
Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

1

Internationalization & Localization
Of OpenOffice.org

-- TThhee IInnddiiaann PPeerrssppeeccttiivvee

“Comprehensive Office Suite for Multilingual Indic Computing”

Bhupesh Koli, Shikha G Pillai

<bhupesh@ncb.ernet.in>
<shikha@ncb.ernet.in>

CENTRE FOR DEVELOPMENT
OF ADVANCED COMPUTING

(Formerly NCST)
68, Electronic City, Hosur Road,
Bangalore 561 229, India.
Tel: +91 80 852 3300
Fax: +91 80 852 2590
http://www.cdacindia.com/

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

2

Contents

Abstract 3

Introduction 4

OpenOffice.org in India 4

Overview of Indian scripts 4
 Vowels 5
 Consonants 5
 Graphical Symbols 6

Issues in Indic computing 6
 Unicode for Indian scripts 6
 OpenType 7
 Indian Language Input Methods 7

Indian Language Support in OpenOffice.org – BharateeyaOO.o 8

 Internationalization 9

Complex Text Layout 9
Locale Data 12

Localization 12

Localization Tools 13
Glossary and Translation 13
Representing the Language in the build environment 13
Building the Installation set 14

Future 15

Conclusion 16

Reference 16

Acknowledgement 16

Copyright 17

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

3

Abstract

India supports a culturally and linguistically diverse population, majority of
whom are excluded from the productive usage of information technology due to
the lack of standardized and economical Indian language enabled software.

OpenOffice.org is the leading office productivity suite through open-source
initiatives, available cross-platform with internationalization and localization
support for major International languages. This paper examines the development
aspects, usage and prospects of OpenOffice.org internationalized and localized to
cater to the Indian market.

Most Indian scripts originate from the Brahmi script and follow complex rules of
layout involving consonants, vowels, special symbols, conjuncts and ligatures.
Unicode encoding for Indian languages establishes a similar pattern among the
scripts. We will examine these orthographic rules and how Complex Text Layout
algorithms can be developed for Indian scripts in OpenOffice.org. Also explored
are storage and rendering aspects of Indian text, along with font technologies
suitable for Indian scripts.

The Internationalization (i18n) and Localization (l10n) framework of
OpenOffice.org sets guidelines for localization and internationalization work of
the suite in other languages. The project “BharateeyaOO.o”
(http://www.ncb.ernet.in/bharateeyaoo) commenced on the lines of these
frameworks, to achieve Indian language support in OpenOffice.org. With
initiatives for localizations in major languages of India, Complex Text Layout
support, Indian locales, dictionary support and collation algorithms, the project
aims at a completely “Indianized” Office suite packaged economically for the
Indian user. This paper concludes with an insight into the development,
implementation details and progress of this project.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

4

1. Introduction

India is a country having eighteen constitutional languages, six thousand dialects and
an estimated eight hundred fifty languages in daily use, and supporting 15% of the
world’s population. The growth and penetration of Information Technology in this
developing nation is however, restricted to only 10% of its population, since the other
90% are yet to be conversant in the lingua franca of computer mediated
communication – English. This calls for development of software supporting local-
languages, allowing creation and manipulation of regionally relevant content, along
with computing in local mediums. Such software need to be economically viable, and
compliant to international standards to allow information dissemination transparently
across economic, cultural and social barriers. Here, we analyze the prospects and
developmental aspects of one such software - the internationally acclaimed product
OpenOffice.org - in Indian languages.

2. OpenOffice.org in India

OpenOffice.org is the open source project through which Sun Microsystems has
released the technology for the popular StarOffice[tm] Productivity Suite. With a
worldwide developer community, open access to a common source base for high-
productivity office applications that runs on all major platforms, and extensible
internationalization and localization frameworks for development in all international
languages, OpenOffice.org is an unparalleled effort towards open technology access
in this computing era. For India, OpenOffice.org provides not only economic
viability, but also extensibility in terms of Indian language development and support
achieved so far.

