therefore we need to add
this to the pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-velocity</artifactId>
<version>${camel-version}</version>

</dependency>

And now we have a Spring conflict as Apache CXF is dependent on Spring
2.0.8 and camel-velocity is dependent on Spring 2.5.5. To remedy this we
could wrestle with the pom.xml with excludes settings in the dependencies
or just bring in another dependency camel-spring:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>${camel-version}</version>

</dependency>

150 TUTORIALS

http://velocity.apache.org/
http://camel.apache.org/velocity.html
http://camel.apache.org/component.html

In fact camel-spring is such a vital part of Camel that you will end up using it
in nearly all situations - we will look into how well Camel is seamless
integration with Spring in part 3. For now its just another dependency.

We create the mail body with the Velocity template and create the file
src/main/resources/MailBody.vm. The content in the MailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by
$body.givenName $body.familyName.

The person can be contact by:
- email: $body.email
- phone: $body.phone

Summary: $body.summary

Details:
$body.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the
following 3 code lines:

private void generateEmailBodyAndStoreAsFile(InputReportIncident parameters) {
// generate the mail body using velocity template
// notice that we just pass in our POJO (= InputReportIncident) that we
// got from Apache CXF to Velocity.
Object response = template.sendBody("velocity:MailBody.vm", parameters);
// Note: the response is a String and can be cast to String if needed

// store the mail in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", response,

FileComponent.HEADER_FILE_NAME, filename);
}

What is impressive is that we can just pass in our POJO object we got from
Apache CXF to Velocity and it will be able to generate the mail body with this
object in its context. Thus we don't need to prepare anything before we let
Velocity loose and generate our mail body. Notice that the template method
returns a object with out response. This object contains the mail body as a
String object. We can cast to String if needed.

If we run our unit test with mvn test we can in fact see that Camel has
produced the file and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

TUTORIALS 151

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.

FIRST PART OF THE SOLUTION
What we have seen here is actually what it takes to build the first part of the
integration flow. Receiving a request from a webservice, transform it to a
mail body and store it to a file, and return an OK response to the webservice.
All possible within 10 lines of code. So lets wrap it up here is what it takes:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply

152 TUTORIALS

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

Okay I missed by one, its in fact only 9 lines of java code and 2 fields.

END OF PART 2
I know this is a bit different introduction to Camel to how you can start using
it in your projects just as a plain java .jar framework that isn't invasive at all. I
took you through the coding parts that requires 6 - 10 lines to send a
message to an endpoint, buts it's important to show the Message Endpoint
EIP pattern in action and how its implemented in Camel. Yes of course Camel
also has to one liners that you can use, and will use in your projects for
sending messages to endpoints. This part has been about good old plain
java, nothing fancy with Spring, XML files, auto discovery, OGSi or other new
technologies. I wanted to demonstrate the basic building blocks in Camel and
how its setup in pure god old fashioned Java. There are plenty of eye catcher
examples with one liners that does more than you can imagine - we will
come there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets
interesting since we have to wrestle with the event driven consumer.
Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us
some fun with the Camel. See you in part 3.

RESOURCES

•
Name Size Creator Creation

Date Comment Â

ZIP
Archive
part-
two.zip

17
kB

Claus
Ibsen

Jul 19,
2008
00:52

Â ◦ Properties
◦ Remove

LINKS
▪ Introduction
▪ Part 1

TUTORIALS 153

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part2.data/part-two.zip
http://camel.apache.org/tutorial-example-reportincident-part2.data/part-two.zip
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/pages/editattachment.action?pageId=$page.id&fileName=part-two.zip
https://cwiki.apache.org/confluence/pages/removeattachment.action?pageId=$page.id&fileName=part-two.zip&version=2
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html

▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5

PART 3

RECAP
Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

154 TUTORIALS

http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html

This completes the first part of the solution: receiving the message using
webservice, transform it to a mail body and store it as a text file.
What is missing is the last part that polls the text files and send them as
emails. Here is where some fun starts, as this requires usage of the Event
Driven Consumer EIP pattern to react when new files arrives. So lets see how
we can do this in Camel. There is a saying: Many roads lead to Rome, and
that is also true for Camel - there are many ways to do it in Camel.

ADDING THE EVENT DRIVEN CONSUMER
We want to add the consumer to our integration that listen for new files, we
do this by creating a private method where the consumer code lives. We
must register our consumer in Camel before its started so we need to add,
and there fore we call the method addMailSenderConsumer in the
constructor below:

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

addMailSendConsumer();

// start Camel
camel.start();

}

The consumer needs to be consuming from an endpoint so we grab the
endpoint from Camel we want to consume. It's file://target/subfolder.
Don't be fooled this endpoint doesn't have to 100% identical to the producer,
i.e. the endpoint we used in the previous part to create and store the files.
We could change the URL to include some options, and to make it more clear
that it's possible we setup a delay value to 10 seconds, and the first poll
starts after 2 seconds. This is done by adding
?consumer.delay=10000&consumer.initialDelay=2000 to the URL.
When we have the endpoint we can create the consumer (just as in part 1
where we created a producer}. Creating the consumer requires a Processor
where we implement the java code what should happen when a message
arrives. To get the mail body as a String object we can use the getBody
method where we can provide the type we want in return.

TUTORIALS 155

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
/target/subfolder
http://camel.apache.org/processor.html

URL Configuration
The URL configuration in Camel endpoints is just like regular URL
we know from the Internet. You use ? and & to set the options.

Camel Type Converter
Why don't we just cast it as we always do in Java? Well the biggest
advantage when you provide the type as a parameter you tell
Camel what type you want and Camel can automatically convert it
for you, using its flexible Type Converter mechanism. This is a great
advantage, and you should try to use this instead of regular type
casting.

Sending the email is still left to be implemented, we will do this later. And
finally we must remember to start the consumer otherwise its not active and
won't listen for new files.

private void addMailSendConsumer() throws Exception {
// Grab the endpoint where we should consume. Option - the first poll starts

after 2 seconds
Endpoint endpint = camel.getEndpoint("file://target/

subfolder?consumer.initialDelay=2000");

// create the event driven consumer
// the Processor is the code what should happen when there is an event
// (think it as the onMessage method)
Consumer consumer = endpint.createConsumer(new Processor() {

public void process(Exchange exchange) throws Exception {
// get the mail body as a String
String mailBody = exchange.getIn().getBody(String.class);

// okay now we are read to send it as an email
System.out.println("Sending email..." + mailBody);

}
});

// star the consumer, it will listen for files
consumer.start();

}

Before we test it we need to be aware that our unit test is only catering for
the first part of the solution, receiving the message with webservice,
transforming it using Velocity and then storing it as a file - it doesn't test the
Event Driven Consumer we just added. As we are eager to see it in action, we
just do a common trick adding some sleep in our unit test, that gives our

156 TUTORIALS

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/type-converter.html

Event Driven Consumer time to react and print to System.out. We will later
refine the test:

public void testRendportIncident() throws Exception {
...

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong", "OK", out.getCode());

// give the event driven consumer time to react
Thread.sleep(10 * 1000);

}

We run the test with mvn clean test and have eyes fixed on the console
output.
During all the output in the console, we see that our consumer has been
triggered, as we want.

2008-07-19 12:09:24,140 [mponent@1f12c4e] DEBUG FileProcessStrategySupport - Locking
the file: target\subfolder\mail-incident-123.txt ...
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.
2008-07-19 12:09:24,156 [mponent@1f12c4e] DEBUG FileConsumer - Done processing file:
target\subfolder\mail-incident-123.txt. Status is: OK

SENDING THE EMAIL
Sending the email requires access to a SMTP mail server, but the
implementation code is very simple:

private void sendEmail(String body) {
// send the email to your mail server
String url =

"smtp://someone@localhost?password=secret&to=incident@mycompany.com";
template.sendBodyAndHeader(url, body, "subject", "New incident reported");

}

And just invoke the method from our consumer:

TUTORIALS 157

http://camel.apache.org/event-driven-consumer.html

// okay now we are read to send it as an email
System.out.println("Sending email...");
sendEmail(mailBody);
System.out.println("Email sent");

UNIT TESTING MAIL
For unit testing the consumer part we will use a mock mail framework, so we
add this to our pom.xml:

<!-- unit testing mail using mock -->
<dependency>

<groupId>org.jvnet.mock-javamail</groupId>
<artifactId>mock-javamail</artifactId>
<version>1.7</version>
<scope>test</scope>

</dependency>

Then we prepare our integration to run with or without the consumer
enabled. We do this to separate the route into the two parts:

▪ receive the webservice, transform and save mail file and return OK
as repose

▪ the consumer that listen for mail files and send them as emails
So we change the constructor code a bit:

public ReportIncidentEndpointImpl() throws Exception {
init(true);

}

public ReportIncidentEndpointImpl(boolean enableConsumer) throws Exception {
init(enableConsumer);

}

private void init(boolean enableConsumer) throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

if (enableConsumer) {
addMailSendConsumer();

}

158 TUTORIALS

// start Camel
camel.start();

}

Then remember to change the ReportIncidentEndpointTest to pass in
false in the ReportIncidentEndpointImpl constructor.
And as always run mvn clean test to be sure that the latest code changes
works.

