
Introducing…
Apache Isis



Ubiquitous Language

With a conscious effort by the team, the
domain model can provide the backbone

for that common language
Eric Evans,

Domain Driven Design



What is Apache Isis?
• Apache Isis is a Java framework for writing

domain-driven applications

• You develop your domain objects…
… and Isis does the rest

• As a consequence
– you only focus on the domain
– you can prototype or develop apps very quickly
– you don’t can’t put business logic outside the domain

• Isis is extensible and customisable
– programming conventions
– security, user interface, persistence



Isis Use Cases

prototype
pojo

domain model

deploy as the
domain model

in your own app

deploy as an
auto-generated

RESTful web service

deploy as a
auto-generated

webapp

specify,
develop

domain model &
unit test

with Isis persistence
or

with custom persistence

JUnit integration
BDD integration

Isis’programming model
and optionally

custom extensions



Isis apps are just pojos



The Isis Programming Model

Runtime support

Annotations

Business Rules
through Conventions

Behaviourally Complete

Pojo

• Dependency injection
• Bytecode enhancements

• Declarative business rules
• Rendering hints

• see it
• use it
• do it

• know-whats
• know-how-tos
• contributed actions

• Entity
• Value
• Repository & Services



So, what does the app look like?

• Isis Online Demo

• Maven archetype
mvn archetype:generate \

-D archetypeGroupId=org.apache.isis.support \
-D archetypeArtifactId=quickstart-archetype



Apache Isis’ Architecture



Resources
• Apache Isis Incubator website
– http://incubator.apache.org/isis
– links to the mailing list
• mailto:isis-users@incubator.apache.org

– links to the wiki and to JIRA
– describes how to use Isis’ quickstart archetype

• Isis Online Demo
– http://mmyco.co.uk:8180/isis-onlinedemo

• Restful Objects spec
– http://restfulobjects.org
– as implemented by the json (REST) viewer



Naked Objects
• An Architectural Pattern
– automatically renders domain

objects in an OOUI
– fits in with the

hexagonal architecture

• A Principle
– all business functionality is

encapsulated on the
core business objects

– “problem solver, not process
follower”

• A natural bed-fellow for
Domain-Driven Design
– rapid prototyping & development



Don’t Repeat Yourself

• The UI representations
correspond directly
with the underlying
domain object model

• So, for instance:
– objects instances exposed as icons
– object properties / collections exposed in forms
– object methods exposed as menu items
• eg Claim#submit(Approver)

– repositories/domain services exposed as desktop icons
• eg ClaimRepository, EmployeeRepository



The DSP:
Why?

Strategic
Agility

Strategic
Agility

Respond to
unforeseen
changes in
business

requirements

Operational
Agility

Operational
Agility

Provide
clerical

officers with
greater

flexibility to
solve

customers'
problems

Technical
Agility

Technical
Agility

Accommodate
changes in
technology



The DSP
What?

• Platform for the future generation of
business systems
– the common BOM (a shared kernel)
– a technology platform
• UI, remoting, bespoke ORM, ...

• Specific applications replacing & extending existing
administration systems:
– State pensions, Free Travel, Household Benefits, ECS, ...
– Overpayment/Debt Management system, Medical Referrals, ...

• Integration with other systems, technologies and depts

– BizTalk messaging, batch, scanning, barcodes, ...
– Central Printing, SMS, other media, ...



Why the DSP's Naked Objects system
makes for an interesting story:

•One of the purest examples of domain-driven design for a large-scale transactional
business application, anywhere in the world

•Extreme re-use and sharing of objects between applications
•Enables easy modification in response to changing business requirements

Domain-driven design

•Possibly the first large-scale application of agile development within the public sector,
anywhere in the world

Agile Development

•A rich user interface to a core transactional business system

Empowered Users

•User interfaces 100% auto-generated from the underlying business objects
•with no custom coding to write or to maintain

•More opportunity to explore domain than otherwise possible

Powerful & Productive Environment



Naked Objects Resources
• Richard Pawson’s original thesis on Naked Objects
– http://incubator.apache.org/isis/Pawson-Naked-Objects-thesis.pdf

• Richard Pawson and
Rob Matthew’s book

• Dan Haywood’s book
– http://www.pragprog.com/titles/dhnako

• Naked Objects MVC
– http://nakedobjects.net
– also implements the Restful Objects spec