Indian language support in OpenOffice.org aims to fulfill the basic requirement of
having the commonly used collection of office applications on each Indian desktop.
With support added for Indian localized interfaces and technical processing of Indian
languages, the software will be in the forefront of Indian language development and
information propagation across all digital barriers.

3. Overview of Indian Scripts

Of the eighteen official Indian languages, fifteen are of common origin – the ancient
“Brahmi” script of India [1]. The other three namely Kashmiri, Sindhi and Urdu are of
Perso-Arabic origin. Based on the Brahmi script classification and syllabic features,
the characters of the fifteen major languages have been classified as Consonants (C)
and Vowels (V). These two basic groups in various orders, along with graphical
symbols (G) of the script, combine to form the orthographic syllable.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

5

The organization of consonants and vowels, as well as the possible combinations
form the basics of each Indian language. This organization results in explicit rules for
creation of characters and conjuncts. Indian scripts generally exhibit complex
behavior in syllable composition, formation and positioning. There also exist many
shaping rules for each character, depending on the syllable it forms with other
characters. These shaping rules may vary for individual scripts, but on the whole,
based on the organizational structure and the classification of characters within each
script (explained below), all major Indian scripts display a similar behavioral pattern.

3.1 Vowels – Independent and Dependent

Vowels in Indian languages have both independent and dependent forms. The
independent form stands by itself, and emphasizes the sound that it represents. The
dependent vowel, also known as vowel signs/matras, is depicted in combination
with a consonant or consonant cluster. The sound of this combination is the
combined result of the sounds of the consonant/cluster and the vowel. Depending
on the Indian script, these dependent vowels may attach itself to the any part of the
consonant cluster: up, down, left or right. In certain scripts, combination of a
consonant and dependent vowel may also change the inherent shape of both the
vowel and consonant.

The Tamil script has been used here to highlight independent and dependent vowel
combinations with a consonant:

3.2 Consonants – Full and Half Forms

Consonants are generally treated as the base of a syllable, and can be found having
an inherent vowel, generally with the sound {a}. When combined with a dependent
vowel, the sound of the inherent vowel is overridden with that of the dependent
vowel.

A consonant may be visible in its full or half form, the latter depicting a consonant
without the inherent vowel. This half form of a consonant is obtained by combining
the consonant with a special character called a virama/halant. The halant kills the
inherent vowel of the consonant and is used in forming consonant conjuncts.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

6

Depicted below is an example of different conjuncts formed from two consonants in
Hindi, using the halant ?and zero-width characters ZWJ and ZWNJ:

3.3 Graphical Symbols – Modifier marks

Each Indian script also has modifier marks and diacritics that add to the consonant
to produce some modified phonetic behavior. There also exist special symbols all
having different combination roles, and Indian numerals within the script.

The following showing consonant, vowel and special character combination logic in
Hindi; the boundaries of each cluster have been marked:

4. Issues In Indic Computing

Enabling Indian languages in software requires focusing on character encoding, font,
character input, rendering and shaping technology for each script. Described below
are some of these issues:

4.1 Unicode for Indian scripts

Unicode encoding (16 bit) for Indic scripts is based on the 1988 draft of ISCII
(Indian script code for Information Interchange), brought out by the Indian
Department of Electronics (DoE), Government of India. The ISCII code set was
evolved to exploit the common phonetic structure of Indian scripts, as an 8-bit
coded character set. The lower 128 characters are from ASCII, while the top 128
are for one Indian script.
This arrangement sought to cater to all ten main Brahmi-based Indian scripts, with
an INSCRIPT keyboard overlay providing a logical arrangement of the characters.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

7

Nine main Indian scripts viz. Devanagari, Bengali, Gurmukhi, Gujarati, Oriya,
Tamil, Telugu, Kannada and Malayalam have been encoded in Unicode in the
South and Southeast Asian script range [2]. The encodings are used in conjunction
with the 8-bit transformation format UTF-8 to effect storage and rendering of
Unicode text effectively. UTF-8 is compatible to ASCII ranges and transforms each
Unicode Indian character to three byte representations.