ADDING NEW UNIT TEST
We are now ready to add a new unit test that tests the consumer part so we
create a new test class that has the following code structure:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

}

}

As we want to test the consumer that it can listen for files, read the file
content and send it as an email to our mailbox we will test it by asserting
that we receive 1 mail in our mailbox and that the mail is the one we expect.
To do so we need to grab the mailbox with the mockmail API. This is done as
simple as:

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails", 0, box.size());

How do we trigger the consumer? Well by creating a file in the folder it listen
for. So we could use plain java.io.File API to create the file, but wait isn't there
an smarter solution? ... yes Camel of course. Camel can do amazing stuff in

TUTORIALS 159

one liner codes with its ProducerTemplate, so we need to get a hold of this
baby. We expose this template in our ReportIncidentEndpointImpl but adding
this getter:

protected ProducerTemplate getTemplate() {
return template;

}

Then we can use the template to create the file in one code line:

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just
// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file://target/

subfolder?append=false", "Hello World",
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

Then we just need to wait a little for the consumer to kick in and do its work
and then we should assert that we got the new mail. Easy as just:

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail", 1, box.size());
assertEquals("Subject wrong", "New incident reported",

box.get(0).getSubject());
assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());

}

The final class for the unit test is:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails", 0, box.size());

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just

160 TUTORIALS

// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file://target/

subfolder?append=false", "Hello World",
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail", 1, box.size());
assertEquals("Subject wrong", "New incident reported",

box.get(0).getSubject());
assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());

}

}

END OF PART 3
Okay we have reached the end of part 3. For now we have only scratched the
surface of what Camel is and what it can do. We have introduced Camel into
our integration piece by piece and slowly added more and more along the
way. And the most important is: you as the developer never lost control.
We hit a sweet spot in the webservice implementation where we could write
our java code. Adding Camel to the mix is just to use it as a regular java
code, nothing magic. We were in control of the flow, we decided when it was
time to translate the input to a mail body, we decided when the content
should be written to a file. This is very important to not lose control, that the
bigger and heavier frameworks tend to do. No names mentioned, but boy do
developers from time to time dislike these elephants. And Camel is no
elephant.

I suggest you download the samples from part 1 to 3 and try them out. It
is great basic knowledge to have in mind when we look at some of the
features where Camel really excel - the routing domain language.

From part 1 to 3 we touched concepts such as::
▪ Endpoint
▪ URI configuration
▪ Consumer
▪ Producer
▪ Event Driven Consumer
▪ Component
▪ CamelContext
▪ ProducerTemplate
▪ Processor

TUTORIALS 161

http://camel.apache.org/endpoint.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/component.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/processor.html

▪ Type Converter

RESOURCES

•
Name Size Creator Creation

Date Comment Â

ZIP
Archive
part-
three.zip

18
kB

Claus
Ibsen

Jul 20,
2008
03:34

Â ◦ Properties
◦ Remove

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5

PART 4

INTRODUCTION
This section is about regular Camel. The examples presented here in this
section is much more in common of all the examples we have in the Camel
documentation.

ROUTING
Camel is particular strong as a light-weight and agile routing and
mediation framework. In this part we will introduce the routing concept
and how we can introduce this into our solution.
Looking back at the figure from the Introduction page we want to implement
this routing. Camel has support for expressing this routing logic using Java as
a DSL (Domain Specific Language). In fact Camel also has DSL for XML and
Scala. In this part we use the Java DSL as its the most powerful and all
developers know Java. Later we will introduce the XML version that is very
well integrated with Spring.

162 TUTORIALS

http://camel.apache.org/type-converter.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part3.data/part-three.zip
http://camel.apache.org/tutorial-example-reportincident-part3.data/part-three.zip
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/pages/editattachment.action?pageId=$page.id&fileName=part-three.zip
https://cwiki.apache.org/confluence/pages/removeattachment.action?pageId=$page.id&fileName=part-three.zip&version=1
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/routes.html

If you have been reading the previous 3 parts then, this quote
applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again!

Before we jump into it, we want to state that this tutorial is about
Developers not loosing control. In my humble experience one of the key
fears of developers is that they are forced into a tool/framework where they
loose control and/or power, and the possible is now impossible. So in this
part we stay clear with this vision and our starting point is as follows:

▪ We have generated the webservice source code using the CXF
wsdl2java generator and we have our
ReportIncidentEndpointImpl.java file where we as a Developer feels
home and have the power.

So the starting point is:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// WE ARE HERE !!!
return null;

}

}

Yes we have a simple plain Java class where we have the implementation of
the webservice. The cursor is blinking at the WE ARE HERE block and this is
where we feel home. More or less any Java Developers have implemented
webservices using a stack such as: Apache AXIS, Apache CXF or some other
quite popular framework. They all allow the developer to be in control and
implement the code logic as plain Java code. Camel of course doesn't enforce
this to be any different. Okay the boss told us to implement the solution from
the figure in the Introduction page and we are now ready to code.

TUTORIALS 163

RouteBuilder
RouteBuilder is the hearth in Camel of the Java DSL routing. This class does
all the heavy lifting of supporting EIP verbs for end-users to express the
routing. It does take a little while to get settled and used to, but when you
have worked with it for a while you will enjoy its power and realize it is in fact
a little language inside Java itself. Camel is the only integration framework
we are aware of that has Java DSL, all the others are usually only XML based.

As an end-user you usually use the RouteBuilder as of follows:
▪ create your own Route class that extends RouteBuilder
▪ implement your routing DSL in the configure method

So we create a new class ReportIncidentRoutes and implement the first part
of the routing:

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// direct:start is a internal queue to kick-start the routing in our example
// we use this as the starting point where you can send messages to

direct:start
from("direct:start")

// to is the destination we send the message to our velocity endpoint
// where we transform the mail body
.to("velocity:MailBody.vm");

}

}

What to notice here is the configure method. Here is where all the action is.
Here we have the Java DSL langauge, that is expressed using the fluent
builder syntax that is also known from Hibernate when you build the
dynamic queries etc. What you do is that you can stack methods separating
with the dot.

In the example above we have a very common routing, that can be
distilled from pseudo verbs to actual code with:

▪ from A to B
▪ From Endpoint A To Endpoint B
▪ from("endpointA").to("endpointB")
▪ from("direct:start").to("velocity:MailBody.vm");

from("direct:start") is the consumer that is kick-starting our routing flow. It
will wait for messages to arrive on the direct queue and then dispatch the
message.
to("velocity:MailBody.vm") is the producer that will receive a message
and let Velocity generate the mail body response.

164 TUTORIALS

http://camel.apache.org/direct.html

So what we have implemented so far with our ReportIncidentRoutes
RouteBuilder is this part of the picture:

Adding the RouteBuilder
Now we have our RouteBuilder we need to add/connect it to our
CamelContext that is the hearth of Camel. So turning back to our webservice
implementation class ReportIncidentEndpointImpl we add this constructor to
the code, to create the CamelContext and add the routes from our route
builder and finally to start it.

private CamelContext context;

public ReportIncidentEndpointImpl() throws Exception {
// create the context
context = new DefaultCamelContext();

// append the routes to the context
context.addRoutes(new ReportIncidentRoutes());

// at the end start the camel context
context.start();

}

Okay how do you use the routes then? Well its just as before we use a
ProducerTemplate to send messages to Endpoints, so we just send to the
direct:start endpoint and it will take it from there.
So we implement the logic in our webservice operation:

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
Object mailBody = context.createProducerTemplate().sendBody("direct:start",

parameters);
System.out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

TUTORIALS 165

Notice that we get the producer template using the
createProducerTemplate method on the CamelContext. Then we send the
input parameters to the direct:start endpoint and it will route it to the
velocity endpoint that will generate the mail body. Since we use direct as
the consumer endpoint (=from) and its a synchronous exchange we will get
the response back from the route. And the response is of course the output
from the velocity endpoint.
We have now completed this part of the picture:

UNIT TESTING
Now is the time we would like to unit test what we got now. So we call for
camel and its great test kit. For this to work we need to add it to the pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.4.0</version>
<scope>test</scope>
<type>test-jar</type>

</dependency>

After adding it to the pom.xml you should refresh your Java Editor so it
pickups the new jar. Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class
ContextTestSupport

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
* Unit test of our routes
*/

public class ReportIncidentRoutesTest extends ContextTestSupport {

166 TUTORIALS

About creating ProducerTemplate
In the example above we create a new ProducerTemplate when
the reportIncident method is invoked. However in reality you
should only create the template once and re-use it. See this FAQ
entry.

}

ContextTestSupport is a supporting unit test class for much easier unit
testing with Apache Camel. The class is extending JUnit TestCase itself so you
get all its glory. What we need to do now is to somehow tell this unit test
class that it should use our route builder as this is the one we gonna test. So
we do this by implementing the createRouteBuilder method.

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new ReportIncidentRoutes();
}

That is easy just return an instance of our route builder and this unit test will
use our routes.
We then code our unit test method that sends a message to the route and
assert that its transformed to the mail body using the Velocity template.

public void testTransformMailBody() throws Exception {
// create a dummy input with some input data
InputReportIncident parameters = createInput();

// send the message (using the sendBody method that takes a parameters as the
input body)

// to "direct:start" that kick-starts the route
// the response is returned as the out object, and its also the body of the

response
Object out = context.createProducerTemplate().sendBody("direct:start",

parameters);

// convert the response to a string using camel converters. However we could
also have casted it to

// a string directly but using the type converters ensure that Camel can
convert it if it wasn't a string

// in the first place. The type converters in Camel is really powerful and
you will later learn to

// appreciate them and wonder why its not build in Java out-of-the-box
String body = context.getTypeConverter().convertTo(String.class, out);

TUTORIALS 167

http://camel.apache.org/why-does-camel-use-too-many-threads-with-producertemplate.html
http://camel.apache.org/why-does-camel-use-too-many-threads-with-producertemplate.html

It is quite common in Camel itself to unit test using routes defined
as an anonymous inner class, such as illustrated below:

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// TODO: Add your routes here, such as:
from("jms:queue:inbox").to("file://target/out");

}
};

}

The same technique is of course also possible for end-users of Camel to
create parts of your routes and test them separately in many test classes.
However in this tutorial we test the real route that is to be used for
production, so we just return an instance of the real one.

