
C++ Development for
OOo: Tricks of the Trade

Thorsten Behrens
StarOffice/OpenOffice.org
Sun Microsystems

2

This Talk:
• this is about OOo core programming.
• the core: that's where the vast majority of both code

and functionality is located, and it's is where to
know your way around when things go wrong (i.e.
you need to fix a bug or you want to add a feature
that affects core functionality).

What's the Matter With OOo?
• OOo is huge: ~ 5.2 MSLOC, 4.6 MSLOC C++

(89%), ~23,000 C/C++ files (early 2.6 kernel: ~4.3
MSLOC)
• at its core, OOo is classic C++: classes &

inheritance, spread across a lot of shared libraries.
• that gives us: a highly coupled beast, that takes a

day to build from scratch

Coupled - In What Way?
• Separate compilation units ('cxx'-files) are highly

dependent on other files:
> e.g. header file vcl/window.hxx: 2552 (for 7127 of

relevance) files that directly or indirectly depend on it
> about 1/3rd of OOo would need recompilation, when

vcl/window.hxx changes.

So, What's the Matter Again?
• nobody seriously wants to wait 3 hours to recompile

after a single change
• in contrast to the scholarly focus on encapsulation

(which is about logical dependencies), a large C++
project like OOo also has to care about physical
dependencies:
> transitive closure of OOo's dependency graph: 1,950,117

edges (from 7129 active compilation units), i.e.~274
mean dependent files per compilation unit

Break Dependencies, Brute-Force
• OOo is broken down into a bunch of modules,

where each module ideally contains a delimited,
cohesive area of functionality (e.g. VCL: GUI
platform abstraction; SW: Writer)
• each module provides a public interface via

"exported headers": during build time, each module
"delivers" headers to the global solver directory,
which makes those headers visible to other
modules.

Break Dependencies (cont.)
• switching off dependencies on headers taken from

solver (by undef-ing MKDEPENDSOLVER) leaves
only intra-module dependencies: now only ~42
mean dependent files per compilation unit
• this leads to the notion of "compatible" vs.

"incompatible" changes
– “compatible”: one does not need to recompile other modules

(by hand)
– “incompatible”: some, or all of the higher modules need

rebuilds

Break Dependencies, the C++ Way
• changing implementation should not require

recompilation in other modules
> i.e. a class should be truly insulated

• in a first step, reducing dependencies can be
achieved via
> use forward decls instead of header inclusion wherever

possible (ptr or reference to given type, return value)
> keep enums at the classes that use them (instead of

putting them into a central enums.hxx)
> avoid default arguments - they need full definitions, not

only forward declaration
> ...

Break Dependencies (cont.)
• aforementioned list helps, but still leaves class

internals exposed to client code
• now, true insulation can be achieved by
> pimpl idiom (or handle-body idiom)
> abstract interface (protocol class) plus factory

What's a Pimpl, Anyway?

class MyClass
{
public:

someMethod();
someOtherMethod();

private:
struct MyClassImpl;
MyClassImpl* mpImpl;

};

Pimpl Vs. Abstract Interface
• performance: pimpl is slightly faster than virtual

functions calls on a protocol class
• pimpl provides concrete classes, from which one

can derive and that can be freely constructed (even
on the stack)
• protocol classes also remove link-time

dependencies (see UNO)
• but for both:
> overhead prohibitive, e.g. for low-level, frequently used

classes with simple getter/setter methods
> when passing pimpled objects by value, consider to also

COW (Copy-On-Write) them.

Also Bad (When Used Large Scale)
• non-local statics
• passing user-defined types (class, struct, union) by

value
• COWed mass objects that need to be thread-safe
• short and float at interfaces
• automatic conversions
• code is not warning-free
• not being const as const can.
• using exception specifications
• ...

What's Out There to Help You?
• boost::scoped_ptr for RAII
• boost::shared_ptr/boost::weak_ptr for ref counting
• comphelper::servicedecl for UNO lib boiler-plate

avoidance
• o3tl::cow_wrapper, if you've pimpl already, and

need COW on top
• rtl::Static for providing on-demand created static

objects

http://www.boost.org/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/libs/smart_ptr/index.html
http://util.openoffice.org/source/browse/util/comphelper/inc/comphelper/servicedecl.hxx?view=markup
http://util.openoffice.org/source/browse/util/o3tl/inc/o3tl/cow_wrapper.hxx?view=markup
http://api.openoffice.org/docs/cpp/ref/names/rtl/c-Static.html

Gdb or When All Else Fails
• use most recent version (CVS)
• hack unxlngi6.mk to define -ggdb instead of -g
• if gdb gives 'incomplete type' on classes that your

code uses, try setting 'envcflags=-femit-class-
debug-always' and rebuild the file(s) in question.
• exercise the stuff you want to debug once,and only

then attach gdb to the running office ('gdb
soffice.bin $PID').
> that way, you work-around gdb's current inability to

reliably set deferred breakpoints in demand-loaded libs...

Development Tools
• (X)Emacs
• Vim
• NetBeans/Eclipse
• MSVC
• UML
> argo

• build
> for Emacs & vi:

wrappers

• Testing
> /testshl2cppunit
> delta

• Code analysis
> cvsstat gcc-xmloink

sloccount cpd bonsailxr
cscope doxygen

> gcc dump options
> sourcenav

• IFace design
> DialogDump

http://argouml.tigris.org/
http://wiki.services.openoffice.org/wiki/Category:Developer_Tools
http://cppunit.sourceforge.net/
http://delta.tigris.org/
http://sourceforge.net/projects/cvsstat/
http://www.gccxml.org/
http://www.cubewano.org/oink-stack/
http://www.dwheeler.com/sloccount/
http://pmd.sourceforge.net/cpd.html
http://go-oo.org/bonsai/cvsqueryform.cgi
http://go-oo.org/lxr
http://cscope.sourceforge.net/
http://www.stack.nl/~dimitri/doxygen/
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html#Debugging-Options
http://sourcenav.sourceforge.net/
http://wiki.services.openoffice.org/wiki/Dialog_Dump

Recommended reading/links
• OOo's list of literature
• Large-Scale C++ Software Design by John Lakos
• C++ Coding Standards by Herb Sutter and Andrei

Alexandrescu
• Watch out for an update to OOo's coding guidelines

http://wiki.services.openoffice.org/wiki/Recommended_Reading

Q&A

Thorsten Behrens
thorsten.behrens@sun.com