After development of the Unicode standard, many issues have been brought up by
Indic computing societies, about the incompleteness of the Unicode standard with
regard to proper representation of all the Indian scripts. These are mainly issues
regarding misrepresentation of some characters, missing characters and incorrect
shape or annotation. The Government of India has proposed some changes to the
existing encoding for Indian scripts, to bring out the best possible representation [3].
Apart from Unicode, there are also other encoding standards in India, like ISCII and
some proprietary/font encodings for Indian languages. However, since Unicode is
an international multilingual standard compatible across software platforms, it can
be seen as a better option for most Indian languages.

4.2 OpenType

The OpenType specification[4] uses Unicode for character encoding and allows
development of fonts containing large glyph sets and glyph variants. It allows font
designers to map single characters to multiple glyphs and vice-versa, a single glyph
for multiple characters.

OpenType tables like GSUB (glyph substitution) and GPOS (glyph positioning)
allows complex positioning, definition of conjuncts and cluster formations, and
encoding of specific script features. With such explicit script information, text-
processing applications need only provide the processing details than concentrate
on linguistic specifications. For Indian languages, OpenType fonts provide the best
solution, and has proven results with respect to support for complex features within
each script.

4.3 Indian Language Input Methods

Language Input in a software depend on the recognition of the language in the
software as well as methods to input characters within the language. Input methods
may be keyboard-based, through speech recognition, or dictionary/vocabulary
dependent. Most common ways of Indian language input in software is through
usage of logical keyboards based on mapping the standard keyboard. Since Indian
language input in itself is complex in nature, as opposed to Latin scripts, keyboard
layouts for Indian languages also require much deliberation before implementation
and usage. The INSCRIPT keyboard, an initiative of the Department of Electronics,
maps the standard QWERTY keyboard for Indic scripts.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

8

The keyboard overlay exploits the logical ordering of Indian scripts, bringing about
a common structure among all the scripts, with the vowels on the left hand side, and
consonants on the right. The Windows platform Indian locales uses INSCRIPT
keyboard layout for Indian character entry. On Linux, there are keymaps developed,
used in conjunction with xkb or xmodmap, that use the INSCRIPT layout. There are
also a variety of phonetic, regional and romanized keyboards available, however,
some are proprietary and based on various other standards.

5. Indian Language Support in OpenOffice.org

The BharateeyaOO.o project

The BharateeyaOO.o project (http://www.ncb.ernet.in/bharateeyaoo) was commenced
at the National Centre for Software Technology (officially CDAC from April 2003)
in 2001, to initiate development in OpenOffice.org through localizations and
internationalization support within the suite for major Indian languages, on the
prominent software platforms. Such an initiative was brought about to compensate for
the lack of Indian language support in key software like office suites, which are
almost every computer user’s requirement.

The project targets implementation of the following features in OpenOffice.org for
Indian languages

Complex Text Layout: Enabling CTL support in the suite, for all major Indian
languages based on a generic framework, on Windows and Linux. This also involves
development of Indian language solutions such as fonts, and input methods,
according to requirement of the platform.

Indian Locales: Enabling locale data in the suite, for effecting currency, calendar,
dictionary and collation specifications for each Indian language.

Localization: Translation and localization of the suite on Windows and Linux for the
Indian languages – Hindi, Tamil, Kannada, Telugu, Punjabi, Marathi, Gujarati,
Bengali and Malayalam.

The development of the project was based on the i18n (Internationalization) and l10n
(Localization) frameworks of OpenOffice.org. The sections described below,
highlight the developmental aspects of BharateeyaOO.o with insights into the
solutions provided and observations made during implementation.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

9

6. Internationalization (i18n)

The i18n framework of OpenOffice.org offers internationalization functionality
within the suite. Encapsulated within two modules of the source i18n and i18npool,
the framework designates internationalization requirements for western, CJK and
complex script based languages. Addressing these requirements for Indian languages,
addition of complex text layout support for major Indian languages, and locale data
support was taken up.