// do some simple assertions of the mail body
assertTrue(body.startsWith("Incident 123 has been reported on the 2008-07-16

by Claus Ibsen."));
}

/**
* Creates a dummy request to be used for input
*/

protected InputReportIncident createInput() {
InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");
return input;

}

ADDING THE FILE BACKUP
The next piece of puzzle that is missing is to store the mail body as a backup
file. So we turn back to our route and the EIP patterns. We use the Pipes and
Filters pattern here to chain the routing as:

168 TUTORIALS

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// using pipes-and-filters we send the output from the previous to the

next
.to("file://target/subfolder");

}

Notice that we just add a 2nd .to on the newline. Camel will default use the
Pipes and Filters pattern here when there are multi endpoints chained liked
this. We could have used the pipeline verb to let out stand out that its the
Pipes and Filters pattern such as:

from("direct:start")
// using pipes-and-filters we send the output from the previous to the

next
.pipeline("velocity:MailBody.vm", "file://target/subfolder");

But most people are using the multi .to style instead.
We re-run out unit test and verifies that it still passes:

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also
be created as the backup file. If we look in the target/subfolder we can
see that something happened.
On my humble laptop it created this folder: target\subfolder\ID-claus-
acer. So the file producer create a sub folder named ID-claus-acer what is
this? Well Camel auto generates an unique filename based on the unique
message id if not given instructions to use a fixed filename. In fact it creates
another sub folder and name the file as: target\subfolder\ID-claus-
acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What
we want is to use our own filename instead of this auto generated filename.
This is archived by adding a header to the message with the filename to use.
So we need to add this to our route and compute the filename based on the
message content.

Setting the filename
For starters we show the simple solution and build from there. We start by
setting a constant filename, just to verify that we are on the right path, to
instruct the file producer what filename to use. The file producer uses a
special header FileComponent.HEADER_FILE_NAME to set the filename.

TUTORIALS 169

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html

What we do is to send the header when we "kick-start" the routing as the
header will be propagated from the direct queue to the file producer. What
we need to do is to use the ProducerTemplate.sendBodyAndHeader method
that takes both a body and a header. So we change out webservice code to
include the filename also:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// create the producer template to use for sending messages
ProducerTemplate producer = context.createProducerTemplate();
// send the body and the filename defined with the special header key
Object mailBody = producer.sendBodyAndHeader("direct:start", parameters,

FileComponent.HEADER_FILE_NAME, "incident.txt");
System.out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

However we could also have used the route builder itself to configure the
constant filename as shown below:

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// set the filename to a constant before the file producer receives the

message
.setHeader(FileComponent.HEADER_FILE_NAME, constant("incident.txt"))
.to("file://target/subfolder");

}

But Camel can be smarter and we want to dynamic set the filename based
on some of the input parameters, how can we do this?
Well the obvious solution is to compute and set the filename from the
webservice implementation, but then the webservice implementation has
such logic and we want this decoupled, so we could create our own POJO
bean that has a method to compute the filename. We could then instruct the
routing to invoke this method to get the computed filename. This is a string
feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename
First we create our plain java class that computes the filename, and it has
100% no dependencies to Camel what so ever.

170 TUTORIALS

http://camel.apache.org/bean.html
http://camel.apache.org/bean-language.html

/**
* Plain java class to be used for filename generation based on the reported incident
*/

public class FilenameGenerator {

public String generateFilename(InputReportIncident input) {
// compute the filename
return "incident-" + input.getIncidentId() + ".txt";

}

}

The class is very simple and we could easily create unit tests for it to verify
that it works as expected. So what we want now is to let Camel invoke this
class and its generateFilename with the input parameters and use the output
as the filename. Pheeeww is this really possible out-of-the-box in Camel? Yes
it is. So lets get on with the show. We have the code that computes the
filename, we just need to call it from our route using the Bean Language:

public void configure() throws Exception {
from("direct:start")

// set the filename using the bean language and call the
FilenameGenerator class.

// the 2nd null parameter is optional methodname, to be used to avoid
ambiguity.

// if not provided Camel will try to figure out the best method to
invoke, as we

// only have one method this is very simple
.setHeader(FileComponent.HEADER_FILE_NAME,

BeanLanguage.bean(FilenameGenerator.class, null))
.to("velocity:MailBody.vm")
.to("file://target/subfolder");

}

Notice that we use the bean language where we supply the class with our
bean to invoke. Camel will instantiate an instance of the class and invoke the
suited method. For completeness and ease of code readability we add the
method name as the 2nd parameter

.setHeader(FileComponent.HEADER_FILE_NAME,
BeanLanguage.bean(FilenameGenerator.class, "generateFilename"))

Then other developers can understand what the parameter is, instead of
null.

Now we have a nice solution, but as a sidetrack I want to demonstrate the
Camel has other languages out-of-the-box, and that scripting language is a
first class citizen in Camel where it etc. can be used in content based routing.
However we want it to be used for the filename generation.

TUTORIALS 171

http://camel.apache.org/bean-language.html

Using a script language to set the filename
We could do as in the previous parts where we send the computed
filename as a message header when we "kick-start" the route. But we want
to learn new stuff so we look for a different solution using some of Camels
many Languages. As OGNL is a favorite language of mine (used by
WebWork) so we pick this baby for a Camel ride. For starters we must add
it to our pom.xml:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>${camel-version}</version>

</dependency>

And remember to refresh your editor so you got the new .jars.
We want to construct the filename based on this syntax: mail-incident-
#ID#.txt where #ID# is the incident id from the input parameters. As
OGNL is a language that can invoke methods on bean we can invoke the
getIncidentId() on the message body and then concat it with the fixed
pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:
▪ request is the IN message. See the OGNL for other

predefined objects available
▪ body is the body of the in message
▪ incidentId will invoke the getIncidentId() method on the

body.
The rest is just more or less regular plain code where we
can concat strings.

Now we got the expression to dynamic compute the filename on the fly we
need to set it on our route so we turn back to our route, where we can add
the OGNL expression:

172 TUTORIALS

http://camel.apache.org/languages.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html

public void configure() throws Exception {
from("direct:start")

// we need to set the filename and uses OGNL for this
.setHeader(FileComponent.HEADER_FILE_NAME,

OgnlExpression.ognl("'mail-incident-' + request.body.incidentId + '.txt'"))
// using pipes-and-filters we send the output from the previous

to the next
.pipeline("velocity:MailBody.vm", "file://target/subfolder");

}

And since we are on Java 1.5 we can use the static import of ognl so we
have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;
...

.setHeader(FileComponent.HEADER_FILE_NAME, ognl("'mail-incident-' +
request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as the
Bean Language we used previously.

Whatever worked for you we have now implemented the backup of the data
files:

SENDING THE EMAIL
What we need to do before the solution is completed is to actually send the
email with the mail body we generated and stored as a file. In the previous
part we did this with a File consumer, that we manually added to the
CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;

TUTORIALS 173

http://camel.apache.org/file.html
http://camel.apache.org/bean-language.html

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// first part from the webservice -> file backup
from("direct:start")

.setHeader(FileComponent.HEADER_FILE_NAME, bean(FilenameGenerator.class,
"generateFilename"))

.to("velocity:MailBody.vm")

.to("file://target/subfolder");

// second part from the file backup -> send email
from("file://target/subfolder")

// set the subject of the email
.setHeader("subject", constant("new incident reported"))
// send the email
.to("smtp://someone@localhost?password=secret&to=incident@mycompany.com");

}

}

The last 3 lines of code does all this. It adds a file consumer
from("file://target/subfolder"), sets the mail subject, and finally send it as
an email.

The DSL is really powerful where you can express your routing integration
logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

CONCLUSION
We have just briefly touched the routing in Camel and shown how to
implement them using the fluent builder syntax in Java. There is much
more to the routing in Camel than shown here, but we are learning step by
step. We continue in part 5. See you there.

174 TUTORIALS

RESOURCES

•
Name Size Creator Creation

Date Comment Â

ZIP
Archive
part-
four.zip

11
kB

Claus
Ibsen

Aug 25,
2008
07:24

Â ◦ Properties
◦ Remove

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5

BETTER JMS TRANSPORT FOR CXF WEBSERVICE USING
APACHE CAMEL
Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really
easy or nice. This article shows how to use Apache Camel to provide a better
JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the
JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using
Camel for JMS is still a good idea if you want to use the rich feature of Camel
for routing and other Integration Scenarios that CXF does not support.

You can find the original announcement for this Tutorial and some
additional info on Christian SchneiderÂ´s Blog

So how to connect Apache Camel and CXF
The best way to connect Camel and CXF is using the Camel transport for
CXF. This is a camel module that registers with cxf as a new transport. It is
quite easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<property name="transportIds">

TUTORIALS 175

http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part4.data/part-four.zip
http://camel.apache.org/tutorial-example-reportincident-part4.data/part-four.zip
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/users/viewuserprofile.action?username=davsclaus
https://cwiki.apache.org/confluence/pages/editattachment.action?pageId=$page.id&fileName=part-four.zip
https://cwiki.apache.org/confluence/pages/removeattachment.action?pageId=$page.id&fileName=part-four.zip&version=1
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/CXF20DOC/using-the-jmsconfigfeature.html
http://camel.apache.org/CXF20DOC/using-the-jmsconfigfeature.html
http://www.liquid-reality.de/display/liquid/2008/08/25/Better%20JMS%20Transport%20for%20CXF%20Webservice%20using%20Apache%20Camel
http://www.liquid-reality.de/display/liquid/2008/08/25/Better%20JMS%20Transport%20for%20CXF%20Webservice%20using%20Apache%20Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://activemq.apache.org/camel/camel-transport-for-cxf.html

<list>
<value>http://cxf.apache.org/transports/camel</value>

</list>
</property>

</bean>

This bean registers with CXF and provides a new transport prefix camel://
that can be used in CXF address configurations. The bean references a bean
cxf which will be already present in your config. The other refrenceis a camel
context. We will later define this bean to provide the routing config.

How is JMS configured in Camel
In camel you need two things to configure JMS. A ConnectionFactory and a
JMSComponent. As ConnectionFactory you can simply set up the normal
Factory your JMS provider offers or bind a JNDI ConnectionFactory. In this
example we use the ConnectionFactory provided by ActiveMQ.

