|IDfusion
An Open-Architecture for Kerberos based Authorization

Dr. Gregory H. Wettstein, Ph.D., John Grosen, MS.
I nformation Technology Services
North Dakota Sate University
Enrique Rodriguez
Safehaus/ Apache Software Foundation

4th June 2006

Abstract

Since its initial development Kerberos has evolved to be-
come the widely accepted system for implementing cen-
tralized authentication services. During this time the
Lightweight Directory Access Protocol (LDAP) has be-
come the accepted method for the centralized distribution
of identity information. Organizations increasingly de-
ploy both infra-structural components in order to support
management of distributed information delivery systems.

During this evolution no standardized scheme for au-
thorization has emerged. Industry consensus suggests that
LDAP is the protocol of choice for storing extended infor-
mation needed to make authorization decisions. Despite
this consensus no standardized scheme has evolved for
implementing directory based authorization.

This paper discusses a strategy for using the symmetric
key management facilities of Kerberos to implement di-
rectory based authorization. The system is architected to
provide inherent security in the event of a directory com-
promise. The system offers the management advantages
of role based access systems while providing the option
for fine grained authorization control.

The identity based authorization model uses a service
oriented approach to managing authorization. As such it
is consistent with and supportive of the trend toward ser-
vices oriented application architectures.

1 Introduction

The Kerberos[7] authentication system is based on a
trusted third party authentication model. The Key Distri-
bution Center (KDC) serves as a repository of symmetric
keys which are used to cryptographically validate users
and the devices or hosts which they access.

The designers of the Kerberos protocol anticipated the
potential need for authorization and implemented an op-
tional payload field for carrying authorization informa-
tion. The format and specification of this field was de-
liberately left undefined. The only other form of autho-
rization implemented by Kerberos is a system for defining
whether or not authentication from foreign realms will be
accepted. Currently this is implemented by examining a
text file in the user’s home directory. This file contains a
list of principals which may be used to gain access to the
account

Substantial efforts have been conducted to imple-
ment authorization on top of Kerberos based authenti-
cation. The Secure European System for Applications
in a Multi-Vendor Environment (SESAME)[10] imple-
ments a role based authorization system using public key
based certificates. The Distributed Computing Environ-
ment (DCE)[11] also featured extensions for authoriza-
tion. These systems failed to achieve widespread deploy-
ment as strategies for implementing authorization. Both
systems require implementation of sophisticated architec-
tures which pose significant entry barriers. In particular a



SESAME implementation involves the deployment of an
authorization server at a time when there is a movement
to consolidate authentication, authorization and identity
management into a common application.

In the time since the development of SESAME and
DCE the LDAP[1] protocol has emerged as a standard-
ized scheme for distributing identity information. An
LDAP server implements a hierarchical collection of ob-
jects which are uniquely named by a Distinguished Name
(DN). Each individual object consists of a series of at-
tributes which characterizes the object. While an LDAP
directory object has significant flexibility and is an obvi-
ous candidate for storing information related to authoriza-
tion no standardized scheme for doing so exists.

The IDfusion work described in this paper is a strat-
egy for blending the inherent strengths of Kerberos and
LDAP to create a system for implementing authorization.
The goal was to leverage the symmetric key management
strengths of Kerberos with the hierarchical information ar-
chitecture of LDAP directory systems.

The overall design goals for this open-architecture sys-
tem for authorization are as follows:

e Simple and flexible.

e Synergistic combination of the strengths of Kerberos
and LDAP.

e Inherent security from the directory perspective.

e Consistent with services oriented architectures.

Simplicity of design and implementation are considered
the foremost goals. In particular a strategy was desired
which did not require the implementation of a separate
authorization server.

2 Security Considerations and

Analysis

The KDC has historically been considered to be a princi-
pal component of the Trusted Computing Base (TCB) of
an organization. Since it contains authentication secrets
for not only users but servers or devices its protection is
considered crucial to the security architecture of an orga-
nization.