6.1 Complex Text Layout

The presentation of Indian Language scripts requires contextual processing for
output and display, due to its complex nature. Main issues that need to be tackled
are those of conjunct formation from more than one character, and processing of
such clusters within a document. For the requirements of CTL, i.e. text rendering,
processing logic for arrow keys, positioning of caret and cursor, backspace/delete
processing etc. character clusters lend a new dimension and each CTL event must
be able to accommodate clusters and behave accordingly.

Some typical requirements of Indian script CTL processing are that the arrow and
mouse events should result in the caret being positioned at cluster boundaries, and
not within the cluster. Deletion should remove the entire cluster containing more
than one code point, while a backspace operation should be allowed to remove
characters one by one. Combining characters also need to be considered while
selection, cut/copy/paste and text break issues.

Finding a combination for Indian Languages

A text-processing engine for Indian scripts should be able to know character
behavior, as in whether it can be involved in a combination with its neighbors. This
involves logic processing for finding a combination in a specific language.

In OpenOffice.org, such logic can be developed within the i18n implementation of
BreakIterator. The BreakIterator is used to find a character boundary, based on
logic provided on the particular script. This character boundary logic, accessed
through interfaces, can aid the text-processing engine in finding valid character
combinations.

All major Indian languages that originate from the “Brahmi” script follow similar
rules of combination. This feature can be used to develop a generic algorithm for
character combinations. However, there are some exceptions in certain scripts,
which may require specific implementation.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

10

Character combination affects Text width

Combination often results in a modification of a character’s appearance or even a
completely different character substituted. This leads to the cluster having a new
width, rather than a width equal to the sum of individual width of characters
involved in combination. If the text-processing engine places the caret according to
the sum of the widths, this may lead to an error. Thus along with combination
character processing, determination and calculation of text width is also necessary.

Implementation of Indian script – CTL

Implementation of CTL for Indian scripts, based on Character combinations and
their corresponding text width, is resolved to the following three major feature
additions:

Additional support required for Complex Script characters.

OpenOffice.org Visual class library [VCL] module provides access to different GUI
systems. This module also defines the APIs to render multilingual text.
An array [WidthInfoArray] of type - structure [ImplWidthInfoData] has been
defined to store the width of each unique character occurring in a document. If the
character is used in the document once again, its width will be looked up in the
array, instead of repetitive computation.

struct ImplWidthInfoData{
USHORT mnChar;
Long mnWidth;
};

For multilingual Indian text, comprising of complex characters, this becomes a
limitation, since, there is no provision to store the width of the character cluster,
which in itself has a unique value dissimilar to its components. CTL Processing is
constrained here, as the exact widths of combinations are not stored.

To counter with this limitation, we propose a new layout of the structure for
complex scripts. The member variable mnChar should be a string to store complex
characters (consisting of more than one code-point).

Following is a possible definition:

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

11

struct ImplWidthInfoData{
USHORT mnChar; string maChar;
long mnWidth;
};

Abstract interface to get a width of combination characters

Complex text may contain single character, combining characters or even
multilingual text. Width needs to be calculated correctly based on each feature
within the text. If characters are single (not combining), width can be calculated
individual. In case of combining characters, we need to have an API that abstracts
system level functionality to get exact width of the string.

The [VCL] module implementation contains a SalGraphics (System Abstraction
Layer Graphics) class, where a function to get width of characters is defined. Here
we propose to have a function, which can return width of strings (character cluster)
passed as arguments.

Class SalGraphics {
...
GetCharWidth (nChar, nChar, nLen);
...
// It also requires an interface to compute string width

GetTextWidth (String, nLen);

};

Modification in the text processing in source

All width processing, spacing array and text break implementations have to be
modified to accommodate the changes mentioned above. One such implementation
can be as follows. The example is that of a function in the [VCL] layer definition of
the OutputDevice class.

long OutputDevice::GetTextArray(String& , long* , nIndex, nLen) const
{
...
for (i = 0; i < nLen; i++)
{
/* Check the character to see if it is from a complex script. Call the BreakIterator APIs for
that language, to find out the character boundaries and their widths. According to whether
the character has combined with another one or not, width can be stored in the modified
array along with the single/combination character*/
}
}

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

12

All other CTL implementations like arrow processing, delete/backspace, etc.
inherently uses the BreakIterator implementation, and hence will be resolved to
work for the complex script text.