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel
that we simply call jms. If we need several JMSComponents we can
differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="useMessageIDAsCorrelationID" value="true" />

</bean>

You can find more details about the JMSComponent at the Camel Wiki. For
example you find the complete configuration options and a JNDI sample
there.

Setting up the CXF client
We will configure a simple CXF webservice client. It will use stub code
generated from a wsdl. The webservice client will be configured to use JMS
directly. You can also use a direct: Endpoint and do the routing to JMS in the
Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws"
xmlns:customer="http://customerservice.example.com/"

176 TUTORIALS

http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://activemq.apache.org/camel/jms.html

serviceName="customer:CustomerServiceService"
endpointName="customer:CustomerServiceEndpoint"
address="camel:jms:queue:CustomerService"
serviceClass="com.example.customerservice.CustomerService">

</client>

We explicitly configure serviceName and endpointName so they are not read
from the wsdl. The names we use are arbitrary and have no further function
but we set them to look nice. The serviceclass points to the service interface
that was generated from the wsdl. Now the important thing is address. Here
we tell cxf to use the camel transport, use the JmsComponent who registered
the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext
As we do not need additional routing an empty CamelContext bean will
suffice.

<camelContext id="camelContext" xmlns="http://activemq.apache.org/camel/schema/
spring">
</camelContext>

Running the Example
• Download the example project here
• Follow the readme.txt

Conclusion
As you have seen in this example you can use Camel to connect services to
JMS easily while being able to also use the rich integration features of Apache
Camel.

TUTORIAL USING AXIS 1.4 WITH APACHE CAMEL
• Tutorial using Axis 1.4 with Apache Camel
• Prerequisites
• Distribution
• Introduction
• Setting up the project to run Axis
• Maven 2
• wsdl
• Configuring Axis

TUTORIALS 177

http://activemq.apache.org/camel/spring.html
http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.data/cxfcamelexample.zip

Removed from distribution
This example has been removed from Camel 2.9 onwards. Apache
Axis 1.4 is a very old and unsupported framework. We encourage
users to use CXF instead of Axis.

• Running the Example
• Integrating Spring
• Using Spring
• Integrating Camel
• CamelContext
• Store a file backup
• Running the example
• Unit Testing
• Smarter Unit Testing with Spring
• Unit Test calling WebService
• Annotations
• The End
• See Also

Prerequisites
This tutorial uses Maven 2 to setup the Camel project and for dependencies
for artifacts.

Distribution
This sample is distributed with the Camel 1.5 distribution as examples/
camel-example-axis.

Introduction
Apache Axis is/was widely used as a webservice framework. So in line with
some of the other tutorials to demonstrate how Camel is not an invasive
framework but is flexible and integrates well with existing solution.

We have an existing solution that exposes a webservice using Axis 1.4
deployed as web applications. This is a common solution. We use contract
first so we have Axis generated source code from an existing wsdl file. Then
we show how we introduce Spring and Camel to integrate with Axis.

This tutorial uses the following frameworks:
• Maven 2.0.9
• Apache Camel 1.5.0

178 TUTORIALS

http://ws.apache.org/axis/
http://camel.apache.org/cxf.html

• Apache Axis 1.4
• Spring 2.5.5

Setting up the project to run Axis
This first part is about getting the project up to speed with Axis. We are not
touching Camel or Spring at this time.

Maven 2
Axis dependencies is available for maven 2 so we configure our pom.xml as:

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-jaxrpc</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-saaj</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>axis</groupId>
<artifactId>axis-wsdl4j</artifactId>
<version>1.5.1</version>

</dependency>

<dependency>
<groupId>commons-discovery</groupId>
<artifactId>commons-discovery</artifactId>
<version>0.4</version>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>

Then we need to configure maven to use Java 1.5 and the Axis maven plugin
that generates the source code based on the wsdl file:

TUTORIALS 179

<!-- to compile with 1.5 -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>axistools-maven-plugin</artifactId>
<configuration>

<sourceDirectory>src/main/resources/</sourceDirectory>
<packageSpace>com.mycompany.myschema</packageSpace>
<testCases>false</testCases>
<serverSide>true</serverSide>
<subPackageByFileName>false</subPackageByFileName>

</configuration>
<executions>

<execution>
<goals>

<goal>wsdl2java</goal>
</goals>

</execution>
</executions>

</plugin>

wsdl
We use the same .wsdl file as the Tutorial-Example-ReportIncident and copy
it to src/main/webapp/WEB-INF/wsdl

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">

<xs:element name="inputReportIncident">
<xs:complexType>

<xs:sequence>
<xs:element type="xs:string"

name="incidentId"/>

180 TUTORIALS

http://camel.apache.org/tutorial-example-reportincident.html

<xs:element type="xs:string"
name="incidentDate"/>

<xs:element type="xs:string"
name="givenName"/>

<xs:element type="xs:string"
name="familyName"/>

<xs:element type="xs:string"
name="summary"/>

<xs:element type="xs:string"
name="details"/>

<xs:element type="xs:string"
name="email"/>

<xs:element type="xs:string"
name="phone"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="outputReportIncident">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string"
name="code"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">

<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
style="document"/>

<wsdl:input>

TUTORIALS 181

<soap:body parts="parameters" use="literal"/>
</wsdl:input>
<wsdl:output>

<soap:body parts="parameters" use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">

<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">

<soap:address
location="http://reportincident.example.camel.apache.org"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Configuring Axis
Okay we are now setup for the contract first development and can generate
the source file. For now we are still only using standard Axis and not Spring
nor Camel. We still need to setup Axis as a web application so we configure
the web.xml in src/main/webapp/WEB-INF/web.xml as:

<servlet>
<servlet-name>axis</servlet-name>
<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>axis</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web
requests to its servlet mapping. We still need to configure Axis itself and this
is done using its special configuration file server-config.wsdd. We nearly
get this file for free if we let Axis generate the source code so we run the
maven goal:

mvn axistools:wsdl2java

The tool will generate the source code based on the wsdl and save the files
to the following folder:

182 TUTORIALS

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd
InputReportIncident.java
OutputReportIncident.java
ReportIncidentBindingImpl.java
ReportIncidentBindingStub.java
ReportIncidentService_PortType.java
ReportIncidentService_Service.java
ReportIncidentService_ServiceLocator.java
undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To
implement our webservice we will add our code, so we create a new class
AxisReportIncidentService that implements the port type interface where
we can implement our code logic what happens when the webservice is
invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService implements ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

System.out.println("Hello AxisReportIncidentService is called from " +
parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

Now we need to configure Axis itself and this is done using its server-
config.wsdd file. We nearly get this for for free from the auto generated
code, we copy the stuff from deploy.wsdd and made a few modifications:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

TUTORIALS 183

<!-- global configuration -->
<globalConfiguration>

<parameter name="sendXsiTypes" value="true"/>
<parameter name="sendMultiRefs" value="true"/>
<parameter name="sendXMLDeclaration" value="true"/>
<parameter name="axis.sendMinimizedElements" value="true"/>

</globalConfiguration>
<handler name="URLMapper"

type="java:org.apache.axis.handlers.http.URLMapper"/>

<!-- this service is from deploy.wsdd -->
<service name="ReportIncidentPort" provider="java:RPC" style="document"

use="literal">
<parameter name="wsdlTargetNamespace"

value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServiceElement" value="ReportIncidentService"/>
<parameter name="schemaUnqualified"

value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServicePort" value="ReportIncidentPort"/>
<parameter name="className"

value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl"/>
<parameter name="wsdlPortType" value="ReportIncidentService"/>
<parameter name="typeMappingVersion" value="1.2"/>
<operation name="reportIncident" qname="ReportIncident"

returnQName="retNS:outputReportIncident"
xmlns:retNS="http://reportincident.example.camel.apache.org"

returnType="rtns:>outputReportIncident"
xmlns:rtns="http://reportincident.example.camel.apache.org"

soapAction="http://reportincident.example.camel.apache.org/
ReportIncident" >

<parameter qname="pns:inputReportIncident"
xmlns:pns="http://reportincident.example.camel.apache.org"

type="tns:>inputReportIncident"
xmlns:tns="http://reportincident.example.camel.apache.org"/>

</operation>
<parameter name="allowedMethods" value="reportIncident"/>

<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
qname="ns:>outputReportIncident"
type="java:org.apache.camel.example.reportincident.OutputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
qname="ns:>inputReportIncident"
type="java:org.apache.camel.example.reportincident.InputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
</service>

184 TUTORIALS

<!-- part of Axis configuration -->
<transport name="http">

<requestFlow>
<handler type="URLMapper"/>
<handler

type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
</requestFlow>

</transport>
</deployment>

The globalConfiguration and transport is not in the deploy.wsdd file so
you gotta write that yourself. The service is a 100% copy from deploy.wsdd.
Axis has more configuration to it than shown here, but then you should check
the Axis documentation.

What we need to do now is important, as we need to modify the above
configuration to use our webservice class than the default one, so we change
the classname parameter to our class AxisReportIncidentService:

<parameter name="className"
value="org.apache.camel.example.axis.AxisReportIncidentService"/>

Running the Example
Now we are ready to run our example for the first time, so we use Jetty as
the quick web container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL:
http://localhost:8080/camel-example-axis/services and you should
see the famous Axis start page with the text And now... Some Services.

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto
generated one and not our original .wsdl file. So we need to fix this ASAP and
this is done by configuring Axis in the server-config.wsdd file:

<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">

<wsdlFile>/WEB-INF/wsdl/report_incident.wsdl</wsdlFile>
...

We do this by adding the wsdlFile tag in the service element where we can
point to the real .wsdl file.

TUTORIALS 185

http://ws.apache.org/axis/
http://localhost:8080/camel-example-axis/services

Integrating Spring
First we need to add its dependencies to the pom.xml.

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>2.5.5</version>

</dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml
and a context parameter to be able to configure precisely what spring xml
files to use:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

classpath:axis-example-context.xml
</param-value>

</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Next is to add a plain spring XML file named axis-example-context.xml in
the src/main/resources folder.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

</beans>

The spring XML file is currently empty. We hit jetty again with mvn jetty:run
just to make sure Spring was setup correctly.