KDC'’s have been historically hosted on dedicated ma-
chines with severely limited access. Organizational se-
curity policies may require two man policies for physical
access to the machines.

A compromise of the KDC is significant from the per-
spective of both users and servers/device. A compromise
of the KDC places all user authentication secrets in dan-
ger thus necessitating users to change their passwords. In
addition, all servers or devices which provide Kerberos
authenticated services need to have their local key repos-
itories freshened with newly randomized symmetric keys
associated with the service principal names.

In order to increase manageability there has been a re-
cent trend to use an LDAP directory server as the database
repository for the KDC. Of particular note is Microsoft’s
Active Directory product[9] which implements both iden-
tity information, authorization tokens and authentication
secrets in a common data-store. While ease of manage-
ment is an important goal this practice stands in direct
contradiction to well established security practices for
KDC's.

If authorization information or directives are imple-
mented in a common directory a compromise of this sin-
gle resource immediately places the security state of an
organization into immediate compromise. An attacker
would not only have access to authentication secrets but
would be in a position to grant one of the compromised
identities access to any of the resources or applications
using the directory for authorization information.

This paper advocates an alternate strategy of maintain-
ing separate authentication and authorization stores. A
compromise of the authentication store would allow im-
personation of a user but would not allow escalation of
user privileges beyond those previously granted.

By formulating the authorization identities in the direc-
tory using a scheme which involves a cryptographic bar-
rier the utility of a compromised directory is minimized.
In our work the cryptographic barrier is provided by using
one of the symmetric keys associated with the authentica-
tion principal of a service being authorized. Authorization
escalation is thus not possible without gaining control of
both the directory server and KDC.



3 Fundamental Authorization Con-
cepts

3.1 Implementation vs. Execution

This paper proposes partitioning authorization into two
separate components. This partitioning, while not strictly
orthogonal, is designed to separate the application specific
component of authorization from general processes which
can be used by all applications.

Execution of authorization is defined as the application
specific process of determining whether or not an authen-
ticated identity should be granted access to a system or
resource. By definition execution of authorization is spe-
cific to the application. The application may use, for ex-
ample, attributes within a signed certificate or various at-
tributes of the user such as their organizational role to ex-
ecute the authorization decision.

In contrast implementation of authorization are the pro-
cesses or mechanisms by which information needed to ex-
ecute the authorization decision is made available or con-
veyed to the application. As noted above this partitioning
is not strictly orthogonal. In addition to providing a com-
mon framework for conveying application specific infor-
mation an authorization implementation framework can
be leveraged to layer common authorization checks such
as general authorization status, time of day or IP address
over application specific execution of authorization.

3.2 Authorization Identities

In the IDfusion model the two principal identities in-
volved in implementing authorization are a user and a
service. Users are viewed in the classical sense. A service
is considered to be a generic label attached to anything
which an organization wishes to authorize access to.

Service labels or identities provide a generic and pow-
erful framework for characterizing authorizations. The
well known paradigm of role based access control can be
subsumed within this model. In a pure role based system
the ’service’ can be described as the willingness of the
organization to convey a role to the user.

Service labels may have different meanings depending
on the application which is requesting authorization to a
specific service label. In the reference implementation
of IDfusion there is the concept of an EMAIL service.

IMAP servers check for EMAIL service rights in order
to grant access to IMAP based e-mail accounts. SMTP
gateways check for authorization to the EMAIL service
to verify that mail should be relayed from a client device.
Generically the EMAIL service indicates the desire of the
organization to provide access to incoming and outgoing
e-mail.

3.3

IDfusion models authorization as the genetic intersection
or combination of the identity of a user with the identity of
a service. The result is a third identity which represents a
users right to access a particular service or resource. This
third identity is used to represent or label the set of at-
tributes which describes how the user may access the ser-
vice.

