
Stephan Bergmann – OpenOffice.org Developer – Slide 1/17

OOoCon 2004 – Berlin

Here Come UNO,

All Shiny and New

Stephan Bergmann – OpenOffice.org Developer – Slide 2/17

Agenda

You Know UNO?
Ugly UNO/Shiny UNO
Multiple-Inheritance Interfaces
Services
Type-Safe Properties
Parametric Polymorphism
Increased Type Safety Improves Client Code
Published APIs
Q & A

Stephan Bergmann – OpenOffice.org Developer – Slide 3/17

You Know UNO?

UNO is the component model underlying
OpenOffice.org.

The basic UNO concept is an object, which
implements one or more interfaces, which in
turn offer methods that can be called on the
object. Clients navigate among the various
interfaces of an object via queryInterface.

UNO binds to various programming
languages, both statically and dynamically
typed ones (Java, C++, Python, OOo BASIC).

Stephan Bergmann – OpenOffice.org Developer – Slide 4/17

Ugly UNO

XComponentContext context = ...
XServiceIfc1 serviceIfc1 = (XServiceIfc1)
 UnoRuntime.queryInterface(
 XServiceIfc1.class,
 context.getServiceManager().
 createInstanceWithArgumentsAndContext(
 "foo.bar.SomeService",
 new Any[] { new Integer(10), "Whatever" },
 context));
serviceIfc1.fn1();
XServiceIfc2 serviceIfc2 = (XServiceIfc2)
 UnoRuntime.queryInterface(
 XServiceIfc2.class, serviceIfc1);
serviceIfc2.fn2();

Stephan Bergmann – OpenOffice.org Developer – Slide 5/17

Shiny UNO

XComponentContext context = ...
XService service = foo.bar.SomeService.create(
 context, 10, "Whatever");
service.fn1();
service.fn2();

interface XServiceIfc1 {
 void fn1();
};
interface XServiceIfc2 {
 void fn2();
};
service foo.bar.SomeService {
 interface XServiceIfc1;
 interface XServiceIfc2;
};

interface XServiceIfc1 {
 void fn1();
};
interface XServiceIfc2 {
 void fn2();
};
interface XService {
 interface XServiceIfc1;
 interface XServiceIfc2;
};
service foo.bar.SomeService:
 XService {
 create([in] long arg1,
 [in] string arg2);
};

Stephan Bergmann – OpenOffice.org Developer – Slide 6/17

Connecting to the Office

Many applications want to access OOo via
UNO. The code to do that used to be

boilerplate and lengthy:

With the new bootstrap facility, that has

changed:

XComponentContext local = Bootstrap.createInitialComponentContext();
XConnector connector = (XConnector) UnoRuntime.queryInterface(
 XConnector.class, local.getServiceManager().createInstanceWithContext(
 "com.sun.star.connection.Connector", local));
XBridgeFactory factory = (XBridgeFactory) UnoRuntime.queryInterface(
 XBridgeFactory.class, local.getServiceManager().createInstanceWithContext(
 "com.sun.star.bridge.BridgeFactory", local));
XConnection connection = XConnector.connect(
 "socket,host=localhost,port=12345");
XBridge bridge = factory.createBridge("", "urp", connection, null);
XComponentContext context = (XComponentContext) UnoRuntime.queryInterface(
 XComponentContext.class, bridge.getInstance
("StarOffice.ComponentContext"));
// make sure OOo -accept=... is running

XComponentContext context =
 com.sun.star.comp.helper.Bootstrap.bootstrap();

Stephan Bergmann – OpenOffice.org Developer – Slide 7/17

Multiple-Inheritance Interfaces

Allowing multiple-inheritance for interface
types opened up a bunch of possibilities:

API designers can group related interfaces together.
The resulting super-interfaces can be passed around
as method parameters etc.

Client code gets rid of queryInterface to navigate
among related interfaces of an object.

Interface types can take over most of the roles
service descriptions previously had; service
descriptions focus on a single task now.

Stephan Bergmann – OpenOffice.org Developer – Slide 8/17

Services of the Past

In the past, UNOIDL service descriptions were
merely documentation for various concepts:

Some services are available at the global service
manager
(e.g., com.sun.star.bridge.UnoUrlResolver).

Other services are available through specific factories
(e.g., com.sun.star.bridge.Bridge and
com.sun.star.bridge.XBridgeFactory).