Using Spring
We would like to be able to get hold of the Spring ApplicationContext from
our webservice so we can get access to the glory spring, but how do we do
this? And our webservice class AxisReportIncidentService is created and
managed by Axis we want to let Spring do this. So we have two problems.

186 TUTORIALS

We solve these problems by creating a delegate class that Axis creates,
and this delegate class gets hold on Spring and then gets our real webservice
as a spring bean and invoke the service.

First we create a new class that is 100% independent from Axis and just a
plain POJO. This is our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Our real service that is not tied to Axis
*/

public class ReportIncidentService {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

So now we need to get from AxisReportIncidentService to this one
ReportIncidentService using Spring. Well first of all we add our real service to
spring XML configuration file so Spring can handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>

And then we need to modify AxisReportIncidentService to use Spring to
lookup the spring bean id="incidentservice" and delegate the call. We do
this by extending the spring class
org.springframework.remoting.jaxrpc.ServletEndpointSupport so the
refactored code is:

TUTORIALS 187

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// get hold of the spring bean from the application context
ReportIncidentService service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");

// delegate to the real service
return service.reportIncident(parameters);

}

}

To see if everything is okay we run mvn jetty:run.
In the code above we get hold of our service at each request by looking up

in the application context. However Spring also supports an init method
where we can do this once. So we change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

private ReportIncidentService service;

@Override
protected void onInit() throws ServiceException {

// get hold of the spring bean from the application context
service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");
}

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// delegate to the real service
return service.reportIncident(parameters);

}

}

188 TUTORIALS

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel
Again the first step is to add the dependencies to the maven pom.xml file:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.5.0</version>

</dependency>

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>1.5.0</version>

</dependency>

Now that we have integrated with Spring then we easily integrate with Camel
as Camel works well with Spring.
We choose to integrate Camel in the Spring XML file so we add the camel
namespace and the schema location:

xmlns:camel="http://activemq.apache.org/camel/schema/spring"
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/
schema/spring/camel-spring.xsd"

CamelContext
CamelContext is the heart of Camel its where all the routes, endpoints,
components, etc. is registered. So we setup a CamelContext and the spring
XML files looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://activemq.apache.org/camel/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/
camel/schema/spring/camel-spring.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camel">

TUTORIALS 189

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/components.html
http://camel.apache.org/camelcontext.html

Camel does not require Spring
Camel does not require Spring, we could easily have used Camel
without Spring, but most users prefer to use Spring also.

<!-- TODO: Here we can add Camel stuff -->
</camel:camelContext>

</beans>

Store a file backup
We want to store the web service request as a file before we return a
response. To do this we want to send the file content as a message to an
endpoint that produces the file. So we need to do two steps:

▪ configure the file backup endpoint
▪ send the message to the endpoint

The endpoint is configured in spring XML so we just add it as:

<camel:camelContext id="camelContext">
<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

In the CamelContext we have defined our endpoint with the id backup and
configured it use the URL notation that we know from the internet. Its a file
scheme that accepts a context and some options. The contest is target and
its the folder to store the file. The option is just as the internet with ? and &
for subsequent options. We configure it to not append, meaning than any
existing file will be overwritten. See the File component for options and how
to use the camel file endpoint.

Next up is to be able to send a message to this endpoint. The easiest way
is to use a ProducerTemplate. A ProducerTemplate is inspired by Spring
template pattern with for instance JmsTemplate or JdbcTemplate in mind. The
template that all the grunt work and exposes a simple interface to the end-
user where he/she can set the payload to send. Then the template will do
proper resource handling and all related issues in that regard. But how do we
get hold of such a template? Well the CamelContext is able to provide one.
This is done by configuring the template on the camel context in the spring
XML as:

190 TUTORIALS

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/file.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/how-do-i-configure-endpoints.html
http://camel.apache.org/file.html
http://camel.apache.org/camelcontext.html

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a
setter in the Java code as:

public class ReportIncidentService {

private ProducerTemplate template;

public void setTemplate(ProducerTemplate template) {
this.template = template;

}

And then let Spring handle the dependency inject as below:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService">

<!-- set the producer template to use from the camel context below -->
<property name="template" ref="camelTemplate"/>

</bean>

Now we are ready to use the producer template in our service to send the
payload to the endpoint. The template has many sendXXX methods for this
purpose. But before we send the payload to the file endpoint we must also
specify what filename to store the file as. This is done by sending meta data
with the payload. In Camel metadata is sent as headers. Headers is just a
plain Map<String, Object>. So if we needed to send several metadata then
we could construct an ordinary HashMap and put the values in there. But as
we just need to send one header with the filename Camel has a convenient
send method sendBodyAndHeader so we choose this one.

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

String data = parameters.getDetails();

// store the data as a file
String filename = parameters.getIncidentId() + ".txt";
// send the data to the endpoint and the header contains what filename it

should be stored as

TUTORIALS 191

template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name",
filename);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

The template in the code above uses 4 parameters:
▪ the endpoint name, in this case the id referring to the endpoint

defined in Spring XML in the camelContext element.
▪ the payload, can be any kind of object
▪ the key for the header, in this case a Camel keyword to set the

filename
▪ and the value for the header

Running the example
We start our integration with maven using mvn jetty:run. Then we open a
browser and hit http://localhost:8080. Jetty is so smart that it display a
frontpage with links to the deployed application so just hit the link and you
get our application. Now we hit append /services to the URL to access the
Axis frontpage. The URL should be http://localhost:8080/camel-
example-axis/services.

You can then test it using a web service test tools such as SoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

Unit Testing
We would like to be able to unit test our ReportIncidentService class. So
we add junit to the maven dependency:

<dependency>
<groupId>junit</groupId>

192 TUTORIALS

http://localhost:8080/
http://localhost:8080/camel-example-axis/services
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

<artifactId>junit</artifactId>
<version>3.8.2</version>
<scope>test</scope>

</dependency>

And then we create a plain junit testcase for our service class.

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Unit test of service
*/

public class ReportIncidentServiceTest extends TestCase {

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK", output.getCode());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

}

Then we can run the test with maven using: mvn test. But we will get a
failure:

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results :

Tests in error:

TUTORIALS 193

testIncident(org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template)
to send a message to the file endpoint so the message will be stored in a file.
What we need is to get hold of such a producer and inject it on our service,
by calling the setter.

Since Camel is very light weight and embedable we are able to create a
CamelContext and add the endpoint in our unit test code directly. We do this
to show how this is possible:

private CamelContext context;

@Override
protected void setUp() throws Exception {

super.setUp();
// CamelContext is just created like this
context = new DefaultCamelContext();

// then we can create our endpoint and set the options
FileEndpoint endpoint = new FileEndpoint();
// the endpoint must have the camel context set also
endpoint.setCamelContext(context);
// our output folder
endpoint.setFile(new File("target"));
// and the option not to append
endpoint.setAppend(false);

// then we add the endpoint just in java code just as the spring XML, we
register it with the "backup" id.

context.addSingletonEndpoint("backup", endpoint);

// finally we need to start the context so Camel is ready to rock
context.start();

}

@Override
protected void tearDown() throws Exception {

super.tearDown();
// and we are nice boys so we stop it to allow resources to clean up
context.stop();

}

So now we are ready to set the ProducerTemplate on our service, and we get
a hold of that baby from the CamelContext as:

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

194 TUTORIALS

// get a producer template from the camel context
ProducerTemplate template = context.createProducerTemplate();
// inject it on our service using the setter
service.setTemplate(template);

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK", output.getCode());

}

And this time when we run the unit test its a success:

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test
method:

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists", file.exists());

Smarter Unit Testing with Spring
The unit test above requires us to assemble the Camel pieces manually in
java code. What if we would like our unit test to use our spring configuration
file axis-example-context.xml where we already have setup the endpoint.
And of course we would like to test using this configuration file as this is the
real file we will use. Well hey presto the xml file is a spring
ApplicationContext file and spring is able to load it, so we go the spring path
for unit testing. First we add the spring-test jar to our maven dependency:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<scope>test</scope>

</dependency>

And then we refactor our unit test to be a standard spring unit class. What
we need to do is to extend AbstractJUnit38SpringContextTests instead of
TestCase in our unit test. Since Spring 2.5 embraces annotations we will use
one as well to instruct what our xml configuration file is located:

TUTORIALS 195

@ContextConfiguration(locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the classpath: prefix as our xml file is
located in src/main/resources. If we omit the prefix then Spring will by
default try to locate the xml file in the current package and that is
org.apache.camel.example.axis. If the xml file is located outside the
classpath you can use file: prefix instead. So with these two modifications we
can get rid of all the setup and teardown code we had before and now we will
test our real configuration.

The last change is to get hold of the producer template and now we can
just refer to the bean id it has in the spring xml file:

<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as
all spring users is used to do:

// get a producer template from the the spring context
ProducerTemplate template = (ProducerTemplate)

applicationContext.getBean("camelTemplate");
// inject it on our service using the setter
service.setTemplate(template);

Now our unit test is much better, and a real power of Camel is that is fits
nicely with Spring and you can use standard Spring'ish unit test to test your
Camel applications as well.