Identity Intersection

4 ldentity Modeling

4.1 Formulation

The previous section discussed authorization as a generic
process where the identity of a service is merged or ’fu-
sioned’ with the identity of a user to yield a third unique
identity. Within the IDfusion model this latter identity
represents the willingness of the organization to convey
authorization to the user for a specific service. Practical
implementation of this system within an LDAP directory
requires a substantive definition for these identities.

Each of the three identities is expressed as an N-bit vec-
tor. The following terms will be used to define the identi-
ties:

1. Uii = User intrinsic identity.
2. Sii = Service intrinsic identity.
3. Slii = Service instance intrinsic identity.

The methodology for creating the N-bit vectors represent-
ing the Uii and Sii identities is part of a larger work on se-
cured identity generation from which the IDfusion tech-
nology was derived[6]. For the purposes of this discus-
sion the Uii and Sii vectors can be considered to be ran-
dom vectors guaranteed to be unique within a category, ie.
Users and Services.



A cryptographic hash function[2, 3] with message size
m=N is used to implement the genetic combination or fu-
sioning of the user and service identity. The formulation
of the authorization identity is thus expressed as follows:

Algorithm 1 Service Instance Intrinsic ldentity
SI = Hm(Uii, Sii)

The reference implementation currently uses the SHA1
hash[4] as the fusioning algorithm.

4.2 Publication

The Sii and Slii identities are the primary objects pub-
lished in the directory. The Slii object is published using
hexadecimal representation of the numeric hash value as
the terminal component of the Distinguished Name (DN)
of the object. The following regular expression notation
is used to represent the numeric value of the hash:

[0-9a-f]{Lm}

Where Lm is the length of the ASCII representation of
the hash value. For a hash function with m = 160, Lm =
40. Using this representation the DN for a service instance
identity would be as follows:

Slii=[0-9a-f]l{Lm}, dc=something, dc=com

The identity object for the service would be published
as follows:

service=SVCNAME, dc=something, dc=com

The rational for not using the Sii value in the DN is to
avoid disclosing the value of the service identity.

The Uii identity object is actually published as an Slii
object since the publication of user identity information
is considered to be a service. A hypothetical organization
with one user and one service would publish three objects
to support controlling access by the user to the service.

The presence or absence of the Slii object in the direc-
tory conveys the willingness of the organization to grant
or not grant authorization to whatever the Slii represents.
Since the Slii object may contain attributes it serves as a
container for storing additional policy information which
the application can use in executing the authorization de-
cision.

As an example of this and to demonstrate the impor-
tance of the conceptual predicate of the model consider
the following three directory objects:

service=SOMESERVICE,dc=something,dc=com

state: enabled|disabled

user=[0-9a-f]{Lm},dc=something,dc=com

state: enabled|disabled

Slii=[0-9a-f]l{Lm},dc=something,dc=com

state: enabled|disabled

The first object represents the identity of a service
granted by the organization to users. The second object
represents the identity of a user while the third object rep-
resents the service instance identity granting a user rights
to access the service named SOMESERVICE.

An attribute called state has been introduced into the
schema definition for the objects. It has two basic values
of enabled or disabled. The authorization API can query
the attribute value in any of the three objects to determine
whether or not the authorization policy decision should be
made. Authorization for the service can be turned off in
one of three ways:

1. Set the service identity (Sii) to be disabled.
2. Set the user identity (Uii) to be disabled.
3. Set the service instance identity (Slii) to be disabled.

This example underscores the power and flexibility of the
underlying authorization model. Choosing option 1 al-
lows an entire category of service to be halted. Option 2
allows disabling all services for a given individual while
option 3 discontinues only a specific service for the user.

5 Implementation with Kerberos

5.1 Modifications to Identity Modeling

The identity model discussed in the previous section,
while flexible, does not impart inherent security into the
directory in the event of a directory compromise. If the
Uii and Sii contain the numeric representations of the
identities it is a straight forward procedure to compute
the Slii identity values and place them in the directory
thus granting authorization rights to a particular service.
The symmetric key management facilities of Kerberos are
used to impart a cryptographic impediment to this pro-
cess.