Yet other services merely represent abstract entities
(e.g., com.sun.star.document.OfficeDocument).

A few services are just documentation for sequences
of properties
(e.g., com.sun.star.document.MediaDescriptor).

Stephan Bergmann – OpenOffice.org Developer – Slide 9/17

Services of the Future

A new-style service unambiguously expresses
one thing: “Instances of this service are
available at the global service manager.”

A new-style service corresponds to exactly
one interface type, so services are now better
integrated with the type system:

You obtain a service with its specific interface type.

You pass a service instance into and out of methods
by its specific interface type. (This can also make
method specifications more self-documenting.)

Stephan Bergmann – OpenOffice.org Developer – Slide 10/17

Services Have Constructors

Each new-style service has a constructor that
creates an instance of the service's interface
type (no more queryInterface):

XUnoUrlResolver resolver = UnoUrlResolver.create(context);

Additionally, a new-style service can have
specific constructors with arguments (no more
ANYs):

Analogously, new-style singletons have getters.

XService service = foo.bar.SomeService.create(
 context, 10, "Whatever");

Stephan Bergmann – OpenOffice.org Developer – Slide 11/17

Type-Safe Properties

The properties of old-style services are
manipulated via XPropertySet etc., which
involves handling type-unsafe ANYs.

Attributes of interface types (until now a
shadowy feature) are the type-safe
counterparts of properties. They just had to
be improved a little:

The getters and setters of attributes can raise
specific exceptions.

New types (Ambiguous<T>, Default<T>, Optional<T>)
can be used to model maybeambiguous, maybedefault,
 and maybevoid properties.

Attributes can be bound, to notify listeners about
changes.

Stephan Bergmann – OpenOffice.org Developer – Slide 12/17

Optional et al.

An old-style maybevoid property can either have
a value of a certain type T, or be void.

This concept is modelled in a more type-safe
way with an attribute of type
com.sun.star.beans.Optional<T>:

Optional uses the new feature of polymorphic
struct types.

x.optChar = new Optional<char>(true, 'a');
x.optFloat = new Optional<float>(false, 0.0f);
if (x.optChar.isPresent) {
 char c = x.optChar.Value;
}
if (x.optFloat.isPresent) {
 float f = x.optFloat.Value;
}

Stephan Bergmann – OpenOffice.org Developer – Slide 13/17

Parametric Polymorphism

A few notes:
The feature is kept initially simple, to avoid
unpredictable problems.

For now, only available for struct types, not for
interface types (which, alas, means no polymorphic,
homogeneous containers).

Polymorphic struct types are mapped to template
classes in C++.

Polymorphic struct types are mapped to Java’s
Object-polymorphism (instances of type parameters
are replaced by java.lang.Object) in Java 1.4, and
to generic classes in Java 1.5.

Stephan Bergmann – OpenOffice.org Developer – Slide 14/17

Increased Type Safety

The main theme of the presented features is
increased type safety:

Multiple-inheritance interface types reduce need for
queryInterface.

Extended interface type attributes, together with
polymorphic struct types, reduce need for ANY.

Constructors of single-interface–based services take
exactly typed arguments, and return references of
exact type.

Getters of interface-based singletons return
references of exact type.

All this leads to simpler, more natural client
code.

Stephan Bergmann – OpenOffice.org Developer – Slide 15/17

Published Things

The dilemma of the OOo API:
On the one hand, the API should be stable across
releases.

On the other hand, freezing an API too early often
leads to a poor API.

The solution: UNOIDL entities can be marked
as either published or unpublished.

A published entity is guaranteed to remain
unchanged in future releases. Most parts of the
OOo API are published (so that they can be used by
clients with confidence).

An unpublished entity is not yet mature, and still
subject to change. New OOo features may start out
unpublished.

Stephan Bergmann – OpenOffice.org Developer – Slide 16/17

The OOo API

How does all this affect the existing OOo API?
To remain backwards compatible, the existing APIs
are generally not affected by the new features.

Designers of new APIs are encouraged to use the
new features, so they should become more and
more common post OpenOffice.org 2.0.

A handful of existing services have been migrated
to the new form, and they can be obtained through
constructors (e.g.,
com.sun.star.bridge.UnoUrlResolver).

Stephan Bergmann – OpenOffice.org Developer – Slide 17/17

Q & A

Wenn zu perfekt,
liebe Gott böse!

 ―Nam June Paik