Unit Test calling WebService
What if you would like to execute a unit test where you send a webservice
request to the AxisReportIncidentService how do we unit test this one?
Well first of all the code is merely just a delegate to our real service that we
have just tested, but nevertheless its a good question and we would like to
know how. Well the answer is that we can exploit that fact that Jetty is also a
slim web container that can be embedded anywhere just as Camel can. So
we add this to our pom.xml:

<dependency>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
<version>${jetty-version}</version>

196 TUTORIALS

<scope>test</scope>
</dependency>

Then we can create a new class AxisReportIncidentServiceTest to unit
test with Jetty. The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {

private Server server;

private void startJetty() throws Exception {
// create an embedded Jetty server
server = new Server();

// add a listener on port 8080 on localhost (127.0.0.1)
Connector connector = new SelectChannelConnector();
connector.setPort(8080);
connector.setHost("127.0.0.1");
server.addConnector(connector);

// add our web context path
WebAppContext wac = new WebAppContext();
wac.setContextPath("/unittest");
// set the location of the exploded webapp where WEB-INF is located
// this is a nice feature of Jetty where we can point to src/main/webapp
wac.setWar("./src/main/webapp");
server.setHandler(wac);

// then start Jetty
server.setStopAtShutdown(true);
server.start();

}

@Override
protected void setUp() throws Exception {

super.setUp();
startJetty();

}

@Override
protected void tearDown() throws Exception {

super.tearDown();
server.stop();

}

}

Now we just need to send the incident as a webservice request using Axis. So
we add the following code:

TUTORIALS 197

public void testReportIncidentWithAxis() throws Exception {
// the url to the axis webservice exposed by jetty
URL url = new URL("http://localhost:8080/unittest/services/

ReportIncidentPort");

// Axis stuff to get the port where we can send the webservice request
ReportIncidentService_ServiceLocator locator = new

ReportIncidentService_ServiceLocator();
ReportIncidentService_PortType port = locator.getReportIncidentPort(url);

// create input to send
InputReportIncident input = createDummyIncident();
// send the webservice and get the response
OutputReportIncident output = port.reportIncident(input);
assertEquals("OK", output.getCode());

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists", file.exists());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

And now we have an unittest that sends a webservice request using good old
Axis.

Annotations
Both Camel and Spring has annotations that can be used to configure and
wire trivial settings more elegantly. Camel has the endpoint annotation
@EndpointInjected that is just what we need. With this annotation we can
inject the endpoint into our service. The annotation takes either a name or
uri parameter. The name is the bean id in the Registry. The uri is the URI
configuration for the endpoint. Using this you can actually inject an endpoint
that you have not defined in the camel context. As we have defined our
endpoint with the id backup we use the name parameter.

198 TUTORIALS

http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html

@EndpointInject(name = "backup")
private ProducerTemplate template;

Camel is smart as @EndpointInjected supports different kinds of object
types. We like the ProducerTemplate so we just keep it as it is.
Since we use annotations on the field directly we do not need to set the
property in the spring xml file so we change our service bean:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with mvn test reveals that it works nicely.
And since we use the @EndpointInjected that refers to the endpoint with

the id backup directly we can loose the template tag in the xml, so its
shorter:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

And the final touch we can do is that since the endpoint is injected with
concrete endpoint to use we can remove the "backup" name parameter
when we send the message. So we change from:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name",
filename);

To without the name:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader(data, "org.apache.camel.file.name", filename);

Then we avoid to duplicate the name and if we rename the endpoint name
then we don't forget to change it in the code also.

TUTORIALS 199

http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html

The End
This tutorial hasn't really touched the one of the key concept of Camel as a
powerful routing and mediation framework. But we wanted to demonstrate
its flexibility and that it integrates well with even older frameworks such as
Apache Axis 1.4.

Check out the other tutorials on Camel and the other examples.
Note that the code shown here also applies to Camel 1.4 so actually you

can get started right away with the released version of Camel. As this time of
writing Camel 1.5 is work in progress.

See Also
▪ Tutorials
▪ Examples

TUTORIAL ON USING CAMEL IN A WEB APPLICATION
Camel has been designed to work great with the Spring framework; so if you
are already a Spring user you can think of Camel as just a framework for
adding to your Spring XML files.

So you can follow the usual Spring approach to working with web
applications; namely to add the standard Spring hook to load a /WEB-INF/
applicationContext.xml file. In that file you can include your usual Camel
XML configuration.

Step1: Edit your web.xml
To enable spring add a context loader listener to your /WEB-INF/web.xml
file

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

</web-app>

200 TUTORIALS

http://camel.apache.org/tutorials.html
http://camel.apache.org/examples.html
http://camel.apache.org/spring.html

This will cause Spring to boot up and look for the /WEB-INF/
applicationContext.xml file.

Step 2: Create a /WEB-INF/applicationContext.xml file
Now you just need to create your Spring XML file and add your camel routes
or configuration.

For example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="seda:foo"/>
<to uri="mock:results"/>

</route>
</camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips
If you use Maven to build your application your directory tree will look like
this...

src/main/webapp/WEB-INF
web.xml
applicationContext.xml

You should update your Maven pom.xml to enable WAR packaging/naming
like this...

<project>
...
<packaging>war</packaging>
...

TUTORIALS 201

http://maven.apache.org/

<build>
<finalName>[desired WAR file name]</finalName>
...

</build>

To enable more rapid development we highly recommend the jetty:run
maven plugin.

Please refer to the help for more information on using jetty:run - but briefly
if you add the following to your pom.xml

<build>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<configuration>

<webAppConfig>
<contextPath>/</contextPath>

</webAppConfig>
<scanIntervalSeconds>10</scanIntervalSeconds>

</configuration>
</plugin>

</plugins>
</build>

Then you can run your web application as follows

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/
webapp directory so that if you modify your spring XML, your web.xml or
your java code the web application will be restarted, re-creating your Camel
routes.

If your unit tests take a while to run, you could miss them out when
running your web application via

mvn -Dtest=false jetty:run

TUTORIAL BUSINESS PARTNERS

202 TUTORIALS

http://docs.codehaus.org/display/JETTY/Maven%20Jetty%20Plugin
http://docs.codehaus.org/display/JETTY/Maven%20Jetty%20Plugin
http://docs.codehaus.org/display/JETTY/Maven%20Jetty%20Plugin

Under Construction
This tutorial is a work in progress.

BACKGROUND AND INTRODUCTION

Business Background
So there's a company, which we'll call Acme. Acme sells widgets, in a fairly
unusual way. Their customers are responsible for telling Acme what they
purchased. The customer enters into their own systems (ERP or whatever)
which widgets they bought from Acme. Then at some point, their systems
emit a record of the sale which needs to go to Acme so Acme can bill them
for it. Obviously, everyone wants this to be as automated as possible, so
there needs to be integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell
all their prospects, "you can send us the data in whatever format, using
whatever protocols, whatever. You just can't change once it's up and
running."

The result is pretty much what you'd expect. Taking a random sample of 3
customers:

• Customer 1: XML over FTP
• Customer 2: CSV over HTTP
• Customer 3: Excel via e-mail

Now on the Acme side, all this has to be converted to a canonical XML format
and submitted to the Acme accounting system via JMS. Then the Acme
accounting system does its stuff and sends an XML reply via JMS, with a
summary of what it processed (e.g. 3 line items accepted, line item #2 in
error, total invoice $123.45). Finally, that data needs to be formatted into an
e-mail, and sent to a contact at the customer in question ("Dear Joyce, we
received an invoice on 1/2/08. We accepted 3 line items totaling $123.45,
though there was an error with line items #2 [invalid quantity ordered].
Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:
• Listen for HTTP, e-mail, and FTP files
• Grab attachments from the e-mail messages
• Convert XML, XLS, and CSV files to a canonical XML format
• read and write JMS messages
• route based on company ID
• format e-mails using Velocity templates
• send outgoing e-mail messages

TUTORIALS 203

Tutorial Background
This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:
• Camel concepts including the CamelContext, Routes, Components

and Endpoints, and Enterprise Integration Patterns
• Configuring Camel with the XML or Java DSL

You'll learn:
• How to set up a Maven build for a Camel project
• How to transform XML, CSV, and Excel data into a standard XML

format with Camel
◦ How to write POJOs (Plain Old Java Objects), Velocity

templates, and XSLT stylesheets that are invoked by Camel
routes for message transformation

• How to configure simple and complex Routes in Camel, using either
the XML or the Java DSL format

• How to set up unit tests that load a Camel configuration and test
Camel routes

• How to use Camel's Data Formats to automatically convert data
between Java objects and XML, CSV files, etc.

• How to send and receive e-mail from Camel
• How to send and receive JMS messages from Camel
• How to use Enterprise Integration Patterns including Message Router

and Pipes and Filters
◦ How to use various languages to express content-based

routing rules in Camel
• How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through
building the code and configuration files yourself. Each of the sections gives
detailed descriptions of the steps that need to be taken to get the
components and routes working in Camel, and takes you through tests to
make sure they are working as expected.

But each section also links to working copies of the source and
configuration files, so if you don't want the hands-on approach, you can
simply review and/or download the finished files.

High-Level Diagram
Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

204 TUTORIALS

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/components.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/dsl.html

And then, the output from Acme to the customers:

Tutorial Tasks
To get through this scenario, we're going to break it down into smaller pieces,
implement and test those, and then try to assemble the big scenario and test
that.

Here's what we'll try to accomplish:
1. Create a Maven build for the project
2. Get sample files for the customer Excel, CSV, and XML input
3. Get a sample file for the canonical XML format that Acme's

accounting system uses
4. Create an XSD for the canonical XML format
5. Create JAXB POJOs corresponding to the canonical XSD

TUTORIALS 205

6. Create an XSLT stylesheet to convert the Customer 1 (XML over FTP)
messages to the canonical format

7. Create a unit test to ensure that a simple Camel route invoking the
XSLT stylesheet works

8. Create a POJO that converts a List<List<String>> to the above
JAXB POJOs

◦ Note that Camel can automatically convert CSV input to a
List of Lists of Strings representing the rows and columns of
the CSV, so we'll use this POJO to handle Customer 2 (CSV
over HTTP)

9. Create a unit test to ensure that a simple Camel route invoking the
CSV processing works

10. Create a POJO that converts a Customer 3 Excel file to the above
JAXB POJOs (using POI to read Excel)

11. Create a unit test to ensure that a simple Camel route invoking the
Excel processing works

12. Create a POJO that reads an input message, takes an attachment off
the message, and replaces the body of the message with the
attachment

◦ This is assuming for Customer 3 (Excel over e-mail) that the
e-mail contains a single Excel file as an attachment, and the
actual e-mail body is throwaway

13. Build a set of Camel routes to handle the entire input (Customer ->
Acme) side of the scenario.

14. Build unit tests for the Camel input.
15. TODO: Tasks for the output (Acme -> Customer) side of the scenario

LET'S GET STARTED!