The notion of a service having its own unique identity is
extended by granting each services its own authentication



identity or principal in the KDC. The following naming
scheme is used for these principals:
svc/SVCNAME@REALM

Where SVCNAME is the service tag or label given to a
service which the organization conveys authorization for.

The important side effect of creating this principal is
the generation of one or more symmetric keys to be as-
sociated with the principal. One of these keys is chosen
which we will refer to as Kn where n is the bit length
of the key. The reference implementation uses the des3-
hmac-shal where Kn = 192.

The des3-hmac-shal key is typically used in derived
form. The assumption is made that an appropriate key
derivation constant has been allocated and used. Kn thus
represents the derived value of the primitive key. The
symmetric key is used in conjunction with a Hashed Mes-
sage Authenticating Coding (HMAC)[5] to generate the
Slii identities.

Our standard model for generating an authorization
identity using a cryptographic hash function is thus mod-
ified to use the keyed variant of the underlying hash func-
tion. Our Kerberos based model for combining Uii and
Sii identities into an Slii identity is thus represented as
follows:

Algorithm 2 Keyed Service Instance Identity
SIii = HmKn(Uii, Sii)

The previously described directory publication schema
is employed. The only modification is the use of HMAC
based Slii’s.

It should be noted that the Kerberos implementation of
the identity model is not dependent on the encryption al-
gorithm of the key selected. The HMAC algorithm sim-
ply requires a binary keyblock. The current implementa-
tion supports use of symmetric keys from any encryption
algorithm supported by the underlying Kerberos imple-
mentation.

5.2 Protocol Implementation

The final component of Kerberos integration is to imple-
ment application level support for transport of the Slii.
The strategy used is to have the authorization payload
field of a Kerberos service credential carry the Slii to the

application. The authorization support API extracts the
identity and uses it to construct a DN for accessing the
authorization identity object in the directory.

Presence or absence of the object in the directory is
used to indicate whether or not authorization rights have
been granted to the user. Attributes attached to Slii object
can be further queried to determine whether or not autho-
rization is disabled or enabled, optionally, the attributes
can be supplied to the application which can execute a
more sophisticated authorization decision.

To implement this system the AS_REQ (Authentica-
tion Service REQuest) and TGS_REQ (Ticket Granting
Service REQuest) functions of a KDC are modified to
support authorization payload injection. In addition the
KDC must be modified to support communications with
the directory server containing the user identity and au-
thorization information.

When an AS_REQ is received the principal of the user
requesting authentication is used to retrieve the Uii from
the directory. The attributes of the user identity object are
examined to determine whether or not the user identity
has been disabled. If the user identity is active the Ticket
Granting Ticket (TGT) is loaded with the Uii and returned
to the client.

The TGS_REQ functionality of the KDC is modified to
examine the authorization payload field of the TGT pre-
sented as authentication for a service ticket request. If a
Uii payload field is found and the request is for a princi-
pal of the form SVC/SVCNAME an Slii is created based
on the Uii payload, the Sii for SVCNAME retrieved from
the directory server and one of the symmetric encryption
keys of the service authentication principal. The presence
of the Slii object is then verified in the directory.

In the process the attributes of the Sii and Slii objects
are examined to determine if both objects are enabled. If
both identity components are active the authorization pay-
load field of the service ticket is loaded with the Slii and
returned to the client for subsequent presentation to an ap-
plication.



6 Reference l mplementation

6.1 Overview of Components

A complete reference implementation of IDfusion has
been carried out using version 1.4.3 of the MIT Ker-
beros distribution and version 2.2.20 of OpenLDAP. Ap-
plication support is provided by an authorization API li-
brary called KerDAP. A Pluggable Authentication Mod-
ule (PAM)[8] has been implemented based on the API
services in KerDAP.

In addition a sample client/server application pair was
developed using the example applications provided with
the MIT source distribution. Checking and validation of
the service ticket payload fields was added to the sample
application using support functions from the KerDAP li-
brary.