6.2 Locale Data

Indian Locale Data has been implemented to provide calendar and currency formats
in Hindi. This involves adding a locale file (XML) to the i18npool module, from
which it is parsed and compiled into a shared library. At runtime, the locale can be
selected from the “Options” dialog.

7. Localization (l10n)

The Localization project of OpenOffice.org, residing at http://l10n.openoffice.org/
hosts a Localization (l10n) framework based on the multi-platform environment of
the suite. The Framework[5] stipulates the method to build localized workspaces, with
the introduction of a new language to the suite and clearly demarcates the necessary
steps in terms of

 Getting Milestone workspaces
 Localizing and Building OpenOffice.org

o Representing the language in the build environment
o Extraction of strings from the source
o Merging back translated strings
o Rebuilding the localized code

 Switching to the newer workspaces

Localization of OpenOffice.org was planned with the two major languages: Hindi and
Tamil. While the former is the national language and widely spoken in Northern
India, the latter is a language spoken in Southern India. After successful localization
in these two languages, other language localizations were to be started.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

13

Translation within OpenOffice.org is required for strings composing the resources of
the suite, definitions of the setup program and configuration files. These files have to
be translated in the target language and rebuilt in a source which has the target
language already added to the environment.

7.1 Localization Tools

The suite also provides localization tools such as transex3, lngex, cfgex and
localized that parse the resource files to produce tab-separated files for translation,
and allow merging back of the translated strings within these files to the source. The
tabs are crucial for the merging back process. If the translation results in incorrect
tab spacings then the file will be corrupted, and may hamper correct merging back
of the strings.

While transex3, lngex and cfgex work for specific files, the localize tool extracts
and merges strings from the entire source. These tools are located in the transex3
module and require the target language to be added to the transex3 source and
rebuilt, for extraction and merging to be possible.

7.2 Glossary and Translation

The OpenOffice.org glossary, composing about 7000 strings, contains most of the
words within the 21,000 actual resource strings to be translated. Using the glossary
as a reference for translation, consistency across translations can be assured, as well
as decreasing time required for reference.

Translation of the strings is to be done within the tab-separated files produced by
the localization tools, in a simple editor, and saved in UTF-8 format. The font used
for entry of translations need to be a Unicode font so that the UTF-8 values
generated are correct. Only this can ensure that the application renders the correct
strings on the user interface after localization. For Indian languages, OpenType
fonts can produce best results.

Resource translations need to be apt and context sensitive as far as possible. For
this, the context information of the strings within the files, i.e. the module
information and user-interface element that holds the string, can be used to guess
out the context during translation.

7.3 Representing the language in the build environment

Language support in OpenOffice.org is demarcated in six different modules of the
source i.e. solenv, tools, svx, rsc, transex3 and the installation project comprising
the modules scp and setup2.

Any language within the source is represented by six different parameters:

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

14

Locale Identifier: Reserved Hexadecimal LANGID defined in Windows. Can also
be specified by a user, for languages that do not have an existing definition.

Numerical Code: Decimal equivalent of the LANGID.

Language Identifier: A unique two-digit identifier that represents the language.

ISO-Code: A short string, which indicates the language.

Symbolic Code: Name of the language. If the language is spoken in different
regions, then a 2-character representation can be also added for that region along
with the language.

Environment Variable: A variable to be set to TRUE to indicate that the build
should be performed for that language.