Step 1: Initial Maven build
We'll use Maven for this project as there will eventually be quite a few
dependencies and it's nice to have Maven handle them for us. You should
have a current version of Maven (e.g. 2.0.9) installed.

You can start with a pretty empty project directory and a Maven POM file,
or use a simple JAR archetype to create one.

Here's a sample POM. We've added a dependency on camel-core, and set
the compile version to 1.5 (so we can use annotations):

Listing 1. pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">

206 TUTORIALS

<modelVersion>4.0.0</modelVersion>
<groupId>org.apache.camel.tutorial</groupId>
<artifactId>business-partners</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Camel Business Partners Tutorial</name>
<dependencies>

<dependency>
<artifactId>camel-core</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Step 2: Get Sample Files
You can make up your own if you like, but here are the "off the shelf" ones.
You can save yourself some time by downloading these to src/test/
resources in your Maven project.

• Customer 1 (XML): input-customer1.xml
• Customer 2 (CSV): input-customer2.csv
• Customer 3 (Excel): input-customer3.xls
• Canonical Acme XML Request: canonical-acme-request.xml
• Canonical Acme XML Response: TODO

If you look at these files, you'll see that the different input formats use
different field names and/or ordering, because of course the sales guys were
totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format
Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">

<partner-id>2</partner-id>

TUTORIALS 207

http://camel.apache.org/tutorial-business-partners.data/input-customer1.xml
http://camel.apache.org/tutorial-business-partners.data/input-customer2.csv
http://camel.apache.org/tutorial-business-partners.data/input-customer3.xls
http://camel.apache.org/tutorial-business-partners.data/canonical-acme-request.xml

<date-received>9/12/2008</date-received>
<line-item>

<product-id>134</product-id>
<description>A widget</description>
<quantity>3</quantity>
<item-price>10.45</item-price>
<order-date>6/5/2008</order-date>

</line-item>
<!-- // more line-item elements here -->
<order-total>218.82</order-total>

</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that
look like this, and save it to src/main/xsd.

Solution: If not, you can download mine, and save that to save it to src/
main/xsd.

Generating JAXB Beans
Down the road we'll want to deal with the XML as Java POJOs. We'll take a
moment now to set up those XML binding POJOs. So we'll update the Maven
POM to generate JAXB beans from the XSD file.

We need a dependency:

<dependency>
<artifactId>camel-jaxb</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

And a plugin configured:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>jaxb2-maven-plugin</artifactId>
<executions>

<execution>
<goals>

<goal>xjc</goal>
</goals>

</execution>
</executions>

</plugin>

That should do it (it automatically looks for XML Schemas in src/main/xsd to
generate beans for). Run mvn install and it should emit the beans into
target/generated-sources/jaxb. Your IDE should see them there, though

208 TUTORIALS

http://camel.apache.org/tutorial-business-partners.data/canonical-acme-request.xsd

you may need to update the project to reflect the new settings in the Maven
POM.

Step 4: Initial Work on Customer 1 Input (XML over FTP)
To get a start on Customer 1, we'll create an XSLT template to convert the
Customer 1 sample file into the canonical XML format, write a small Camel
route to test it, and build that into a unit test. If we get through this, we can
be pretty sure that the XSLT template is valid and can be run safely in Camel.

Create an XSLT template
Start with the Customer 1 sample input. You want to create an XSLT template
to generate XML like the canonical XML sample above â€“ an invoice
element with line-item elements (one per item in the original XML
document). If you're especially clever, you can populate the current date and
order total elements too.

Solution: My sample XSLT template isn't that smart, but it'll get you going
if you don't want to write one of your own.

Create a unit test
Here's where we get to some meaty Camel work. We need to:

• Set up a unit test
• That loads a Camel configuration
• That has a route invoking our XSLT
• Where the test sends a message to the route
• And ensures that some XML comes out the end of the route

The easiest way to do this is to set up a Spring context that defines the
Camel stuff, and then use a base unit test class from Spring that knows how
to load a Spring context to run tests against. So, the procedure is:

Set Up a Skeletal Camel/Spring Unit Test
1. Add dependencies on Camel-Spring, and the Spring test JAR (which

will automatically bring in JUnit 3.8.x) to your POM:

<dependency>
<artifactId>camel-spring</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

TUTORIALS 209

http://camel.apache.org/tutorial-business-partners.data/input-customer1.xml
http://camel.apache.org/tutorial-business-partners.data/XMLConverter.xsl

<dependency>
<artifactId>spring-test</artifactId>
<groupId>org.springframework</groupId>
<version>2.5.5</version>
<scope>test</scope>

</dependency>

2. Create a new unit test class in src/test/java/your-package-here,
perhaps called XMLInputTest.java

3. Make the test extend Spring's AbstractJUnit38SpringContextTests
class, so it can load a Spring context for the test

4. Create a Spring context configuration file in src/test/resources,
perhaps called XMLInputTest-context.xml

5. In the unit test class, use the class-level @ContextConfiguration
annotation to indicate that a Spring context should be loaded

◦ By default, this looks for a Context configuration file called
TestClassName-context.xml in a subdirectory
corresponding to the package of the test class. For instance,
if your test class was
org.apache.camel.tutorial.XMLInputTest, it would look
for org/apache/camel/tutorial/XMLInputTest-
context.xml

◦ To override this default, use the locations attribute on the
@ContextConfiguration annotation to provide specific context
file locations (starting each path with a / if you don't want it
to be relative to the package directory). My solution does this
so I can put the context file directly in src/test/resources
instead of in a package directory under there.

6. Add a CamelContext instance variable to the test class, with the
@Autowired annotation. That way Spring will automatically pull the
CamelContext out of the Spring context and inject it into our test
class.

7. Add a ProducerTemplate instance variable and a setUp method that
instantiates it from the CamelContext. We'll use the
ProducerTemplate later to send messages to the route.

protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super.setUp();
template = camelContext.createProducerTemplate();

}

8. Put in an empty test method just for the moment (so when we run
this we can see that "1 test succeeded")

210 TUTORIALS

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html

9. Add the Spring <beans> element (including the Camel Namespace)
with an empty <camelContext> element to the Spring context, like
this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/

spring/camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

</camelContext>
</beans>

Test it by running mvn install and make sure there are no build errors. So far
it doesn't test much; just that your project and test and source files are all
organized correctly, and the one empty test method completes successfully.

Solution: Your test class might look something like this:
• src/test/java/org/apache/camel/tutorial/XMLInputTest.java
• src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test
So now we're going to write a Camel route that applies the XSLT to the
sample Customer 1 input file, and makes sure that some XML output comes
out:

1. Save the input-customer1.xml file to src/test/resources
2. Save your XSLT file (created in the previous step) to src/main/

resources
3. Write a Camel Route, either right in the Spring XML, or using the Java

DSL (in another class under src/test/java somewhere). This route
should use the Pipes and Filters integration pattern to:

1. Start from the endpoint direct:start (which lets the test
conveniently pass messages into the route)

2. Call the endpoint xslt:YourXSLTFile.xsl (to transform the
message with the specified XSLT template)

3. Send the result to the endpoint mock:finish (which lets the
test verify the route output)

4. Add a test method to the unit test class that:
1. Get a reference to the Mock endpoint mock:finish using

code like this:

TUTORIALS 211

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/tutorial-business-partners.data/empty-XMLInputTest.java
http://camel.apache.org/tutorial-business-partners.data/input-customer1.xml
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html
http://camel.apache.org/xslt.html
http://camel.apache.org/mock.html

MockEndpoint finish = MockEndpoint.resolve(camelContext,
"mock:finish");

2. Set the expectedMessageCount on that endpoint to 1
3. Get a reference to the Customer 1 input file, using code like

this:

InputStream in =
XMLInputTest.class.getResourceAsStream("/input-partner1.xml");
assertNotNull(in);

4. Send that InputStream as a message to the direct:start
endpoint, using code like this:

template.sendBody("direct:start", in);

Note that we can send the sample file body in several
formats (File, InputStream, String, etc.) but in this case an
InputStream is pretty convenient.

5. Ensure that the message made it through the route to the
final endpoint, by testing all configured Mock endpoints like
this:

MockEndpoint.assertIsSatisfied(camelContext);

6. If you like, inspect the final message body using some code
like finish.getExchanges().get(0).getIn().getBody().

▪ If you do this, you'll need to know what format that
body is â€“ String, byte array, InputStream, etc.

5. Run your test with mvn install and make sure the build completes
successfully.

Solution: Your finished test might look something like this:
• src/test/java/org/apache/camel/tutorial/XMLInputTest.java
• For XML Configuration:

◦ src/test/resources/XMLInputTest-context.xml
• Or, for Java DSL Configuration:

◦ src/test/resources/XMLInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/

routes/XMLInputTestRoute.java

212 TUTORIALS

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/tutorial-business-partners.data/XMLInputTest.java
http://camel.apache.org/tutorial-business-partners.data/XMLInputTest-context.xml
http://camel.apache.org/tutorial-business-partners.data/XMLInputTest-dsl-context.xml
http://camel.apache.org/tutorial-business-partners.data/XMLInputTestRoute.java

Test Base Class
Once your test class is working, you might want to extract things
like the @Autowired CamelContext, the ProducerTemplate, and the
setUp method to a custom base class that you extend with your
other tests.

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)
To get a start on Customer 2, we'll create a POJO to convert the Customer 2
sample CSV data into the JAXB POJOs representing the canonical XML format,
write a small Camel route to test it, and build that into a unit test. If we get
through this, we can be pretty sure that the CSV conversion and JAXB
handling is valid and can be run safely in Camel.