6.2 KDC Extensions

Implementing IDfusion requires tight integration between
a KDC and directory services. In addition to establishing
secured communications between the two services the ba-
sic functionality of the KDC needs to be augmented. As
noted in the section on protocol implementation AS_REQ
and TGS_REQ request processing must be updated to
handle authorization payload injection of Uii and Slii’s
respectively.

One of the design goals was to implement the enhanced
functionality in a manner which minimized long term im-
pact on the source code base. To achieve this goal a plug-
gable extension system was designed for the MIT Ker-
beros distribution. The generic plug-in system was de-
signed to allow core functioning of the KDC to be overrid-
den using functions provided through dynamically loaded
shared libraries. Support for IDfusion was then coded in
the form of a shared library which used the general plug-
in facility to supply the enhanced functionality.

The following service intervention points are currently
defined for the KDC plug-in:

1. init
2. destroy
3. as_req

4. as_req_authz

5. tgs_req
6. tgs_req_authz

The init method slot is called when the shared library
plug-in system is initialized. The entry in the destroy
function slot is called when the KDC terminates. Its pur-
pose is to cleanup any memory allocations or persistent
state which needs to be maintained by the plug-in.

Two options are supplied for modifying the behavior of
AS_REQ and TGS_REQ functionality. The as_req and
tgs_req slots provide methods for completely overriding
the default AS_REQ and TGS_REQ routines. As a more
minimal alternative the as_req_authz and tgs_req_authz
slots allow a method of overriding only the management
of the authorization data payload fields during AS_REQ
and TGS_REQ handling.

The shared library plug-in may choose to initialize any
of the method slots. A null pointer placed into a method
slot is used to signal the generic plug-in system that a
method is not being supplied for an intervention point.

A standardized return scheme is used by a plug-in to
signal the generic service system on how to handle exe-
cution after a plug-in method completes. The following
return codes are defined:

1. KRB_PLUGIN_DECLINED
2. KRB_PLUGIN_PROCESSED
3. KRB_PLUGIN_OVERRIDE

4. KRB_PLUGIN_ERROR

The first return code indicates the plugin declined to do
anything and standard execution should continue. The
second return code indicates the plug-in carried out some
action successfully but standard processing should still
occur. The override return code is used to indicate the
plug-in has successfully executed and its results should
be used instead of the standard processing path.

The fourth return value indicates the plug-in encoun-
tered an error which should be reported as a return code
the replaced functionality. A state structure is maintained
by the generic plug-in code which allows the plug-in to
provide not only a standard krb5_error_code but a char-
acter string which further describes the error.



GSSAPI authenticated and protected connections are
used between the KDC and the OpenLDAP directory
server. The init method is used by the IDfusion plug-in
to initialize credentials and setup the protected connec-
tion to the directory server. The library self-generates
the necessary service credentials by looking up the
Idap/hostname@REALM principal and using the associ-
ated key to construct a service ticket.

The destroy slot is used to close the directory connec-
tion, destroy the authentication credentials and release all
state associated with IDfusion plug-in.

The injection of the Uii intrinsic identity into TGT’s
was handled by providing a method for the as_req slot.
This could have alternately been done through the use
of the as_req_authz method slot. The former was cho-
sen since the plug-in also implements identity translation.
This latter functionality was provided to support larger
goals of the parent project.

The lower impact entry point was chosen for providing
the necessary functionality for TGS_REQ handling. The
tgs_req slot was filled with a function which interprets
the authorization payload field of the TGT, validates the
service request and loads the Slii identity into the payload
of the requested service ticket.

6.3 KADMIND extensions.

While not strictly applicable to the IDfusion work the
generic MIT plug-in infrastructure has been extended to
the administrative server as well. This allows KDC man-
agement functionality to be enhanced and extended as
well.

