
Introducing…
Apache Isis



Ubiquitous Language

With a conscious effort by the team, the
domain model can provide the backbone

for that common language
Eric Evans,

Domain Driven Design



What is Apache Isis?
• Apache Isis is a Java framework for writing

domain-driven applications

• You develop your domain objects…
… and Isis does the rest

• As a consequence
– you only focus on the domain
– you can prototype or develop apps very quickly
– you don’t can’t put business logic outside the domain

• Isis is extensible and customisable
– programming conventions
– security, user interface, persistence



Isis Use Cases
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Isis apps are just pojos



The Isis Programming Model

Runtime support

Annotations

Business Rules
through Conventions

Behaviourally Complete

Pojo

• Dependency injection
• Bytecode enhancements

• Declarative business rules
• Rendering hints

• see it
• use it
• do it

• know-whats
• know-how-tos
• contributed actions

• Entity
• Value
• Repository & Services



So, what does the app look like?

• Isis Online Demo

• Maven archetype
mvn archetype:generate \

-D archetypeGroupId=org.apache.isis.support \
-D archetypeArtifactId=quickstart-archetype



Apache Isis’ Architecture



Resources
• Apache Isis Incubator website
– http://incubator.apache.org/isis
– links to the mailing list
• mailto:isis-users@incubator.apache.org

– links to the wiki and to JIRA
– describes how to use Isis’ quickstart archetype

• Isis Online Demo
– http://mmyco.co.uk:8180/isis-onlinedemo

• Restful Objects spec
– http://restfulobjects.org
– as implemented by the json (REST) viewer



Naked Objects
• An Architectural Pattern
– automatically renders domain

objects in an OOUI
– fits in with the

hexagonal architecture

• A Principle
– all business functionality is

encapsulated on the
core business objects

– “problem solver, not process
follower”

• A natural bed-fellow for
Domain-Driven Design
– rapid prototyping & development



Don’t Repeat Yourself

• The UI representations
correspond directly
with the underlying
domain object model

• So, for instance:
– objects instances exposed as icons
– object properties / collections exposed in forms
– object methods exposed as menu items
• eg Claim#submit(Approver)

– repositories/domain services exposed as desktop icons
• eg ClaimRepository, EmployeeRepository



The DSP:
Why?
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Accommodate
changes in
technology



The DSP
What?

• Platform for the future generation of
business systems
– the common BOM (a shared kernel)
– a technology platform
• UI, remoting, bespoke ORM, ...

• Specific applications replacing & extending existing
administration systems:
– State pensions, Free Travel, Household Benefits, ECS, ...
– Overpayment/Debt Management system, Medical Referrals, ...

• Integration with other systems, technologies and depts

– BizTalk messaging, batch, scanning, barcodes, ...
– Central Printing, SMS, other media, ...



Why the DSP's Naked Objects system
makes for an interesting story:

•One of the purest examples of domain-driven design for a large-scale transactional
business application, anywhere in the world

•Extreme re-use and sharing of objects between applications
•Enables easy modification in response to changing business requirements

Domain-driven design

•Possibly the first large-scale application of agile development within the public sector,
anywhere in the world

Agile Development

•A rich user interface to a core transactional business system

Empowered Users

•User interfaces 100% auto-generated from the underlying business objects
•with no custom coding to write or to maintain

•More opportunity to explore domain than otherwise possible

Powerful & Productive Environment



Naked Objects Resources
• Richard Pawson’s original thesis on Naked Objects
– http://incubator.apache.org/isis/Pawson-Naked-Objects-thesis.pdf

• Richard Pawson and
Rob Matthew’s book

• Dan Haywood’s book
– http://www.pragprog.com/titles/dhnako

• Naked Objects MVC
– http://nakedobjects.net
– also implements the Restful Objects spec