Create a CSV-handling POJO
To begin with, CSV is a known data format in Camel. Camel can convert a
CSV file to a List (representing rows in the CSV) of Lists (representing cells in
the row) of Strings (the data for each cell). That means our POJO can just
assume the data coming in is of type List<List<String>>, and we can
declare a method with that as the argument.

Looking at the JAXB code in target/generated-sources/jaxb, it looks
like an Invoice object represents the whole document, with a nested list of
LineItemType objects for the line items. Therefore our POJO method will
return an Invoice (a document in the canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:
1. Create a new class under src/main/java, perhaps called

CSVConverterBean.
2. Add a method, with one argument of type List<List<String>> and

the return type Invoice
◦ You may annotate the argument with @Body to specifically

designate it as the body of the incoming message
3. In the method, the logic should look roughly like this:

1. Create a new Invoice, using the method on the generated
ObjectFactory class

2. Loop through all the rows in the incoming CSV (the outer
List)

3. Skip the first row, which contains headers (column names)
4. For the other rows:

1. Create a new LineItemType (using the
ObjectFactory again)

TUTORIALS 213

http://camel.apache.org/csv.html
http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html

2. Pick out all the cell values (the Strings in the inner
List) and put them into the correct fields of the
LineItemType

▪ Not all of the values will actually go into the
line item in this example

▪ You may hardcode the column ordering based
on the sample data file, or else try to read it
dynamically from the headers in the first line

▪ Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB
uses for the date fields in the XML â€“ which
probably means using a SimpleDateFormat
to parse the date and setting that date on a
GregorianCalendar

3. Add the line item to the invoice
5. Populate the partner ID, date of receipt, and order total on

the Invoice
6. Throw any exceptions out of the method, so Camel knows

something went wrong
7. Return the finished Invoice

Solution: Here's an example of what the CSVConverterBean might look like.

Create a unit test
Start with a simple test class and test Spring context like last time, perhaps
based on the name CSVInputTest:

Listing 1. CSVInputTest.java

/**
* A test class the ensure we can convert Partner 2 CSV input files to the
* canonical XML output format, using JAXB POJOs.
*/

@ContextConfiguration(locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;
protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super.setUp();
template = camelContext.createProducerTemplate();

}

public void testCSVConversion() {
// TODO

214 TUTORIALS

http://camel.apache.org/tutorial-business-partners.data/CSVConverterBean.java

}
}

Listing 1. CSVInputTest-context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/cam

TUTORIALS 215

	Apache Camel
	User Guide
	Version 2.9.1

	Table of Contents
	Introduction
	Quickstart
	Walk through an Example Code
	What happens?
	Walk through another example
	Introduction
	Pipes and filters
	Using Camel Components
	Conclusion
	See also

	Getting Started with Apache Camel
	The Enterprise Integration Patterns (EIP) book
	The Camel project
	Online documentation for Camel
	A useful tip for navigating the online documentation

	Online Javadoc documentation
	Concepts and terminology fundamental to Camel
	Endpoint
	CamelContext
	CamelTemplate
	The Meaning of URL, URI, URN and IRI
	Components
	Message and Exchange
	Processor
	Routes, RouteBuilders and Java DSL
	Introduction to Java DSL
	Critique of Java DSL

	Continue Learning about Camel

	Architecture
	URIs
	Current Supported URIs
	URI's for external components

	Enterprise Integration Patterns
	Pattern Index
	Messaging Systems
	Messaging Channels
	Message Construction
	Message Routing
	Message Transformation
	Messaging Endpoints
	System Management

	CookBook
	Bean Integration
	Annotations
	Bean Component
	Spring Remoting
	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy

	Bean Binding
	Choosing the method to invoke
	Parameter binding
	Binding Annotations
	Examples
	@Handler

	Parameter binding using method option
	Using type qualifiers to select among overloaded methods
	Bean Injection
	Parameter Binding Annotations
	Example
	Using the DSL to invoke the bean method

	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy
	@MessageDriven or @Consume

	Using context option to apply only a certain CamelContext
	Using an explicit route
	Use the Bean endpoint
	Which approach to use?
	@EndpointInject

	Hiding the Camel APIs from your code using @Produce

	@RecipientList Annotation
	Simple Example using @Consume and @RecipientList
	How it works
	More Complex Example Using DSL

	Using Exchange Pattern Annotations
	Specifying InOnly methods
	Class level annotations
	Overloading a class level annotation
	Using your own annotations
	How to decouple from middleware APIs

	Visualisation
	How to generate
	For OS X users

	Business Activity Monitoring
	How Camel BAM Works
	Simple Example
	Complete Example
	Use Cases

	Extract Transform Load (ETL)
	Mock Component
	URI format
	Options
	Simple Example
	Using assertPeriod

	Setting expectations
	Adding expectations to specific messages

	Mocking existing endpoints
	Mocking existing endpoints using the camel-test component
	Mocking existing endpoints with XML DSL

	Testing with arrival times
	See Also

	Testing
	Testing mechanisms
	Camel Test Example
	Spring Test with XML Config Example
	Spring Test with Java Config Example
	Blueprint Test

	Testing endpoints
	Stubbing out physical transport technologies
	Testing existing routes

	Camel Test
	Adding to your pom.xml
	JUnit
	TestNG

	Writing your test
	JNDI
	Dynamically assigning ports
	Setup CamelContext once per class, or per every test method
	See Also

	Spring Testing
	Spring Test with Java Config Example
	Adding more Mock expectations
	Further processing the received messages
	Sending and receiving messages
	See Also

	Camel Guice
	Dependency Injecting Camel with Guice
	Bootstrapping with JNDI
	Configuring Component, Endpoint or RouteBuilder instances
	Creating multiple RouteBuilder instances per type
	See Also

	Templating
	Example
	See Also

	Database
	Database endpoints
	Database pattern implementations

	Parallel Processing and Ordering
	How to achieve parallel processing
	Concurrency issues
	Ordering issues

	Recommendations
	Using Message Groups with Camel

	Asynchronous Processing
	Overview
	When to Use
	Interface Details
	Implementing Processors that Use the AsyncProcessor API
	Asynchronous Route Sequence Scenarios
	Mixing Synchronous and Asynchronous Processors
	Staying synchronous in an AsyncProcessor

	Implementing Virtual Topics on other JMS providers
	What's the Camel Transport for CXF
	Integrate Camel into CXF transport layer
	Setting up the Camel Transport in Spring
	Integrating the Camel Transport in a programmatic way

	Configure the destination and conduit
	Namespace
	The destination element
	The conduit element

	Example Using Camel as a load balancer for CXF
	Complete Howto and Example for attaching Camel to CXF
	Introduction
	Using a Producer

	Tutorials
	Tutorial on Spring Remoting with JMS
	Preface
	Prerequisites
	Distribution
	About
	Create the Camel Project
	Update the POM with Dependencies

	Writing the Server
	Create the Spring Service
	Define the Camel Routes
	Configure Spring
	Run the Server

	Writing The Clients
	Client Using The ProducerTemplate
	Client Using Spring Remoting
	Client Using Message Endpoint EIP Pattern
	Run the Clients

	Using the Camel Maven Plugin
	Using Camel JMX
	See Also
	Tutorial - camel-example-reportincident
	Introduction
	Motivation for this tutorial
	The use-case
	In EIP patterns

	Parts
	Links
	Part 1
	Prerequisites
	Initial Project Setup
	Developing the WebService
	CXF wsdl2java
	Configuration of the web.xml
	Getting rid of the old jsp world
	Configuration of CXF
	Implementing the ReportIncidentEndpoint
	Running our webservice
	Hitting the webservice
	Remote Debugging
	Adding a unit test

	End of part 1
	Resources
	Links
	Part 2
	Adding Camel
	Logging the "Hello World"
	Write to file - easy with the same code style
	Fully java based configuration of endpoints
	Lessons learned
	Reducing code lines
	Reducing even more code lines
	Message Translation
	First part of the solution
	End of part 2
	Resources
	Links
	Part 3
	Recap
	Adding the Event Driven Consumer
	Sending the email
	Unit testing mail
	Adding new unit test
	End of part 3
	Resources
	Links
	Part 4
	Introduction
	Routing
	RouteBuilder
	Adding the RouteBuilder

	Unit testing
	Adding the File Backup
	Setting the filename
	Using Bean Language to compute the filename
	Using a script language to set the filename

	Sending the email
	Conclusion
	Resources
	Links
	Better JMS Transport for CXF Webservice using Apache Camel
	So how to connect Apache Camel and CXF
	How is JMS configured in Camel
	Setting up the CXF client
	Setting up the CamelContext
	Running the Example
	Conclusion

	Tutorial using Axis 1.4 with Apache Camel
	Prerequisites
	Distribution
	Introduction
	Setting up the project to run Axis
	Maven 2
	wsdl
	Configuring Axis
	Running the Example

	Integrating Spring
	Using Spring

	Integrating Camel
	CamelContext
	Store a file backup

	Running the example
	Unit Testing
	Smarter Unit Testing with Spring

	Unit Test calling WebService
	Annotations
	The End
	See Also

	Tutorial on using Camel in a Web Application
	Step1: Edit your web.xml
	Step 2: Create a /WEB-INF/applicationContext.xml file
	Hints and Tips

	Tutorial Business Partners
	Background and Introduction
	Business Background
	Tutorial Background
	High-Level Diagram
	Tutorial Tasks

	Let's Get Started!
	Step 1: Initial Maven build
	Step 2: Get Sample Files
	Step 3: XSD and JAXB Beans for the Canonical XML Format
	Generating JAXB Beans

	Step 4: Initial Work on Customer 1 Input (XML over FTP)
	Create an XSLT template
	Create a unit test
	Set Up a Skeletal Camel/Spring Unit Test
	Flesh Out the Unit Test

	Step 5: Initial Work on Customer 2 Input (CSV over HTTP)
	Create a CSV-handling POJO
	Create a unit test