The current plug-in implementation has the following
two method slots defined:

1. pwd_update
2. acl_check

The first slot provides a method for intercepting pass-
word change requests. Interception is provided at the level
where the password is added to the database. This allows
password change requests to be intercepted which come
through both the standard administrative protocol as well
as the password changing protocol.

The current plug-in implements the storage of the
plaintext passwords on the TL_DATA chains associated

with each principal. The passwords are encrypted using
the master key of the database. This functionality, while
not used by IDfusion, supports goals of the larger project.

The second slot is used to override the standard access
control checks which the administrative server imposes
upon the principal used to authenticate the administrative
session. Currently access controls are implemented in the
standard distribution through a text file which contains a
list of principals with administrative access rights and op-
tional data fields which define what actions the principal
may execute.

The current plug-in simply logs the administrative prin-
cipal, the target principal and the requested action. Work
is currently ongoing to use this infrastructure to imple-
ment IDfusion based authorization for Kerberos adminis-
trative access.

6.4 Service and Authorization Manage-
ment.

6.4.1 Identity and Service Management Engine

(ISME)

Previous discussions in this paper have indicated the need
to have integrated management of Kerberos and LDAP
based directory services. The Identity and Services Man-
agement Engine (ISME) was implemented to provide this
integrated management.

ISME provides a Java based application for managing
Kerberos authentication principals and the publication of
identity information in an LDAP based directory. With re-
spect to IDfusion the primary function of ISME is to pro-
vide a system for computing Slii identities and publish-
ing the identities and any related attributes into an LDAP
based directory.

ISME manages the identities in an organization using a
hierarchical tree structure. An organization can be broken
into logical elements for the purposes of managing iden-
tities. The application manages the creation of objects
within these containers which represent users (Uii’s), ser-
vices (Sii’s) and authorization instance identities (Slii’s).

The concept of "binding’ is supported by ISME. The
services provided by the organization to users within a
management container is defined by the service identities
attached to the container. After the services are defined



additional objects defining individual authorizations can
be created for users defined in the container.

Binding a service to a management container is trans-
lated by ISME into actions which result in the creation of
a service authentication principal for the service. As part
of this process a symmetric key associated with the prin-
cipal is extracted from the Kerberos system to be used in
creating the authorization identities.

From a security perspective the only two components
with access to the authentication keys for the service iden-
tity are ISME and the Kerberos server itself. ISME main-
tains its copies of the key in an encrypted keystore. ISME
application startup requires the entry of an administrative
password which is used to decrypt the keys and load them
into the application.

Since ISME is not an active entity in the authentica-
tion/authorization decision process there is no need to
implement a local key stash as is commonly done with
KDC’s. General security of the keys can be enforced
by aggressive management of the password required for
ISME application startup.

Actions to manipulate user, service and authorization
identities are translated into service provisioning actions
through Java based plug-ins. The plug-in translates ac-
tions into XML encoded directives which are passed into
the Service Provisioning Layer (SPL) for interpretation
and physical action.

6.4.2 Graphical Object Oriented Interface (GOOI)

Paired with ISME is a client tool for controlling the iden-
tity and service provisioning actions. GOOI is currently
implemented in Java and provides a graphical representa-
tion of the identity and service management tree.

User commands are translated into XML encoded ac-
tions to be interpreted by ISME. A GSSAPI authenticated
and protected link is used by GOOI to transmit the XML
directives to ISME.

Access at the user level to ISME is currently controlled
by IDfusion itself. The system defines an ISME_ADMIN
service identity which is used to define access to adminis-
trative functionality.

6.5 Integration with AFS.

The current reference implementation implements layered
authorization for controlling access to AFS file services.
This control is separate and orthogonal from the ProTec-
tion Services (PTS) implemented in AFS itself.

As noted in the section describing KDC extensions pay-
load injection into service tickets is implemented by pro-
viding a fulfillment method via the tgs_req_authz slot.
Autharization for AFS services was implemented by im-
plementing a method for the tgs_req slot.