The following table gives the values adopted for Indian localizations:

Language Locale

Identifier
Numerical
Code

Language
Identifier

ISO
Code

Symbolic
Code

Environment
Variable

Hindi 0x0439 1081 91 hi “hindi” RES_HINDI

Tamil 0x0449 1097 92 ta “tamil” RES_TAMIL

The values assigned for each language across all the files should be uniform and
consistent, for the user interface to be completely localized. The ISO-code may be
predefined in the file isolang.cxx in the tools module, and if so, it would be a better
approach to adopt the same value for all further modifications. The encoding format
for the language also has to be specified within the tools module. For Indian
languages, UTF8 encoding was used. (Specified as RTL_TEXTENCODING_UTF8
in the file l2txtenc.cxx).

7.4 Building the installation set

A rebuild of the source with the localization modifications added will produce the
new installation set. For the rebuild, the environment variable should be set to
TRUE within the environment file (*.bat on Windows and *.set on Linux) and
LANGEXT=## provided as argument to the dmake/build command. The
installation sets after building are created in instsetoo/*.pro/##/normal. (*.pro
maybe wntmsci7.pro or unxlngi3.pro on Windows and Linux respectively. ## is the
Language identifier).

Following are some screenshots for the localization work in Hindi on Windows and
Linux.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

15

Localized strings on both platforms can be rendered using any OpenType font for
that language. The preferences for font can be set within the source or at run-time.

Localization on Windows – Draw (font is Mangal)

Localization on Linux – Text Document (font is Raghu)

8. Future of BharateeyaOO.o Project

The Internationalization framework of OpenOffice.org can be extended to provide
dictionary support, and locale data support for Hindi and other Indian languages.
Implementation of sorting/collation for Indian languages also can be developed.
Collation is the linguistic and culturally sensitive sort order of strings in a language. It
is dissimilar to encoding order, esp. in the case of Unicode, since collation is
language dependent while encoding is script based. Hence, for an Indian script like
Devanagari, which is the base for Hindi, Marathi, Sanskrit and Konkani, collation[6]

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

16

orders have to be defined for each of the languages, all of which have different
sorting requirements. For Indian languages, collation order should also be sensitive to
multiple code points which form conjuncts, and “weights” given to consonant
modifiers and special characters in the script. OpenOffice.org defines collator
components that can be developed to produce collation algorithms for a particular
language.

9. Conclusion

The availability of Indian language support in OpenOffice.org can be viewed as a
major boon to Indian language computing and development. The multi-faceted
features of this leading suite coupled with its availability in the open source domain,
makes it an appealing and highly sought-for technology solution for Indian users.
With this paper, we aim to introduce the possibilities of this suite in Indian languages
and deliver an insight into the subsequent impact of its availability, on the
propagation of Indian languages in the world of Information Technology.

10. References

[1] SP Mudur et al. Computers & Graphics 23 (1999) 7-24 “An architecture for the
shaping of Indic Texts”
[2] http://www.unicode.org/uni2book/ch09.pdf: South and Southeast Asian script
encoding in Unicode
[3] http://tdil.mit.gov.in/pchangeuni.htm: Proposed changes in Indian scripts given by
the Department of Information Technology, Ministry of Communications and
Information Technology, India
[4] http://www.microsoft.com/typography/otfntdev/indicot/default.htm: OpenType
Indic script support
[5] http://l10n.openoffice.org/L10N_Framework/index.html: L10N Framework
[6] www.microsoft.com/middleeast/msdn/Indic_collation-DC.pdf : Issues in Indic
collations

11. Acknowledgement

We would like to thank all the past members of this project as well as our other
colleagues who have encouraged us in our work. We are indebted to members of our
organization, NCST, for the pioneering research and development they have done in
Indian Language Technology.

We would also like to extend our sincere gratitude to Dr. S.P Mudur, for initiating
this work and inspiring us to do our best.

Internationalization and Localization of OpenOffice.org — The Indian Perspective

OpenOffice.org Conference Hamburg, Germany, March 2003

17

Finally, we thank all the OpenOffice.org team members for the wonderful support
they gave us, and for providing assistance and answers to all our queries.

12. Copyright

Copyright © 2003 Centre for Development of Advanced Computing (Formerly
NCST), 68 Electronics City, Bangalore – 561229, Karnataka, India. All rights
reserved.