The method checks for the name of the service princi-
pal which is being requested. If the request is for an AFS
principal (afs@REALM) the method carries out the au-
thorization process to determine if the identity requesting
the service has a valid Slii and that the service should be
in effect. If not the KRB_PLUGIN_ERROR code is re-
turned from the plug-in. The protocol specific return code
is sent to cause an unknown service message to be issued
to the client.

From the perspective of the client the failure in autho-
rization is indistinguishable in effect from a failure in au-
thentication. The inability to obtain the correct service
ticket effectively bars access to file services.

7 Discussion

The reference implementation demonstrates the feasibil-
ity and general utility of an open-architecture system for
implementing authorization. The general goals of the sys-
tem as earlier outlined are fulfilled.

The system provides a very simplistic means of imple-
menting infrastructure needed to support execution of an
authorization decision. Authorization for a service is con-
veyed by the simple action of publishing an object in the
directory. This same directory object offers an extensi-
ble platform for conveying additional information which
may be used by an application specific process to execute
a more advanced authorization decision.

Separating the implementation and execution of autho-
rization provides the added advantage of allowing generic
authorization decisions to be layered over the top of ap-
plication specific actions. The authorization access API
provides a system whereby an early authorization deci-
sion can be imposed without participation by the appli-



cation itself. The only necessary requirement is for the
application to ask the authentication question. The suc-
cess in overlaying an authorization decision onto AFS file
services demonstrates the general utility of the strategy.

IDfusion provides a synergistic blending of the func-
tionality of Kerberos and LDAP directory servers to im-
plement an authorization system which is secure in the
face of directory compromise. Publication of an autho-
rization identity object requires access to the symmetric
key maintained for the service authentication identity by
a KDC. Without knowledge of this key a compromise of
the directory provides insufficient information for an at-
tacker to insert an identity into the directory to convey
additional privileges.

The use of the authorization identity in the authoriza-
tion payload field of the Kerberos ticket implements a
very efficient method for conveying the authorization de-
cision. Unlike other methods which load the field with
signed certificates or XML based data there is minimal
additional overhead added to either the ticket granting or
service tickets.

If a desire for greater security such as the need to pre-
vent privilege escalation of an existing authorization is
desired the IDfusion method is compatible with the use
of organizationally signed certificates. The concept of the
authorization simply being a pointer to a directory object
allows arbitrarily complex strategies using larger amounts
of information.

Implementing authorization as a directory identity ob-
ject removes the need to implement a separate authoriza-
tion server. In effect the directory server itself serves as
the authorization server.

The overall objectives are achieved in a manner which
benefits from and preserves the isolation of identity infor-
mation and authentication secrets. This strategy supports
sound and well understood field security practices.

8 Future Work

While the work presented in this paper demonstrates the
general utility of the practice there are additional oppor-
tunities for further work.

8.1 Host ticket transport of authorization
identities.

The current model of requiring a service ticket of the form
SVC/SERVICENAME@REALM requires the application
to have access to the key used to encrypt the service prin-
cipal. A compromise of an application server in conjunc-
tion with a compromise of the directory server would re-
sult in a loss of authorization security. This risk could be
mitigated by using a key for HMAC based authorization
identity generation algorithm which is different than the
key used for encrypting the service ticket.

This strategy still presents a management issue since
the svc/SERVICENAME keys need to be propagated to
the hosts delivering the application. ISME currently sup-
ports the notion of binding servers to an application. The
service plug-in translates this binding into the transport of
the required keys to the target server.

An alternative strategy would be to leverage host based
service tickets to transport the Slii. This would require
transmitting the name of the service being requested in
addition to the name of the host for which the service key
is being requested.

8.2 Two factor authentication.

Initial design work in two factor authentication contin-
ues to demonstrate the general flexibility of the IDfusion
model.

The current strategy involves having the user carry their
Uii identity with them in a USB based flash disk. The
flash disk contains a copy of the users Uii encrypted with
an RSA private key managed by ISME. Since the current
implementation uses SHA1 as the identity fusioning algo-
rithm the size of the Uii is consistent with RSA encryption
payload sizes.

A modified kinit routine loads the encrypted Uii key
into the authorization payload field of the request for a
ticket granting ticket. The as_req method checks the pay-
load field for an encrypted Uii and if one is found decrypts
the field and loads the Uii into the TGT. Failure to decrypt
the Uii or finding that the Uii is not in the directory or not
enabled is used as the basis for denying authentication.

This strategy could be further extended for service tick-
ets. In this model the user would be expected to carry



RSA encrypted Slii’s which would be loaded into the au-
thorization payload of the service ticket request.

9 Conclusions

IDfusion and the concept of service oriented authorization
has been demonstrated in both a reference solution and
in practical application. The services oriented approach
to information delivery and authorization has been imple-
mented and is part of standard operational practices for
six institutions of higher education and K-12 in the State
of North Dakota. The approach has proven practical and
intuitive to both information services technology staff and
the user community.

The separation of authorization into an implementation
and execution phase provides the framework for a stan-
dardized authorization protocol while preserving applica-
tion specific authorization decisions. A common frame-
work for implementing authorization provides advantages
not only for technology management but for developers
who can leverage a common system for rapid integration
of their applications into an enterprise service manage-
ment infra-structure.

The success of the INTERNET has clearly demon-
strated the importance and power of standardized proto-
cols. The increasing trend toward Services Oriented Ar-
chitectures provides a powerful incentive for extending
this paradigm to the field of authorization management.

10 Acknowledgments

Thanks to Dr. Thomas Moberg, CIO and Information
Technology Services of North Dakota State University for
the opportunity to work on and develop this technology.
A special thank you to the Office of the President Joseph
Chapman for providing monetary support for travel and
meeting expenses.

A final and very special note of gratitude goes to my
co-author Johannes Christian Grosen. His wisdom, pro-
fessional advice and personal friendship have been an in-
spiration to the primary author.

10

References

[1] W. Yeong, T. Howes, S. Kille; Lightweight Direc-
tory Access Protocol. IETF RFC 1777, March 1995.
http://www.ietf.org/rfc/rfcl777 txt

M.J.B. Robshaw; MD2, MD4, MD5, SHA and Other
Hash Functions. Technical Report TR-101, version
4.0, RSA Laboratories, 1995.

[2]

[3] B. Preneel; Analysis and Design of Cryptographic
Hash Functions. Ph.D. Thesis, Katholieke Univer-

sity Leuven, 1993.

Secure Hash Standard; Federal Information Pro-
cessing Standards Publication 180-1, April 17,
1995.
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[4]

[5] H. Krawcyk, M. Bellare, R. Canetti; HMAC: Keyed-
Hashing for Message Authentication; RFC2104;

February, 1997.

[6] Dr. Gregory H. Wettstein, Ph.D., John Grosen,
M.S.; A Linux-based Open Source Middleware
Initiative. Proceedings from the USENIX Atlanta
Linux Symposium, October 2000.
http://www.ndsu.nodak.edu/kerDAP
http://www.hurderos.org/documentation/idfusion-

hurd.pdf

J. Kohl, C. Neuman; The Kerberos Network Authen-
tication Service (V5); ISI, September 1993.
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc4120.txt

[7]

[8] V. Samar, C. Lai; Making Login Services Inde-
pendent of Authentication Technologies;, 3rd ACM
Conference on Computer and Communications

Security, March, 1996.

http://www.sun.com/software/solaris/pam/pam.external.pdf

[9]

[10] P.V. McMahon; SESAME V2 public key and autho-
risation extentions to Kerberos; Proceedings of the
1995 Symposium on Network and Distributed Sys-
tem Security (SNDSS’95), p. 114, February 16-17,

1995.

http://www.microsoft.com/windowsserver2003/technologies/directory



[11] S.B. Fairthorne; Security Extension for DCE 1.1;
OSF DCE RFC 19.

11



